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Abstract

Unsupervised domain adaptation transfers knowledge from a learned source domain to
a different target distribution, for which only few or no labeled data is available. Some
researchers proposed upper bounds for the target error when transferring the knowledge,
i.e., Ben-David et al. (2010) established a theory based on minimizing the source error and
distance between marginal distributions simultaneously. However, in most works the joint
error is usually ignored due to the intractability. In this paper, we argue that the joint error
is essential for the domain adaptation problem, in particular if the samples from different
classes in source/target are closely aligned when matching the marginal distributions due
to a large domain gap. To tackle this problem, we propose a novel objective that relates
to an upper bound of the joint error. Moreover, we adopt a source/pseudo-target labels
induced hypothesis space that can reduce the searching space to further tighten up this
bound. For the dissimilarity measurement between hypotheses, we propose a novel cross
margin discrepancy to alleviate the instability during adversarial learning. In addition, we
present extensive empirical evidence that shows that our proposal boosts the performance in
image classification accuracy on standard domain adaptation benchmarks.

1 Introduction

The advent of deep neural network (Krizhevsky et al., 2012) brings visual learning into a new era. However,
the performance heavily relies on the abundance of annotated data. Since traditional machine learning
assumes a model is trained and verified in a fixed distribution, it cannot always be applied to real-world
problems directly. Take image classification as an example, a number of factors, such as the change of light,
noise, angle in which the image is pictured, and different types of sensors, can lead to a domain gap that
harms the performance when predicting on test data. In many practical cases, a model trained in one or
more source domains is desired that is also applicable to another domain. As a solution, domain adaptation
(DA) aims to transfer the knowledge learned from a source distribution, which is typically fully labeled, into
a different (but related) target distribution. This work focus on the most challenging case, i.e., unsupervised
domain adaptation (UDA), where no target label is available.

Ben-David et al. (2010) suggest that the target error can be minimized by bounding the error on source
data, the discrepancy between distributions of the two domains, and a small optimal joint error. Therefore,
many researchers focus on learning domain-invariant features such that the discrepancy can be minimized.
For aligning distributions across domains, mainly two strategies have been substantially explored. The first
one bridges the distributions by matching their statistics (Long et al., 2015; 2017; Pan et al., 2009). The
second strategy utilizes adversarial learning (Goodfellow et al., 2014) to build a minimax game, where a
domain discriminator is trained to distinguish the source from the target while the feature extractor is trained
to confuse it simultaneously (Ganin & Lempitsky, 2015; Ganin et al., 2016; Tzeng et al., 2017). Despite
the remarkable results achieved by distribution matching schemes, they still suffer from a major limitation:
the joint distributions of feature spaces and categories are not well aligned across domains. As reported in
Ganin et al. (2016), such methods fail to generalize in closely related source/target pairs, e.g., the adaptation
from MNIST to SVHN. One potential reason is when matching marginal distributions between two domains,
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samples from different classes can get mixed together. In this case, the joint error becomes non-negligible
since no hypothesis can jointly classify source and target data with a high accuracy.

This work aims to address the above problem by incorporating the joint error to formalize an optimizable
upper bound such that the undesired overlap due to a wrong match can be properly penalized. UDA
classification problems can be perfectly solved if we can match the conditional distributions of each class for
source and target domain. In practice, however, most of the existing methods choose to deal with marginal
distributions as we lack target labels (Ganin et al., 2016; Tzeng et al., 2017; Saito et al., 2017b; Zhang et al.,
2019b; Kim et al., 2019). Motivated by this, we come up with a specially designed distance measurement,
namely cross margin discrepancy, that leads our proposed upper bound to an objective that resembles CGAN
1 (a way to match conditional distributions) (Mirza & Osindero, 2014). We evaluate our proposal on several
different classification tasks. In most experimental settings, our method improves the performance by a large
margin. The contributions of this work can be summarized as follows:

· We propose a novel objective that relates to an upper bound of the joint error and show that our
proposal can reduce the chance of misalignment through the marginal distribution matching.

· We construct a specific hypothesis space induced by source/pseudo-target labels to tighten up the
proposed objective so that we can avoid optimizing a loose bound within an immense searching space.

· We adopt a novel measurement, namely cross margin discrepancy, that measures the dissimilarity
between hypotheses. We show that using this novel measurement, we can alleviate the instability
during adversarial learning.

· We present extensive empirical evidence showing that our proposal gives more reliable performance
in image classification on several domain adaptation benchmarks compared with other upper bound
related methods.

2 Related Work

The upper bound proposed by Ben-David et al. (2010) invoked numerous approaches focusing on reducing
the gap between source and target domains by learning domain-invariant features, which can be achieved
through statistical moment matching. Maximum Mean Discrepancy (MMD) (Long et al., 2015; 2017) is used
to match the hidden representations of certain layers in a deep neural network. Transfer Component Analysis
(TCA) (Pan et al., 2011) tries to learn a subspace across domains in a Reproducing Kernel Hilbert Space
(RKHS) using MMD that dramatically minimizes the distance between domain distributions. Adaptive batch
normalization (AdaBN) (Li et al., 2018) modulates the statistics from source to target on batch normalization
layers across the network in a parameter-free way.

Another way to learn domain-invariant features is by leveraging generative adversarial network to produce
target features that exactly match the source. Ganin & Lempitsky (2015) relax divergence measurement in the
upper bound by a worst case which is equivalent to the maximum accuracy that a discriminator can possibly
achieve when distinguishing source from target. Tzeng et al. (2017) follow this idea but separate the training
procedure into classification stage and adversarial learning stage where an independent feature extractor is
used for target. Saito et al. (2017b) explore a tighter bound by explicitly utilizing task-specific classifiers as
discriminators such that features near the support of source samples will be favored by extractor. Zhang et al.
(2019b) introduce margin disparity discrepancy, a novel measurement with rigorous generalization bounds,
tailored to the distribution comparison with the asymmetric margin loss to bridge the gap between theory
and algorithm. Methods that perform distribution alignment on pixel-level in raw input, which is known as
image-to-image translation, are also proposed (Liu & Tuzel, 2016; Bousmalis et al., 2017; Sankaranarayanan
et al., 2017; Shrivastava et al., 2016; Hoffman et al., 2018; Murez et al., 2017).

Distribution matching can not only bring the source and target domains closer, but also mix samples from
different classes together. Therefore, Saito et al. (2017a); Sener et al. (2016); Zhang et al. (2018) aim to use
pseudo-labels to learn target discriminative representations which encourage a low-density separation between

1In Eq.30, we show that our proposal includes a CGAN objective that aligns three pairs of hypothesis induced distributions
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classes in the target domain (Lee, 2013). However, this usually requires auxiliary data-dependent hyper-
parameters to set a threshold for reliable predictions. Long et al. (2018) present conditional adversarial domain
adaptation, a principled framework that conditions adversarial adaptation models on the discriminative
information conveyed in classifier predictions, where the back-propagation of training objective is highly
dependent on pseudo predictions. Wu et al. (2019) raise attention to the arbitrary increase in the joint error
caused by distribution matching and propose a relaxed match by restricting the power of domain classifier to
deal with the label shifting problem. However, it requires an overlap between the source and target domain
in the input space and does not necessarily reduce the joint error. To the best of our knowledge, there is still
no research focusing on directly minimizing the joint error for UDA.

In summary, the upper bound proposed by Ben-David et al. (2010) and its extensions (Ganin et al., 2016;
Tzeng et al., 2017; Saito et al., 2017b; Zhang et al., 2019b) keep making progress in aligning the marginal
distributions between the source and target domains. Nevertheless, the problem of ignoring the joint error
remains unsolved. In the following sections, we will theoretically explain how this can harm the performance
of the distribution matching in domain adaptation and why our proposal can tackle the problem.

3 Proposed Method

In this section, we present the details of our proposal. Firstly, in Sec.3.1 we give our base upper bound and
show how it relates to the joint error. Then we provide more specific reasons on the necessity of the joint
error theoretically. Secondly, in Sec.3.2 we explain how different choices of hypothesis spaces can affect the
optimization of an objective. Finally, in Sec.3.4 we propose a novel measurement for the dissimilarity between
hypotheses with a theoretical interpretation and demonstrate its utility in adversarial learning.

