
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEQUENCING THE NEUROME: TOWARDS SCALABLE
EXACT PARAMETER RECONSTRUCTION OF BLACK-
BOX NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Inferring the exact parameters of a neural network with only query access is an
NP-Hard problem, with few practical existing algorithms. Solutions would have
major implications for security, verification, interpretability, and understanding
biological networks. The key challenges are the massive parameter space, and
complex non-linear relationships between neurons. We resolve these challenges
using two insights. First, we observe that almost all networks used in practice
are produced by random initialization and first order optimization, an inductive
bias that drastically reduces the practical parameter space. Second, we present a
novel query generation algorithm that produces maximally informative samples,
letting us untangle the non-linear relationships efficiently. We demonstrate recon-
struction of a hidden network containing over 1.5 million parameters, and of one
7 layers deep, the largest and deepest reconstructions to date, with max parame-
ter difference less than 0.0001, and illustrate robustness and scalability across a
variety of architectures, datasets, and training procedures.

1 INTRODUCTION

The rapid rise of Deep Learning and Artificial Intelligence demands a deeper understanding of the
inner workings of Artificial Neural Networks, with stakes higher than ever. Neural Networks are
now used ubiquitously in every day life: from personalized movie recommendations to automated
research assistance and portfolio management. The ability to precisely reconstruct a neural network,
discerning the firing patterns of individual neurons solely through query access, is of central impor-
tance, with massive implications in safety, security, privacy, and interpretability. Such methods may
even hold the key to eventually unlocking the inner workings biological neural networks.

Up until this point, due to the difficulty of the problem, practical results have been very limited.
This is not fully surprising: In the general case, recovering the weights of a neural network is a hard
problem(Berner et al.; Chen et al., 2022; Goel et al., 2017; Jagielski et al., 2020).

One approach is to relax the constraints, and instead of producing an exact weight reconstruction,
these methods are satisfied with a generating high quality approximation of the model behaviour
(Papernot et al., 2017; Jagielski et al., 2020), often called a substitute network (Chen et al., 2017).
This is accomplished using similar techniques to knowledge distillation (Hinton et al., 2015), where
the blackbox network takes on the role of teacher, and the substitute model the student. This type
of approach is attractive due to its simplicity: the teacher provides information in the form of input-
output pairs, and the substitute learns directly from this data. While this mode of investigation has
proven fruitful in a wide range of settings, (Hu & Pang, 2021a;b) and architectures(Shen et al., 2022),
it cannot provide an exact specification of a neural network, and is thus limited in its usefulness and
the guarantees that it provides.

A second approach limits the problem in a different way: by focusing specifically on exact weight
recovery of a specific type of Neural Network: Feed forward networks with ReLU activations (Nair
& Hinton, 2010). The ReLU function has a distinct piece-wise nature, and identifying when this
transition occurs in each neuron can allow for the parameters to be identified, up to an isomorphism.
This idea has produced lots of theoretical work (Rolnick & Kording, 2020; Milli et al., 2019; Chen
et al., 2021; Daniely & Granot, 2021; Bona-Pellissier et al., 2023; Petzka et al., 2020; Phuong &

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Train NN
Population on
All Samples

Obtain Black
Box Output

Generate
Committee

Disagreement
Samples

Return Best
Network

Learnable Input
Queries 🧠

Frozen Networks 🧊

Pairwise
Disagreement

Loss 📉

…
…

?
A

B C

0 0.11
1 0.03
2 0.02
3 0.05
4 0.01
5 0.10
6 0.09
7 0.57
8 0.01
9 0.01

 Inputs OutputsHidden

Class Prob.

Figure 1: Problem Overview and Illustration of Reconstruction Algorithm and Query Generation
Algorithm

Lampert, 2019), and recently has also led to some very recent strong empirical results (Carlini et al.,
2020; Jagielski et al., 2020; Shamir et al., 2023). While these algorithms currently represent the
state of the art in exact weight recovery, in practice these studies have only been applied to small
networks, and reconstruction is a slow process that is fully limited to ReLU activations. While others
have explored different analytic methods for inferring the weights, (Fiedler et al., 2023; Fornasier
et al., 2019; 2022; Vlačić & Bölcskei, 2021), some of which can be applied to broader settings such
as TanH networks, actual empirical results from all of these works have been very limited.

Of course, the most appealing approach would be to use the relatively simple and versatile meth-
ods of knowledge distillation, but to thereby precisely reconstruct the parameters of the network.
However, directly training a student network to not just mimic the teacher, but converge on its exact
parameters, is a very difficult proposition. Martinelli et. al. (Martinelli et al., 2023) proposes learn-
ing a larger substitute network, and then pruning it down to the proper size, although the resultant
network usually will have more neurons than the blackbox and thus not be exactly identical. They
went as far as to claim that, both from a theoretical and empirical perspective, directly learning the
exact weights on a network of the exact same size as the black box is infeasible, and will inevitable
get stuck in a high loss minima (Martinelli et al., 2023).

This work directly refutes this claim, and provides the first ever exact recovery of a neural network’s
full parameter set using the student teacher paradigm without extra neurons. Moreover, we show
that our approach is actually well motivated by theory, and can solve larger, deeper, and more varied
networks than previously seen in the literature. The best methods in the state of the art demonstrate
exact reconstructions of up to 100k parameters on shallow ReLU and TanH networks, and up to
5 layers deep on a small ReLU network of roughly 1000 parameters (Carlini et al., 2020). We
reconstruct networks with over 1.5 million parameters, and up to 7 layers deep, and demonstrate
results on a variety of activation functions, network architectures, and training datasets.

We identify two main challenges in exact network reconstruction: navigating the massive parameter
search space, and selecting informative queries that allow for sample efficient recovery.

Our approach to solving the first challenge is motivated by an important observation that has been
almost entirely overlooked by previous work. While for the general case, reconstructing the param-
eters of a neural network is an NP-hard problem, we are primary not interested in solving for neural
networks with arbitrary weight patterns, but in neural networks that are likely to exist in the real
world. Because almost all networks are randomly initialized with a known distribution, and trained
via backpropogation, the possible values that the parameters will practically take on is a minute sub-
set of the full parameter space. To give an analogy from the field of image recognition: if previous
algorithms have attempted to be valid for any possible configuration of pixels, we are proposing
only considering pixel combinations likely to occur in real photographs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

To address the second challenge, we propose a novel sampling method called Committee Disagree-
ment Sampling. From an information theory standpoint, the most useful sample is the one that
evenly splits up the remaining parts of the hypothesis space that are consistent with the current
samples (the version space)(Littlestone, 1988; Angluin, 1988). While generating maximally in-
formative samples is NP-hard, it can be approximated using query by committee. This approach
generates proxies for the most informative samples by selecting the samples that maximize dis-
agreement among a population of hypotheses (Seung et al., 1992). Our sampling method generates
new samples by generating random values and iteratively refining them using backpropagation to
directly learn samples that maximize the disagreement of a population of potential solutions.

2 RESULTS

2.1 EXPERIMENT SETUP

Given a blackbox neural network, the goal is to reconstruct all of its internal parameters. We can
query the network with any possible input and observe the corresponding output at the final layer.
However, we have no access to any internal activations or weight values. A successful reconstruction
extracts the parameters of the target network with a minimum number of input queries.

Like prior work(Carlini et al., 2020; Jagielski et al., 2020; Shamir et al., 2023), we assume exact
knowledge of the target network architecture, including the number of neurons, their connectivity,
and the activation functions. This is a reasonable assumption in practice because many companies
and researchers publicly release the architectures of their trained models while keeping the exact
trained weight values confidential(Brown et al., 2020; Touvron et al., 2023). Further, even when the
architecture is not publicly released, side-channel attacks have been demonstrated that can infer this
information(Hu et al.; Chabanne et al., 2021; Joud et al., 2023; Zhang et al., 2023).

Unlike other approaches (Truong et al., 2021), we will assume no direct or surrogate knowledge of
the training dataset. However, we will make some assumptions about the training pipeline, namely
that it uses standard procedures common in the training of modern neural networks. We will assume
that all data was scaled to have a mean of 0 and standard deviation of 0.5, and that the network
parameters were initialized with a mean of 0 and standard deviation of

σ =

√
2

nin + nout
.

where nin and nout are the number of incoming and outgoing neurons per layer (Glorot & Bengio,
2010). We further assume that the network was trained on the data using some form of gradient
based first order optimization, although the exact optimizer, number of epochs, or learning rate, is
not assumed, and can be anything.

2.2 ACCOUNTING FOR ISOMORPHISMS

Neural networks with different internal parameters can still exhibit the exact same input-output
behavior. The input-output behavior of a network only defines its internal parameters up to an
isomorphism, and depending on the architecture and type of activation functions used, different iso-
morphisms can be observed (Fiedler et al., 2021; Godfrey et al., 2022; Rolnick & Kording, 2020;
Martinelli et al., 2023). Since two neural networks that are isomorphisms of each other are function-
ally identical, it is impossible to differentiate them using only query access, and thus when evaluating
our solutions, we need to take these isomorphisms into consideration. There are three primary types
of isomorphisms that are relevant for our network reconstructions:

Permutations Every neuron in a neural network computes an activation function over a linear com-
bination of its input values. This linear combination implies that the order of the input values does
not affect the computed result. Consequently, the input-output functionality of a neural network
does not change when the internal order of the neurons changes. In other words, the order in which
internal neurons are enumerated is arbitrary, and any two internal neurons can be swapped, as long
as their connections to the preceding and next layer are preserved.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Scaling Networks with piece-wise linear activation functions, like ReLU and LeakyRelU, exhibit
one more isomorphism: scaling. This is directly caused by the piece-wise linearity. Thus, for any
positive scaling factor α, the following holds:

f(
∑

wi · (xi · α) + b · α) = α · f(
∑

wi · xi + b)

This means that the output weights of a neuron can be scaled up as long as the input weights are
scaled down with the same value.

