
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

FLSTORE: EFFICIENT FEDERATED LEARNING STORAGE FOR NON-TRAINING
WORKLOADS

ABSTRACT
Federated Learning (FL) is an approach for privacy-preserving Machine Learning (ML), enabling model training
across multiple clients without centralized data collection. With an aggregator server coordinating training,
aggregating model updates, and storing metadata across rounds. In addition to training, a substantial part of
FL systems are the non-training workloads such as scheduling, personalization, clustering, debugging, and
incentivization. Most existing systems rely on the aggregator to handle non-training workloads and use cloud
services for data storage. This results in high latency and increased costs as non-training workloads rely on large
volumes of metadata, including weight parameters from client updates, hyperparameters, and aggregated updates
across rounds, making the situation even worse. We propose FLStore, a serverless framework for efficient FL
non-training workloads and storage. FLStore unifies the data and compute planes on a serverless cache, enabling
locality-aware execution via tailored caching policies to reduce latency and costs. Per our evaluations, compared
to cloud object store based aggregator server FLStore reduces per request average latency by 71% and costs by
92.45%, with peak improvements of 99.7% and 98.8%, respectively. Compared to an in-memory cloud cache
based aggregator server, FLStore reduces average latency by 64.6% and costs by 98.83%, with peak improvements
of 98.8% and 99.6%, respectively. FLStore integrates seamlessly with existing FL frameworks with minimal
modifications, while also being fault-tolerant and highly scalable.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) is as a
privacy-aware solution for ML training across numerous
clients without data centralization. The FL process also
encompasses a broad range of non-training workloads. Non-
training workloads refer to tasks such as scheduling (Lai
et al., 2021b; Abdelmoniem et al., 2023), personaliza-
tion (Ghosh et al., 2020; Tan et al., 2022), clustering (Liu
et al., 2022), debugging (Gill et al., 2023), and incentiviza-
tion (Han et al., 2022; Hu et al., 2022), etc. that are nec-
essary for the success and efficiency of the FL process.
The growing interest in Explainable AI (Gade et al., 2019;
Mohseni et al., 2021), has led to several Explainable FL
(XFL) systems that depend on non-training workloads in-
cluding debugging (Duan et al., 2023; Gill et al., 2023),
accountability (Balta et al., 2021; Baracaldo et al., 2022;
Yang et al., 2022a), transparency (Han et al., 2022), and
reproducibility (Desai et al., 2021; Gill et al., 2023).

Challenges Existing research concentrates only on train-
ing efficiency (Reisizadeh et al., 2020; Shlezinger et al.,
2021; Yu et al., 2023; Kairouz et al., 2019; Yang et al., 2019;
Lai et al., 2021b; Tan et al., 2023a). However, non-training
workloads constitute a significant and equally important part
of the latency and cost in the FL process (Kairouz et al.,
2019). Figure 1 shows a single non-training application
can comprise up to 60% of the total latency of the FL job,
and several non-training applications are often executed
in the same FL process (Baracaldo et al., 2022) with la-

tency several times more than training (§ 2.1). Non-training
workloads are highly data intensive and require tracking,
storage, and processing of data, including model parameters,
training outcomes, hyperparameters, and datasets reaching
thousands of TBs across just 100 FL jobs (§ 2.2).

In current state-of-the-art FL frameworks (Qi et al., 2024;
Bonawitz et al., 2019; Beutel et al., 2020; He et al., 2020;
IBM, 2020; FederatedAI, 2024), cloud-based aggregators
handle the non-training workloads and utilize a separate
cloud object store for data storage (Amazon Web Services,
2024b) as shown in Figure 2. Consequently, aggregators
are ill-equipped to store and process large volumes of FL
metadata efficiently and cost-effectively.

This raises several challenges regarding costs and latency.
First, utilizing cloud object stores for data storage sepa-
rates the data and compute planes. As shown in Figure 2,
this results in extra round trips of storing and fetching the
data into the aggregator server’s memory, leading to high
latency and costs. Even when augmented with more expen-
sive cloud-based caches (Amazon Web Services, 2024a) the
communication bottleneck remains a challenge (Liu et al.,
2023). Second, non-training workloads in FL have diverse
data storage and processing requirements. For instance, trac-
ing the provenance of specific clients necessitates access to
client model updates from previous training rounds (Bara-
caldo et al., 2022), while identifying issues in malicious
clients requires the model updates of all clients for a specific
training round (Gill et al., 2023). Thus, any caching solution

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

FLStore: Efficient Federated Learning Storage for non-training workloads

Sch
ed

. (C
lus

ter
)

Sch
ed

. (P
erf

.)

Pers
on

ali
ze

d

Rep
uta

tio
n c

alc
.

Cos
ine

 si
mila

rity

Mali
cio

us
 Filte

rin
g

Deb
ug

gin
g

Inc
en

tiv
es

Inf
ere

nc
e

Clus
ter

ing

Applications

0

100

200

300

400

500

600

Ti
m

e
(s

)

11%
27% 31% 33%

23%
11%

60%

44%

59%

29%

 Total FL process
(training + non-training)
Non-training workload

Figure 1. Non-training portion in total FL process with 200 clients,
EfficientNet model (Tan & Le, 2021), 1000 training rounds, and
CIFAR10 Dataset (Krizhevsky, 2009).

for non-training workloads with traditional caching policies
that do not consider these unique data requirements will
result in sub-optimal performance.

Third, relying on dedicated servers for executing these work-
loads becomes a significant issue since the demand for non-
training tasks such as debugging and auditing could extend
beyond the training phase, necessitating continuous opera-
tion of the servers and cache (Baracaldo et al., 2022).

Our Solution To address these challenges, we make three
key observations. First, unifying the compute and data
planes can significantly reduce communication bottlenecks.
Second, the iterative nature of FL leads to non-training work-
loads having sequential and predictable data access patterns;
for example, tracking a client’s model updates across train-
ing rounds will require repeated access to the same client’s
data across rounds. Third, because non-training workloads,
such as debugging, may be required long after training has
concluded, a scalable and on-demand solution is essential.

We present FLStore, a caching framework that unifies the
data and compute planes with a cache built on serverless
functions. FLStore utilizes the co-located compute avail-
able on those functions for locality-aware execution of non-
training workloads. FLStore uniquely leverages the iterative
nature of FL and its sequential data access patterns to imple-
ment tailored caching policies optimized for FL. To develop
these policies, we classify non-training workloads in FL
applications into a comprehensive taxonomy, categorizing
them by their distinct data needs and access patterns. FL-
Store then customizes its caching policies to the specific
type of non-training request encountered.

Contributions Our contributions in this work are as fol-
lows: 1) To the best of our knowledge, we present the first
comprehensive study of storage and execution requirements
of non-training workloads in FL, analyzing their impact
on cost and efficiency. 2) Based on the insights from this

. . .

Clients

4. GET
results

2. GET for non-
training tasks

1. PUT
metadata

3. PUT results
Compute Plane

FL Aggregator

Data Plane

Figure 2. Data flow of serving non-training requests in conven-
tional FL aggregators

study, we identify iterative data access patterns in FL, which
we leverage to develop FLStore, a novel caching frame-
work with tailored caching policies that use prefetching
for locality-aware execution of FL workloads. FLStore is
the first FL framework that unifies the data and compute
planes and has native support for non-training FL work-
loads; 3) FLStore provides a highly scalable solution with
its serverless functionality (Wang et al., 2020) to meet the de-
mands of serving up to millions of clients in FL (Khan et al.,
2023; Kairouz et al., 2019); It has a modular design (Abadi
et al., 2016; Ludwig et al., 2020; Abdelmoniem et al., 2023)
and can be integrated into any FL framework with minor
modifications. 4) Compared to state-of-the-art FL frame-
works (IBM, 2022; FederatedAI, 2024; Beutel et al., 2020)
that are based on cloud services (Amazon Web Services,
2024a;b; Amazon Web Services, Inc., 2024b; Google Cloud,
2024), FLStore reduces the average per-request latency by
50.8% and up to 99.7%, and the average costs by 88.2%
and up to 98.8%.

2 BACKGROUND AND MOTIVATION

2.1 Non-training workloads in FL

XFL aims to improve FL by addressing issues such as clients
submitting flawed models due to data quality problems or
sabotage (Han et al., 2022; Gill et al., 2023). It also em-
phasizes auditing and regulatory compliance, especially in
collaborations involving diverse entities (Balta et al., 2021;
Yang et al., 2022a; Baracaldo et al., 2022). FLDebugger (Li
et al., 2021) assesses the influence of each client’s data on
global model loss, identifying and correcting harmful clients.
FedDebug (Gill et al., 2023) improves reproducibility by
enabling the FL process to pause or rewind to specific break-
points and helps detect malicious clients through differential
neuron activation testing.

Other FL applications Due to the distributed nature of
FL, many applications involve non-training tasks like clus-
tering (Liu et al., 2022; Duan et al., 2021), personaliza-
tion (Ruan & Joe-Wong, 2022; Tang et al., 2021), and asyn-
chronous learning (Nguyen et al., 2021), which are essential
for managing and optimizing the FL process. For example,
clustering evaluates client models based on factors like train-
ing duration, networks, or energy use (Liu et al., 2022; Chai
et al., 2021), while personalization groups clients by model
parameters, efficiency, or accuracy on held-out data (Ruan &

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

FLStore: Efficient Federated Learning Storage for non-training workloads

Joe-Wong, 2022; Tang et al., 2021). Incentive mechanisms
assess client contributions and reputations via accuracy or
Shapley Values (Sun et al., 2023; Hu et al., 2022), and
intelligent client selection relies on analyzing client avail-
ability, participation, and performance (Abdelmoniem et al.,
2023; Lai et al., 2021b). Non-training tasks like debugging
and hyperparameter tracking are also crucial for optimizing
FL (Gill et al., 2023; Duan et al., 2023).

Non-training tasks can make up to 60% of the FL workflow,
as shown in Figure 1. Typically, the FL process incorporates
numerous non-training tasks. In this scenario involving mul-
tiple tasks such as filtering, scheduling, reputation calcula-
tion, incentive distribution, debugging, and personalization,
non-training tasks account for 86% of total FL time, lasting
6× longer than training. Therefore, improving the efficiency
and cost-effectiveness of non-training workloads is critical
for enhancing FL applications.

2.2 Shortcomings of popular FL frameworks

State-of-the-art FL frameworks, as depicted in Figure 2,
generally utilize an aggregator server on a stateful (Lai et al.,
2021a; Beutel et al., 2020; IBM, 2020; He et al., 2020) or
serverless compute plane (Qi et al., 2024; Jiang et al., 2021;
Grafberger et al., 2021). The serverless model (Jonas et al.,
2019) allows cloud providers (Amazon Web Services, Inc.,
2024a; Jiang et al., 2021) to manage scaling and mainte-
nance by executing functions on demand, with costs based
on usage. However, FL data demands can escalate rapidly,
reaching over 1500 TB for 100 training sessions with 10
clients each on the CIFAR10 dataset (Krizhevsky, 2009). To
manage this, the compute plane is connected to a separate
data plane using cloud caches like ElastiCache (Amazon
Web Services, 2024a) or object stores like AWS S3 (Amazon
Web Services, 2024b) and Google Cloud Storage (Google
Cloud, 2024). This separation increases communication
steps for non-training tasks, involving multiple rounds from
receiving requests to fetching and processing data, and then
storing results back, which, along with dedicated cloud
services, leads to ongoing costs even when non-training re-
quests are dormant. Compared to these FL frameworks (Lai
et al., 2021a; Beutel et al., 2020; IBM, 2020; He et al.,
2020), FLStore serves as a one-stop solution that processes
non-training requests directly from the serverless cache,
asynchronously fetching missing data from persistent stor-
age when needed. It also utilizes tailored caching policies
based on a classification of non-training workloads. The
design of FLStore is discussed in detail later (§ 4).