3.1 An Upper Bound Incorporating Joint Error

We consider the unsupervised domain adaptation as a binary classification task (our proposal holds for
multi-class case) where the learning algorithm has access to a set of n labeled points {(xi

s, yi
s) ∈ (X × Y )}n

i=1
sampled i.i.d. from the source domain S and a set of m unlabeled points {(xi

t) ∈ X}m
i=1 sampled i.i.d. from

the target domain T . Let fS : X → {0, 1} and fT : X → {0, 1} be the optimal labeling functions on the source
and target domains, respectively. Let ϵ (usually 0-1 loss) denote a distance metric between two functions over
a distribution that satisfies the symmetry and triangle inequality. As a commonly used notation, the source
error of a hypothesis h : X → {0, 1} in space H is the disagreement w.r.t. the true labeling function fS under
domain S, i.e., ϵS(h) := ϵS(h, fS). Similarly, we use ϵT (h) to represent the error of the target domain. With
these notations, we propose the following upper bound for target error:

ϵT (h) = ϵT (h, fT ) + [ϵT (h, fS) − ϵT (h, fS)] + [ϵS(h, fS) − ϵS(h, fS)] + [ϵS(h, fT ) − ϵS(h, fT )]
= ϵS(h, fS) + [ϵT (h, fT ) − ϵT (h, fS)] + [ϵS(h, fT ) − ϵS(h, fS)] + ϵT (h, fS) − ϵS(h, fT )
≤ ϵS(h) + ϵT (fS , fT ) + ϵS(fS , fT ) + ϵT (h, fS) − ϵS(h, fT )
= ϵS(h) + CS,T (fS , fT , h) (1)

For simplicity, we use CS,T (fS , fT , h) to denote ϵT (fS , fT ) + ϵS(fS , fT ) + ϵT (h, fS) − ϵS(h, fT ). The above
upper bound is minimized when h = fS , and it is equivalent to ϵT (fS , fT ) owing to the triangle inequality:

ϵS(h) + ϵS(fS , fT ) = ϵS(h, fS) + ϵS(fS , fT ) ≥ ϵS(h, fT ) (2)

Furthermore, we demonstrate in such case, our proposal is equivalent to an upper bound of the optimal joint
error λ:

ϵT (fS , fT ) = ϵT (fS , fT ) + ϵS(fS , fS) = ϵT (fS) + ϵS(fS) ≥ min
h∈H

(ϵT (h) + ϵS(h)) = λ (3)

The reason we focus on the joint error is that Ben-David et al. (2010) state the target error can be upper
bounded by the sum of the source risk, the marginal discrepancy between the source and target distributions
and the joint error:

ϵT (h) ≤ ϵS(h) + sup
f1,f2∈H

|ϵS(f1, f2) − ϵT (f1, f2)| + λ (4)
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but plenty of works (Ganin et al., 2016; Tzeng et al., 2017; Saito et al., 2017b; Zhang et al., 2019b; Kim et al.,
2019) choose to ignore λ and mainly focus on minimizing the marginal discrepancy within a transformed
input space Sg = {(g(xs), ys)|(xs, ys) ∼ S}, Tg = {g(xt)|xt ∼ T} introduced by a feature extractor g:

min
h,g:h◦g∈H

[ϵSg
(h) + max

f1,f2:f1◦g,f2◦g∈H
|ϵSg

(f1, f2) − ϵTg
(f1, f2)|] + λg (5)

where the joint error λg = minh∗:h∗◦g∈H ϵSg (h∗)+ ϵTg (h∗). In the original theory (Ben-David et al., 2010), the
joint error is indeed an independent term. However, when we introduce the feature extractor g to minimize
the marginal discrepancy, we also break the independence. The joint error varies along with the change of
g, and it can become non-negligible if samples from different classes in the source and target domain get
mixed together especially when a huge domain gap exists (Zhao et al., 2019). In that case, no matter how we
minimize the marginal discrepancy, the target error is unbounded as not a single h can jointly classify both
domains.

In Fig. 1b, we illustrate a case where common methods fail to penalize the undesirable situation. During
the distribution matching it can happen that distributions of different classes get aligned together. While
this does reduce the marginal discrepancy, it introduces a huge joint error. This can be seen in the right
part of Fig. 1b, while the marginal discrepancy (areas 1,3,4 and 6) is relatively small, there is a large joint
error (areas 2 and 5). In this case, reducing marginal discrepancy (areas 1,3,4 and 6) leads to an increasing
joint error (areas 2 and 5). For the case shown in Fig. 1b, we assume fS takes a specific form. As a result,
ϵT (fS , fT ) exactly measures the overlapping areas 2 and 5, which is equivalent to the optimal joint error. As
the two areas represent the overlaps of different classes, there is no hypothesis that can correctly classify
the samples in those areas, which leads to a non-negligible joint error. Our proposal is closely related to
the optimal joint error and can adequately reduce the size of overlapping during the distribution matching.
Additionally, we provide a Rademacher complexity bound in A.6 according to Mansour et al. (2009).

(a) legend (b) joint error (c) location of fT

Figure 1: The left side of a classifier (arrow) is class A and the right side is class B; (a) Legend; (b) Joint
error (areas 2 and 5) is penalized such that the feature extractor must try to avoid such an overlap; (c) even
with the marginal distribution aligned fS and fT might be largely different.

3.2 Hypothesis Space Constraint

Since the optimal labeling functions fS , fT are not available during the training, we shall further relax the
upper bound by taking supremum w.r.t fS , fT within a hypothesis space H2:

ϵT (h) ≤ ϵS(h) + CS,T (fS , fT , h) ≤ ϵS(h) + sup
f1,f2∈H

CS,T (f1, f2, h) (6)

Then minimizing the upper bound of the target error ϵT (h) becomes optimizing a minmax game. However, as
the max-player with two parameters f1, f2 ∈ H is much stronger due to a larger searching space, we introduce
a feature extractor g ∈ Hg and transformed feature space Sg = {(g(xs), ys)|(xs, ys) ∼ S}, Tg = {g(xt)|xt ∼ T}
for the min-player to compensate for it (Now f1, f2 ∈ Hf ≤ H because f1or2 ◦ g ∈ H). Applying g to both

2Our proposal holds even if fS , fT /∈ H, which is proved in A.3
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domains, the overall optimization problem can be written as:

min
g∈Hg,h∈Hf

(ϵSg
(h) + max

f1,f2∈Hf

CSg,Tg
(f1, f2, h)) (7)

However, if we leave Hf unconstrained, the maximum term can be arbitrarily large. In order to obtain
a tight bound, we need to restrict the size of hypothesis space as well as maintain the upper bound. For
fS ∈ H1 ≤ Hf and fT ∈ H2 ≤ Hf , the following holds:

CSg,Tg (fS , fT , h) ≤ max
f1∈H1,f2∈H2

CSg,Tg (f1, f2, h) ≤ max
f1,f2∈Hf

CSg,Tg (f1, f2, h) (8)

The constrained subspace for H1 is trivial as according to its definition, fS must belong to the space consisting
of all classifiers for the source domain, namely Hsc. This implies H1 = Hsc. However, the constrained
subspace for H2 is a little problematic since we have no access to the true labels of the target domain, thus it
is hard to locate fT . Therefore, we construct a hypothesis space for H2 that most likely contains fT .

As illustrated in Fig. 1c, if the conditional distributions are well-aligned (e.g., left side of Fig. 1c) after the
matching between the source and target domain, it is fair to assume that fT ∈ Hsc. However, the previous
assumption of a good alignment might not always hold true, especially when samples from different classes
are mixed together (e.g., right side of Fig. 1c). Considering this, we propose two training objectives in the
following sections based on different constraints for H2 which aim to alleviate the worst case caused by the
unknown location of fT .