Polarity Similarly, networks with an activation function symmetrical around zero, like TanH, exhibit
another isomorphism of their own: polarity. For any input value, the activation function satisfies:

f(−x) = −f(x)

Therefore, the sign of the input weights of any neuron can be inverted when the sign of the output
weights is inverted as well. Figure 4 illustrates the different isomorphisms.

When evaluating a solution, we search for the isomorphism of the solution that is most similar to the
blackbox, and then compute parameter distance.

CNNs
In convolutional neural networks, the isomorphism classes can be extended to convolutional kernels.
The permutation, scaling, and polarity isomorphisms now operate over entire kernels and their as-
sociated output channels, rather than individual neurons. For permutations, the ordering of kernels
within a convolutional layer is arbitrary, and any reordering of these kernels preserves the network’s
input-output behavior, provided that the corresponding input channels in the subsequent layer are
permuted accordingly. For networks with piece-wise linear activation functions, all of the weights
within any individual kernel can be scaled by a factor α, as long as the corresponding input chan-
nel in the following layer’s kernels is scaled by 1

α . Similarly, for activation functions symmetric
around zero, the sign of all weights in a given kernel can be flipped, provided that the corresponding
input channel in the next layer’s kernels is also sign-flipped. This operation maintains functional
equivalence due to the antisymmetry of the activation.

RNNs
Recurrent neural networks introduce new isomorphism constraints due to the presence of recur-
rent connections through time. In particular, the hidden weight matrix is applied repeatedly over
timesteps, and must be treated differently from standard feedforward weight matrices. Because the
output of a recurrent layer at timestep t is saved as the hidden weight matrix and used in calculating
the output at timestep t+1, the hidden weight matrix is effectively connected to itself, and any oper-
ation applied to its columns (interpreted as neurons) must also be applied to its rows (representing
connections to other neurons). If neurons in the recurrent layer are permuted, the same permutation
must be applied to both the rows and columns of the hidden weight matrix to maintain consistency.
Similarly, if a neuron is scaled or polarity-flipped, both the corresponding column and row of the
hidden matrix must be scaled or flipped by the same factor.

These additional constraints make RNN alignment substantially more complex. Because transfor-
mations must be applied jointly to both the rows and columns of the hidden matrix, the effect of
any individual operation—scaling, polarity, or permutation—is entangled with all others. In other
words, the transformation applied to any given weight depends not only on the operation applied
to a single neuron, but on the combination of operations applied across all neurons simultaneously.
This leads to a more global and coupled alignment problem than is encountered in feedforward or
convolutional architectures.

2.3 RECONSTRUCTION EXPERIMENTS

To asses our algorithm, we began with a 3 layer 784x128x10 ReLU network with just over 100k
parameters. This corresponds with the biggest network reported in prior state of the art methods
(Carlini et al., 2020; Jagielski et al., 2020), although it is the smallest network that we will consider
in our work.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

When comparing to these prior SOTA methods, a few important things must be noted. First, while
the work of Carlini et. al., the strongest existing method, is open source, we were unable to reproduce
the results they reported. While the code worked for smaller networks, when we tried running it on
our hardware to reconstruct the MNIST network with input dimension 784, or anything larger, it
simply ran for several hours until crashing. Thus, we only provide comparison for the 784x128x10
MNIST network using the numbers reported in the literature, and do not provide direct comparisons
on any of our other experiments. However, we encourage further experimentation, and thus we
updated their code base to be compatible with the current version of JAX and included it with our
code to facilitate comparison.

Second there are some slight architectural differences. We used LeakyReLU instead of ReLU to
avoid dying neurons (Lu et al., 2019). We also used an output layer dimension of size 10, which is
standard for MNIST classification, but they reported results on an output layer of only one dimension
(784x128x1). Finally, our network used 32 bit precision, and they used 64. The comparison can be
seen in Table 1.

Reconstruction Method # of Samples max ϵ

Ours 825k 5.4e-05
Carlini et. al. * 2.9m 1.4e-09
Jagielski et. al. * 1.2m 2.8e-01
Martinelli et. al. N/A 1.8e-04

Table 1: SOTA comparison on MNIST nets of size 784-128-10. Methods with * are limited to ReLU

Finally, while the table also includes results from Martinelli et. al. (Martinelli et al., 2023), it should
be noted that this is not an exact reconstruction, since extra neurons were present. Their method also
assumed knowledge of the training dataset.

We outperform all methods on sample efficiency (Martinelli assumed knowledge of the training
dataset and thus did not use sampling), and compare well on max ϵ as well, especially when consid-
ering the one method to perform better used higher floating point precision.

Blackbox epochs # of samples Max ϵ Max ϵ% Mean ϵ per matrix

5 550k 4.3e-05 0.003% 2.7e-06, 5.9e-06
25 550k 5.4e-05 0.004% 3.6e-06, 7.4e-06
50 550k 6.3e-05 0.0045% 4.4e-06, 7.5e-06
100 550k 5.3e-05 0.004% 5.0e-06, 7.1e-06
200 550k 8.7e-05 0.006% 6.2e-06, 6.9e-06
500 550k 1.5e-04 0.01% 8.3e-06, 6.5e-06
1000 1.1m 5.4e-05 0.004% 6.6e-06, 6.9e-06
5000 1.65m 5.1e-05 0.004% 5.6e-06, 7.2e-06

Blackbox Optimizer # of samples Max ϵ Max ϵ% Mean ϵ per matrix

ADAM 550k 5.4e-05 0.004% 3.6e-06, 7.4e-06
SGD 550k 5.4e-05 0.004% 3.6e-06, 7.4e-06
RMSPROP 550k 1.2e-04 0.0085% 1.3e-05, 6.6e-06
AdaDelta 550k 4.8-05 0.0035% 2.1e-06, 7.7e-06
Rprop 550k 4.2e-05 0.003% 2.3e-06, 3.7e-06
AdaGrad 1.1m 8.8e-05 0.006% 9.3e-06, 6.8e-06

Dataset # of samples Max ϵ Max ϵ% Mean ϵ per matrix

MNIST 550k 5.4e-05 0.004% 3.6e-06, 7.4e-06
KMNIST 550k 3.6e-05 0.0025% 3.1e-06, 6.4e-06
Fashion MNIST 550k 8.7e-05 0.006% 3.1e-06, 5.2e-06
Cifar-10 2.75m 5.1e-05 0.0035% 2.2e-06, 8.2e-06
Cifar-100 2.75m 6.2e-05 0.0045% 1.2e-06, 1.0e-05

Table 2: Reconstruction results as we vary blackbox training procedure for ReLU network of size
784x128x10. For Cifar-10 and Cifar-100, the network had to be modified to accommodate the
larger image size, and thus consisted of an input layer of size 3072, and correspondingly 400k total
parameters. We show mean error for each layer.

Since we are not assuming knowledge of the dataset, training duration, or optimizer, we evaluated
our algorithm’s robustness on a variety of scenarios. We varied the duration of the blackbox training
procedure, experimenting on ranges of 5 to 5000 epochs. We also varied the optimizer that was
used to train the blackbox network, sampling 6 of the most common ones. Finally, we varied the
dataset that the blackbox was trained on. In all cases, the reconstruction method used to extract
the blackbox parameters was exactly the same, with none of this information provided. We report
max error between any two parameters. While max error is not a gameable metric, because of the
presence of the scaling isomorphism described above, mean error can be manipulated by adjusting
the scales of the two weight matrices such that the layer with fewer parameters has larger weight
values, and the layer with more parameters has smaller weight values. To ensure the reader that we
are not using scaling to manipulate the mean error, we report mean error for both weight matrices.
We also report the max error as a percentage of the mean parameter magnitute, to give a sense of
how small the errors are. The results can be seen in Table 2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We further explored how our method scales with width and depth. A major result of the universal
function approximation theorem (Leshno et al., 1993) is that networks of arbitrary width can express
any continuous function. However, many studies have shown that the expressiveness of the network
scales much faster with dept than with width(Lu et al., 2017; Safran & Shamir, 2017), and accord-
ingly, we can expect deeper networks to be much more difficult to reconstruct. Our results represent
both the deepest, and largest, exact reconstructions to date that we are aware of, as shown in Table
3.

