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Abstract

It is well-known in the video understanding community that human action recogni-
tion models suffer from background bias, i.e., over-relying on scene cues in making
their predictions. However, it is difficult to quantify this effect using existing evalu-
ation frameworks. We introduce the Human-centric Analysis Toolkit (HAT), which
enables evaluation of learned background bias without the need for new manual
video annotation. It does so by automatically generating synthetically manipulated
videos and leveraging the recent advances in image segmentation and video in-
painting. Using HAT we perform an extensive analysis of 74 action recognition
models trained on the Kinetics dataset. We confirm that all these models focus
more on the scene background than on the human motion; further, we demonstrate
that certain model design decisions (such as training with fewer frames per video
or using dense as opposed to uniform temporal sampling) appear to worsen the
background bias. We open-source HAT to enable the community to design more
robust and generalizable human action recognition models.

1 Introduction

Human action recognition is about understanding what the human in the video is doing; however,
human action recognition models frequently rely on background cues to make their predictions. Prior
works [6, 133,159} 160, [71]] have leveraged visualization tools like GradCam [46]] to demonstrate that
the video background significantly influences the prediction of human action recognition models.
This occurs due to representation bias in the dataset, where particular actions (e.g., eating) tend to
occur in particular environments (e.g., kitchens). Such concerns limit the practical usability and
generalizability of models despite the impressive overall progress in the field [36} 61 67].

While it is known that this background bias phenomenon is occurring, quantifying the degree to which
it is occurring is still necessary. Being able to accurately assess how much human action recognition
models rely on human features rather than background scene cues would allow researchers to compare
different model designs and select the ones that would be robust to their unique test domains. Efforts
such as [34} 163] have introduced datasets for quantifying background bias; however, scaling up their
approaches may be prohibitively expensive due to the reliance on manual annotation.

In this work, we introduce the Human-centric Analysis Toolkit (HAT) to measure background bias in
human action recognition models without the need for costly human annotation. We leverage recent
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Figure 1: The pipeline of our Human-centric Analysis Toolkit (HAT). Left: HAT takes a video,
segments the spatio-temporal human figure, and generates the Human-Only and Background-Only
videos. Right: HAT generates Action-Swap videos by pasting the same human figure onto the
Background-Only video from the same, a randomly-selected, and a far (dissimilar) action class.
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improvements in image segmentation [24) [32] 38] and video inpainting [29] [35] [37] to automatically
synthesize counterfactual videos containing Human-Only (a spatio-temporal segmentation of the
human figure against a gray background), Background-Only (the video with the human removed via
inpainting) or Action-Swap (human figure against an unusual background). Examples are shown in
Figure[I] This process is efficient and scalable, requiring no manual annotation. HAT thus enables
us to evaluate the sensitivity of human action understanding models to the different visual cues by
comparing the accuracy on the original and synethetically manipulated videos.

We demonstrate the capabilities of HAT by running extensive analysis of human action recogni-
tion models trained on the Kinetics-400 dataset. Concretely, we evaluate 74 trained models,
corresponding to 14 different model designs (TSN [61]], I3D [3], Non-local Neural Networks [62]],
R(2+1)D [54], TSM [36], SlowFast/SlowOnly [15], CSN [58], TIN [49], TPN [68], X3D [14],
OmniSource [12]], TANet [39]], and TimeSformer [4]]) with varying hyperparameters and backbone
architectures provided by the MMAction?2 [8] implementation. Some of our findings include:

* All 74 models exhibit strong background bias. When evaluated on the Action-Swap videos,
the 74 models predicted the action class of the human 16.8% of the time on average — but
predicted the action class of the randomly-selected background 29.5% of the time!

* Models trained with fewer frames per video appear to be more prone to background bias. For
example, the TSN-based models [61] trained with 8, 5 and 3 frames per video retain 0.679,
0.683 and 0.694 of their original accuracy respectively when evaluated on the Background-
Only videos, demonstrating consistently high and somewhat increasing background bias.

* Models trained with dense temporal sampling around a single timestep appear to be more
prone to background bias compared to models trained with uniform sampling throughout the
video. For example, when evaluated on the Background-Only videos as above, TSM-based
models [36] with dense sampling exhibit strong background bias by retaining 0.703 of the
original accuracy compared to only 0.675 with uniform sampling.

Overall, we make three contributions. First, we develop and open-source the Human-centric Analysis
Toolkit (HAT), which generates synthetic videos to evaluate the background bias learned by human
action recognition models. Second, we demonstrate its capabilities through extensive evaluation of 74
released models. Finally, we show that HAT can identify the design choices that appear to influence
the amount of background bias learned by the model, helping inform future model design.

2 Related Work

Human Action Recognition Models. Currently, human action recognition is largely dominated by
deep learning methods. With strong success in image-based tasks [[10}, 20, 30} [51]], CNN-based deep

learning models [12} (14} 151 36, 39 [49} 54, [62], were the go-to method for human action
recognition, with gradual improvements in the model structure going from 2D-CNN [20, 44, [61]]



to 3D-CNN [5, 114} [15] 54] to CNN models with specific temporal modeling [36}139,49]]. A recent
trend [2, 4] in human action recognition is to use a transformer module [57]] as it has shown good
performance [11]] in image-based tasks. Another trend [4] 12} |58]] is to incorporate large-scale
datasets [16} 26,65 into the training. In this work, we evaluate multiple action recognition models [4,
S, 2L 144 (1511361 39,1491 154, 58l 1611 162} [68]] in an effort to identify design decisions which appear to
correlated with learned background bias.