3.2.1 Source-driven Hypothesis Space (SHS)

We assume H2 is a space where the hypothesis can classify the samples from the source domain with an
accuracy of γ ∈ [0, 1], namely Hγ

sc, such that we can avoid the worst case by choosing a small value for the
hyper-parameter γ when a huge domain gap exists. In practice, it is difficult to actually build such a space
and sample from it due to a huge computational cost. Instead, we use a weighted source error to constrain
the behavior of f2 as an approximation to the sample from Hγ

sc (a weighted source error does not give us
a classifier with an exact accuracy of γ; however, a small γ allows f2 to misclassify more source samples
because the shared feature extractor g will pay more attention on reducing the error on f1), which leads to
the final training objective (we omit some subscripts of the minimum and maximum term for simplicity):{

ming,h(ϵSg
(h) + maxf1,f2 CSg,Tg

(f1, f2, h))
ming,f1,f2(ϵSg

(f1) + γϵSg
(f2))

(9)

3.2.2 Target-driven Hypothesis Space (THS)

Firstly, we build a space consisting of all classifiers for the approximated target domain {(xi
t, h(xi

t)) ∈ X×Y }m
i=1

based on pseudo labels which can be obtained by predictions of h during the training procedure, namely Ht̃c.
Here, we assume H2 is an intersection between two hypothesis spaces , i.e., Hη

sc ∩ H1−η

t̃c
where the hypothesis

can classify samples from the source domain with an accuracy of η ∈ [0, 1] and classify samples from the
approximated target domain with an accuracy of 1 − η. Analogously, the training objective is given by:{

ming,h(ϵSg (h) + maxf1,f2 CSg,Tg (f1, f2, h))
ming,f1,f2(ϵSg (f1) + ηϵSg (f2) + (1 − η)ϵ̃Tg (f2))

(10)

3.2.3 Intuition to the Difference between Hypothesis Spaces

The reason we put the above constraints on hypothesis space H2 can be intuitively explained by Fig. 2. If we
confine the hypothesis space of H2 to Hsc, the classifier is forced to correctly classify source samples. As
a result, it increases the chance that all target samples are outside f2. In this case, the feature extractor
could move the samples into either side of the decision boundary to reduce the objective (shadow area in
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Fig. 2a). By alleviating the hypothesis space (Fig. 2b illustrates THS and the same goes for SHS), we also
alleviate restrictions on f2 which makes it more likely that the decision boundary passes at least through
some target samples, where the feature extractor can properly reduce the objective (striped area) by moving
those samples (orange) toward the inside of f2.

(a) H2 = Hsc (b) H2 = Hη
sc ∩ H1−η

t̃c

Figure 2: (a) Improper constraint; (b) Alleviated constraint

3.3 Comparisons with Other Methods

In this section, we show that under some conditions, the proposed joint error based upper bound can reduce
to other popular upper bounds, which demonstrates the generality of our proposal.

3.3.1 Margin Disparity Discrepancy

Zhang et al. (2019b) propose a novel margin-aware generalization bound based on scoring functions and
define a new divergence MDD. The training objective used in MDD can be alternatively expressed as (here
ϵ(h, f) denotes the margin disparity):

min
g,h

(ϵSg
(h) + max

f
(ϵTg

(f, h) − ϵSg
(f, h))) (11)

Recall Eq.9, if we set f1 = f2 = f and free the constraint of f to any f ∈ H, our proposal degrades exactly
to MDD. As discussed above, the assumption about identical optimal labeling function fS = fT is dangerous,
because we have no idea about the location of fT and a perfect alignment between the conditional distributions
of source and target domain is not likely to happen in practice. Besides, an unconstrained hypothesis space
for f is not helpful to build a tight bound.

3.3.2 Maximum Classifier Discrepancy

Saito et al. (2017b) propose two task-specific classifiers f1, f2 that are used to separate the decision boundary
on the source domain, such that the feature extractor is encouraged to produce features near the support of
the source samples. The objective used in MCD can be alternatively expressed as:{

ming(ϵSg
(f1) + maxf1,f2(ϵTg

(f1, f2)))
ming,f1,f2(ϵSg

(f1) + ϵSg
(f2))

(12)

Recall Eq.9 and Eq.10, if we set γ = 1 (or η = 1) and h = f1, our proposal reduces to MCD. As proved
in 3.1, the proposed upper bound is optimized when h = fS . However, it no longer holds after the upper
bound is relaxed by taking the supremum, i.e., setting h = f1 does not necessarily minimize the objective.
Besides, as discussed above, assuming H2 = Hsc lacks generality since fT can be far away from fS and does
not necessarily classify all source samples, which means the assumption of MCD is not likely to be applicable
to those cases where a huge domain gap exists.
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3.4 Cross Margin Discrepancy (CMD)

In this section, we propose a novel discrepancy measurement for ϵ instead of those commonly used ones
(e.g., logistic, hinge, L1). Following the above notations, we consider a score function s(x, y) for multi-class
classification where the output indicates the confidence of the prediction on class y. Thus an induced labeling
function named ls from X → Y is given by:

ls : x → arg max
y∈Y

s(x, y) (13)

The margin between data points and the classification surface plays a significant role in achieving strong
generalization performance. In order to quantify ϵ into a differentiable measurement as a surrogate of 0-1
loss, we introduce the margin theory developed by Koltchinskii & Panchenko (2002), where the margin loss is
interpreted as:

E(x,y)∈D[max(0, 1 + max
y′ ̸=y

s(x, y′) − s(x, y))] (14)

We aim to utilize this concept to further improve the reliability of our proposed method by leveraging this
margin loss to define a novel measurement of the discrepancy between two hypotheses f1, f2 (e.g., a multi-layer
perceptron whose output layer is a softmax function) over a distribution D, namely cross margin discrepancy:

ϵD(f1, f2) = Ex∈D[cmd(f1, f2, x)] (15)

Before further discussion, we firstly construct two distributions Df1 , Df2 induced by f1, f2 respectively, where
Df1 = {(x, lf1(x))|x ∼ D} and Df2 = {(x, lf2(x))|x ∼ D}. Then we consider the case where two hypotheses
(f1, f2) disagree, i.e., y1 = lf1(x) ̸= lf2(x) = y2, and the primitive loss is defined as:

cmd(f1, f2, x) = log f1(x, y1) − log f2(x, y1) + log f2(x, y2) − log f1(x, y2)
= log f1(x, y1) − log f1(x, y2) + log f2(x, y2) − log f2(x, y1) (16)

Then the cross margin discrepancy ϵD(f1, f2) can be viewed as:

E(x,y)∈Df2
[max
y′ ̸=y

log f1(x, y′) − log f1(x, y)] + E(x,y)∈Df1
[max
y′ ̸=y

log f2(x, y′) − log f2(x, y)] (17)

which is a sum of the margin loss for f1 on Df2 and the margin loss for f2 on Df1 , if we use the logarithm of
softmax as the score function.

Thanks to the trick introduced by Goodfellow et al. (2014) to mitigate the burden of exploding or vanishing
gradients, we optimize a dual form of Eq.16 instead (we refer to log f(x, y) as the positive part and
log(1 − f(x, y)) as the negative part):

cmd(f1, f2, x) = log f1(x, y1) + log(1 − f1(x, y2)) + log f2(x, y2) + log(1 − f2(x, y1)) (18)

During the training procedure, the two hypotheses will eventually agree on some points (lf1(x) = lf2(x) = y)
such that we need to define a new form of discrepancy measurement. Analogously, the primitive loss and its
dual form are given by:

cmd(f1, f2, x) = log max(f1(x, y), f2(x, y)) − log min(f1(x, y), f2(x, y)) (19)
cmd(f1, f2, x) = log max(f1(x, y), f2(x, y)) + log max(1 − f1(x, y), 1 − f2(x, y)) (20)

Another reason why we propose such a discrepancy measurement is that it helps alleviate the instability
in adversarial learning. As illustrated in Fig. 3b, during the optimization of a minimax game, when two
hypotheses try to maximize the discrepancy (striped area), if one moves too fast around the decision boundary
such that the discrepancy is actually maximized w.r.t some samples, then these samples can be moved into
either side to decrease the discrepancy by tuning the feature extractor. From Fig. 3a, it can be seen that
CMD is flat for the points around the original, i.e., the gradient w.r.t those points near the decision boundary
will be relatively small, which can help to prevent the above failure as each update of a hypothesis will be
subtle during the training.
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(a) loss curve (b) instability

Figure 3: (a) Loss of binary classification where ours shows small gradient around the original; (b) Steep
gradients near the original may lead to a extreme move of the decision boundary.