2.3 Serverless Cache for Non-Training Apps

To build an in-memory locality-aware cache for non-training
FL workloads, we must first answer two important questions:
1) Can the models utilized in cross-device FL be stored in
cloud functions’ memory? 2) Does the execution latency

Communication: Resnet18 EfficientNet MobileNetV2
Computation: Resnet18 EfficientNet MobileNetV2

Cosin
e sim

ilarity

Debugging

Inference

Malici
ous F

ilte
ring

Sched. (C
luste

r)

Applications

0
50

100
150
200
250
300
350

La
te

nc
y

(s
ec

)

Avg Comm: 89.1 sec
Avg Comp: 2.8 sec
Avg Comm: 89.1 sec
Avg Comp: 2.8 sec
Avg Comm: 89.1 sec
Avg Comp: 2.8 sec

Figure 3. Average workload latencies computation and communi-
cation of non-training FL workloads.

of non-training workloads fall within the cloud functions
lifetime thresholds? To answer these questions, we first
analyze 23 popular models used in cross-device FL settings
from various works in FL (Caldas et al., 2018; Chen et al.,
2022; Lai et al., 2021b; Kairouz et al., 2019). Analyzing the
memory footprint of these models, the average size of these
models is approximately 161 MB as discussed in detail in
the Appendix D. These model sizes are perfect for storage
in the in-memory cache of cloud functions, as the memory
of these functions goes up to 10 GB. We also analyze the
typical latency of different non-training workloads. Figure 3
shows the latencies of executing five different workloads
across three different models (EfficientNetV2 Small (Tan &
Le, 2021), Resnet18 (He et al., 2016), and MobileNet V3
Small (TorchVision Contributors, 2024)) and same setup as
Figure 1 on a serverless cloud function (Amazon Web Ser-
vices, Inc., 2024a) while fetching data from a cloud object
store (Amazon Web Services, 2024b). It can be observed
that the average computation latency across workloads is
approximately 2.8 seconds, which is perfect for cloud func-
tions due to their short lifetimes. The small size of the mod-
els and the short execution time of non-training tasks for
cross-device FL make the memory and compute resources in
serverless functions ideal for processing non-training tasks.
However, the major bottleneck comes from the 31× higher
average communication latency (89 sec). Thus, unifying the
compute and data planes can ease this bottleneck, enabling
efficient, cost-effective serving of non-training requests.

3 RELATED WORK

To our knowledge, no existing FL framework efficiently and
cost-effectively processes non-training requests.

Generic cloud-based frameworks: General-purpose XAI
cloud solutions like AWS SageMaker (Amazon Web Ser-
vices, Inc., 2024b) use dedicated instances such as AWS
EC2 with storage options like AWS S3 (Amazon Web
Services, 2024b) or ElastiCache (Amazon Web Services,
2024a). This setup leads to high costs and decreased ef-
ficiency due to separated data storage and compute re-

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

FLStore: Efficient Federated Learning Storage for non-training workloads

sources (Khan et al., 2023), also lacking tailored caching
policies suited for FL’s iterative nature.
FL frameworks: Existing State-of-the-art FL frameworks
(IBM, 2020; Beutel et al., 2020; He et al., 2020; Caldas
et al., 2018; FederatedAI, 2024) follow a similar architec-
ture, where cloud-hosted aggregator servers with separate
persistent storage execute non-training tasks (Khan et al.,
2023; Bonawitz et al., 2019; Baracaldo et al., 2022), result-
ing in increased latency and costs.
Serverless aggregators: Another line of work focuses only
on aggregation via serverless functions (Qi et al., 2024;
Khan et al., 2023; Grafberger et al., 2021). FLStore can eas-
ily incorporate aggregation as one of the application work-
loads, however, FLStore is more generic and also includes
additional non-training workloads for FL. Furthermore, non-
training workloads such as debugging and incentivization
often extend beyond the training phase, requiring aggrega-
tors beyond the training phase increasing costs (Gill et al.,
2023; Khan et al., 2023; Bonawitz et al., 2019).
Serverless Storage: Serverless storage approaches utilize
memory available on serverless functions at no additional
cost, such as InfiniStore (Zhang et al., 2023b), a cloud stor-
age service, and InfiniCache (Wang et al., 2020), an object
caching system using ephemeral functions. These solutions
primarily address storage, often underutilizing the comput-
ing resources of serverless functions.

4 FLSTORE

In this section, we present the detailed design for FLStore
derived from the following insights we gather from our
preliminary analysis (§ 2):

• I1: Communication latency is the major bottleneck for
non-training workloads brought by separate compute
and data planes in extant solutions (§ 2.1 & 2.2).

• I2: Non-training workloads show iterative data access
patterns which can be classified, and leveraged to im-
prove performance via a caching solution (§ 2.1).

• I3: Memory footprint of models typically used in
cross-device FL and the average latency of non-training
workloads are suitable for the inexpensive on-demand
Serverless functions (§ 2.3).

4.1 Unification of Compute and Data Planes

Aims. Our first design goal, guided by insight (I1), is
to integrate compute and data planes by using serverless
function memories for a distributed cache with co-located
compute resources like InfiniCache (Wang et al., 2020).
However, InfiniCache does not use the compute capabilities
of serverless functions or offer specialized caching policies
(§ 2.2). This limitation presents a unique opportunity to also
utilize free serverless computing for executing non-training
workloads (I3).

Client devices

Text
FLStore

Request Tracker Cache Engine

Serverless Memory Cache

λ λ λ λ λ λ

Cloud Object Store

C
olocated C

om
pute

 & D
ata plane

Persistent
 D

ata Plane
Plane
C

lient

Non-training requests
Client Updates

Hot data
Cold data

Non-training requests

Figure 4. FLStore architecture design.

Challenges. Creating such a framework presents non-
trivial challenges, which we address one by one in the fol-
lowing sections. First, we must track data storage, removal,
and updates across multiple function memories (§ 4.2). Sec-
ond, non-training requests need to be routed to the appro-
priate functions with the relevant data (§ 4.3). Third, it is
crucial to identify which metadata should be cached, as stor-
ing all metadata would be costly and unsustainable (§ 4.4).
Lastly, the solution must be scalable, fault-tolerant, and en-
sure data persistence (§ 4.5). We begin by introducing the
main components of our solution (FLStore) that resolve the
first challenge of tracking data across functions.

4.2 Tracking Data in Serverless Functions

FLStore consists of three components, a Request tracker,
the Cache Engine, and a Serverless Cache as shown in Fig-
ure 4. For the Serverless cache, FLStore uses disaggregated
serverless function memories similar to (Wang et al., 2020);
FLStore extends this design to utilize the serverless com-
pute resources of those functions to process non-training
requests. The Cache Engine and the Request tracker can
be run in the cloud or collocated with a client. The Cache
Engine uses a hash table to store the location of data in
disaggregated functions, tracking specific metadata to the
functions where it is cached. The CacheEngine dictionary
format is as follows:

Tuple(Client : str,Round : int) → FunctionID : str

As shown by the data-flow in Figure 5, the Cache Engine
receives incoming data from client training devices (Step ➀)
and fetches the current and incoming non-training request in-
formation from the Request tracker (Steps ➁&➂). Based on
the request types, it utilizes the appropriate caching policy
to filter hot data from cold data (Step ➃) and puts models in
Serverless Cache and Persistent Store, respectively (Step ➄).
The data is cached at the granularity of client models such

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

FLStore: Efficient Federated Learning Storage for non-training workloads

Request tracker

Non-training Requests

Cache Engine

Incoming data
GET lambda locations

1
2

Return function IDs3

Filter Hot/Cold
Objects

GET current/incoming
requests info

Return requests info

Serverless Cache
Exec request

4Return
results

5

Persistent Store

Put Objects in
Cache and

Persistent Store
Requests Serving
Caching data

Async Backup

Workflow

Async Get

Round i Round i+1

Ri-1: Client 1

Ri: Client 1

Ri+1: Client 1

Ri: Client 2

Ri+1: Client 2

Ri-1: Client 2

Ri: Client 1 Ri: Client 2

Round i-1

Ri-1: Client 1 Ri-1: Client 2Serverless
Cache

Request received for checking
malicious clients in Round i-1

Pre-caching clients for Round i Pre-caching clients for Round i+1

Evicting processed
 Round i-1

Ri: Client 1 Ri: Client 2

Ri+1: Client 1 Ri+1: Client 2

Ri+2: Client 1 Ri+2: Client 2

Round i Round i+1

Ri: Client 2

Ri+1: Client 2

Ri-1: Client 2

Ri: Client 2

Round i-1

Ri-1: Client 2Serverless
Cache

Request received for tracking
performance of client 2

 across N Rounds

Pre-caching client 2 for Round i Pre-caching client 2 for Round i+1

Evicting processed
 Round i-1

Ri: Client 1 Ri: Client 2

Ri+1: Client 2

Ri+2: Client 2

Ri: Client 1

Ri-1: Client 1

Example 1

Example 2

Ri+1: Client 1 Ri+2: Client 1

Ri+1: Client 1

Evicting unnecessary Client 1

Figure 5. FLStore workflow (top) and examples (bottom).

that each function holds at least one client model. This level
of granularity is practical as a single function provides up
to 10 GB of memory (Amazon Web Services, Inc., 2024a).
Unlike conventional cloud caching systems like ElastiCache,
FLStore’s serverless cache also provides compute resources
for non-training tasks, ensuring that cached data is close to
the compute needed to execute requests. So next we discuss
how to resolve the second challenge of routing the requests
to the appropriate functions containing the relevant data for
locality-aware execution.

4.3 Locality-Aware Request Routing

One of FLStore’s key contributions is to effectively leverage
local compute resources to process data, enhancing the over-
all efficiency of resource utilization. Using these compute
resources requires the non-training requests to be routed to
the functions with data relevant to the request. The Request
tracker, as shown in Figure 4, is responsible for receiving
requests from clients, forwarding the request to the appro-
priate functions, and keeping track of the progress. The
tracking data is stored in a dictionary where request IDs
serve as keys, and the corresponding values include the list
of function IDs to which the request was routed and the
progress made by each function in executing the request.
The Request Tracker dictionary is formatted as follows:
RequestID : str → Tuple(List[FunctionID : str, ...],

Status : bool)

Figure 5 describes the workflow. Upon receiving the request
in (Step ➊), the Request tracker fetches the function IDs
from the Cache Engine where the data required for the non-

Table 1. Taxonomy of Non-Training Applications and Mapping of
Workloads in FLStore

ID Caching
Policy

Applications and Mapped Workloads

P1 Individual
Client
Updates

Evaluates individual model’s accuracy and
fairness (Li et al., 2020; Yu et al., 2020;
Ezzeldin et al., 2023).

P2 All Updates
in a Round

Used in Personalization (Tan et al., 2022),
Clustering (Ghosh et al., 2020), Schedul-
ing (Chai et al., 2020), Contribution calcu-
lation (Sun et al., 2023), Filtering malicious
clients (Han et al., 2022), Cosine Similar-
ity (Liu et al., 2022).

P3 Updates
Across
Rounds

Facilitates debugging (Gill et al., 2023; Duan
et al., 2023), fault tolerance (Balta et al., 2021;
Yang et al., 2022a), reproducibility, trans-
parency, data provenance, and lineage (Bara-
caldo et al., 2022).

P4 Metadata
& Hyperpa-
rameters

Hyperparameter tuning (Zhou et al., 2023),
tracking client resources for scheduling, clus-
tering client priorities (Liu et al., 2022), clus-
tering performance, client incentives, and
client dropouts, monitoring payouts (Hu
et al., 2022), and optimizing communication
through pruning and quantization (Khan et al.,
2024; Sun et al., 2023).

training request is cached (Steps ➋ and ➌). Then, it issues
the requests to those function IDs and keeps track of their
progress (Step ➍), reporting the results as soon as they are
returned to the client daemon (Step ➎). Next, we discuss
how to determine which data is important for caching.