Architecture # of Parameters # of samples Max ϵ Max ϵ% Mean ϵ per matrix

3072x128x100 406k 2.75m 6.2e-05 0.0045% 1.2e-06, 1.0e-05
3072x256x100 812k 5.5m 7.5e-05 0.0055% 1.7e-06, 1.1e-05
3072x512x100 1.6m 5.5m 9.2e-05 0.008% 2.6e-06, 1.5e-05

Architecture # of Layers # of samples Max ϵ Max ϵ% Mean ϵ per matrix

784x128x10 3 3.3m 4.5e-05 0.004% 2.5e-06, 4.4e-06
784x128x64x10 4 3.3m 1.0e-04 0.0085% 1.9e-06, 4.9e-06,1.2e0-5
784x128x64x32x10 5 3.3m 5.7e-05 0.004% 1.3e-06, 2.3e-06, 5.6e-06, 1.2e-05
784x128x80x40x32x16x10 7 3.3m 1.0e-04 0.006% 1.2e-06,1.9e-06,3.3e-06,

8.0e-06,1.4e-05 ,1.3e-05

Table 3: Reconstruction across varied network widths and depths

To assess our algorithm’s robustness beyond fully-connected networks, we applied it to a range
of recurrent and convolutional architectures. Table 4 summarizes results on small to medium-scale
CNNs with varying filter dimensions and depths, while Table 5 reports reconstruction errors for three
RNN variants differing in hidden size. For small networks, we observe relatively low maximum
deviations, demonstrating that our method can recover parameters across diverse model families,
although reconstruction errors increase dramatically as model size and complexity increases. For
these more complex models, increasing the number of samples seems to be a promising direction
for exact reconstruction.

¿p3cm c c c c X
CNN Architecture # Params # Samples Max ϵ Max ϵ% Mean ϵ per matrix

1×3×3×3– 3×3×3×3– fnn10 1.6k 550K 5.75e-06 0.42% 5.37e-07, 1.94e-07, 2.01e-07, 1.71e-07, 6.20e-07,
2.28e-07

1×10×3×3– 10×5×3×3– 5×3×3×3– fnn10 2.2k 550K 1.61e-05 0.01% 1.55e-06, 7.67e-07, 3.12e-07,
4.75e-07, 2.68e-07, 1.45e-07, 2.18e-06, 4.41e-07

1×40×3×3– 40×20×3×3– 20×10×3×3– 10×3×3×3– fnn10 11.2k 2.2M 2.93e-01 430,200% 3.45e-05,
1.97e-05, 1.55e-03, 4.19e-03, 1.60e-04, 2.34e-04, 1.27e-05, 9.98e-06, 7.83e-05, 1.51e-04

Table 4: Reconstruction across various CNN architectures.

l c c c c c X
RNN Architecture # Params # Samples Max ϵ Max ϵ% Mean ϵ per matrix

rnn28×fnn10 1.9k 1.1M 1.02e-05 1.90% 1.60e-06, 1.93e-06, 2.21e-06, 1.29e-06, 6.37e-07
rnn64×fnn10 6.7k 550K 3.96e-04 103% 2.72e-05, 5.71e-05, 2.12e-05, 9.21e-06, 4.89e-06

rnn128×fnn10 21.5k 4.4M 7.25e-01 517,200% 7.31e-02, 5.25e-02, 1.26e-01, 5.23e-02, 2.13e-04
Table 5: Reconstruction across various RNN architectures.

We demonstrate that our method generalizes beyond fully-connected networks to both recurrent and
convolutional architectures of varying size and complexity. Although the reconstruction errors for
large RNNs and deep CNNs are more modest, we are, to our knowledge, the first to successfully
reverse-engineer any CNN or RNN purely through black-box queries. These results demonstrate the
applicability of our algorithm across other network families and lay the groundwork for future exact
reconstructions of more complex models.

2.4 CONVERGENCE ANALYSIS

To better understand how our algorithm converges, we performed an in depth analyis, using the most
complex network we dealt with, the 7 layer 784x128x80x40x32x16x10 network trained on MNIST.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We looked at convergence per layer, as well as convergence per parameter. It is important to note
that at iteration 25 we began relaxing the learning rate, which is why we see a discontinuity at that
point.

There are several key takeaways. We can see that layers closer to the input converge first, and
that, while the mean error gets low very rapidly, the max error in each layer takes far longer to
converge. In the per parameter analysis, we plot every single network parameter, and can see the
same phenomenon, where although the majority of errors are decreasing, a few pesky parameters
stay with much higher error than the rest, as shown in figure 2.

Figure 2: Illustration of Performance Convergence for 784x128x80x40x32x16x10 Network

We also measure how the reconstruction network converges to the functionality of the blackbox
network. Input convergence was plotted as a series of heatmaps of size 28x28, the input space from
MNIST. Each pixel represents the sum of all parameter errors that that pixel leads to, in every layer.
Red represents larger error, black lower error. Ouput convergence was plotted per output neuron.
Since MNIST has 10 classes (0-9), there are ten output neurons. We ran both the blackbox network
and reconstruction through MNIST, and calculated the output difference average for each output
Neuron, to represent in-distribution performance similarity. We should note that the reconstruction
algorithm had no knowledge of MNIST.

The input behaviour shows that initially the error is highest on pixels towards the center. This makes
sense, since in MNIST most semantic information is located in the center, and thus this is where
the most complex weight behaviour is found. This error gradually decreases over iterations. The
output behaviour shows convergence to near-identical behavior for all 10 classes. Further, all of
our reconstructions made the same classification as the blackbox network in 100% of cases.
Input and output convergence are shown in figure 3.

Figure 3: Illustration of Performance Convergence and Alignment Stability

We also compared convergence of weights and biases. This lead to an interesting result: the error of
weight parameters decreases much more rapidly than biases, for every layer. We believe this is be-
cause bias behavior is more difficult to tease out by querying, since they are not multiplied by inputs.
Finally we explored how stable our alignment algorithm remained as we approach convergence. We
focused on the permutation isomorphism, and plotted how many times neuron alignments changed
at each iteration. We can see in figure 3 that once mean weight error got below 0.05, the neuron
alignment remained stable.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

3 METHODS

3.1 RECONSTRUCTION ALGORITHM

Instead of trying to reconstruct any arbitrary network, as has been the focus of previous work, we
focus on networks that have been produced via random initialization, and trained with gradient
descent and backpropogation. There are several recent results that suggest this may be easier to
solve than the general case. These ideas come from what has been called ”The Modern Mathematics
of Deep Learning”, an area of analysis that emerged from trying to understand why neural networks
seem to generalise so well and resist overfitting, even when heavily over-parameterized (Berner
et al., 2021). This area of inquiry introduces several models that aim to describe how the weights of
a neural network evolve during training.

While some alternatives have been proposed (Shi et al., 2024; Mukherjee & Huberman, 2022; Song
et al., 2018), the Neural Tangent Kernel (NTK)(Jacot et al., 2018) is the most widely successful
and adopted model, and it suggests that for over-parameterized networks, the weights barely move
during training(Allen-Zhu et al., 2019; Du et al., 2019; Li & Liang, 2018). Chizat and Bak(Chizat
et al., 2019) differentiate between the ”lazy regime”, where the weights barely move, and the non-
lay regime (later dubbed the ”rich regime” (Woodworth et al., 2020)) where the weights move a lot,
and give conditions where lazy learning can occur even in small models. Li et. al. (Li & Banerjee,
2021) further demonstrated that even in the rich regime, the majority of parameters still exhibit lazy
behaviour and barely move from their initial values.

While the NTK was first proposed for shallow feed forward networks, it has since been extended
to deep networks(Lee et al., 2022), CNNs(Gu et al., 2020), RNNs (Alemohammad et al., 2020),
GANs(Franceschi et al., 2022), Resnets (Huang et al., 2020), Auto-encoders (Nguyen et al., 2021),
Transformers (Yang, 2020), and even decision trees(Kanoh & Sugiyama, 2022). Further, despite
these studies being relegated to the realm of theory, often considering hypothetical network struc-
tures that cannot exist in practice, they do seem to model networks well in many real world cases
(Seleznova & Kutyniok, 2022). In addition, while the usefulness of the NTK to describe the training
dynamics breaks down as we train for longer, the Neural Collapse phenomena gives indication that
even as training goes on for a long time, predictable features will emerge (Papyan et al., 2020).

It is also the case that networks trained using SGD, even with different random initializations, will
tend to learn similar features(Gu et al., 2020), even across a variety of architectures (Mao et al.,
2023) possibly a result of the so-called simplicity bias (Morwani et al., 2024; Wang et al., 2022),
redundancy phenomenon (Doimo et al., 2022), symmetries(Głuch & Urbanke, 2021; Grigsby et al.,
2023), and tendency of SGD to ignore certain minima(Barrett & Dherin, 2020)

The above results imply that, due to the inherent inductive biases of SGD, even after the training
period, we still have strong priors of what the majority of the network weights will look like. In ad-
dition, a new model trained using SGD, is likely, at least under some circumstances, to find similar
features to the original. This motivates that simply initializing a surrogate model of the same archi-
tecture as the blackbox, and trying to reconstruct the blackbox by sampling from it, and training the
surrogate with a gradient based optimizer, is a strong candidate for exact weight recovery, assuming
the black box itself was produced via gradient descent. Accordingly, our reconstruction algorithm
is described in Appendix section B, Algorithm 1.