3.5 Training Procedure

This section briefly explains the training procedure of the proposed method, which follows a similar pipeline
proposed by Saito et al. (2017b). Here we take SHS objective (Eq.9) as an example and each term is clearly
defined below, where g represents a feature extractor and h, f1, f2 are classifiers with a softmax output. First,
we use the cross-entropy loss as a common surrogate of the source error:

ϵSg
(h) = −Ex,y∼S log(h(g(x), y)) (21)

Then we define the discrepancy term with the proposed cross margin discrepancy (Eq.1, Eq.15, Eq.18, Eq.20):

CSg,Tg (f1, f2, h)) = Ex∼T [cmd(f1, f2, x) + cmd(h, f1, x)] + Ex∼S [cmd(f1, f2, x) − cmd(h, f2, x)] (22)

Following the procedure described in Fig.4, for a mini-batch of input, during one training cycle, we firstly
train g, f1, f2 to satisfy the hypothesis space constraint; secondly, we introduce a trade-off hyper-parameter
λ = 0.01 to balance the source error and discrepancy then train f1, f2 to maximize the discrepancy term
within the hypothesis space constraint; finally, we train g, h to minimize the entire upper bound. We use
Ĉ, Č to emphasize the difference of the discrepancy term optimized in different steps such that the objective
is consistent with GAN (the positive part of CMD is fixed in Step C). Step C is executed 4 times inside a
training cycle according to Saito et al. (2017b). See A.5 for more details of the objective.

(a) Step A (b) Step B (c) Step C

Figure 4: Training procedure of the proposed method: (i) Train g, f1, f2 to satisfy the hypothesis space
constraint; (ii) Train f1, f2 to maximize the discrepancy within the hypothesis space constraint; (iii) Train
g, h to minimize the entire upper bound.
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Table 1: Accuracy of models adapted on digits datasets (∗ denotes the whole training set)

METHOD
SVHN

to
MNIST

MNIST
to

SVHN

MNIST
to

USPS

MNIST∗

to
USPS∗

USPS
to

MNIST
Source Only 67.1 21.3 76.7 79.7 63.4

MDD†(Long et al., 2015) 71.1 - - 81.1 -
DANN†Ganin et al. (2016) 71.1 25.1 77.3 85.1 73.2
DRCN(Ghifary et al., 2016) 82.0±0.1 40.1±0.1 91.8±0.1 - 73.7±0.1
ADDA(Tzeng et al., 2017) 76.0±1.8 - 89.4±0.2 - 90.1±0.8
MCD(Saito et al., 2017b) 96.2±0.4 11.2±1.1 94.2±0.7 96.5±0.3 94.1±0.3
GPDA(Kim et al., 2019) 98.2±0.1 - 96.5±0.2 98.1±0.1 96.4±0.1
ours (SHS + L1, γ = 1) 96.8±0.2 30.4±1.54 94.5±0.3 96.8±0.3 95.2±0.2

ours (SHS + CMD, γ = 1) 97.5±0.2 31.5±1.84 95.3±0.3 97.2±0.2 95.6±0.2
ours (THS + CMD, η = 0) 98.6±0.1 50.3±1.3 96.8±0.2 97.9±0.1 96.9±0.1

(a) domain gap affects γ (b) M→S (c) S→M (d) M→U

Figure 5: (a) Sensitivity w.r.t. γ; (b) Comparisons for marginal discrepancy; (c)-(d) Comparisons for
convergence rate; All plots are drawn based on the average of 3 runs.

4 Evaluation

In this section, we perform an extensive evaluation on image classification for several different datasets (Digit
(Netzer et al., 2011; LeCun et al., 1998; Hull, 1994), VisDA (Peng et al., 2017), Office-Home (Venkateswara
et al., 2017), Office-31 (Saenko et al., 2010)) to verify the effectiveness of our proposal. We choose MCD
(Saito et al., 2017b) as a baseline for the major comparisons with ours because the two methods share the
same concept, which is to tighten the upper bound established by Ben-David et al. (2010). Besides, the
two methods utilize the same network architecture and training procedure, which makes the results fairly
comparable. We conduct an ablation study (A.7) to show the contribution of each part of our proposal. We
manually create an imbalance label situation and show the robustness of our proposal (A.6). Details of the
experimental settings, the hyper-parameter selection and the training objective are provided in A.1, A.4, A.5.

4.1 Experiment on Digit Dataset

In this experiment, our proposal is assessed in four types of adaptation scenarios by adopting commonly
used digits datasets, i.e., MNIST (LeCun et al., 1998), Street View House Numbers (SVHN) (Netzer et al.,
2011), and USPS (Hull, 1994) such that the result can be easily compared with other popular methods. All
experiments are performed in an unsupervised fashion without any kinds of data augmentation. We report
the accuracy of different methods in Tab. 1. Our proposal manages to improve the performance in almost all
settings except for a single result compared with GPDA (Kim et al., 2019). However, their solution requires
sampling that increases data size and is equivalent to adding Gaussian noise to the last layer of a classifier,
which is considered as a type of augmentation.

4We use γ = 0.1 for MNIST → SVHN
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Table 2: Accuracy of ResNet-101 model fine-tuned on VisDA dataset within 10 epochs

METHOD plane bcycl bus car horse knife mcycl person plant sktbrd train truck avg
Source Only 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

MDD(Long et al., 2015) 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
DANN(Ganin et al., 2016) 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MCD(Saito et al., 2017b) 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
GPDA(Kim et al., 2019) 83.0 74.3 80.4 66.0 87.6 75.3 83.8 73.1 90.1 57.3 80.2 37.9 73.3

MCCJin et al. (2020) 88.1 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
ours (SHS + L1, γ = 1) 86.3 82.7 83.7 68.7 87.9 72.7 85.4 61.5 87.3 55.5 75.2 34.1 73.4

ours (SHS + CMD, γ = 1) 88.4 83.3 74.8 78.0 88.1 43.2 88.2 68.9 87.6 65.5 92.6 58.5 76.4
ours (THS + CMD, η = 0.9) 93.8 79.5 79.3 55.9 93.9 93.8 86.5 80.3 91.6 87.7 85.4 51.6 81.6

(a) optimum γ = 1 (b) optimum η = 0.9 (c) faster convergence (d) higher discrepancy

Figure 6: (a)-(b) Sensitivity w.r.t. γ,η; (c) Comparisons for convergence rate; (d) Comparisons for marginal
discrepancy; All plots are drawn based on the average of 3 runs.

Fig. 5a shows the result of SHS+CMD proposal and it can be seen that the hyper-parameter γ is quite
sensitive to the domain gap. In short, setting γ = 1 here yields the best performance in most situations, since
fS , fT can be quite close after aligning distributions, especially in these easily adapted scenarios. However, in
MNIST → SVHN, setting γ = 0.1 gives the optimum which means that fS , fT are so far away due to a huge
domain gap that no extractor is capable of introducing an identical conditional distribution in feature space.
Besides, for THS+CMD proposal, we test the performance on different value of η then find out that the
accuracy remains high and varies subtly, therefore we omit a figure for it. Furthermore, Fig. 5b empirically
proves simply minimizing the discrepancy between marginal distributions does not necessarily lead to a
reliable adaptation, which demonstrates the importance of the joint error (because MCD and SHS+L1 are
directly comparable). In addition, Fig. 5c and Fig. 5d show the effectiveness of the cross margin discrepancy
which accelerates the convergence and provides a slightly better result.

4.2 Experiment on VisDA Dataset

The VisDA dataset (Peng et al., 2017) is designed for 12-class adaptation task from synthetic object to real
object images. Source domain contains 152,397 synthetic images generated by rendering 3D CAD models and
target domain is collected from MSCOCO (Lin et al., 2014) consisting of 55,388 real images. We report the
accuracy of different methods in Tab. 2, and find that our proposal works well in all settings. The image
structure of this dataset is more complex than that of digits, yet our method provides reliable performance
even under such a challenging condition. Another key observation is that some competing methods (e.g.,
DANN, MCD), which can be categorized as distribution matching based on adversarial learning, perform
worse than MDD (which simply matches statistics) in classes such as plane and horse, while our methods
perform better across all classes. This clearly demonstrates the importance of the joint error. As for the
SHS+CMD proposal (Fig. 6a), performance drops when relaxing the constraint which actually confuses us.
Because we expect an improvement here since it is hard to believe that fS , fT eventually lie in a similar
space judging from the relatively low prediction accuracy. As for the THS+CMD proposal (Fig. 6b), we test
the adaptation performance for different η and the prediction accuracy drops when η goes below 0.9. One
possible cause is that f2 and h might almost agree on the target domain, such that the prediction of h cannot
provide more accurate information of the target domain without introducing noisy pseudo labels. Fig. 6c and
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Table 3: The accuracy of ResNet-50 model fine-tuned on the Office-Home dataset. We repeated each
experiment 5 times and report the average of the accuracy.