4.4 Workload Characterization and Caching

Based on our insight (I2) from studying existing works (Lai
et al., 2021b; Beutel et al., 2020; Gill et al., 2023; Kairouz
et al., 2019), we recognize that FL follows an iterative pro-
cess with sequential data access patterns, which can inform
tailored caching policies. We first analyze the data process-
ing needs of popular FL applications to develop a taxonomy
of their non-training workloads (Gill et al., 2023; Duan
et al., 2023; Baracaldo et al., 2022; Balta et al., 2021; Han
et al., 2022) as shown in Table 1. Leveraging the insights
gained from this study, we propose tailored caching poli-
cies, which also allow FLStore to be easily extended to new
applications.

While a Serverless cache is scalable enough to store all meta-
data (Zhang et al., 2023a), FL metadata can reach several
thousand Tera Bytes (TBs), so using tailored caching poli-
cies significantly reduces resource consumption and costs.
For example, an FL job with 1000 clients and 1000 train-
ing rounds using the EfficientNet model (Tan & Le, 2021)
would require 79 TBs of memory across 10098 Lambda
functions, costing $10.2 per hour or $7357.8 per month.
With FLStore’s tailored policies, only 1.2 GB is consumed

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

FLStore: Efficient Federated Learning Storage for non-training workloads

from just two Lambda functions, reducing costs to $0.001
per hour or $0.7 per month.

Table 1 also outlines the corresponding policies for each
workload type in the taxonomy. Based on the chosen
caching policy, FLStore distinguishes hot data from cold
data, caching the former in serverless memory and asyn-
chronously storing the latter in the persistent store. Next,
we discuss each caching policy in detail:

P1: Single Client or Aggregated Model. This policy ap-
plies to tasks such as serving and testing a fully trained
model (Li et al., 2020; Yu et al., 2020; Ezzeldin et al., 2023),
and requires access to individual model updates for fine-
tuning (Tang et al., 2022) or the final aggregated model (Hu
et al., 2023). As previously explained (§ 2), the final aggre-
gated model created by combining updates from participat-
ing clients after the FL training concludes is a model ready
for deployment to consumers. To support these workloads,
this policy requires caching the aggregated model for serv-
ing and inference. Additionally, any updates to this model
are cached for workloads that involve comparative analysis
or tracking of the aggregated model.

P2: All Client Model Updates per Round. Applications
such as filtering malicious clients (Han et al., 2022),
calculating clients’ relative contributions (Sun et al., 2023),
debugging (Gill et al., 2023; Duan et al., 2023), personal-
ization (Tan et al., 2023b), and fault tolerance (Balta et al.,
2021) fall under this category because they require iterative
access to all client updates for specific rounds. When a
request in this category is made for a particular client in
a training round, we pre-cache all client updates for that
round and the next, as these workloads require iterative
access to clients’ metadata from the requested round and
possibly the next round. Metadata from previous rounds is
unnecessary since these applications operate separately and
incrementally for each round. Additionally, we keep the
latest round cached, as workloads like scheduling, contribu-
tion calculation, and malicious client filtering run for each
new round, requiring all client updates from that round.

Figure 5 illustrates two example workloads handled by FL-
Store. The first corresponds to this policy (P2), where a
malicious filtering application is executed per round. In
this example, data from round Ri− 1 is old data that was
required for a prior request, while round Ri was pre-cached
during the execution of that prior request. As the current
request for round Ri executes, FLStore evicts past data and
pre-caches round Ri+ 1 for future requests, demonstrating
how iterative non-training workloads in FL such as incentive
distribution, scheduling, etc. have predictable data needs.

P3: Client Model Updates Across Rounds. Applications
like reproducibility, checkpointing, transparency, data prove-
nance, and lineage require access to a single client’s model

updates across consecutive rounds (Baracaldo et al., 2022).
To support these, we cache the client’s model update for
the requested round and pre-cache that client’s metadata
from the previous and subsequent rounds. This is necessary
because these workloads track performance, costs, or other
metrics for a client over time or training rounds.

The second example in Figure 5 demonstrates a workflow
for this policy (P3). In the example, the system is handling
a request to track the improvement of client 2. Since track-
ing improvement is an iterative, round-based workload, the
cache holds data from round Ri− 1 (from a past request),
while the current request is for round Ri, and the next is
expected to be for round Ri + 1. As FLStore processes
the current request for round Ri, it evicts data from round
Ri− 1 and pre-caches client 2’s updates for round Ri+ 1.

P4: Metadata and Hyperparameters. This includes appli-
cations such as hyperparameter tuning (Zhou et al., 2023),
assessing data shift impacts on performance (Tan et al.,
2023c), tracking client resource availability for scheduling,
clustering by client priorities, and monitoring client payouts
in FL. Communication optimization techniques like prun-
ing, quantization, and contribution tracking for incentive
distribution also require monitoring client optimization and
contributions (Khan et al., 2024; Sun et al., 2023).

For these applications, we cache configuration and perfor-
mance metadata, including hyperparameters, for the most
recent R rounds, where R is tunable (default is 10). This
ensures that up-to-date data is available for configuration
and tuning, as older data may not be reliable. For instance,
when scheduling client devices for training, current resource
information is critical, as outdated data could cause clients
to miss training deadlines.

Choice of policy. Since non-training workloads are iter-
ative with predictable data needs (Baracaldo et al., 2022;
Gill et al., 2023; Kairouz et al., 2019), we use the mappings
in Table 1 to select the appropriate caching policy. While
we continue to add new workloads, most fit into existing
caching policies due to the iterative nature of FL. Future
work includes incorporating a Reinforcement Learning with
Human Feedback (RLHF) agent (Khan et al., 2024) to adapt
policies for outlier workloads. Additional discussion on
improving caching policy selection is in the Appendix D.

4.5 Data Persistence and Fault Tolerance

In this section, we discuss how FLStore ensures data per-
sistence and fault tolerance against reclaimed serverless
functions. The persistent store serves as a cold data reposi-
tory for all data as protection against data loss and allows
users to revisit data from past rounds. This data is crucial for
post-training analysis, such as distributing incentives or vi-
sualizing convergence and loss trends. In the rare event that

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

FLStore: Efficient Federated Learning Storage for non-training workloads

ObjStore-Agg FLStore

Perso
nalize

d

Cluste
ring

Debugging

Malici
ous F

ilte
ring

Incentive
s

Sched. (C
luste

r)

Reputation ca
lc.

Sched. (P
erf.)

Cosin
e sim

ilarity

Inference

Applications

0
20
40
60
80

100
120

La
te

nc
y

(s
ec

)

Resnet18

Perso
nalize

d

Cluste
ring

Debugging

Malici
ous F

ilte
ring

Incentive
s

Sched. (C
luste

r)

Reputation ca
lc.

Sched. (P
erf.)

Cosin
e sim

ilarity

Inference

Applications

0

100

200

300

400

500

La
te

nc
y

(s
ec

)

MobileNetV2

Perso
nalize

d

Cluste
ring

Debugging

Malici
ous F

ilte
ring

Incentive
s

Sched. (C
luste

r)

Reputation ca
lc.

Sched. (P
erf.)

Cosin
e sim

ilarity

Inference

Applications

0

100

200

300

400

500

La
te

nc
y

(s
ec

)

EfficientNet

Perso
nalize

d

Cluste
ring

Debugging

Malici
ous F

ilte
ring

Incentive
s

Sched. (C
luste

r)

Reputation ca
lc.

Sched. (P
erf.)

Cosin
e sim

ilarity

Inference

Applications

0

100

200

300

400

500

La
te

nc
y

(s
ec

)

SwinTransformer

Figure 6. FLStore vs. Baseline per request latency comparison over 50 hours.

all cached functions fail, FLStore retrieves the necessary
data from the persistent store, similar to state-of-the-art FL
frameworks (FederatedAI, 2024; Beutel et al., 2020; IBM,
2020), ensuring comparable performance.

FLStore addresses fault tolerance through prevention and
mitigation. We regularly ping cached functions to check
their liveness, leveraging cloud platforms’ default behav-
ior (Zhang et al., 2023a). Cloud providers like AWS (Ama-
zon Web Services, Inc., 2024a) cache functions at no cost,
as long as they are regularly invoked (Zhang et al., 2023a).
Pinging a function every minute, as recommended by In-
finiStore (Zhang et al., 2023a), incurs a minimal monthly
cost of $0.0087 per instance and $0.00000016 per million
requests. Additionally, FLStore replicates functions to en-
hance reliability. Each primary function has k secondary
copies to prevent stragglers and recovery delays. If the
primary function fails to acknowledge a request or respond
within a set time, the Request Tracker reroutes the request to
a secondary instance. For added reliability, we recommend
scaling function instances linearly with the number of re-
quests, which minimizes cost and latency while preventing
data re-fetching and cold starts.

Scalability over Serverless Functions FLStore’s cache
has two scalable facets: the cache size and handling more
concurrent requests. To increase cache size, new serverless
functions can be spawned to store additional data. For con-
current requests, new functions can be spawned which are
simply copies of existing ones. Since serverless functions
are highly scalable (Wang et al., 2020), scaling FLStore’s
cache is straightforward—new function instances are cre-
ated as needed. FLStore can also spawn multiple instances
to enhance scalability and performance.

5 EVALUATION

5.1 Evaluation Setup

This section presents a proof-of-concept analysis to demon-
strate the potential improvements brought by FLStore in
latency and cost for non-training FL workloads. We show
the effectiveness of FLStore by answering the questions:

• How well does FLStore reduce the latency of non-
training workloads compared to state-of-the-art FL
frameworks? (§ 5.2)

• How is the performance of FLStore’s tailored caching
policies compared to traditional ones? (§ 5.4)

• What is the overhead of FLStore components? (§ 5.5)

• How well does FLStore scale for parallel FL jobs?
(§ A.1)

• How well does FLStore cope with faults? (§ A.2)

Baselines: We utilize baselines derived from the architec-
tures of popular FL frameworks (Qi et al., 2024; He et al.,
2020; IBM, 2020; Beutel et al., 2020), as depicted in Fig-
ure 2. Specifically, we deploy the cloud aggregator server on
the ml.m5.4xlarge instance of AWS SageMaker (Amazon
Web Services, Inc., 2024b), a widely-used AWS service for
managing non-training workloads such as inference and de-
bugging (Liberty et al., 2020; Perrone et al., 2021; Das et al.,
2020). AWS SageMaker connects with data storage options
such as AWS S3 (Amazon Web Services, 2024b) for cloud
object storage or AWS ElastiCache (Amazon Web Services,
2024a) for in-memory caching. Thus, our baselines are
structured as follows: the first features an aggregator server

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

FLStore: Efficient Federated Learning Storage for non-training workloads

on AWS SageMaker linked with AWS S3 (ObjStore-Agg),
and the second connects AWS SageMaker with ElastiCache
(Cache-Agg). In both setups, the data plane stores all FL
metadata, while AWS SageMaker, forming the compute
plane, processes non-training requests.

Workloads: We evaluate ten common non-training work-
loads, integral to many FL applications as shown in Table 1,
across four models: EfficientNetV2 Small (Tan & Le, 2021),
Resnet18 (He et al., 2016), MobileNet V3 Small (TorchVi-
sion Contributors, 2024), and SwinTransformerV2 tiny (Liu
et al., 2021). Each model underwent FL training with
10 clients per round, selected from a pool of 250, across
1000 rounds or until convergence, following standard cross-
device FL protocols in related studies (Lai et al., 2021b;
Kairouz et al., 2019).