3.2 QUERY GENERATION ALGORITHM

Unlike in most modern ML settings, we know that the data we are training on was produced by
a network of the same architecture as the substitute network, and thus a zero error hypothesis is
guaranteed to be in our hypothesis space. Thus, it is logical to apply the result from the halving
algorithm, that the most informative sample is the one that evenly splits the version space, and to
approximate this using query by committee (Seung et al., 1992), as discussed above. This general
setup is common in the active learning paradigm, where, just like in our case, we can arbitrarily query
an oracle, but wish to minimize such queries (Settles, 2009), and is related to adversarial sampling
in student-teacher distillation (Heo et al., 2019), except we do not have access to the internals of the
teacher network.

Query by committee requires three ingredients:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1. The ability to construct a diverse committee

2. A disagreement criterion

3. A method of optimizing the queries over the disagreement criterion

While 1 is relatively straightforward via different random initializations, 2 and 3 are less obvious.
Common methods suggested for 3 include hill climbing (Cohn et al., 1996), or simply just try-
ing many samples and keeping the best ones. Inspired by the ”hard sampling” method of Fang et.
al.(Fang et al., 2019), we propose a novel sample generation algorithm that directly uses gradient
descent to optimize the samples for maximal committee disagreement, along with a novel disagree-
ment criterion that is generalizable to arbitrary length output vectors, and is continuous, so it can be
optimized using gradient descent. Our query generation algorithm is described in Appendix section
B, Algorithm 2.

This algorithms can be seen visually in figure 1.

Our disagreement criterion is defined as follows:

Let I be a single input vector, of dimension input dim.

Let our population of networks P that form the committee consistent of networks N1...Np.

We want to calculate pairwise disagreement among network outputs. We initially defined disagree-
ment as L1-norm distance between outputs (Manhattan distance), but this led to a scaling issue,
where our algorithm learned to cheat by realizing that simply having larger output magnitudes will
produce a larger disagreement, even though nothing else has changed. This is especially a problem
in ReLU networks, and led our algorithm to not learn anything useful. To rectify this, we first ap-
ply a normalization to each output vector by dividing each element by the vector’s L1 norm. After
normalization, we calculate the L1 distance between the vectors as the disagreement metric, solving
the scaling issue. A more formal definition of disagreement loss is provided in Appendix section C

3.3 ALIGNING NETWORKS

The neural network symmetries—permutations, scalings, and poarity flips—can be expressed as
linear algebraic operations on weight matrices and convolutional kernels. In order to determine if
two networks have been aligned, each layer can be normalized into a unique canonical form by
scaling, negating, and permuting columns and rows (representing neurons and connections from
neurons, respectively), of weight matrices. The exact methodology is further discussed in Appendix
section D.

4 LIMITATIONS AND FUTURE DIRECTIONS

Due to the stochastic nature of our method, there are times when it fails to work. For all experiments
presented in this paper, the method was successful at least two thirds of the time, but there was not
a 100 percent success rate for all networks.

In addition, further study is required to understand when and why this method fails. In particular,
we note that narrow deep networks, while having a small fraction of the number of parameters of
wide deep networks, were significantly harder to reconstruct and in a few cases failed.

Looking towards the future, we believe this study will be a powerful step towards exactly recon-
structing full-sized real world networks. A large body of recent work demonstrates that for over-
parameterized networks, the weights barely move during training(Allen-Zhu et al., 2019). Chizat
and Bak (Chizat et al., 2019) differentiate between the ”lazy regime”, where the weights barely
move, and the rich regime where the weights move a lot, and give conditions where lazy learning
can occur even in small models. Li et. al. (Li & Banerjee, 2021) further demonstrated that even in
the rich regime, the majority of parameters still exhibit lazy behaviour and barely move from their
initial values, and as training goes on for a long time, predictable features tend to emerge (Papyan
et al., 2020). All of this evidence indicates that for larger networks, our prior assumption of random
initialization and gradient based training provides an even stronger prior on the weight values, which
is why we believe our approach is the best way to scale to larger networks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 REPRODUCABILITY STATEMENT

All of our work is fully reprodicable, including exact training scripts. Our code is included as a zip
file in supplementary materials.

REFERENCES

Louay Ahmad, Boxiang Dong, Bharath Samanthula, Ryan Yang Wang, and Bill Hui Li. Towards
trustworthy outsourced deep neural networks. In 2021 IEEE Cloud Summit (Cloud Summit), pp.
83–88. IEEE, 2021.

Sina Alemohammad, Zichao Wang, Randall Balestriero, and Richard Baraniuk. The recurrent neural
tangent kernel. arXiv preprint arXiv:2006.10246, 2020.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.

Dana Angluin. Queries and concept learning. Machine learning, 2:319–342, 1988.

David GT Barrett and Benoit Dherin. Implicit gradient regularization. arXiv preprint
arXiv:2009.11162, 2020.

Julius Berner, Philipp Grohs, and Felix Voigtlaender. Learning relu networks to high uniform accu-
racy is intractable. In The Eleventh International Conference on Learning Representations.

Julius Berner, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. The modern mathematics of
deep learning. arXiv preprint arXiv:2105.04026, pp. 86–114, 2021.

Joachim Bona-Pellissier, François Bachoc, and François Malgouyres. Parameter identifiability of a
deep feedforward relu neural network. Machine Learning, 112(11):4431–4493, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Nicholas Carlini, Matthew Jagielski, and Ilya Mironov. Cryptanalytic extraction of neural network
models. In Advances in Cryptology–CRYPTO 2020: 40th Annual International Cryptology Con-
ference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020, Proceedings, Part III, pp.
189–218. Springer, 2020.

Hervé Chabanne, Jean-Luc Danger, Linda Guiga, and Ulrich Kühne. Side channel attacks for archi-
tecture extraction of neural networks. CAAI Transactions on Intelligence Technology, 6(1):3–16,
2021.

Frances S Chance, Larry F Abbott, and Alex D Reyes. Gain modulation from background synaptic
input. Neuron, 35(4):773–782, 2002.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. In
Proceedings of the 10th ACM workshop on artificial intelligence and security, pp. 15–26, 2017.

Sitan Chen, Adam R Klivans, and Raghu Meka. Efficiently learning any one hidden layer relu
network from queries. arXiv preprint arXiv:2111.04727, 2021.

Sitan Chen, Aravind Gollakota, Adam Klivans, and Raghu Meka. Hardness of noise-free learning
for two-hidden-layer neural networks. Advances in Neural Information Processing Systems, 35:
10709–10724, 2022.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, 32, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Moustapha Cisse, Yossi Adi, Natalia Neverova, and Joseph Keshet. Houdini: Fooling deep struc-
tured prediction models. arXiv preprint arXiv:1707.05373, 2017.

David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical models.
Journal of artificial intelligence research, 4:129–145, 1996.

Amit Daniely and Elad Granot. An exact poly-time membership-queries algorithm for extraction a
three-layer relu network. arXiv preprint arXiv:2105.09673, 2021.

Diego Doimo, Aldo Glielmo, Sebastian Goldt, and Alessandro Laio. Redundant representations help
generalization in wide neural networks. Advances in Neural Information Processing Systems, 35:
19659–19672, 2022.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–
1685. PMLR, 2019.

Gongfan Fang, Jie Song, Chengchao Shen, Xinchao Wang, Da Chen, and Mingli Song. Data-free
adversarial distillation. arXiv preprint arXiv:1912.11006, 2019.

Christian Fiedler, Massimo Fornasier, Timo Klock, and Michael Rauchensteiner. Stable recovery of
entangled weights: Towards robust identification of deep neural networks from minimal samples,
2021.

Christian Fiedler, Massimo Fornasier, Timo Klock, and Michael Rauchensteiner. Stable recovery of
entangled weights: Towards robust identification of deep neural networks from minimal samples.
Applied and Computational Harmonic Analysis, 62:123–172, 2023.

Massimo Fornasier, Timo Klock, and Michael Rauchensteiner. Robust and resource-efficient iden-
tification of two hidden layer neural networks. Constructive Approximation, pp. 1–62, 2019.

Massimo Fornasier, Timo Klock, Marco Mondelli, and Michael Rauchensteiner. Finite sample
identification of wide shallow neural networks with biases. arXiv preprint arXiv:2211.04589,
2022.

Jean-Yves Franceschi, Emmanuel De Bézenac, Ibrahim Ayed, Mickaël Chen, Sylvain Lamprier, and
Patrick Gallinari. A neural tangent kernel perspective of gans. In International Conference on
Machine Learning, pp. 6660–6704. PMLR, 2022.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confi-
dence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC confer-
ence on computer and communications security, pp. 1322–1333, 2015.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Grzegorz Głuch and Rüdiger Urbanke. Noether: The more things change, the more stay the same.
arXiv preprint arXiv:2104.05508, 2021.

Charles Godfrey, Davis Brown, Tegan Emerson, and Henry Kvinge. On the symmetries of deep
learning models and their internal representations. arXiv preprint arXiv:2205.14258, 2022.

Surbhi Goel, Varun Kanade, Adam Klivans, and Justin Thaler. Reliably learning the relu in polyno-
mial time. In Conference on Learning Theory, pp. 1004–1042. PMLR, 2017.