METHOD Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
Source Only 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DANN(Ganin et al., 2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
MCD(Saito et al., 2017b) 51.9 70.7 74.8 59.0 68.4 68.8 58.2 51.6 75.1 69.5 55.8 79.3 65.3
CDAN(Long et al., 2018) 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

SymNets(Zhang et al., 2019a) 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
SPL(Wang & Breckon, 2020) 54.5 77.8 81.9 65.1 78.0 81.1 66.0 53.1 82.8 69.9 55.3 86.0 71.0

AADA(Yang et al., 2020) 54.0 71.3 77.5 60.8 70.8 71.2 59.1 51.8 76.9 71.0 57.4 81.8 67.0
SRDC(Tang et al., 2020) 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
SCAL(Wang et al., 2022) 55.3 72.7 78.7 63.1 71.7 73.5 61.4 51.6 79.9 72.5 57.8 81.0 68.3

ours (T HS + CMD, η = 0.9) 60.3 77.8 81.0 66.0 74.4 74.5 66.7 59.3 81.8 74.2 62.7 84.9 72.0

(a) conditional discrepancy (ours) (b) conditional discrepancy (MCD) (c) marginal discrepancy (ours)

Figure 7: Feature visualization with t-SNE in scenario Real to Art; (a)-(b) shows the conditional discrepancy
by using different colors for each class; (c) shows the marginal discrepancy by using the same color for the all
classes.

Fig. 6d again demonstrate the effectiveness of the cross margin discrepancy and the importance of the joint
error.

4.3 Experiment on Office-Home Dataset

Office-Home (Venkateswara et al., 2017) is a complex dataset containing 15,500 images from four significantly
different domains: Art (Ar), Clipart (Cl), Product (Pr) and Real-World (Rw). We report the accuracy of
different methods in Tab. 3. From the table, it can be seen that the adaptation accuracy of the source-only
method is rather low, which means a huge domain gap is quite likely to exist. In such case, we believe
simply minimizing the discrepancy between the source and target domain may not work as the joint error can
increase when aligning the distributions. As reported, our proposal gives better performance in general when
the adaptation is hard (1st, 8th and 11th columns). This result suggests that our proposal which incorporates
the joint error into the target error upper bound can boost the performance especially when there is a large
domain gap. SPL (Wang & Breckon, 2020) and SRDC (Tang et al., 2020) share a similar strategy which can
be described as cluster based iterative pseudo labeling. Despite the outstanding performance, their methods
lack a theoretical guarantee on the generalization error bound. Besides, they assume samples in the target
domain are well clustered within the feature space and can be labeled by the euclidean distance from clusters
obtained with K-means. As for the first assumption, it is not always true since the high dimensional features
can lie in a low dimensional manifold (e.g., Swiss Roll dataset) where no cluster exists. As for the second
assumption, the labeling scheme can be vulnerable because K-means is sensitive to the initialization and the
euclidean distance can suffer from the curse of dimensionality where there is little difference in the distances
between different pairs of samples. After all, this works aims to demonstrate the necessity of joint error
especially when the domain gap is huge; thus further discussion on the pseudo labeling strategies is beyond
the scope of this work.

In addition, we plot the learned features with t-SNE (van der Maaten & Hinton, 2008) in Fig. 7 which
shows the scenario of Real to Art . In Fig. 7a, we illustrate the source (dot) and target (cross) features with
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Table 4: The accuracy of ResNet-50 model fine-tuned on the Office-31 dataset. We repeated each experiment
5 times and report the average and the standard deviation of the accuracy.

METHOD A→W D→W W→D A→D D→A W→A Avg
Source Only 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1

DANN(Ganin et al., 2016) 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
ADDA(Tzeng et al., 2017) 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9
MCD(Saito et al., 2017b) 88.6±0.2 98.5±0.1 100.0±.0 92.2±0.2 69.5±0.1 69.7±0.3 86.5
CDAN(Long et al., 2018) 94.1±0.1 98.6±0.1 100.0±.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7

SymNets(Zhang et al., 2019a) 90.8±0.1 98.8±0.3 100.0±0.0 93.9±0.5 74.6±0.6 72.5±0.5 88.4
SPL(Wang & Breckon, 2020) 92.7±0.0 98.1±0.0 99.8±0.0 93.7±0.0 76.4±0.0 76.9±0.0 89.6

MCC(Jin et al., 2020) 95.5±0.2 98.6±0.1 100.0±0.0 94.4±0.3 72.9±0.2 74.9±0.3 89.4
SRDC(Tang et al., 2020) 94.6±1.0 99.2±0.5 100.0±0.0 92.6±0.6 78.1±1.3 76.3±0.2 90.1
SCAL(Wang et al., 2022) 93.5±0.2 98.5±0.1 100.0±0.0 93.4±0.3 72.4±0.1 74.0±0.3 88.6

ours (T HS + CMD, η = 0.9) 91.9±0.5 99.0±0.2 100.0±.0 93.7±0.5 76.1±0.2 77.8±0.2 89.8

different colors that represent their classes. In our method, most of the target features are clustered to their
corresponding sources and do not show a large variance from the class center compared to MCD (Fig. 7b).
We also visualize features of the source (red dot) and target (blue cross) domain in Fig. 7c to show the entire
domain discrepancy. It can be seen that the target features are also well-aligned with those of the source
domain.

4.4 Experiment on Office-31 Dataset

Office-31 (Saenko et al., 2010) is a popular dataset to verify the effectiveness of a domain adaptation algorithm,
which contains three diverse domains: Amazon (A), Webcam (W) and DSLR (D) with 4,652 images in 31
unbalanced classes. The results on Office-31 are reported in Tab. 4. As for the tasks D→A and W→A, judging
from the relatively low adaptation accuracy across all methods, it is quite likely that there is a huge domain
gap between the source and target domain. Our method works well in such cases which demonstrates that the
proposal manages to penalize the undesired matching between the source and target domain. However, the
advantage is not remarkable especially for the task A→W, where our proposal shows relatively high variance
and poor performance. One possible reason is that our method depends on building reliable classifiers for the
source domain to satisfy the constraint for the hypothesis space. However, the Amazon domain contains a lot
of noise and the entire dataset lacks diversity (e.g., some domains only have several hundred samples with
many duplicates) which makes it difficult for a traditional error bound based method that usually requires a
sufficient sample size to learn a reliable classifier.

5 Conclusion

In this work, we propose a novel upper bound that takes the joint error into account. Then we further
pursue a tighter bound with reasonable constraints on the hypothesis space. Additionally, we adopt a novel
cross domain discrepancy for dissimilarity measurement which alleviates the instability during adversarial
learning. Extensive empirical evidence shows that an invariant representation is not enough to guarantee a
good generalization performance in the target domain, as the joint error matters especially when the domain
gap is huge. We believe our results take an important step towards understanding unsupervised domain
adaptation, and also stimulate future work on the design of stronger adaptation algorithms that manage to
align conditional distributions without using pseudo-labels from the target domain.
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A Appendix

A.1 Experimental Setting

A.1.1 Digits Dataset

SVHN ↔ MNIST We firstly examine the adaptation from SVHN (Fig. 8a) to MNIST (Fig. 8b). We use
the standard training set and testing set for both source and target domains. The feature extractor contains
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three 5 × 5 convolutional layers with stride two 3 × 3 max pooling placed after the first two convolutional
layers and a single fully-connected layer. For classifiers, we use 2-layer fully-connected networks.

MNIST ↔ USPS As for the adaptation between MNIST and USPS (Fig. 8c), we follow the training protocol
established in Long et al. (2013) by sampling 2000 images from MNIST and 1800 from USPS. As for the test
samples , the standard version is used for both source and target domains. The feature generator contains
two 5 × 5 convolutional layers with stride two 2 × 2 max pooling placed after each convolutional layer and a
single fully-connected layer. For classifiers, we use 2-layer fully-connected networks.