Metrics: Since throughput can be effectively managed
through scaling, we focus on evaluating the latency and cost
associated with communication and computation. We assess
these metrics per request and their aggregated total for mul-
tiple requests over a period of several days, encompassing
various non-training workload applications and models.

Implementation of FLStore: FLStore is implemented
using the OpenFaas serverless framework (Ellis & Contrib-
utors, 2024). Function sizes are automatically adjusted to
accommodate the varying model sizes, with larger function
allocations (2 CPU cores and 4 GB of memory) config-
ured for SwinTransformer and EfficientNet models and 1
CPU core and 2 GB of memory for Resnet 18 and Mo-
bileNet models. For both the baseline and FLStore setups,
we use MinIO (MinIO, Inc., 2024) as our persistent data
store, which is compatible with Amazon S3 (Amazon Web
Services, 2024b). The MinIO configuration involves a 3-
node cluster, with each node hosting six IronWolf 10TB
HDDs (7200 RPM) and running default MinIO settings.

5.2 Latency Analysis

5.2.1 FLStore vs Cloud Object Store

We compare the latency and cost of baseline (ObjStore-
Agg) and FLStore for ten workloads over 50 hours. Unlike
ObjStore-Agg, FLStore co-locates the compute and data
planes and utilizes tailored caching policies to cache relevant
data in memory to reduce latency. However, in ObjStore-
Agg the required data is fetched from the persistent store
(data plane). Figure 6 shows the latency for communication
and computation per request. FLStore shows significant im-
provements in latency with its locality-aware computation
and caching policies. On average, FLStore decreases the
latency by 55.14 seconds (50.75%) per request, with up to
363.5 seconds of maximum decrease (99.94%) in latency
per request. It can be observed in Figure 6 that for some
applications such as Incentives and Sched. (Perf.), Swin-

Transformer has a large distribution in the third quartile
compared to ObjStore-Agg. However, FLStore still exhibits
a lower median response time for these worklaods.

In distributed deep learning applications like FL, the main
bottleneck is the increased communication time (Hashemi
et al., 2019; Tang et al., 2023). Thus, we analyze total
latency (computation vs. communication) for the base-
line (ObjStore-Agg) and our solution (FLStore) over 50
hours and 3000 non-training requests across 10 workloads.
ObjStore-Agg is heavily communication-bound, with com-
munication latency accounting for an average of 98.9% of
the total latency. FLStore mitigates this communication
bottleneck improving the latency performance. With FL-
store, we observe an average of 82.04% (35.50 second)
decrease in latency for Resnet18, 47.33% (75.99 second)
for MobileNet, 50.44% (100.18 second) for EfficientNet,
and 20.45% (4.42 second) decrease in latency for Swin-
Transformer compared to ObjStore-Agg. Due to space con-
straints, detailed results are provided in the Appendix.

5.2.2 FLStore vs In-Memory Cache

We also compare FLStore with other popular in-memory
caching solutions available by cloud frameworks. Classic
caching solutions like Redis and Memcached included in
AWS ElastiCache allow for such in-memory caching (Ama-
zon Web Services, 2024a). Figure 8, shows the result of the
comparison between FLStore and AWS ElastiCache with
AWS SageMaker baseline (Cache-Agg) per request. It can
be observed that per-request FLStore shows a 64.66% on av-
erage and a maximum of 84.41% reduction in latency when
compared with Cache-Agg. This reduction in latency is
brought by co-located compute and data planes and locality-
aware request processing in FLStore.

For the total latency breakup analysis over 50 hours and
across 3000 non-training requests, FLStore shows a de-
crease in the total time by 37.77% to 84.45%, amounting
to a reduction of 191.65 accumulated hours for all requests.
When comparing both Cache-Agg and ObjStore-Agg on the
same workloads, FLStore shows an average decrease in
latency of 71% with ObjStore-Agg and 64.66% with Cache-
Agg. The larger reduction with ObjStore-Agg is due to cloud
object stores being slower than cloud caches.

5.3 Cost Analysis

5.3.1 FLStore vs Cloud Object Store

In addition, we performed a per-request cost comparison
across the ten selected workloads and 50 total hours. Fig-
ure 7 shows significant cost reduction with FLStore com-
pared to ObjStore-Agg. The majority of this cost reduction
stems from the reduced latency due to low data movement
and the overall low computation cost of serverless functions
for computation-light workloads. FLStore has an average

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

FLStore: Efficient Federated Learning Storage for non-training workloads

ObjStore-Agg FLStore

Perso
nalize

d

Cluste
ring

Debugging

Malici
ous F

ilte
ring

Incentive
s

Sched. (C
luste

r)

Reputation ca
lc.

Sched. (P
erf.)

Cosin
e sim

ilarity

Inference

Applications

0.000
0.005
0.010
0.015
0.020
0.025
0.030

C
os

t (
$)

Resnet18

Perso
nalize

d

Cluste
ring

Debugging

Malici
ous F

ilte
ring

Incentive
s

Sched. (C
luste

r)

Reputation ca
lc.

Sched. (P
erf.)

Cosin
e sim

ilarity

Inference

Applications

0.00
0.02
0.04
0.06
0.08
0.10
0.12

C
os

t (
$)

MobileNetV2

Perso
nalize

d

Cluste
ring

Debugging

Malici
ous F

ilte
ring

Incentive
s

Sched. (C
luste

r)

Reputation ca
lc.

Sched. (P
erf.)

Cosin
e sim

ilarity

Inference

Applications

0.00
0.02
0.04
0.06
0.08
0.10
0.12

C
os

t (
$)

EfficientNet

Perso
nalize

d

Cluste
ring

Debugging

Malici
ous F

ilte
ring

Incentive
s

Sched. (C
luste

r)

Reputation ca
lc.

Sched. (P
erf.)

Cosin
e sim

ilarity

Inference

Applications

0.00
0.02
0.04
0.06
0.08
0.10
0.12

C
os

t (
$)

SwinTransformer

Figure 7. FLStore vs. ObjStore-Agg per request cost comparison over 50 hours.

cost decrease of 0.025 cents per request with a maximum
decrease of 0.094 cents. On average, the cost of these appli-
cations in FLStore is 88.23% less than the cost of ObjStore-
Agg baseline, with one application (Client Scheduling with
Cosine Similarity for MobileNetV2) showing a 99.78% de-
crease in per request cost.

We also performed the total cost breakup analysis over 50
hours, 3000 total non-training requests, and 10 workloads,
calculating both the communication and computation costs
for ObjStore-Agg and FLStore. We observe that the ma-
jority of the cost for ObjStore-Agg stems from the com-
munication bottleneck. Resnet18, EfficientNet, SwinTrans-
former, and MobileNet spend 87.46%, 76.96%, 53.32%,
and 85.80% of their total latency respectively in communi-
cation. For the same settings, FLStore shows an average
decrease of 94.73%, 92.72%, 77.83%, and 86.81% in costs
for Resnet18, MobileNet, SwinTransformer, and Efficient-
Net models respectively. Thus, FLStore significantly re-
duces the data transfer costs by unifying the compute and
data planes. Due to space constraints, Figures for these
results are provided in the Appendix.

5.3.2 FLStore vs In-Memory Cache

We can observe in Figure 8 that keeping data in an in-
memory cache such as ElastiCache is more costly in com-
parison to FLStore. FLStore shows an average decrease
of 98.83% and a maximum decrease of 99.65% in cost
per request compared to Cache-Agg. This stems from the
increased communication latency and costs because Cache-
Agg does not have co-located computational resources for
processing the cached data so the data still needs to be
transferred to another cloud service such as AWS Sage-

Cache-Agg FLStore

Cosine sim
ilarity

Sched. (C
luste

r)

Inference

Malicio
us Fi

ltering

Sched. (P
erf.)

Incentives

Applications

0
20
40
60

La
te

nc
y

(s
ec

)

Cosine sim
ilarity

Sched. (C
luste

r)

Inference

Malicio
us Fi

ltering

Sched. (P
erf.)

Incentives

Applications

10 3
10 2
10 1
100

Co
st

 ($
)

Figure 8. Cache-Agg baseline vs. FLStore variants: Per request
latency (top) and cost (bottom) over 50 hours.
Maker (Amazon Web Services, Inc., 2024b).

For the cost breakup analysis over 50 hours and across 3000
non-training requests, FLStore shows a reduction of 98.12%
to 99.89%, resulting in accumulated savings of $7047.16.
Cloud caches tend to be more expensive than cloud object
stores, which is why FLStore demonstrates an average cost
decrease of 98.83% when compared to Cache-Agg, and
a 92.45% decrease in cost when compared to ObjStore-
Agg. The total time and total cost breakup analysis for both
ObjStore-Agg and Cache-Agg is provided in the Appendix B.

5.4 FLStore vs Traditional Caching Policies

We introduce traditional caching strategies like Least Re-
cently Used (LRU) and First In First Out (FIFO) in FLStore,
alongside our tailored workload-specific policies derived
from a developed taxonomy. We evaluate these against
FLStore and its variant, FLStore-limited which depicts a
limited storage availability scenario having half the stor-

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

FLStore: Efficient Federated Learning Storage for non-training workloads

FLStore-LRU FLStore-FIFO FLStore-Random FLStore-limited FLStore

Perso
nalize

d

Cluste
ring

Debugging

Malicio
us Fi

ltering

Incentives

Sched. (C
luste

r)

Reputation ca
lc.

Sched. (P
erf.)

Cosine sim
ilarity

Inference

Applications

0
100
200
300
400

La
te

nc
y

(s
ec

)

Perso
nalize

d

Cluste
ring

Debugging

Malicio
us Fi

ltering

Incentives

Sched. (C
luste

r)

Reputation ca
lc.

Sched. (P
erf.)

Cosine sim
ilarity

Inference

Applications

0.000
0.025
0.050
0.075
0.100

Co
st

 ($
)

Figure 9. Per request latency (left) and cost (right) comparison of various caching policies in FLStore over 50 hours.

Table 2. Cache Policy Performance Across Workloads
Applications Cache

Policy
Hits Misses Total Hit

%

(Lai et al., 2021b),
(Liu et al., 2022),
(Tan et al., 2023b),
(Sun et al., 2023)

FLStore
(P2)

19999 1 20000 0.99

FIFO 0 20000 20000 0
LFU 0 20000 20000 0
LRU 0 20000 20000 0

(Gill et al., 2023),
(Baracaldo et al., 2022),
(Han et al., 2022),
(Duan et al., 2023)

FLStore
(P3)

63 1 64 0.98

FIFO 0 64 64 0
LFU 0 64 64 0
LRU 0 64 64 0

(Khan et al., 2024),
(Khodak et al., 2021),
(Balta et al., 2021),
(Lai et al., 2021b)

FLStore
(P4)

20000 0 20000 1

FIFO 0 20000 20000 0
LFU 0 20000 20000 0
LRU 0 20000 20000 0

age capacity of FLStore. As depicted in Figure 9, both
FLStore-LRU and FLStore-FIFO show similar performance
due to their generic nature, unlike the taxonomy-driven poli-
cies of FLStore and FLStore-limited, which preemptively
cache relevant data for imminent requests, thereby markedly
reducing latency and costs. For instance, the debugging
workload in Table 1 mandates the P2 caching policy, direct-
ing FLStore to cache the current training round’s metadata
rather than outdated information, leading to a significant
reduction in debugging latency by 97.15% (380 seconds)
and cost savings of $0.1 per request. Notably, even with
limited capacity, FLStore-limited surpasses traditional poli-
cies. These improvements are substantial, especially given
that the non-training requests can range from thousands to
hundreds of thousands.