Elisenda Grigsby, Kathryn Lindsey, and David Rolnick. Hidden symmetries of relu networks. In
International Conference on Machine Learning, pp. 11734–11760. PMLR, 2023.

Yihong Gu, Weizhong Zhang, Cong Fang, Jason D Lee, and Tong Zhang. How to characterize the
landscape of overparameterized convolutional neural networks. Advances in Neural Information
Processing Systems, 33:3797–3807, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino
Pedreschi. A survey of methods for explaining black box models. ACM computing surveys
(CSUR), 51(5):1–42, 2018.

Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani. Reconstructing training data
from trained neural networks. arXiv preprint arXiv:2206.07758, 2022.

James M Heather and Benjamin Chain. The sequence of sequencers: The history of sequencing dna.
Genomics, 107(1):1–8, 2016.

P Heggelund. Receptive field organization of complex cells in cat striate cortex. Experimental Brain
Research, 42(1):99–107, 1981.

Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi. Knowledge distillation with adver-
sarial samples supporting decision boundary. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pp. 3771–3778, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Hailong Hu and Jun Pang. Model extraction and defenses on generative adversarial networks. arXiv
preprint arXiv:2101.02069, 2021a.

Hailong Hu and Jun Pang. Stealing machine learning models: Attacks and countermeasures for gen-
erative adversarial networks. In Proceedings of the 37th Annual Computer Security Applications
Conference, pp. 1–16, 2021b.

Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji, Xinfeng Xie, Yufei Ding,
Chang Liu, Timothy Sherwood, and Yuan Xie. Deepsniffer: A dnn model extraction framework
based on learning architectural hints. Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems. doi: 10.1145/
3373376.3378460. URL https://par.nsf.gov/biblio/10188837.

Kaixuan Huang, Yuqing Wang, Molei Tao, and Tuo Zhao. Why do deep residual networks generalize
better than deep feedforward networks?—a neural tangent kernel perspective. Advances in neural
information processing systems, 33:2698–2709, 2020.

Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J Doug Tygar. Ad-
versarial machine learning. In Proceedings of the 4th ACM workshop on Security and artificial
intelligence, pp. 43–58, 2011.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Papernot. High
accuracy and high fidelity extraction of neural networks, 2020.

Raphaël Joud, Pierre-Alain Moëllic, Simon Pontié, and Jean-Baptiste Rigaud. A practical intro-
duction to side-channel extraction of deep neural network parameters. In Smart Card Research
and Advanced Applications: 21st International Conference, CARDIS 2022, Birmingham, UK,
November 7–9, 2022, Revised Selected Papers, pp. 45–65. Springer, 2023.

Ryuichi Kanoh and Mahito Sugiyama. Analyzing tree architectures in ensembles via neural tangent
kernel. arXiv preprint arXiv:2205.12904, 2022.

Konrad P Kording, Christoph Kayser, Wolfgang Einhauser, and Peter Konig. How are complex cell
properties adapted to the statistics of natural stimuli? Journal of neurophysiology, 91(1):206–212,
2004.

Jongmin Lee, Joo Young Choi, Ernest K Ryu, and Albert No. Neural tangent kernel analysis of deep
narrow neural networks. In International Conference on Machine Learning, pp. 12282–12351.
PMLR, 2022.

12

https://par.nsf.gov/biblio/10188837

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function. Neural networks,
6(6):861–867, 1993.

Xinyan Li and Arindam Banerjee. Experiments with rich regime training for deep learning. arXiv
preprint arXiv:2102.13522, 2021.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. Advances in neural information processing systems, 31, 2018.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine learning, 2:285–318, 1988.

Grigorios Loukides, Joshua C Denny, and Bradley Malin. The disclosure of diagnosis codes can
breach research participants’ privacy. Journal of the American Medical Informatics Association,
17(3):322–327, 2010.

Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying relu and initialization:
Theory and numerical examples. arXiv preprint arXiv:1903.06733, 2019.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. Advances in neural information processing systems, 30,
2017.

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K Transtrum,
James P Sethna, and Pratik Chaudhari. The training process of many deep networks explores the
same low-dimensional manifold. arXiv preprint arXiv:2305.01604, 2023.

Flavio Martinelli, Berfin Simsek, Johanni Brea, and Wulfram Gerstner. Expand-and-cluster: Exact
parameter recovery of neural networks. arXiv preprint arXiv:2304.12794, 2023.

Smitha Milli, Ludwig Schmidt, Anca D Dragan, and Moritz Hardt. Model reconstruction from
model explanations. In Proceedings of the Conference on Fairness, Accountability, and Trans-
parency, pp. 1–9, 2019.

Depen Morwani, Jatin Batra, Prateek Jain, and Praneeth Netrapalli. Simplicity bias in 1-hidden layer
neural networks. Advances in Neural Information Processing Systems, 36, 2024.

Sayandev Mukherjee and Bernardo A Huberman. Why neural networks work. arXiv preprint
arXiv:2211.14632, 2022.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse datasets. In 2008
IEEE Symposium on Security and Privacy (sp 2008), pp. 111–125. IEEE, 2008.

Thanh V Nguyen, Raymond KW Wong, and Chinmay Hegde. Benefits of jointly training autoen-
coders: An improved neural tangent kernel analysis. IEEE Transactions on Information Theory,
67(7):4669–4692, 2021.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE European sympo-
sium on security and privacy (EuroS&P), pp. 372–387. IEEE, 2016.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM
on Asia conference on computer and communications security, pp. 506–519, 2017.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Henning Petzka, Martin Trimmel, and Cristian Sminchisescu. Notes on the symmetries of 2-layer
relu-networks. In Proceedings of the Northern Lights Deep Learning Workshop, volume 1, pp.
6–6, 2020.

Mary Phuong and Christoph H Lampert. Functional vs. parametric equivalence of relu networks. In
International Conference on Learning Representations, 2019.

David Rolnick and Konrad Kording. Reverse-engineering deep relu networks. In International
Conference on Machine Learning, pp. 8178–8187. PMLR, 2020.

Itay Safran and Ohad Shamir. Depth-width tradeoffs in approximating natural functions with neural
networks. In International conference on machine learning, pp. 2979–2987. PMLR, 2017.

Mariia Seleznova and Gitta Kutyniok. Analyzing finite neural networks: Can we trust neural tangent
kernel theory? In Mathematical and Scientific Machine Learning, pp. 868–895. PMLR, 2022.

Burr Settles. Active learning literature survey. 2009.

H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by committee. In Proceedings
of the fifth annual workshop on Computational learning theory, pp. 287–294, 1992.

Adi Shamir, Isaac Canales-Martinez, Anna Hambitzer, Jorge Chavez-Saab, Francisco Rodrigez-
Henriquez, and Nitin Satpute. Polynomial time cryptanalytic extraction of neural network models.
arXiv preprint arXiv:2310.08708, 2023.

Yun Shen, Xinlei He, Yufei Han, and Yang Zhang. Model stealing attacks against inductive graph
neural networks. In 2022 IEEE Symposium on Security and Privacy (SP), pp. 1175–1192. IEEE,
2022.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. Provable guarantees for neural networks via gradient
feature learning. Advances in Neural Information Processing Systems, 36, 2024.

Chawin Sitawarin and David Wagner. Defending against adversarial examples with k-nearest neigh-
bor. arXiv e-prints, pp. arXiv–1906, 2019.

Mei Song, Andrea Montanari, and P Nguyen. A mean field view of the landscape of two-layers
neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

Jean-Baptiste Truong, Pratyush Maini, Robert J Walls, and Nicolas Papernot. Data-free model ex-
traction. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 4771–4780, 2021.

Verner Vlačić and Helmut Bölcskei. Affine symmetries and neural network identifiability. Advances
in Mathematics, 376:107485, 2021.

Yifei Wang, Yixuan Hua, Emmanuel J Candes, and Mert Pilanci. Overparameterized relu neu-
ral networks learn the simplest model: Neural isometry and phase transitions. arXiv preprint
arXiv:2209.15265, 2022.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
Conference on Learning Theory, pp. 3635–3673. PMLR, 2020.

Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. arXiv preprint
arXiv:2006.14548, 2020.

Xiang Zhang, Aidong Adam Ding, and Yunsi Fei. Deep-learning model extraction through software-
based power side-channel. In 2023 IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pp. 1–9. IEEE, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A IMPORTANCE AND APPLICATIONS

We believe this work is important for several reasons.

Security Knowledge of a network’s structure is of central importance in adversarial machine learn-
ing (Huang et al., 2011). If we know the network parameters, we can attack it using gradient-based
attacks (Papernot et al., 2016). While some attacks do not rely on such knowledge (Cisse et al.,
2017), and there exists work that aims to make models robust to these types of attacks (Sitawarin &
Wagner, 2019), this still represents perhaps the most significant attack vector for neural networks.

Privacy If we know the weights of the network, we can infer the training data (Haim et al., 2022;
Fredrikson et al., 2015) which can be a severe privacy violation (Narayanan & Shmatikov, 2008),
especially in medical domains (Loukides et al., 2010). Further, it may be undesirable for the weights
of a network to be known. For example, large language models are very expensive to train, some-
times costing upwards of millions of dollars (Brown et al., 2020), and their owners may not want
them being replicated.