Throughout the experiment, we employ the CNN architecture used in Saito et al. (2017b), where batch
normalization is applied to each layer and a 0.5 rate of dropout is used between fully connected layers. Besides,
spectral normalization (Miyato et al., 2018) is deployed for the classifiers in all of the following experiments to
stabilize adversarial learning. The major reason we utilize this technique is because we observe a performance
drop when the network is over-trained (it usually occurs after several hundreds epochs). We are still not
sure whether it is caused by a over-fitting on the source error or a general neural network training problem
related to early stop (this phenomenon can also be observed in other algorithms). One common solution is
to use a gradient reversal layer(Ganin et al., 2016) to balance the weight between the source error and the
discrepancy between the two domains. However, it will introduce more hyper-parameters to tune. Besides, in
our proposed cross margin discrepancy, as is illustrated in Fig. 9, we maximize log f1(x, y1) + log(1 − f2(x, y1))
w.r.t the classifiers but minimize only log(1 − f2(x, y1)) (a part of the objective) w.r.t the feature extractor to
avoid unnecessary oscillation during adversarial learning. This implies the objective we try to maximize is not
equivalent to that we try to minimize. And in such case, it is difficult to employ gradient reversal layer which
is supposed to train the classifiers and the feature extractor in a single objective simultaneously. With the help
of spectral normalization, we can ensure the classifiers is approximately Lipschitz such that the performance
drop at an early stage can be avoided since the gradient w.r.t the classifiers will be relatively small. Adam
(Kingma & Ba, 2014) is used for optimization with a mini-batch size of 128 and a learning rate of 10−4. As
for the SHS proposal, we verify the sensitivity of our model on various value for γ = {0.1, 0.5, 0.9, 1.0}. As for
the THS proposal, setting η = 0 usually provides a reliable performance and the adaptation result changes
subtly for different η.

(a) SVHN (b) MNIST (c) USPS

Figure 8: Random samples from each dataset.

A.1.2 VisDA Dataset

We further evaluate our method on object classification. The VisDA dataset (Peng et al., 2017) is used here,
which is designed for 12-class adaptation task from synthetic object to real object images. Source domain
contains 152,397 synthetic images, which are generated by rendering 3D CAD models. Data of the target
domain is collected from MSCOCO (Lin et al., 2014) consisting of 55,388 real images. Since the 3D models
are generated without the background and color diversity, the synthetic domain is quite different from the
real domain, which makes it a much more difficult problem than digits adaptation. Again, this experiment
is performed in unsupervised fashion and no data augmentation technique excluding horizontal flipping is
allowed.

Following the protocol established in Saito et al. (2017b), we evaluate our method by fine-tuning a ResNet-101
(He et al., 2015) model pretrained on ImageNet (Deng et al., 2009). The model except the last layer combined
with a single-layer bottleneck is used as feature extractor and a randomly initialized 2-layer fully-connected
network is used as a classifier, where batch normalization is applied to each layer and a 0.5 rate of dropout is
conducted. Nesterov accelerated gradient is used for optimization with a mini-batch size of 32 and an initial
learning rate of 10−3 which decays exponentially. The network architecture used in Saito et al. (2017b) is
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Figure 9: Illustrated details for the cross margin discrepancy

originally a 3-layer fully-connected classifier. However, as is mentioned in the main paper, we show that a
relatively weaker classifier will improve the stability of the adversarial learning. Therefore, we take advantage
of the framework proposed in Zhang et al. (2019b) by regarding the top layer of the classifier, i.e., a bottleneck,
as a part of the feature extractor (it does not change the entire complexity of the model). Another crucial
point here is that the network parameters w.r.t. the ResNet-101 and the bottleneck are updated separately
at a ratio of 1:10, which is the same with Zhang et al. (2019b). A similar trick is used in Saito et al. (2017b)
to relatively slow down the updating for ResNet-101 by introducing a Nesterov optimizer with a momentum
term for the classifier. The common reason here that we do not want the feature extractor to be updated
too much is very simple as ResNet-101 is so powerful that it can easily over-fit the source risk. We apply
horizontal flipping of input images during training as the only data augmentation. As for the hyper-parameter,
we test for γ = {0.1, 0.5, 0.9, 1} and η = {0, 0.5, 0.8, 0.9}. For a direct comparison, we report the accuracy
after 10 epochs.

(a) synthetic images (b) real images

Figure 10: (a) Samples from source domain. (b) Samples from target domain.

A.1.3 Office-Home Dataset

Office-Home (Venkateswara et al., 2017) is a complex dataset (Fig. 11) containing 15,500 images from four
significantly different domains: Art (paintings, sketches and/or artistic depictions), Clipart (clip art images),
Product (images without background), and Real-world (regular images captured with a camera). In this
experiment, following the protocol from Zhang et al. (2019b), we evaluate our method by fine-tuning a
ResNet-50 (He et al., 2015) model pretrained on ImageNet (Deng et al., 2009). The model except the last
layer combined with a single-layer bottleneck is used as feature extractor and a randomly initialized 2-layer
fully-connected network with width 1024 is used as a classifier, where batch normalization is applied to each
layer and a 0.5 rate of dropout is conducted. For optimization, we use the SGD with the Nesterov momentum
term fixed to 0.9, where the batch size is 32 and learning rate is adjusted according to Ganin et al. (2016).We
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apply horizontal flipping and resized cropping of input images during training as the data augmentation
similar to Zhang et al. (2019b).

Figure 11: Sample images from the Office-Home dataset (Venkateswara et al., 2017).

A.1.4 Office-31 Dataset

Office-31 (Saenko et al., 2010) (Fig. 12) is a popular dataset to verify the effectiveness of a domain adaptation
algorithm, which contains three diverse domains, Amazon from Amazon website, Webcam by web camera
and DSLR by digital SLR camera with 4,652 images in 31 unbalanced classes. Besides, we show several
noisy samples in Fig.13 to backup our assumption for the failure case. In this experiment, following the
protocol from Zhang et al. (2019b), we evaluate our method by fine-tuning a ResNet-50 (He et al., 2015)
model pretrained on ImageNet (Deng et al., 2009). The model used here is almost identical to the one in
Office-Home experiment except a different width 2048 for classifiers. For optimization, we use the SGD with
the Nesterov momentum term fixed to 0.9, where the batch size is 32 and learning rate is adjusted according
to Ganin et al. (2016). We apply horizontal flipping and resized cropping of input images during training as
the data augmentation similar to Zhang et al. (2019b).

Figure 12: Sample images from the Office-31 dataset.

Figure 13: Noisy images from the Office-31 dataset.
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A.2 Rademacher Complexity

Let H be a set of real-valued functions defined over a set X. Given a sample S ∈ Xm, the empirical
Rademacher complexity of H is defined as follows:

ℜ̂S(H) = 2
m
Eσ

[
sup
h∈H

|σih(xi)|
∣∣∣∣S = (x1, ..., xm)

]
(23)

The expectation is taken over σ = (σ1, ..., σn) where σi is an independent uniform random variable taking
values in {−1, +1}.