We evaluated FLStore’s performance against traditional
caching policies like LFU, LRU, and FIFO using a sim-
ulated trace for non-training FL requests, crafted from FL
jobs for 10 clients each round from a pool of 250 over
2000 rounds on popular FL frameworks like Oort (Lai et al.,
2021b), FedDebug (Gill et al., 2023), REFL (Abdelmoniem
et al., 2023), and others (Tan et al., 2023b; Baracaldo et al.,

2022; Khodak et al., 2021) that utilize non-training appli-
cations. As shown in Table 2, FLStore’s caching policy
achieves a 99% hit rate for Clustering (Liu et al., 2022) and
Personalized FL (Tan et al., 2023b) under the P2 caching
policy and 98% hit rate for tasks under the P3 caching pol-
icy (Gill et al., 2023; Duan et al., 2023; Baracaldo et al.,
2022) with similar results observed for the P4 policy work-
loads (Khan et al., 2024; Khodak et al., 2021; Balta et al.,
2021). In contrast, traditional policies consistently register
a 0% hit rate across all tested scenarios.

Ablation study. We also evaluated FLStore variants without
tailored caching policies: FLStore-Random and FLStore-
Static. FLStore-Random, using random caching policy se-
lection regardless of workload, shows lower latency in some
cases, as depicted in Figure 9. However, for critical work-
loads like Scheduling and Incentivization, its performance
aligns with FLStore-FIFO and FLStore-LRU. Comparison
with FLStore-Static is detailed in Appendix C.

5.5 Overhead of FLStore’s components

The Cache Engine and Request Tracker can run co-located
with the aggregator service or locally, with minimal over-
head. We measure the overhead for 1000 concurrent non-
training requests. The Request Tracker uses less than 0.19
MB of memory, and the Cache Engine uses 0.6 MB. Scal-
ing to 100000 requests increases memory usage to 20.3 MB
and 63.2 MB, respectively. In both cases, the time to re-
trieve, use, or remove data from these services is under one
millisecond. The minimal overhead of the Cache Engine
and Request Tracker allows them to be run locally, on the
aggregator server, or even on a serverless function.

6 CONCLUSION

This paper introduces FLStore, an efficient and cost-
effective storage solution with locality-aware processing
for FL’s communication-heavy non-training workloads. Our
experiments demonstrate that FLStore is efficient and cost-
effective compared to other caching and cloud storage so-
lutions. FLStore is scalable and robust and can incorporate
new workloads by adding a new caching policy.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

FLStore: Efficient Federated Learning Storage for non-training workloads

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,
Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., et al. {TensorFlow}: a system for {Large-Scale}
machine learning. In 12th USENIX symposium on oper-
ating systems design and implementation (OSDI 16), pp.
265–283, 2016.

Abdelmoniem, A. M., Sahu, A. N., Canini, M., and
Fahmy, S. A. Refl: Resource-efficient federated learn-
ing. In Proceedings of the Eighteenth European Confer-
ence on Computer Systems, EuroSys ’23, pp. 215–232,
New York, NY, USA, 2023. Association for Comput-
ing Machinery. ISBN 9781450394871. doi: 10.1145/
3552326.3567485. URL https://doi.org/10.
1145/3552326.3567485.

Amazon Web Services. Amazon elasticache, 2024a. URL
https://aws.amazon.com/elasticache/.
Accessed: 2024-05-18.

Amazon Web Services. Amazon simple stor-
age service api reference, 2024b. URL
https://docs.aws.amazon.com/AmazonS3/
latest/API/Welcome.html. Accessed: 2024-05-
17.

Amazon Web Services, Inc. Aws lambda: Serverless
compute. https://aws.amazon.com/lambda/,
2024a. Accessed: 2024-03-22.

Amazon Web Services, Inc. Amazon SageMaker. https:
//aws.amazon.com/sagemaker/, 2024b. Ac-
cessed: yyyy-mm-dd.

Balta, D., Sellami, M., Kuhn, P., Schöpp, U., Buchinger,
M., Baracaldo, N., Anwar, A., Ludwig, H., Sinn, M.,
Purcell, M., and Altakrouri, B. Accountable feder-
ated machine learning in government: Engineering
and management insights. In Electronic Participa-
tion: 13th IFIP WG 8.5 International Conference, EPart
2021, Granada, Spain, September 7–9, 2021, Proceed-
ings, pp. 125–138, Berlin, Heidelberg, 2021. Springer-
Verlag. ISBN 978-3-030-82823-3. doi: 10.1007/
978-3-030-82824-0 10. URL https://doi.org/
10.1007/978-3-030-82824-0_10.

Baracaldo, N., Anwar, A., Purcell, M., Rawat, A., Sinn, M.,
Altakrouri, B., Balta, D., Sellami, M., Kuhn, P., Schopp,
U., and Buchinger, M. Towards an accountable and repro-
ducible federated learning: A factsheets approach, 2022.

Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Fernandez-
Marques, J., Gao, Y., Sani, L., Kwing, H. L., Parcollet,
T., Gusmão, P. P. d., and Lane, N. D. Flower: A friendly
federated learning research framework. arXiv preprint
arXiv:2007.14390, 2020.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Inger-
man, A., Ivanov, V., Kiddon, C., Konečnỳ, J., Mazzocchi,
S., McMahan, B., et al. Towards federated learning at
scale: System design. Proceedings of Machine Learning
and Systems, 1:374–388, 2019.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečnỳ, J.,
McMahan, H. B., Smith, V., and Talwalkar, A. Leaf:
A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

Chai, Z., Ali, A., Zawad, S., Truex, S., Anwar, A., Bara-
caldo, N., Zhou, Y., Ludwig, H., Yan, F., and Cheng, Y.
Tifl: A tier-based federated learning system. To appear
in ACM Symposium on High-Performance Parallel and
Distributed Computing (HPDC), 2020.

Chai, Z., Chen, Y., Anwar, A., Zhao, L., Cheng, Y.,
and Rangwala, H. Fedat: a high-performance and
communication-efficient federated learning system with
asynchronous tiers. In Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), pp. 1–16, 2021.

Chen, D., Gao, D., Kuang, W., Li, Y., and Ding, B. pfl-
bench: A comprehensive benchmark for personalized
federated learning, 2022.

Das, P., Ivkin, N., Bansal, T., Rouesnel, L., Gautier, P.,
Karnin, Z., Dirac, L., Ramakrishnan, L., Perunicic, A.,
Shcherbatyi, I., Wu, W., Zolic, A., Shen, H., Ahmed,
A., Winkelmolen, F., Miladinovic, M., Archembeau, C.,
Tang, A., Dutt, B., Grao, P., and Venkateswar, K. Amazon
sagemaker autopilot: a white box automl solution at scale.
In Proceedings of the Fourth International Workshop on
Data Management for End-to-End Machine Learning,
DEEM ’20, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450380232. doi: 10.
1145/3399579.3399870. URL https://doi.org/
10.1145/3399579.3399870.

https://doi.org/10.1145/3552326.3567485
https://doi.org/10.1145/3552326.3567485
https://aws.amazon.com/elasticache/
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://doi.org/10.1007/978-3-030-82824-0_10
https://doi.org/10.1007/978-3-030-82824-0_10
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3399579.3399870
https://doi.org/10.1145/3399579.3399870

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

FLStore: Efficient Federated Learning Storage for non-training workloads

Desai, H. B., Ozdayi, M. S., and Kantarcioglu, M.
Blockfla: Accountable federated learning via hybrid
blockchain architecture. In Proceedings of the Eleventh
ACM Conference on Data and Application Security
and Privacy, CODASPY ’21, pp. 101–112, New York,
NY, USA, 2021. Association for Computing Machin-
ery. ISBN 9781450381437. doi: 10.1145/3422337.
3447837. URL https://doi.org/10.1145/
3422337.3447837.

Duan, M., Liu, D., Ji, X., Liu, R., Liang, L., Chen, X.,
and Tan, Y. Fedgroup: Accurate federated learning via
decomposed similarity-based clustering. 2021.

Duan, S., Liu, C., Han, P., Jin, X., Zhang, X., Xiang, X.,
Pan, H., and Yan, X. Fed-dnn-debugger: Automati-
cally debugging deep neural network models in feder-
ated learning. 2023, jan 2023. ISSN 1939-0114. doi:
10.1155/2023/5968168. URL https://doi.org/
10.1155/2023/5968168.

Ellis, A. and Contributors, O. Openfaas. https://
github.com/openfaas/faas, 2024. Accessed:
2024-05-20.

Ezzeldin, Y. H., Yan, S., He, C., Ferrara, E., and Avestimehr,
A. S. Fairfed: Enabling group fairness in federated learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 7494–7502, 2023.

Face, H. Tinyllama-1.1b-step-50k-105b. https://
huggingface.co/TinyLlama/TinyLlama-1.
1B-step-50K-105b, 2024. Accessed: 2024-05-21.

FederatedAI. Fate: An industrial grade federated learn-
ing framework, 2024. URL https://github.com/
FederatedAI/FATE. GitHub repository.

Gade, K., Geyik, S. C., Kenthapadi, K., Mithal, V., and
Taly, A. Explainable ai in industry. In Proceedings
of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’19, pp.
3203–3204, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450362016. doi: 10.
1145/3292500.3332281. URL https://doi.org/
10.1145/3292500.3332281.

Ghosh, A., Chung, J., Yin, D., and Ramchandran,
K. An efficient framework for clustered federated
learning. In Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, vol-
ume 33, pp. 19586–19597. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
e32cc80bf07915058ce90722ee17bb71-Paper.
pdf.

Gill, W., Anwar, A., and Gulzar, M. A. Feddebug: Sys-
tematic debugging for federated learning applications.
In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pp. 512–523, 2023. doi:
10.1109/ICSE48619.2023.00053.

Google Cloud. Google Cloud Storage Documenta-
tion, 2024. URL https://cloud.google.com/
storage/docs. Accessed: 2024-07-24.

Grafberger, A., Chadha, M., Jindal, A., Gu, J., and Gerndt,
M. Fedless: Secure and scalable federated learning using
serverless computing. In 2021 IEEE International Con-
ference on Big Data (Big Data), pp. 164–173, 2021. doi:
10.1109/BigData52589.2021.9672067.

Han, J., Khan, A. F., Zawad, S., Anwar, A., Angel, N. B.,
Zhou, Y., Yan, F., and Butt, A. R. Tiff: Tokenized in-
centive for federated learning. In 2022 IEEE 15th In-
ternational Conference on Cloud Computing (CLOUD),
pp. 407–416, 2022. doi: 10.1109/CLOUD55607.2022.
00064.

Hashemi, S. H., Abdu Jyothi, S., and Campbell, R.
Tictac: Accelerating distributed deep learning with
communication scheduling. In Talwalkar, A., Smith,
V., and Zaharia, M. (eds.), Proceedings of Machine
Learning and Systems, volume 1, pp. 418–430,
2019. URL https://proceedings.mlsys.
org/paper_files/paper/2019/file/
94cb28874a503f34b3c4a41bddcea2bd-Paper.
pdf.

He, C., Li, S., So, J., Zhang, M., Wang, H., Wang, X.,
Vepakomma, P., Singh, A., Qiu, H., Shen, L., Zhao, P.,
Kang, Y., Liu, Y., Raskar, R., Yang, Q., Annavaram,
M., and Avestimehr, S. Fedml: A research library
and benchmark for federated machine learning. CoRR,
abs/2007.13518, 2020. URL https://arxiv.org/
abs/2007.13518.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hu, C., Liang, H. H., Han, X. M., Liu, B. A., Cheng, D. Z.,
and Wang, D. Spread: Decentralized model aggregation
for scalable federated learning. In Proceedings of the
51st International Conference on Parallel Processing,
ICPP ’22, New York, NY, USA, 2023. Association for
Computing Machinery. ISBN 9781450397339. doi: 10.
1145/3545008.3545030. URL https://doi.org/
10.1145/3545008.3545030.