Interpretability Another area where this analysis is useful is interpretability. As Deep Learning
has become ubiquitous, the need for greater model interpretability has been stressed by many, for
reasons ranging from ethics and legality to safety and security (Guidotti et al., 2018). The ability
to reproduce a network’s weights can give us insight into how it trains, what sorts of minima are
common in networks trained via SGD, how subcomponents are related, and other aspects as well
that can help reduce the black box affect.

Safety An additional important concern, related to the above, is the safety of a network for its
users. An end user may commonly use a network provided by a third party for some important
task, and relies solely on the guarantees of the third party that the network does what it purports
to(Ahmad et al., 2021). The ability to reproduce the weights of the network can give users security
and assure them that the network is safe to use, and opens up the possiblity of formal analysis of the
parameters(Bona-Pellissier et al., 2023).

Biological considerations One of the greatest mysteries of the biological world is the human brain.
Despite decades of research, much of its functionality is still not well understood. Reverse engineer-
ing biological neural networks is of foundational interest in neuroscience, and as has been noted by
earlier work in this area (Rolnick & Kording, 2020), the ability to reverse artificial networks may
give some insight into biological ones. Although there are many differences between artificial and
biological neurons, neuroscientists have identified significant similarities, especially when zooming
in to small regions (Kording et al., 2004), and many biological neurons appear to be well modeled by
a ReLU artificial neuron (Chance et al., 2002). In fact, as early as 1981, similar experiments to the
ones in this paper had already been conducted on biological neurons (Heggelund, 1981). While this
is still a very far away thought, much like how sequencing the genome was a massive breakthrough
brought about by steady incremental improvement (Heather & Chain, 2016), we believe work in this
area will eventually contribute to our understanding of biological neurons.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B RECONSTRUCTION AND QUERY ALGORITHMS

Algorithm 1 Reconstruction Algorithm

Require:
population size p, query number q,
outer iterations o, epochs e,
learning rate α, schedule S
Empty dataset D
Procedure:
Randomly initialize a population of p surrogate network with the same architecture as the target
network
for o iterations do

Produce q samples and append them to dataset D
for e epochs do

Train population on D using learning rate α
end for
if o ∈ S then

α← α/10
end if

end for
Return network in population with lowest loss

Algorithm 2 Query Generation Algorithm

Require:
population P , query number q,
epochs e,
learning rate α, schedule S
Procedure:
Randomly initialize a learnable tensor I of shape q x input dim
freeze the weights of P
for e epochs do

Forward-propogate I through P , obtaining disagreement loss DLP (I)
Back-propogate loss and obtain gradient with respect to I
Update I using learning rate α
if e ∈ S then

α← α/10
end if

end for
Return I

C FORMAL DEFINITION OF DISAGREEMENT LOSS

We define a normalization function f , as f(x) = x
∥x∥1

The disagreement between two vectors, u and v, is defined as

d(u,v) =
∑n

i=1 |f(ui)− f(vi|)
To get disagreement loss, we calculate the pairwise distance matrix between every network output
with every network output, for each network in the population.

D =


d(N1(I), N1(I)) d(N1(I), N2(I)) · · · d(N1(I), Np(I))
d(N2(I), N1(I)) d(N2(I), N2(I)) · · · d(N2(I), Np(I))

...
...

. . .
...

d(Np(I), N1(I)) d(Np(I), N2(I)) · · · d(Np(I), Np(I))


16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Note, the diagonal here is 0, and the matrix is symmetrical around the diagonal, but this does not
affect our calculation.

We then define the loss of input I with respect to population P as the negated mean of this matrix:

DLP (I) = −mean(D) = − 1

p2

P∑
i=1

p∑
j=1

Dij

D ALIGNMENT ALGORITHM

Figure 4: Illustration of Network Isomorphisms

We can mathematically describe the internal parameters of a neural network by enumerating the
weight matrices of every layer in the network.

For the top left network in Figure 4, that would be:

 w11 w12 w13

w21 w22 w23

w31 w32 w33

w41 w42 w43

 ,

[
w11 w12

w21 w22

w31 w32

]
(1)

Again, excluding the bias parameters for brevity. Similarly, for the bottom left network in Figure 4,
we have:

 w11 w12 w13

w21 w22 w23

w31 w32 w33

w41 w42 w43

 ,

[
w11 w12

w21 w22

w31 w32

]
(2)

In this representation, isomorphisms can be expressed as matrix operations. For example, swapping
two neurons corresponds with swapping two column in a weight matrix and swapping the corre-
sponding two rows in the subsequent weight matrix.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A similar observation can be made for the scaling isomorphism. The top middle network in Figure
4 can be represented with:  αw11 w12 w13

αw21 w22 w23

αw31 w32 w33

αw41 w42 w43

 ,

[w11

α
w12

α
w21 w22

w31 w32

]
(3)

And the bottom middle network in Figure 4 can be represented with:
w11

α w12 w13
w21

α w22 w23
w31

α w32 w33
w41

α w42 w43

 ,

[
αw11 αw11

w21 w22

w31 w32

]
(4)

This example illustrates that the scaling isomorphism can be applied by:

1. scaling a weight matrix column with factor α
2. scaling the corresponding row in the subsequent weight matrix with factor 1

α

Analogously, the polarity isomorphism can be applied by:

1. inverting the sign of a weight matrix column
2. inverting the sign of the corresponding row in the subsequent weight matrix

CNNs

We can similarly express the structural symmetries of Convolutional Neural Networks (CNNs) via
transformations on their weight tensors. Each convolutional layer is represented as a 4-dimensional
tensor of shape (Cout, Cin, H,W), where each output channel corresponds to a 3D convolutional
kernel applied across all input channels. These kernels can be considered as direct analogues of
neurons in fully connected layers.

Let [K1,K2,K3] be a three-kernel convolutional layer, followed by a second convolutional layer
containing a kernel Ka of shape 3× 2× 2. We can conceptually expand Ka as follows:

Ka =

[[
w111 w121

w211 w221

]
,

[
w112 w122

w212 w222

]
,

[
w113 w123

w213 w223

]]
(5)

If the order of the kernels in the previous layer is permuted (e.g. [K1,K2,K3] → [K2,K1,K3]),
the corresponding input channels of each kernel in the following layer must also be permuted. For
Ka, this results in:

Ka =

[[
w112 w122

w212 w222

]
,

[
w111 w121

w211 w221

]
,

[
w113 w123

w213 w223

]]
(6)

If all weights in K1 are scaled down by a constant factor α, the corresponding input channels of Ka

need to be scaled up by α. For example, if the first layer has its first kernel scaled as [αK1,K2,K3],
then Ka must be scaled accordingly:

Ka =

[[
w111

α
w121

α
w211

α
w221

α

]
,

[
w112 w122

w212 w222

]
,

[
w113 w123

w213 w223

]]
(7)

Similarly to scaling, if the weights of K1 are all negated, the corresponding input channel in Ka

must also be negated to maintain consistency.

RNNs

The isomorphisms in Recurrent Neural Networks are more nuanced due to the presence of weight
sharing across time and the recurrence of hidden states. The hidden weight matrix H ∈ Rn×n maps
the output of the hidden layer at time t to itself at time t + 1, effectively reusing the same set of

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

neurons as both source and target. Thus, any transformation applied on the columns of the hidden
matrix must also be mirrored on its rows.

Let us consider an RNN layer with a hidden dimension of 3, followed by a feedforward output layer
of dimension 2. We define:

Win = [baseline=(m.base)] (m) [matrix of math nodes, left delimiter = [, right delimiter =], nodes = inner sep=2pt] w11w12w13w21w22w33w31w32w33w41w42w43; [draw = red, thick, roundedcorners, fit = (m− 1− 1)(m− 4− 1), innerxsep = −1pt, innerysep = −1pt]; [draw = blue, thick, roundedcorners, fit = (m− 1− 2)(m− 4− 2), innerxsep = −1pt, innerysep = −1pt];, H = (m) [matrix of math nodes, left delimiter=[, right delimiter=], nodes=inner sep=2pt] h11h12h13h21h22h23h31h32h33; [draw = red, thick, roundedcorners, fit = (m− 1− 1)(m− 1− 3), innerxsep = −1pt, innerysep = −1pt]; [draw = red, thick, rectangle, roundedcorners, fit = (m− 1− 1)(m− 3− 1), innerxsep = −1pt, innerysep = −1pt]; [draw = blue, thick, roundedcorners, fit = (m− 1− 2)(m− 3− 2), innerxsep = −1pt, innerysep = −1pt]; [draw = blue, thick, rectangle, roundedcorners, fit = (m− 2− 1)(m− 2− 3), innerxsep = −1pt, innerysep = −1pt];, Wout = [baseline=(m.base)] (m) [matrix of math nodes, left delimiter = [, right delimiter =], nodes = inner sep=2pt] w11w12w21w22w31w32; [draw = red, thick, roundedcorners, fit = (m− 1− 1)(m− 1− 2), innerxsep = −1pt, innerysep = −1pt]; [draw = blue, thick, roundedcorners, fit = (m− 2− 1)(m− 2− 2), innerxsep = −1pt, innerysep = −1pt];
(8)