The Rademacher complexity measures the ability of a class of functions to fit noise and also has the additional
advantage that it is data-dependent and can be measured from finite samples, which can lead to tighter bounds
than those based on other measures of complexity such as the VC-dimension. Following the established theory
proposed by Mansour et al. (2009), we denote the empirical average of a hypothesis h : X → {0, 1} by R̂(h)
and its expectation over samples drawn according to the distribution considered by R(h). The following gives
a version of the Rademacher complexity bounds (Koltchinskii & Panchenko, 2000; Bartlett & Mendelson,
2002):

Let H be a class of functions mapping X × Y → [0, 1] and S = ((x1, y1), ..., (xm, ym)) a finite sample drawn
i.i.d. according to a distribution Q. Then, for any σ > 0, with probability at least 1 − σ over samples S of
size m, the following inequality holds for all h ∈ H:

R(h) ≤ R̂(h) + ℜ̂S(H) + 3

√
log 2

σ

2m
(24)

Recall our proposed upper bound, we have: ϵT (h) ≤ ϵS(h) + CS,T (fS , fT , h) where CS,T is further bounded
by: supf1∈H1,f2∈H2{ϵT (f1, f2) + ϵS(f1, f2) + ϵT (h, f1) − ϵS(h, f2)}. Now we relax this bound by applying
ϵS(f1, f2) ≤ ϵS(f1, h) + ϵS(f2, h) and name it d(S, T ; h) = supf1∈H1,f2∈H2{ϵT (f1, f2) + ϵS(f1, h) + ϵT (f1, h)}.
Assume that the loss function ϵ is bounded by M > 0:ϵ(h, h′) ≤ M for all h, h′ ∈ H. Let Q be a distribution
over X and let Q̂ denote the corresponding empirical distribution for a sample S = (x1, ..., xm). Then we can
scale the loss ϵ to [0, 1] by dividing by M , and denote the new class by ϵH1,H2 which represents the class of
functions {x → ϵ(f1(x), f2(x)) : f1 ∈ H1, f2 ∈ H2}. By the above theorem , for any σ > 0, with probability
at least 1 − σ, the following inequality holds for all f1 ∈ H1, f2 ∈ H2:

ϵQ(f1, f2)
M

≤
ϵQ̂(f1, f2)

M
+ ℜ̂S(ϵH1,H2/M) + 3

√
log 2

σ

2m
(25)

The empirical Rademacher complexity has the property that ℜ̂(αH) = αℜ̂(H) for any hypothesis class H
and positive number α, which helps simplify the above bound. Now let S be a distribution over X and
Ŝ the corresponding empirical distribution for a sample S̃, and let T be a distribution over X and T̂ the
corresponding empirical distribution for a sample T̃ . Then, for any σ > 0, with probability at least 1 − σ
over samples S̃ of size m drawn according to S and samples T̃ of size n drawn according to T , we can write:

d(S, T ; h) ≤ sup
f1∈H1,f2∈H2

{ϵT̂ (f1, f2) + ϵŜ(f1, h) + ϵT̂ (f1, h)}

+ ℜ̂T̃ (ϵH1,H2) + ℜ̂S̃(ϵH1) + ℜ̂T̃ (ϵH1)

+ 3M(

√
log 2

σ

2m
+ 2

√
log 2

σ

2n
) (26)

A.3 Compatibility

We do agree that it is not easy to find the true labeling function inside a specific hypothesis space. However,
we believe it is a feasible assumption that labeling functions lie in a hypothesis space with enough complexity.
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For instance, Mansour et al. (2009) makes a similar assumption that H includes fT . Besides, since the
algorithm is always run within finite samples, there is quite likely to be a function inside a specific hypothesis
space that could perfectly mimic the behavior of the true labeling function on those samples. Therefore, even
if the hypothesis space we use does not contain the true labeling function, it will not harm the actual learning
process. The proof is as below:

ϵT (h) = ϵT (h, fT )
= ϵT (h, fT ) − ϵT (h, fS) + ϵT (h, fS) + ϵS(h, fS) − ϵS(h, fS) + ϵS(h, fT ) − ϵS(h, fT )
= ϵS(h, fS) + (ϵT (h, fT ) − ϵT (h, fS)) + (ϵS(h, fT ) − ϵS(h, fS)) + ϵT (h, fS) − ϵS(h, fT )
≤ ϵS(h) + ϵT (fS , fT ) + ϵS(fS , fT ) + ϵT (h, fS) − ϵS(h, fT )
≤ ϵS(h) + ϵT (fS , f∗

S) + ϵT (f∗
S , f∗

T ) + ϵT (f∗
T , fT ) + ϵS(fS , f∗

S) + ϵS(f∗
S , f∗

T ) + ϵS(f∗
T , fT )

+ ϵT (h, f∗
S) + ϵT (f∗

S , fS) − ϵS(h, f∗
T ) + ϵS(f∗

T , fT )
= ϵS(h) + CS,T (f∗

S , f∗
T , h) + θ (27)

where θ = 2ϵT (fS , f∗
S) + ϵS(fS , f∗

S) + 2ϵS(f∗
T , fT ) + ϵT (f∗

T , fT ).

We assume f∗
S = arg minf∈H ϵS

⋃
2T (fS , f) and f∗

T = arg minf∈H ϵ2S
⋃

T (fT , f). If f∗
S , f∗

T ∈ H can perfectly
mimic the behavior of fS , fT on S and T , then θ can be totally ignored and the obtained bound become
compatible with the original upper bound by replacing fS , fT with f∗

S , f∗
T .

A.4 Hyperparameter Selection

In all experiments, the hyper-parameters γ, η are set based on the validation performance on a separate
dataset consisting of a few hundreds of labeled target samples. As showed in the main paper, it can be seen
that the performance of our proposal is quite sensitive to the change of the hyper-parameters. However, it
also suggests that an appropriate choice of the hyper-parameters can significantly boost the performance,
which allows us to select the hyper-parameters via a validation dataset. Fig. 14 shows two examples of the
validation performance on different adaptation tasks w.r.t. γ, η.

(a) SHS on SVHN→MNIST (200 samples) (b) THS on VisDA (500 samples)

Figure 14: Validation performance when varying the hyper-parameters γ, η on a separate dataset

A.5 Details of the Training Objective

This section briefly explains the training objective of the proposed method. Here we take SHS objective as an
example and each term in the objective is clearly defined below:{

ming,h(ϵSg
(h) + maxf1,f2 CSg,Tg

(f1, f2, h))
ming,f1,f2(ϵSg

(f1) + γϵSg
(f2))

(28)
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Table 5: Influence of λ on the adaptation of SVHN→MNIST under our proposal (THS + CMD, η = 0).

SVHN
to

MNIST
λ = 0.001 λ = 0.01 λ = 0.1

Acc 98.4±0.1 98.6±0.1 97.2±0.3

where g represent a feature extractor and h, f1, f2 are classifiers with a softmax output (i.e., h(x, y) represents
the confidence of sample x being classified as label y). First, we use can the cross-entropy loss as a common
surrogate of the source error:

ϵSg
(h) = −Ex,y∼S log(h(g(x), y)) (29)

Then we use the proposed cross margin discrepancy to reorganize CSg,Tg
(f1, f2, h). Before further derivation,

we introduce three proxy distributions Sf1=f2 , Sf1\f2 , Sf2\f1 induced by f1, f2, where Sf1=f2 = {x, y|x ∼
S, lf1(x) = lf2(x) = y}, Sf1\f2 = {x, y|x ∼ S, y = lf1(x) ̸= lf2(x)}, Sf2\f1 = {x, y|x ∼ S, lf1(x) ̸= lf2(x) = y}
(the labeling function l defined in main paper Eq.7 returns the most confident prediction). Analogously, we
define others like Sf1=h, Sf2=h, Tf1\f2, etc. According to the definition of CMD (Sec.3.4):

ĈSg,Tg
(f1, f2, h)

= Ex,y∼Sf1=f2
[log max(f1(g(x), y), f2(g(x), y)) + log max(1 − f1(g(x), y), 1 − f2(g(x), y))]

+ Ex,y∼Sf1\f2
[log f1(g(x), y) + log(1 − f2(g(x), y))] + Ex,y∼Sf2\f1

[log(1 − f1(g(x), y)) + log f2(g(x), y)]

+ Ex,y∼Tf1=f2
[log max(f1(g(x), y), f2(g(x), y)) + log max(1 − f1(g(x), y), 1 − f2(g(x), y))]

+ Ex,y∼Tf1\f2
[log f1(g(x), y) + log(1 − f2(g(x), y))] + Ex,y∼Tf2\f1

[log(1 − f1(g(x), y)) + log f2(g(x), y)]

+ Ex,y∼Tf1=h
[log max(f1(g(x), y), h(g(x), y)) + log max(1 − f1(g(x), y), 1 − h(g(x), y))]

+ Ex,y∼Tf1\h
[log f1(g(x), y) + log(1 − h(g(x), y))] + Ex,y∼Th\f1

[log(1 − f1(g(x), y)) + log h(g(x), y)]

− Ex,y∼Sf2=h
[log max(h(g(x), y), f2(g(x), y)) + log max(1 − h(g(x), y), 1 − f2(g(x), y))]