Hu, M., Wu, D., Zhou, Y., Chen, X., and Chen, M. Incentive-
aware autonomous client participation in federated learn-

https://doi.org/10.1145/3422337.3447837
https://doi.org/10.1145/3422337.3447837
https://doi.org/10.1155/2023/5968168
https://doi.org/10.1155/2023/5968168
https://github.com/openfaas/faas
https://github.com/openfaas/faas
https://huggingface.co/TinyLlama/TinyLlama-1.1B-step-50K-105b
https://huggingface.co/TinyLlama/TinyLlama-1.1B-step-50K-105b
https://huggingface.co/TinyLlama/TinyLlama-1.1B-step-50K-105b
https://github.com/FederatedAI/FATE
https://github.com/FederatedAI/FATE
https://doi.org/10.1145/3292500.3332281
https://doi.org/10.1145/3292500.3332281
https://proceedings.neurips.cc/paper_files/paper/2020/file/e32cc80bf07915058ce90722ee17bb71-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e32cc80bf07915058ce90722ee17bb71-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e32cc80bf07915058ce90722ee17bb71-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e32cc80bf07915058ce90722ee17bb71-Paper.pdf
https://cloud.google.com/storage/docs
https://cloud.google.com/storage/docs
https://proceedings.mlsys.org/paper_files/paper/2019/file/94cb28874a503f34b3c4a41bddcea2bd-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/94cb28874a503f34b3c4a41bddcea2bd-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/94cb28874a503f34b3c4a41bddcea2bd-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/94cb28874a503f34b3c4a41bddcea2bd-Paper.pdf
https://arxiv.org/abs/2007.13518
https://arxiv.org/abs/2007.13518
https://doi.org/10.1145/3545008.3545030
https://doi.org/10.1145/3545008.3545030

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

FLStore: Efficient Federated Learning Storage for non-training workloads

ing. IEEE Transactions on Parallel and Distributed Sys-
tems, 33(10):2612–2627, 2022. doi: 10.1109/TPDS.2022.
3148113.

IBM. IBM Federated Learning Framework. https://
github.com/IBM/federated-learning-lib,
2020. [Online; accessed 05-June-2022].

IBM. IBM Federated Learning Framework Con-
tributors. https://github.com/IBM/
federated-learning-lib/graphs/
contributors, 2022. [Online; accessed 05-
July-2022].

Jiang, J., Gan, S., Liu, Y., Wang, F., Alonso, G., Klimovic,
A., Singla, A., Wu, W., and Zhang, C. Towards de-
mystifying serverless machine learning training. In
Proceedings of the 2021 International Conference on
Management of Data, SIGMOD ’21, pp. 857–871,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450383431. doi: 10.1145/
3448016.3459240. URL https://doi.org/10.
1145/3448016.3459240.

Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.-C.,
Khandelwal, A., Pu, Q., Shankar, V., Carreira, J., Krauth,
K., Yadwadkar, N., Gonzalez, J. E., Popa, R. A., Stoica,
I., and Patterson, D. A. Cloud programming simplified:
A berkeley view on serverless computing, 2019. URL
https://arxiv.org/abs/1902.03383.

Kairouz, P., McMahan, H. B., Avent, A., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, C., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and Trends in Machine
Learning, 12(3-4):1–357, 2019.

Khan, A. F., Li, Y., Wang, X., Haroon, S., Ali, H., Cheng,
Y., Butt, A. R., and Anwar, A. Towards cost-effective
and resource-aware aggregation at edge for federated
learning. In 2023 IEEE International Conference on
Big Data (BigData), pp. 690–699, 2023. doi: 10.1109/
BigData59044.2023.10386691.

Khan, A. F., Khan, A. A., Abdelmoniem, A. M., Foun-
tain, S., Butt, A. R., and Anwar, A. FLOAT: Feder-
ated learning optimizations with automated tuning. In
Nineteenth European Conference on Computer Systems
(EuroSys ’24), pp. 19, New York, NY, USA, 2024.
ACM. doi: 10.1145/3627703.3650081. URL https:
//doi.org/10.1145/3627703.3650081.

Khodak, M., Tu, R., Li, T., Li, L., Balcan, M.-F. F.,
Smith, V., and Talwalkar, A. Federated hyperparameter
tuning: Challenges, baselines, and connections to
weight-sharing. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),

Advances in Neural Information Processing Systems,
volume 34, pp. 19184–19197. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
a0205b87490c847182672e8d371e9948-Paper.
pdf.

Krizhevsky, A. Learning multiple layers of fea-
tures from tiny images. Technical Report
TR-2009, University of Toronto, 2009. URL
https://www.cs.toronto.edu/˜kriz/
learning-features-2009-TR.pdf.

Lai, F., Dai, Y., Zhu, X., Madhyastha, H. V., and Chowd-
hury, M. Fedscale: Benchmarking model and system
performance of federated learning. In Proceedings of the
First Workshop on Systems Challenges in Reliable and
Secure Federated Learning, pp. 1–3, 2021a.

Lai, F., Zhu, X., Madhyastha, H. V., and Chowdhury, M.
Oort: Efficient federated learning via guided participant
selection. In 15th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 21), pp.
19–35, 2021b.

Li, A., Zhang, L., Wang, J., Tan, J., Han, F., Qin, Y., Freris,
N. M., and Li, X.-Y. Efficient federated-learning model
debugging. In 2021 IEEE 37th International Conference
on Data Engineering (ICDE), pp. 372–383, 2021. doi:
10.1109/ICDE51399.2021.00039.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Feder-
ated learning: Challenges, methods, and future directions.
IEEE Signal Processing Magazine, 37(3):50–60, 2020.
doi: 10.1109/MSP.2020.2975749.

Liberty, E., Karnin, Z., Xiang, B., Rouesnel, L., Coskun, B.,
Nallapati, R., Delgado, J., Sadoughi, A., Astashonok,
Y., Das, P., Balioglu, C., Chakravarty, S., Jha, M.,
Gautier, P., Arpin, D., Januschowski, T., Flunkert, V.,
Wang, Y., Gasthaus, J., Stella, L., Rangapuram, S.,
Salinas, D., Schelter, S., and Smola, A. Elastic ma-
chine learning algorithms in amazon sagemaker. In
Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’20,
pp. 731–737, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450367356.
doi: 10.1145/3318464.3386126. URL https://doi.
org/10.1145/3318464.3386126.

Liu, J., Lai, F., Dai, Y., Akella, A., Madhyastha, H., and
Chowdhury, M. Auxo: Heterogeneity-mitigating feder-
ated learning via scalable client clustering. arXiv preprint
arXiv:2210.16656, 2022.

Liu, Y., Su, L., Joe-Wong, C., Ioannidis, S., Yeh, E., and
Siew, M. Cache-enabled federated learning systems. In

https://github.com/IBM/federated-learning-lib
https://github.com/IBM/federated-learning-lib
https://github.com/IBM/federated-learning-lib/graphs/contributors
https://github.com/IBM/federated-learning-lib/graphs/contributors
https://github.com/IBM/federated-learning-lib/graphs/contributors
https://doi.org/10.1145/3448016.3459240
https://doi.org/10.1145/3448016.3459240
https://arxiv.org/abs/1902.03383
https://doi.org/10.1145/3627703.3650081
https://doi.org/10.1145/3627703.3650081
https://proceedings.neurips.cc/paper_files/paper/2021/file/a0205b87490c847182672e8d371e9948-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a0205b87490c847182672e8d371e9948-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a0205b87490c847182672e8d371e9948-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a0205b87490c847182672e8d371e9948-Paper.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1145/3318464.3386126
https://doi.org/10.1145/3318464.3386126

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

FLStore: Efficient Federated Learning Storage for non-training workloads

Proceedings of the Twenty-Fourth International Sympo-
sium on Theory, Algorithmic Foundations, and Protocol
Design for Mobile Networks and Mobile Computing, Mo-
biHoc ’23, pp. 1–11, New York, NY, USA, 2023. Associ-
ation for Computing Machinery. ISBN 9781450399265.
doi: 10.1145/3565287.3610264. URL https://doi.
org/10.1145/3565287.3610264.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S.,
and Guo, B. Swin transformer v2: Scaling up capacity
and resolution. arXiv preprint arXiv:2111.09883, 2021.

Ludwig, H., Baracaldo, N., Thomas, G., Zhou, Y., Anwar,
A., Rajamoni, S., Ong, Y., Radhakrishnan, J., Verma,
A., Sinn, M., et al. Ibm federated learning: an en-
terprise framework white paper v0. 1. arXiv preprint
arXiv:2007.10987, 2020.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

MinIO, Inc. Minio: High performance, kubernetes native
object storage. https://min.io/, 2024. Accessed:
2024-03-22.

Mohseni, S., Zarei, N., and Ragan, E. D. A multidisci-
plinary survey and framework for design and evalua-
tion of explainable ai systems. 11(3–4), 2021. ISSN
2160-6455. doi: 10.1145/3387166. URL https:
//doi.org/10.1145/3387166.

Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rab-
bat, M. G., Malek, M., and Huba, D. Federated learn-
ing with buffered asynchronous aggregation. CoRR,
abs/2106.06639, 2021. URL https://arxiv.org/
abs/2106.06639.

NinjaOne. Double data rate memory: A gen-
erational overview of ram, 2024. URL
https://www.ninjaone.com/blog/
double-data-rate-memory/. Accessed:
2024-08-30.

Perrone, V., Shen, H., Zolic, A., Shcherbatyi, I., Ahmed,
A., Bansal, T., Donini, M., Winkelmolen, F., Jenat-
ton, R., Faddoul, J. B., Pogorzelska, B., Miladinovic,
M., Kenthapadi, K., Seeger, M., and Archambeau,
C. Amazon sagemaker automatic model tuning: Scal-
able gradient-free optimization. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Dis-
covery & Data Mining, KDD ’21, pp. 3463–3471,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450383325. doi: 10.1145/
3447548.3467098. URL https://doi.org/10.
1145/3447548.3467098.

Qi, S., Ramakrishnan, K. K., and Lee, M. Lifl: A
lightweight, event-driven serverless platform for feder-
ated learning, 2024. URL https://arxiv.org/
abs/2405.10968.

Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie,
A., and Pedarsani, R. Fedpaq: A communication-
efficient federated learning method with periodic av-
eraging and quantization. In Chiappa, S. and Calan-
dra, R. (eds.), Proceedings of the Twenty Third Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 108 of Proceedings of Machine Learn-
ing Research, pp. 2021–2031. PMLR, 26–28 Aug
2020. URL https://proceedings.mlr.press/
v108/reisizadeh20a.html.

Ruan, Y. and Joe-Wong, C. Fedsoft: Soft clustered federated
learning with proximal local updating. In AAAI, 2022.

Shlezinger, N., Chen, M., Eldar, Y. C., Poor, H. V., and Cui,
S. Uveqfed: Universal vector quantization for federated
learning. IEEE Transactions on Signal Processing, 69:
500–514, 2021. doi: 10.1109/TSP.2020.3046971.

Sun, Q., Li, X., Zhang, J., Xiong, L., Liu, W., Liu, J.,
Qin, Z., and Ren, K. Shapleyfl: Robust federated
learning based on shapley value. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, KDD ’23, pp. 2096–2108,
New York, NY, USA, 2023. Association for Comput-
ing Machinery. ISBN 9798400701030. doi: 10.1145/
3580305.3599500. URL https://doi.org/10.
1145/3580305.3599500.

Tan, A. Z., Yu, H., Cui, L., and Yang, Q. Towards person-
alized federated learning. IEEE Transactions on Neural
Networks and Learning Systems, 2022.

Tan, A. Z., Yu, H., Cui, L., and Yang, Q. Towards person-
alized federated learning. IEEE Transactions on Neu-
ral Networks and Learning Systems, 34(12):9587–9603,
2023a. doi: 10.1109/TNNLS.2022.3160699.