Swapping the first two neurons (i.e., applying a permutation isomorphism) requires permuting the
columns of Win by swapping columns 1 and 2, permuting both the rows and columns of H by
swapping rows and columns 1 and 2, and permuting the rows of Wout by swapping rows 1 and 2.
The resulting matrices become:

Win = [baseline=(m.base)] (m) [matrix of math nodes, left delimiter = [, right delimiter =], nodes = inner sep=2pt] w12w11w13w22w21w33w32w31w33w42w41w43; [draw = blue, thick, roundedcorners, fit = (m− 1− 1)(m− 4− 1), innerxsep = −1pt, innerysep = −1pt]; [draw = red, thick, roundedcorners, fit = (m− 1− 2)(m− 4− 2), innerxsep = −1pt, innerysep = −1pt];, H = (m) [matrix of math nodes, left delimiter=[, right delimiter=], nodes=inner sep=2pt] h22h21h23h12h11h13h32h31h33; [draw = blue, thick, roundedcorners, fit = (m− 1− 1)(m− 1− 3), innerxsep = −1pt, innerysep = −1pt]; [draw = blue, thick, rectangle, roundedcorners, fit = (m− 1− 1)(m− 3− 1), innerxsep = −1pt, innerysep = −1pt]; [draw = red, thick, roundedcorners, fit = (m− 1− 2)(m− 3− 2), innerxsep = −1pt, innerysep = −1pt]; [draw = red, thick, rectangle, roundedcorners, fit = (m− 2− 1)(m− 2− 3), innerxsep = −1pt, innerysep = −1pt];, Wout = [baseline=(m.base)] (m) [matrix of math nodes, left delimiter = [, right delimiter =], nodes = inner sep=2pt] w21w22w11w12w31w32; [draw = blue, thick, roundedcorners, fit = (m− 1− 1)(m− 1− 2), innerxsep = −1pt, innerysep = −1pt]; [draw = red, thick, roundedcorners, fit = (m− 2− 1)(m− 2− 2), innerxsep = −1pt, innerysep = −1pt];
(9)

Now, consider the case of a polarity isomorphism, where we negate the first hidden neuron. This
entails negating the first column of Win, negating the first row and column of H , and negating the
first row of Wout:

Win =

 −w11 w12 w13

−w21 w22 w33

−w31 w32 w33

−w41 w42 w43

 , H =

[
h11 −h12 −h13

−h21 h22 h23

−h31 h32 h33

]
, Wout =

[−w11 −w12

w21 w22

w31 w32

]
(10)

Note that h11, the entry at the intersection of the first row and first column of H , is negated twice,
once for each axis, and as a result remains unchanged.

D.1 SIMILARITY OF NEURAL NETWORKS

When we calculate the similarity between two neural networks, we need to take these isomorphisms
into account. We can do this by defining a canonical representation for each isomorphism group that
is unique in every group. For every network, we define its canonical form as follows:

1. All weight matrix columns have unit norm, except for the last weight matrix.
2. All weight matrix columns have a positive sum, except for the last weight matrix.
3. All weight matrix columns are sorted according to their L1-norm, except for the last weight

matrix.

(1) is only valid when the activation function is piece-wise linear and (2) is only valid when the
activation function is symmetric around 0.

Now, we can calculate the similarity between two networks by converting both of them to their
canonical form and calculating the sum of the L2-distances between their weight matrices.

Given a neural network we design the following procedure to convert it to its canonical form.

1. For i from 1 through N-1:
(a) calculate the L2-norm of all columns in weight matrix i.
(b) divide all columns by their L2-norm.
(c) multiply the corresponding rows in weight matrix i+1 by the same L2-norm.

2. For i from 1 through N-1:
(a) calculate the sign of the sum of all columns in weight matrix i.
(b) multiply all columns by the sign of their sum.
(c) multiply the corresponding rows in weight matrix i+1 by the same sign.

3. For i from 1 through N-1:
(a) calculate the L1-norm of all columns in weight matrix i.
(b) reorder the columns according to their L1-norm.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(c) reorder the corresponding rows in weight matrix i+1 accordingly.

Again, (1) is only performed for piece-wise activation functions and (2) is only performed for acti-
vation functions symmetric around 0.

While this procedure always obtains a distance metric of zero for isomorphic networks, it is not
guaranteed to give a minimal distance value when two networks are not exactly isomorphic. Given
two neural networks, we can apply a more exhaustive search to find the two representations that
minimize the L2-distance between both networks. Because of the permutation isomorphism, this
in an NP-hard problem. We devise a heuristic algorithm that runs in polynomial time by greed-
ily matching weight matrix columns from both networks. The algorithm can be implemented by
replacing the sorting step (3) in the above algorithm with the following matching step:

1. For i from 1 through N-1:
(a) find a pair of a column from network 1 and a column from network 2 that has minimal

L1-distance.
(b) match this pair and remove both columns from the considered columns.
(c) keep matching until all columns are part of a pair.
(d) reorder the columns in network 2 according to the pairs that were discovered.
(e) reorder the corresponding rows in weight matrix i+1 in the subsequent network.

We found that this procedure produces much more stable distance metrics when comparing two
neural networks that are close but not identical, especially as the number of parameters grows. The
disadvantage of this procedure is that it scales quadratically with the layer widths, compared to the
sorting algorithm that scales linearly with the layer widths.

To align convolutional layers, we first transform it into its canonical form, following the analogous
procedure for feedforward networks. This is justified by the observation that individual convolu-
tional kernels play a structurally similar role to neurons in fully connected layers: each kernel de-
fines a feature detector whose output is passed forward and linearly combined in subsequent layers.
We find the canonical form of a convolutional network as follows.

For each convolutional layer, apply the following transformations:

1. Scale Normalization (if activation is piecewise linear): For each kernel in the layer, com-
pute the Frobenius norm (i.e. L2 norm across all its weights). Normalize the kernel by
dividing all weights by this norm. Then, multiply the corresponding input channel dimen-
sion in all of the subsequent layer’s kernels by the same norm.

2. Polarity Normalization (if activation is symmetric around 0): For each kernel in the layer,
compute the sign of the sum of its weights. Multiply each kernel by the sign of this sum.
Then, multiply the corresponding input channel dimension in all of the subsequent layer’s
kernels by the same sign.

Once all convolutional layers have been transformed into this canonical form, we align the permu-
tation isomorphisms by matching kernels between networks using the L1 distance, just as columns
are matched between weight matrices in feedforward networks.

When aligning a convolutional layer that transitions into a fully connected layer, special care must
be taken to properly propagate the scaling, polarity, and permutation transformations from the final
convolutional layer to the first fully connected layer. This is nontrivial due to the flattening operation
that bridges the two, reshaping the three-dimensional output feature map of the convolutional layer
into a one-dimensional vector input to the feedforward layer. We use the insight that each kernel
in the final convolutional layer contributes a contiguous block of flattened inputs (corresponding to
rows in the fully connected weight matrix).

Let the final convolutional layer consist of k kernels, each producing a feature channel of size h×w.
Upon flattening, the input to the feedforward layer becomes a vector of size k × h × w. Thus, this
vector can be partitioned into k contiguous index ranges, each of length h × w, corresponding to
the outputs from each kernel. The fully connected weight matrix is then of shape (k × h× w)× n,
where n is the number of neurons in the fully connected layer. Each row in the weight matrix
corresponds to a value in the flattened input vector, and thus each contiguous index range of rows in

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

the weight matrix can be mapped to a kernel in the previous convolutional layer. Thus, any scaling
or polarity flipping of each kernel can have its reciprocal operation applied to each corresponding
index range of rows in the feedforward weight matrix, and permutations can be applied by permuting
the contiguous blocks of index ranges.

Aligning two recurrent networks presents additional challenges. For simplicity, we restrict our anal-
ysis to polarity and permutation isomorphisms, and assume that the nonlinearity in the RNN layer is
the standard tanh. In recurrent networks, special care must be taken with the hidden weight matrix.
Any operation applied to the i-th column of this matrix must also be applied to the i-th row, because
the same hidden state is both input and output at each time step. In other words, operations must be
applied to row/column pairs indexed by i.

However, applying an operation (such as a sign flip) to the i-th row and column pair also indirectly
affects all other row/column pairs. For example, consider the hidden matrix:[

h11 −h12 −h13

−h21 h22 h23

−h31 h32 h33

]

Flipping the sign of the first row and column means the sign of the first element in the second and
third row/column pairs also changes. Since each weight’s sign depends on multiple overlapping
operations, the effect of a single transformation is non-local. This interdependence makes it difficult
to isolate the effect of a single operation, and therefore, the notion of a canonical form—as used for
aligning feedforward and convolutional networks—does not directly extend to the hidden weight
matrices in recurrent networks.

More specifically, for an n × n matrix, there are 2n−1 distinct polarity isomorphisms. (This arises
because each of the n row/column pairs can be either flipped or not flipped, giving 2n possible
combinations. However, flipping a subset of indices is equivalent to flipping the complement of that
subset. As a result, each polarity configuration has a symmetric equivalent, reducing the total num-
ber of distinct isomorphisms to 2n−1.) Due to this exponential symmetry, identifying the “canonical
form” of the matrix—i.e. finding the unique representative among all equivalent forms—is an NP-
hard problem.