− Ex,y∼Sf2\h
[log f2(g(x), y) + log(1 − h(g(x), y))] − Ex,y∼Sh\f2

[log(1 − f2(g(x), y)) + log h(g(x), y)] (30)

where part of this objective can be regarded as a CGAN objective aiming to align the conditional distributions
of three pairs of hypothesis induced distributions (Sf1=f2 ⇔ Tf1=f2 , Sf1\f2 ⇔ Tf2\f1 , Sf2\f1 ⇔ Tf1\f2) under
a minor assumption that f1, f2 are more confident about S, T respectively.
As we explain in A.1.1, in order to avoid unnecessary oscillation during adversarial learning, we only optimize
a part of the objective (the part treated as fake by the classifier) w.r.t g, h so that it can be consistent with
general GAN objective. This implies the objective (ĈSg,Tg

(f1, f2, h)) we try to maximize is not equivalent to
that (ČSg,Tg

(f1, f2, h)) we try to minimize:

ČSg,Tg
(f1, f2, h)

= Ex,y∼Sf1=f2
log max(1 − f1(g(x), y), 1 − f2(g(x), y))

+ Ex,y∼Sf1\f2
log(1 − f2(g(x), y)) + Ex,y∼Sf2\f1

log(1 − f1(g(x), y))

+ Ex,y∼Tf1=f2
log max(1 − f1(g(x), y), 1 − f2(g(x), y))

+ Ex,y∼Tf1\f2
log(1 − f2(g(x), y)) + Ex,y∼Tf2\f1

log(1 − f1(g(x), y))

+ Ex,y∼Tf1=h
log max(1 − f1(g(x), y), 1 − h(g(x), y))

+ Ex,y∼Tf1\h
log(1 − h(g(x), y)) + Ex,y∼Th\f1

log(1 − f1(g(x), y))

− Ex,y∼Sf2=h
log max(1 − h(g(x), y), 1 − f2(g(x), y))

− Ex,y∼Sf2\h
log(1 − h(g(x), y)) − Ex,y∼Sh\f2

log(1 − f2(g(x), y)) (31)

Since we apply different measurements to the source error and the discrepancy, we introduce a scaling factor
λ to ensure that neither of them can dominate the back-propagation. λ = 0.01 is used in all experiments
because we observe that source error is usually around 1e − 2 and the discrepancy is usually around 1e0. We
also conduct a simple experiment to check the influence of λ and report the results in Tab.6.
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Table 6: The accuracy of ResNet-50 model fine-tuned on the Office-Home dataset. ∗ represents the imbalance
label distribution setting where we manually remove the samples of an entire class from the target domain.

METHOD Ar→Cl Pr→Cl Rw→Cl
Source Only 34.9 31.2 41.2

DANN(Ganin et al., 2016) 45.6 43.7 51.8
MCD(Saito et al., 2017b) 51.9 51.6 55.8
CDAN(Long et al., 2018) 50.7 50.9 56.7

SymNets(Zhang et al., 2019a) 47.7 48.8 52.6
SPL(Wang & Breckon, 2020) 54.5 53.1 55.3

AADA(Yang et al., 2020) 54.0 51.8 57.4
SRDC(Tang et al., 2020) 52.3 53.8 57.1
SCAL(Wang et al., 2022) 55.3 51.6 57.8

ours (T HS + CMD, η = 0.9) 60.3 59.2 62.7
DANN∗ 43.1 40.5 49.2
MCD∗ 50.5 49.7 54.3

ours∗ (T HS + CMD, η = 0.9) 60.0 58.5 62.2

A.6 Imbalance Label Distribution

In this section, we conduct an additional experiment on the situation where the label distribution of source is
very different from that of target domain. We choose Office-Home dataset and manually remove the samples
of an entire class (’clock’) from the target (Clipart) domain to create an imbalance scenario. We report the
adaptation accuracy in Tab.6. In theory, our proposal does not suffer from the imbalance label distribution.
Because unlike other methods that can only match the marginal distributions, our proposal is designed to
align the conditional distributions. In practice, the experimental results demonstrate our theory since there is
no remarkable performance drop in our proposal compared to other methods. Besides, despite this extreme
imbalance label distribution case, our proposal still outperforms other methods that trained on the full target
domain.

A.7 Ablation Study

In this section, we conduct a simple ablation study to show how each part of the proposal, i.e., the objective
including the joint error, the cross margin discrepancy and the pseudo labels induced hypothesis space,
contributes to the performance gain respectively. For comparisons, we choose MCD(Saito et al., 2017b) as
a baseline since its assumption about the hypothesis space is similar to our SHS proposal. Besides, the
two methods share the same network architecture in implementation, which makes the experimental results
directly comparable. From Tab. 7, it can be seen that the 4th row of our method shows the effectiveness of
the proposed upper bound, where we use L1 as the discrepancy measurement without involving any pseudo
target information and improve the performance compared to MCD in the 1st row. The 6th row shows the
result when replacing it with the cross margin discrepancy. The last row shows the result when leveraging
the information from pseudo-labeled target samples to construct a more reliable hypothesis space for f2.
These results show that every part of our proposal helps to improve the performance. In order to further
verify the effectiveness of our proposal, we conduct another ablation study on VisDA dataset. The results in
Tab. 8 reveal a similar conclusion that each part of our proposal is beneficial to the adaptation despite a
more complicated scenario.
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Table 7: A simple ablation study to reveal the contribution from each part of the proposal (
√

in the column
“optimal joint error” means to include the joint error in the upper bound, in contrast to the training objective
proposed by MCD;

√
in the column “cross margin discrepancy" means to use the proposed discrepancy

measurement for ϵ, whereas × indicates we use L1 norm instead;
√

in the column “pseudo labels induced
hypothesis space" means the hypothesis space for f2 is built based on pseudo labels of target samples, which
is corresponding to our THS proposal in the main paper). We repeat the adaptation from SVHN to MNIST
5 times and report the average and the standard deviation of the accuracy.

METHOD
optimal

joint
error

cross
margin

discrepancy

pseudo labels
induced

hypothesis space

SVHN
to

MNIST
BASELINE × × × 96.2±0.4

×
√

× 96.6±0.2
× ×

√
97.1±0.3

×
√ √

97.6±0.2
OURS

√
× × 96.8±0.2√ √

× 97.5±0.2√
×

√
98.2±0.2√ √ √
98.6±0.1

Table 8: A simple ablation study to reveal the contribution from each part of the proposal (
√

in the column
“optimal joint error” means to include the joint error in the upper bound, in contrast to the training objective
proposed by MCD;

√
in the column “cross margin discrepancy" means to use the proposed discrepancy

measurement for ϵ, whereas × indicates we use L1 norm instead;
√

in the column “pseudo labels induced
hypothesis space" means the hypothesis space for f2 is built based on pseudo labels of target samples, which
is corresponding to our THS proposal in the main paper). We repeat the adaptation on VisDA dataset 3
times and report the average and the standard deviation of the accuracy.

METHOD
optimal

joint
error

cross
margin

discrepancy

pseudo labels
induced

hypothesis space
VisDA

BASELINE × × × 71.9±0.4
×

√
× 73.1±0.3

× ×
√

76.2±0.3
×

√ √
76.8±0.2

OURS
√

× × 73.4±0.3√ √
× 76.4±0.3√

×
√

79.2±0.2√ √ √
81.6±0.2

23


	Introduction
	Related Work
	Proposed Method
	An Upper Bound Incorporating Joint Error
	Hypothesis Space Constraint
	Source-driven Hypothesis Space (SHS)
	Target-driven Hypothesis Space (THS)
	Intuition to the Difference between Hypothesis Spaces

	Comparisons with Other Methods
	Margin Disparity Discrepancy
	Maximum Classifier Discrepancy

	Cross Margin Discrepancy (CMD)
	Training Procedure

	Evaluation
	Experiment on Digit Dataset
	Experiment on VisDA Dataset
	Experiment on Office-Home Dataset
	Experiment on Office-31 Dataset

	Conclusion
	Appendix
	Experimental Setting
	Digits Dataset
	VisDA Dataset
	Office-Home Dataset
	Office-31 Dataset

	Rademacher Complexity
	Compatibility
	Hyperparameter Selection
	Details of the Training Objective
	Imbalance Label Distribution
	Ablation Study