Tan, A. Z., Yu, H., Cui, L., and Yang, Q. Towards person-
alized federated learning. IEEE Transactions on Neu-
ral Networks and Learning Systems, 34(12):9587–9603,
2023b. doi: 10.1109/TNNLS.2022.3160699.

Tan, M. and Le, Q. Efficientnetv2: Smaller models and
faster training. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 2021.

Tan, Y., Chen, C., Zhuang, W., Dong, X., Lyu, L.,
and Long, G. Is heterogeneity notorious? taming
heterogeneity to handle test-time shift in federated
learning. In Oh, A., Naumann, T., Globerson, A.,
Saenko, K., Hardt, M., and Levine, S. (eds.), Ad-
vances in Neural Information Processing Systems,

https://doi.org/10.1145/3565287.3610264
https://doi.org/10.1145/3565287.3610264
https://min.io/
https://doi.org/10.1145/3387166
https://doi.org/10.1145/3387166
https://arxiv.org/abs/2106.06639
https://arxiv.org/abs/2106.06639
https://www.ninjaone.com/blog/double-data-rate-memory/
https://www.ninjaone.com/blog/double-data-rate-memory/
https://doi.org/10.1145/3447548.3467098
https://doi.org/10.1145/3447548.3467098
https://arxiv.org/abs/2405.10968
https://arxiv.org/abs/2405.10968
https://proceedings.mlr.press/v108/reisizadeh20a.html
https://proceedings.mlr.press/v108/reisizadeh20a.html
https://doi.org/10.1145/3580305.3599500
https://doi.org/10.1145/3580305.3599500

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

FLStore: Efficient Federated Learning Storage for non-training workloads

volume 36, pp. 27167–27180. Curran Associates, Inc.,
2023c. URL https://proceedings.neurips.
cc/paper_files/paper/2023/file/
565f995643da6329cec701f26f8579f5-Paper-Conference.
pdf.

Tang, X., Guo, S., and Guo, J. Personalized federated learn-
ing with clustered generalization. ArXiv, abs/2106.13044,
2021.

Tang, X., Guo, S., and Guo, J. Personalized federated learn-
ing with contextualized generalization. In Raedt, L. D.
(ed.), Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI-22, pp. 2241–
2247. International Joint Conferences on Artificial Intel-
ligence Organization, 7 2022. doi: 10.24963/ijcai.2022/
311. URL https://doi.org/10.24963/ijcai.
2022/311. Main Track.

Tang, Z., Shi, S., Wang, W., Li, B., and Chu, X.
Communication-efficient distributed deep learning: A
comprehensive survey, 2023. URL https://arxiv.
org/abs/2003.06307.

TorchVision Contributors. Mobilenet v3 small.
https://pytorch.org/vision/main/
models/generated/torchvision.models.
mobilenet_v3_small.html, 2024. Accessed:
2024-05-20.

Wang, A., Zhang, J., Ma, X., Anwar, A., Rupprecht, L.,
Skourtis, D., Tarasov, V., Yan, F., and Cheng, Y. In-
finiCache: Exploiting ephemeral serverless functions
to build a Cost-Effective memory cache. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pp. 267–281, Santa Clara, CA, February
2020. USENIX Association. ISBN 978-1-939133-12-0.
URL https://www.usenix.org/conference/
fast20/presentation/wang-ao.

Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated ma-
chine learning: Concept and applications. ACM Trans.
Intell. Syst. Technol., 10(2), jan 2019. ISSN 2157-6904.
doi: 10.1145/3298981. URL https://doi.org/10.
1145/3298981.

Yang, X., Zhao, Y., Chen, Q., Yu, Y., Du, X., and Guizani,
M. Accountable and verifiable secure aggregation for
federated learning in iot networks. IEEE Network, 36(5):
173–179, 2022a. doi: 10.1109/MNET.001.2200214.

Yang, Y., Zhao, L., Li, Y., Zhang, H., Li, J., Zhao, M.,
Chen, X., and Li, K. Infless: a native serverless sys-
tem for low-latency, high-throughput inference. In Pro-
ceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’22, pp. 768–781,

New York, NY, USA, 2022b. Association for Com-
puting Machinery. ISBN 9781450392051. doi: 10.
1145/3503222.3507709. URL https://doi.org/
10.1145/3503222.3507709.

Yu, H., Liu, Z., Liu, Y., Chen, T., Cong, M., Weng, X.,
Niyato, D., and Yang, Q. A fairness-aware incentive
scheme for federated learning. In Proceedings of the
AAAI/ACM Conference on AI, Ethics, and Society, pp.
393–399, 2020.

Yu, S., Nguyen, P., Anwar, A., and Jannesari, A. Heteroge-
neous federated learning using dynamic model pruning
and adaptive gradient, 2023.

Zhang, J., Wang, A., Ma, X., Carver, B., Newman, N. J.,
Anwar, A., Rupprecht, L., Skourtis, D., Tarasov, V., Yan,
F., and Cheng, Y. Infinistore: Elastic serverless cloud
storage, 2023a.

Zhang, J., Wang, A., Ma, X., Carver, B., Newman, N. J.,
Anwar, A., Rupprecht, L., Tarasov, V., Skourtis, D.,
Yan, F., and Cheng, Y. Infinistore: Elastic serverless
cloud storage. Proc. VLDB Endow., 16(7):1629–1642,
mar 2023b. ISSN 2150-8097. doi: 10.14778/3587136.
3587139. URL https://doi.org/10.14778/
3587136.3587139.

Zhou, Y., Ram, P., Salonidis, T., Baracaldo, N., Samulowitz,
H., and Ludwig, H. Single-shot general hyper-parameter
optimization for federated learning. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=3RhuF8foyPW.

https://proceedings.neurips.cc/paper_files/paper/2023/file/565f995643da6329cec701f26f8579f5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/565f995643da6329cec701f26f8579f5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/565f995643da6329cec701f26f8579f5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/565f995643da6329cec701f26f8579f5-Paper-Conference.pdf
https://doi.org/10.24963/ijcai.2022/311
https://doi.org/10.24963/ijcai.2022/311
https://arxiv.org/abs/2003.06307
https://arxiv.org/abs/2003.06307
https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v3_small.html
https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v3_small.html
https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v3_small.html
https://www.usenix.org/conference/fast20/presentation/wang-ao
https://www.usenix.org/conference/fast20/presentation/wang-ao
https://doi.org/10.1145/3298981
https://doi.org/10.1145/3298981
https://doi.org/10.1145/3503222.3507709
https://doi.org/10.1145/3503222.3507709
https://doi.org/10.14778/3587136.3587139
https://doi.org/10.14778/3587136.3587139
https://openreview.net/forum?id=3RhuF8foyPW
https://openreview.net/forum?id=3RhuF8foyPW

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

FLStore: Efficient Federated Learning Storage for non-training workloads

Malicious Filtering Cosine similarities Scheduling (clustered) Clustering Inference

1 2 3 4 5 6 7 8 9 10
Parallel Requests

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

La
te

nc
y

(s
ec

)

Cached parallel
functions = 5

1 2 3 4 5 6 7 8 9 10
Parallel Requests

0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035

Co
st

 ($
)

Cached parallel
functions = 5

Figure 10. FLStore scalability for iteratively increasing parallel requests and 5 parallel cached functions.

Function Instances
FI=1 FI=2 FI=3 FI=4 FI=5

Perso
nalize

d

Cluste
ring

Malicio
us Fi

ltering

Incentives

Sched. (C
luste

r)

Reputation ca
lc.

Sched. (P
erf.)

Cosine sim
ilarity

Applications

0

50

100

150

La
te

nc
y

(s
ec

)

Perso
nalize

d

Cluste
ring

Malicio
us Fi

ltering

Incentives

Sched. (C
luste

r)

Reputation ca
lc.

Sched. (P
erf.)

Cosine sim
ilarity

Applications

0.000

0.002

0.004

0.006

To
ta

l C
os

t (
$)

Figure 11. FLStore latency and cost per request over 50 hours with varying function instances (FI) for fault tolerance.

A SUPPLEMENTARY FEATURES OF
FLSTORE

Modular design FLStore’s modular design enables seam-
less integration with existing FL frameworks without mod-
ifying clients or aggregators. Training can proceed un-
changed, while client updates and metadata received by the
aggregator are asynchronously relayed to FLStore’s cache.
FLStore then serves as a scalable and efficient storage solu-
tion, handling non-training tasks.

Multi-tenancy The serverless computing paradigm in-
herently provides isolation (Amazon Web Services, Inc.,
2024a; Ellis & Contributors, 2024), allowing each user to
create an isolated cache on the same FLStore instance. This
enables customized caching policies per non-training work-
load/application, allowing FLStore to handle requests from
multiple users simultaneously.

A.1 Scalability of FLStore

To demonstrate FLStore’s scalability, we simulated increas-
ing concurrent non-training requests, with FLStore main-
taining 5 cached function instances (red line, Figure 10). We
varied the number of concurrent client requests from 1 to 10
across six representative non-training workloads using the
EfficientNet model. As shown in Figure 10, latency and cost

remain nearly constant when concurrent requests are equal
to or fewer than the cached functions. For 1 to 5 requests,
the average latencies were 1.05 seconds for Malicious Fil-
tering, 0.031 seconds for Cosine Similarities, 1.039 seconds
for Scheduling (clustered), and 6.067 seconds for Cluster-
ing. Even with 6 and 7 requests, there was minimal increase
in latency or cost. For 8 to 10 requests, latencies start in-
creasing. However, this can be easily mitigated by scaling
cached functions (creating copies of already cached func-
tions) linearly with the number of requests, which incurs
minimal additional cost, as discussed next.

A.2 Fault Tolerance

We evaluated FLStore’s fault tolerance by testing ten dif-
ferent workloads using the EfficientNet model and sending
3000 requests over 50 hours. Faults (function reclamations)
were generated based on the Zipfian distribution, observed in
measurement studies on AWS Lambda (Wang et al., 2020).
Figure 11 shows that with only 1 function instance, latency
and cost are highest, with improvement as the number of
replicas increases. With 3 to 5 function instances, latency
and cost remain nearly constant, despite faults. In particular,
3 instances reduce latency by 50-150 seconds per request
compared to a single instance in the face of faults.

Interestingly the cost of maintaining function replicas is neg-

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

FLStore: Efficient Federated Learning Storage for non-training workloads

Cluste
ring

Cosine sim
ilarity

Incentives

Malicio
us Fi

ltering

Perso
nalize

d

Reputation ca
lc.

Sched. (C
luste

r)

Sched. (P
erf.)

Applications

0
25
50
75

100
125
150
175

La
te

nc
y

(s
ec

)

Refetching
Replication

Cluste
ring

Cosine sim
ilarity

Incentives

Malicio
us Fi

ltering

Perso
nalize

d

Reputation ca
lc.

Sched. (C
luste

r)

Sched. (P
erf.)

Applications

0.000
0.001
0.002
0.003
0.004
0.005
0.006

To
ta

l C
os

t (
$)

Refetching
Replication

Cluste
ring

Cosine sim
ilarity

Incentives

Malicio
us Fi

ltering

Perso
nalize

d

Reputation ca
lc.

Sched. (C
luste

r)

Sched. (P
erf.)

Applications

10 7
10 6
10 5
10 4
10 3
10 2
10 1
100

Co
m

m
 C

os
t (

$)

Refetching Comm. Cost
Cost of 5 Replicas (50 hours)

Figure 12. Overall latency and cost comparison of replication vs. re-fetching (first and second from left), and communication cost
comparison (rightmost).

ligible compared to the overhead and cost of re-computation
and communication due to faults. For 50 hours and
3000 requests, maintaining 5 replicas costs just $0.003, or
$0.000001 per non-training request served (Figure 12). In
contrast, fewer instances lead to higher overhead and costs
while maintaining more replicas reduces these costs by up
to 3000×. Notably, we did not evaluate the impact of reg-
ular pinging, as this has already been explored in prior
works (Zhang et al., 2023a; Wang et al., 2020).