Thus, we perform a heuristic alignment based on the L2-norm of each column/row pair. Since the
L2-norm of each pair is polarity and permutation invariant (flipping or reordering any of the weights
still leads to the same L2-norm), we permute the hidden matrices in the order of sorted L2-norm for
both network 1 and network 2. Then, we align the polarity of each column/row pair by choosing the
polarity for each pair that minimizes the L1 loss between the two networks.

E ALTERNATIVE SAMPLING TECHNIQUES

To emphasize the importance of our query by committee generation strategy, we propose several
logical sampling methods, and demonstrate how they fail to reconstruct the network. We divide sam-
pling methods into two categories, non adaptive and adaptive. In the non adaptive setting, samples
are generated without any knowledge of prior samples or of the current state of the reconstruction
process. In adaptive sampling, samples are generated iteratively, with each new iteration making use
of knowledge gained previously.

E.1 NON ADAPTIVE SAMPLING

Dataset Sampling While our attack model does not assume knowledge of the original training data,
it is logical to think that such knowledge may be useful for reconstructing the network, especially
since Martinelli et. al. (Martinelli et al., 2023) demonstrated that for oversized substitute networks,
this is sufficient. Thus, one method of non adaptive sampling is simply using the blackbox training
dataset.

Expanded Dataset Sampling Similar to above, we make use of an extended real dataset larger
than the original one used to train the black box, but still in a similar distribution. For our MNIST
experiments, we do this by appending QMNIST, FashionMNIST, and KMNIST.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Random Gaussian Sampling Random sampling is the easiest form of sampling, and requires the
least compute and domain knowledge. We considered random Gaussian sampling, with the mean 0
standard deviation 1.

Random Uniform Sampling We also considered random uniform sampling, with range [-1,1].

E.2 ADAPTIVE SAMPLING

In addition to the above methods, we also considered adaptive sampling methods, where the samples
we draw change based on what stage of the reconstruction process we are up to, and how well our
hypothesis networks are fitting to the samples.

Resampling Easy Regions Borrowing easy and hard terminology from earlier work on sampling
generators (Fang et al., 2019), we generate samples that are near the region where our network is
approaching the target network functionality well

Resampling Hard Regions Here, we generate samples that are near the region where our network
is predicting badly.

More specifically, we sample additional inputs as follows:

1. Calculate loss for all existing samples in dataset
2. Sort the losses from high to low
3. Find the k samples with highest losses for hard sampling, and k lowest losses for easy

sampling
4. Obtain the k inputs corresponding with those k samples
5. Recombine the components of the k inputs into n new inputs by random recombination of

the feature values, with some small Gaussian noise added

Here we show the results of these sampling methods, and how none of them are able to be used
to construct a network that matches the original, except for query by committee. For all sampling
methods, we used 550k total samples, to make the comparison fair, except in Dataset and Expanded
Dataset sampling, where we used the number of samples available.

Sampling Method # of Samples max ϵ Mean ϵ per layer

Original Full Dataset 60k 1.06 0.035, 0.024
Expanded Dataset 260k 1.35 0.021, 0.015
Random Gaussian 550k 3.4 0.004, 0.003
Random Uniform 550k 3.2 0.005, 0.004
Resampling Easy Regions 550k 3.3 0.007, 0.004
Resampling Hard Regions 550k 3.2 0.009, 0.005
Committee (ours) 550k 4.4e-05 3.5e-06, 7.9e-06

Table 6: Failure of a variety of sampling methods, except query by committee, to solve a network of
architecture 784x128x10.

F RECOGNIZING CONVERGENCE

An important consideration in our algorithm is recognizing when we have converged, or if we are
not converging. We have two reliable methods of doing this, and empirically, both have consistently
worked, in the sense that every experiment that converged exhibited both properties, and every
experiment that did not converge exhibited neither property. The two conditions are:

1. Population Agreement
2. Vanishing Loss

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

As we converge on a solution, several networks in our population will start to converge on the same
weights. Once we have several members of the population reach identical weights, within a small
epsilon, we can be sure our soluton has converged.

In addition, we can look at sample loss. As we converge, the L1 loss becomes vanishingly small,
often in the range of 10−10, as show in in figure 3, and this always indicates convergence.

G CONVERGENCE OF VARIOUS ARCHITECTURES

 Convergence Max Error Divergence Full Divergence

Figure 5: Illustration of Architectures, and their properties of Convergence and Divergence

We performed an analysis, as shown in figure 5 of which architectures did and did not converge. The
conclusion was that pyramid networks, where the layer size is getting gradually smaller, were the
easiest to reconstruct, and we were able to do so even for deep networks. However, if the network
got narrow too quickly, or narrowed too slowly, reconstruction sometimes failed. Reconstruction
was especially difficult for U-shaped networks. Also of note is that our algorithm experiences two
kinds of divergence. The first, and most common, is that the mean error decreases gradually before
tapering off, while the max error does not decrease. A more difficult form of divergence, common
in deep but narrow networks shows even the mean error failing to decrease.

H TANH ACTIVATION

We mentioned above that our algorithm works for other activations. Here we demonstrate this, and
give results on networks using the TanH activation function.

I ANALYSIS OF PRIORS

Our algorithm makes use of two priors:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Architecture # of Layers # of samples Max ϵ Max ϵ% Mean ϵ per matrix

784x128x10 3 3.3m 6.0e-05 0.004% 8.8e-06, 3.7e-06)
784x128x64x10 4 3.3m 7.4e-05 0.005% 1.1e-05, 7.0e-06, 5.0e-06
784x128x64x32x10 5 3.3m 1.0e-04 0.006% 1.3e-05, 8.8e-06, 7.5e-06, 7.0e-06
784x128x64x32x16x10 6 3.3m 1.0e-04 0.006% 1.4e-05, 9.9e-06, 7.8e-06, 6.3e-06, 9.3e-06

Table 7: Reconstruction across varied network widths and depths

1. The assumption that weights do not move much during training

2. The assumption that we know the original weight distribution

Here, we explore what happens when we apply stronger versions of these priors. We devised two
experiments.

Untrained Network We do not train the blackbox network at all. This represents a stronger version
of the assumption that the weights did not move during training: here the weights did not move at
all.

Knowledge of Initial Weights Instead of assuming we know the original weight distribution, we
assume we know the original weights exactly. We experimented with two different ways of incor-
porating this knowledge. In one version, we initialized the entire committee population with the
blackbox initial weights, and then added some small noise to give them variance. In the second
method, we initialized a single network in the population with the original blackbox weights, and
the rest of the population randomly.

Obviously, making both these assumptions at the same time renders the problem trivial, but inde-
pendently they isolate our assumptions so that we can explore their significance.

I.1 UNTRAINED NETWORK

It turns out that a fully untrained network is actually harder to solve than a trained one. This is
because the outputs vary very little, and it is thus very difficult to tease out the weights via query-
ing. However, we were able to validate our hypothesis somewhat, by demonstrating that a network
trained for only a single epoch, where the weights barely moved, is indeed easier to reconstruct,
as evident by the quicker convergence of the max errors in each layer. (We also note that, upon
examining the code of Jagielski et. al. (Jagielski et al., 2020)), the network they reconstructed was
trained on only a few dozen input samples)

Figure 6: Reconstruction convergence as we train blackbox for different periods.

Table 2 above showed a similar idea: as we train for longer, eventually the number of samples
required to reconstruct grows.

I.2 KNOWLEDGE OF INITIAL WEIGHTS

When incorporating knowledge of initial blackbox weights, when we initialized the entire committee
population with the blackbox initial weights, and then added some small noise to give them variance,
we failed to solve at all, since the committee had too little diversity.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

As a second attempt, we initialized only a single member of the population to the blackbox initial
weights. This network did not converge faster than the randomly initialized networks.

Figure 7: Knowing Initial Weights adds little convergence value

However, it was useful in a different sense. When running our algorithm, we developed a popu-
lation of solutions as outlined above. When our algorithm converged, in general only part of the
population would solve the problem, and the rest would get stuck in a local minima. The networks
initialized with the original blackbox weights were much more likely to be in the part of the popu-
lation that converged. This gives some insight into the importance of the initial population weights
for reconstruction convergence.

J VISUAL OF COMMITTEE GENERATED SAMPLES

Here, we show heatmaps of our committee generated samples, at different iterations of the algorithm.
Somewhat surprisingly, the samples still look like random noise, even after the networks have begun
ton converge. This is somewhat logical, since our networks are likely to agree on simpler inputs.

Figure 8: Illustration of Committee Generated Inputs

25

	Introduction
	Results
	Experiment Setup
	Accounting for Isomorphisms
	Reconstruction Experiments
	Convergence Analysis

	Methods
	Reconstruction Algorithm
	Query Generation Algorithm
	Aligning Networks

	Limitations and Future Directions
	Reproducability Statement
	Importance and Applications
	Reconstruction and Query Algorithms
	Formal Definition of Disagreement Loss
	Alignment Algorithm
	Similarity of neural networks

	Alternative Sampling Techniques
	Non Adaptive Sampling
	Adaptive Sampling

	Recognizing Convergence
	Convergence of Various Architectures
	TanH Activation
	Analysis of Priors
	Untrained Network
	Knowledge of Initial Weights

	Visual of Committee Generated Samples