B LATENCY AND COST PERFORMANCE
BREAKUP

To identify the bottleneck, we broke up the accumulated
latency between communication and computation time over
50 hours of experiments for the 10 different workloads.

B.1 FLStore vs ObjStore-Agg

Figure 13 shows the results with both communication and
computation time for the ObjStore-Agg and only compu-
tation time for FLStore because communication time for
FLStore is negligible in comparison due to co-located data
and compute planes. The major bottleneck in ObjStore-
Agg is Communication, in comparison the I/O time from
memory to CPU is negligible (NinjaOne, 2024). For some
workloads such as Inference, Debugging, and Scheduling,
the difference between computation and communication
times is significant. During inference communication con-
sumes an average of 98.9% of time. This shows that current
methodologies for computing non-training workloads for
distributed learning techniques such as FL are significantly
communication-bound. Thus, the reduction in communi-
cation times as brought by FLStore significantly improves
the efficiency performance, which can be observed in Fig-
ure 13. We can also observe that FLStore provides sig-
nificant improvements for smaller models, which is why
FLStore is suitable in cross-device FL settings (Kairouz
et al., 2019; Abdelmoniem et al., 2023). Across 50 hours
and 3000 total requests we see Resnet18 with an average
82.04% (35.50 second) decrease in latency, MobileNet has
an average 47.33% (75.99 second) decrease in latency, Ef-

ficientNet has an average 50.44% (100.18 second) decrease
in latency, and Swin has an average 20.45% (4.42 second)
decrease in latency. Thus, FLStore can significantly im-
prove non-training tasks in FL with reduced latency. We
next observe the reduction in total cost with FLStore.

We perform the same breakup analysis on the costs in Fig-
ure 14, showing both the communication and computation
costs for ObjStore-Agg and computation costs for FLStore
where communication costs are negligible. We can observe
that the majority of the cost stems from the I/O (includ-
ing communication) of data relevant to the non-training
workloads. Resnet18, EfficientNet, and MobileNet spend
87.46%, 76.96%, and 85.80% of their total time respec-
tively in I/O, and SwinTransformer spends 53.32% percent
of its total time in I/O. Thus, by reducing the I/O time and
data transfer costs FLStore provides a cost-effective solu-
tion for offloading the non-training workloads in FL. Across
50 hours and 3000 total requests we see that Resnet18,
MobileNet, and EfficientNet show a 94.73%, 92.72%, and
86.81% average decrease in cost respectively, and Swin-
Transformer has an average 77.83% reduction in cost.

B.2 FLStore vs In-Memory Cache

We also perform the total cost breakup analysis over 50
hours, 3000 total non-training requests, and 10 workloads,
calculating both the communication and computation costs
for Cache-Agg and FLStore. Results for this analysis are
shown in Figure 15 FLStore decreases the total time by
37.77%− 84.45% amounting to 191.65 accumulated hours
reduced for all requests and a 98.12%− 99.89% decrease
in total cost resulting in a reduction of $7047.16 accumu-
lated dollar costs for all 3000 requests across 50 hours. To
compare both (Cache-Agg and ObjStore-Agg) on the same
workloads tested with Cache-Agg, FLStore shows an av-
erage decrease in latency of 71% with ObjStore-Agg and
64% with Cache-Agg, the decreases with ObjStore-Agg is
larger as cloud object stores are slower than cloud caches.
However, in terms of costs cloud caches are more expensive
than cloud object stores, which is why for the workloads

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

FLStore: Efficient Federated Learning Storage for non-training workloads

ObjStore-Agg (Communication) ObjStore-Agg (Computation) FLStore

Per
son

aliz
ed

Clus
ter

ing

Deb
ug

gin
g

Malic
iou

s F
ilte

rin
g

Inc
en

tiv
es

Sch
ed

. (C
lus

ter
)

Re
pu

tat
ion

 ca
lc.

Sch
ed

. (P
erf

.)

Cosi
ne

 sim
ilar

ity

Inf
ere

nce

Applications

100

101

102

To
ta

l T
im

e
(h

rs
) Resnet18

Per
son

aliz
ed

Clus
ter

ing

Deb
ug

gin
g

Malic
iou

s F
ilte

rin
g

Inc
en

tiv
es

Sch
ed

. (C
lus

ter
)

Re
pu

tat
ion

 ca
lc.

Sch
ed

. (P
erf

.)

Cosi
ne

 sim
ilar

ity

Inf
ere

nce

Applications

10 1
100
101
102

To
ta

l T
im

e
(h

rs
) MobileNetV2

Per
son

aliz
ed

Clus
ter

ing

Deb
ug

gin
g

Malic
iou

s F
ilte

rin
g

Inc
en

tiv
es

Sch
ed

. (C
lus

ter
)

Re
pu

tat
ion

 ca
lc.

Sch
ed

. (P
erf

.)

Cosi
ne

 sim
ilar

ity

Inf
ere

nce

Applications

100
101
102

To
ta

l T
im

e
(h

rs
) EfficientNet

Per
son

aliz
ed

Clus
ter

ing

Malic
iou

s F
ilte

rin
g

Inc
en

tiv
es

Sch
ed

. (C
lus

ter
)

Re
pu

tat
ion

 ca
lc.

Sch
ed

. (P
erf

.)

Cosi
ne

 sim
ilar

ity

Inf
ere

nce

Applications

100

101

102

To
ta

l T
im

e
(h

rs
) SwinTransformer

Figure 13. FLStore vs. ObjStore-Agg total time breakup comparison over 50 hours.

ObjStore-Agg (Communication) ObjStore-Agg (Computation) FLStore

Per
son

aliz
ed

Clus
ter

ing

Deb
ug

gin
g

Malic
iou

s F
ilte

rin
g

Inc
en

tiv
es

Sch
ed

. (C
lus

ter
)

Re
pu

tat
ion

 ca
lc.

Sch
ed

. (P
erf

.)

Cosi
ne

 sim
ilar

ity

Inf
ere

nce

Applications

100

101

102

To
ta

l C
os

t (
$)

Resnet18

Per
son

aliz
ed

Clus
ter

ing

Deb
ug

gin
g

Malic
iou

s F
ilte

rin
g

Inc
en

tiv
es

Sch
ed

. (C
lus

ter
)

Re
pu

tat
ion

 ca
lc.

Sch
ed

. (P
erf

.)

Cosi
ne

 sim
ilar

ity

Inf
ere

nce

Applications

10 1
100
101
102

To
ta

l C
os

t (
$)

MobileNetV2

Per
son

aliz
ed

Clus
ter

ing

Deb
ug

gin
g

Malic
iou

s F
ilte

rin
g

Inc
en

tiv
es

Sch
ed

. (C
lus

ter
)

Re
pu

tat
ion

 ca
lc.

Sch
ed

. (P
erf

.)

Cosi
ne

 sim
ilar

ity

Inf
ere

nce

Applications

10 1
100
101
102

To
ta

l C
os

t (
$)

EfficientNet

Per
son

aliz
ed

Clus
ter

ing

Malic
iou

s F
ilte

rin
g

Inc
en

tiv
es

Sch
ed

. (C
lus

ter
)

Re
pu

tat
ion

 ca
lc.

Sch
ed

. (P
erf

.)

Cosi
ne

 sim
ilar

ity

Inf
ere

nce

Applications

100

101

102

To
ta

l C
os

t (
$)

SwinTransformer

Figure 14. FLStore vs. ObjStore-Agg total cost breakup comparison over 50 hours.

tested with Cache-Agg, FLStore shows an average decrease
in costs of 98.83% compared to Cache-Agg and 92.45%
decrease compared to ObjStore-Agg.

C FLSTORE STATIC: ABLATION STUDY

For comparison with FLStore-Static, we consider a scenario
where the workload changes from model inference to mali-
cious filtering. Caching policy of FLStore-Static remains
static (Individual Client Updates) which was for model in-
ference workload while FLStore changes its caching policy
to All Client Updates based on the new workload (malicious
filtering). Results in Figure 16 show that FLStore reduces
per-request average latency by 99% (8 seconds) and costs by
approximately 3×. This analysis highlights the importance

of designing caching policies tailored for non-training FL
workloads.

D DISCUSSION: LIMITATIONS AND
FUTURE WORK

Support for Foundation Models Foundation Models are
a class of models that have undergone training with a broad
and general data set. Users can then fine-tune foundational
models for specific use cases without training a model from
scratch. We have added and evaluated several foundation
models from Figure 17 in FLStore and continue to add
more such models. We also add model inference as an
application for FLStore with the aim of providing a cost-
effective alternative for serving models efficiently compared

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

FLStore: Efficient Federated Learning Storage for non-training workloads

Cache-Agg FLStore

Cosine sim
ilarity

Sched. (C
luste

r)

Inference

Malicio
us Fi

ltering

Sched. (P
erf.)

Incentives

Applications

0
20
40
60

To
ta

l T
im

e
(h

rs
)

Cosine sim
ilarity

Sched. (C
luste

r)

Inference

Malicio
us Fi

ltering

Sched. (P
erf.)

Incentives

Applications

101
102
103

To
ta

l C
os

t (
$)

Figure 15. Total time (top) and total cost (bottom) comparison
of Cache-Agg baseline vs. FLStore over 50 hours and 3000 total
requests.

FLStore FLStore-Static0
4
8

12
16

Ti
m

e
(s

ec
)

FLStore FLStore-Static
0.0002
0.0003
0.0004
0.0005
0.0006

Co
st

 ($
)

Figure 16. FLStore vs. FLStore-Static: Per request latency (left)
and cost (right) while filtering malicious clients.

to other cloud solutions such as AWS SageMaker (Amazon
Web Services, Inc., 2024b) which incurs high latency and
costs as shown by our analysis in Figures 13 and 14.

FLStore Integration Due to the modular nature of FL-
Store, it can be easily integrated into any existing FL
framework. We have successfully integrated FLStore with
IBMFL (IBM, 2020), and FLOWER (Beutel et al., 2020),
two popular FL frameworks used in industry and research.

Adaptive Caching Policies Our ongoing efforts include
designing agents based on Reinforcement Learning with
Human Feedback (RLHF) that can understand the charac-
teristics of non-training workloads and create new caching
policies for those workloads using our existing caching poli-
cies as a base. RLHF has successfully been deployed for
hyperparameter and optimization configuration in FL (Khan
et al., 2024) and the configuration of caching policies is a
similar challenge that we hope to resolve by employing this
technique.

Function Memory Limitations Serverless functions are
limited in memory resources having a maximum of 10 GB
memory (Amazon Web Services, Inc., 2024a). This is more
than sufficient for handling non-training workloads for cross-
device FL even for small transformer models such as (Face,
2024). As shown in Figure 17, the average size of popular

0 100 200 300 400 500
Object size (MB)

ResNet50
EfficientNet-B0

MobileNetV2
EfficientNet V2 Small

Swin Transformer V2 Tiny
ResNet18

MobileNetV3 Small
ShuffleNet
ResNet34

DenseNet121
AlexNet
VGG13
VGG16

ResNet101
ResNet152

ResNeXt50_32x4d
ResNeXt101_32x8d

WideResNet50_2
WideResNet101_2

DenseNet161
DenseNet169
DenseNet201

InceptionV3

M
od

el
s

Average: 160.88 MB

Figure 17. Memory footprint of commonly used models in FL.

models used in cross-device FL is just 161 MB approxi-
mately. However, for even larger foundational models such
as Large Language Models (LLMs) (Brown et al., 2020),
we are working on utilizing pipeline parallel processing
where function groups can be assigned for each workload
and each function in that group can perform computations
in a pipeline parallel manner (Jiang et al., 2021; Yang et al.,
2022b).