Human Action Recognition Dataset. Early datasets [43, [60] offered a handful of human action
classes that were collected in a controlled environment. UCF101 [52] and HMDBS51 [31]] were some of
the first few datasets that were suitable for machine learning tasks. Although there are many different
human action datasets [[7, 9, [19] 147, 48] [73]], the most popular dataset must be Kinetics-400 [28]], due
to its large size and variety of actions. However, due to the cost of collecting video datasets, the size
of the dataset is still smaller than image datasets. Synthetic datasets [13} 117, 27,41} 53], often used
mixed with the real dataset, are popular methods of collecting data in an affordable manner. In human
action recognition, the synthetic datasets are often used for training dataset [55}156]], and the model is
tested on real videos. In this work, we generate synthetic counterfactual videos to enable detailed
model evaluation without the need for costly annotation.

Human-centric Analysis. As the models have grown more complex, there has been an increased
need for frameworks that provide insights into the model behavior beyond just a single accuracy
number. Efforts have included model interpretability techniques [3, 46], detailed error analysis
using additional manual annotations [1} 22} 43| 150], and (recently) stress-testing using automatically
generated text or image data [25| 142]]. There are a number of works studying specifically the
impact of the human figure on human action recognition models. A common strategy employed
by [6,1331159,160}71] is to use the GradCam [46] visualization to qualitatively demonstrate that the
model’s attention is on the background cues rather than on the human in the video. Several of these
works [6} 159, 160, [71]] propose methods to mitigate the effects of background bias during training;
they evaluate its success both qualitatively through GradCam and quantitatively via accuracy on a
downstream action recognition task (after fine-tuning the model trained with their new background-
debiasing method). While this successfully demonstrates that their innovation is effective for model
pre-training, it does not directly measure the learned background bias. The most natural analysis is
to collect specific datasets [[7, 18}, 134} 48\ 163]], such that the trained models can have high accuracy
on the dataset if and only if they can understand the human body movement. One such example is
Mimetics [63]] with 713 hand-collected videos of 50 human action classes from Kinetics-400 [28]]
happening against irrelevant backgrounds. However, scaling up or generalizing this effort would be
extremely costly due to the need for manual annotation. In contrast, our toolkit provides quantitative
metrics for directly measuring the effect of background bias without the need for manual annotation.

3 Human-centric Analysis Toolkit

Our Human-centric Analysis Toolkit (HAT) is a general framework that can be used to measure the
amount of background bias learned by a human action recognition model. HAT takes two inputs: (1)
a trained human action recognition model and (2) a set of validation videos each annotated with the
human action class. HAT then proceeds in three steps. First, it leverages human segmentation models
to separate the human visual cues from the background visual cues in the validation videos. Second,
it generates six sets of counterfactual validation videos, including Human-Only, Background-Only,
and four sets of Action-Swap videos (see Figure [l|for examples). Finally, it evaluates the trained
model on these counterfactual videos and returns a set of ten metrics which quantify the different
effects of background bias. This methodology can expand the dataset without any need to manually
collect new data, allowing deeper analysis of human action recognition in an affordable manner.

3.1 Separating human from background

The first step of HAT is separating the visual cues corresponding directly to the human from the rest of
the cues in the video. This can be done using a pre-trained human segmentation model. Interestingly,
in our internal experiments, we find that modern image-based segmentation models [24, [72, [69]
tend to have better results than video-based segmentation models [40]. We hypothesize that this
might be due to the differences in training set size. While older CNN-based image segmentation
models [[72} 169]] suffer from low temporal consistency, missing human segments in some of the



frames, the modern transformer-based SeMask [24] appears to overcome this limitation. We use
SeMask trained on ADE20K [75] in our implementation.

One thing to note is that in the current instantiation of HAT we consider any objects that the human is
interacting to be part of the background. Thus, for example, a person performing the “drinking coffee”
action would be expected to be segmented separately from the coffee mug that they are holding
(which becomes part of the background). One way of partially avoiding this would be to use a human
bounding box instead of a segmentation mask — however, undesirable background cues would then
also be included. Different tradeoffs can be considered in future instantiations of HAT.

3.2 Generating counterfactual validation videos

The core of our toolkit is generating synthetic validation videos with different visual cues, which
allows us to investigate the effect of the different cues on human action recognition models.

The first two sets of videos are Background-Only (where only the background is shown and all human
cues are removed) and Human-Only (where only the human cues are shown). For Background-Only,
we leverage the video inpainting model [29] to remove all human pixels segmented by the model of
Section[3.1] In contrast to prior works [6l 21]] which fill the human pixels with a frame average color
value (e.g., grey), we use inpainting to generate a more realistic-looking video. For Human-Only, we
instead keep only the segmented human pixels and fill in the rest with an average color. We use the
dataset’s average color rather than the frame average, since that can reveal a lot about the background,
e.g., green for a sports field or blue for a body of water.

The other four sets of videos are more complex Action-Swap videos, which combine different visual
cues to investigate their additive effects. We synthesize these videos by combining the segmented
human figure with the background from a different video, similar to [64]]. While the Background-Only
and Human-Only video sets are both decidedly outside the model’s training data distribution, these
Action-Swap videos are arguably somewhat more realistic since they do contain a human figure
against a viable background — although in an unexpected combination. Example frames are in Figure[T]
and videos in supplementary material; more details on Action-Swap generation below.

3.2.1 Details of generating Action-Swap videos

HAT includes four different types of Action-Swap videos:

* Random: The background is swapped with a video from a different class.

* Close: The background is swapped with a video from a class with a similar background.

* Far: The background is swapped with a video from a class with a very different background.

» Same: The background is swapped with a video from the same class. This can be used as a
theoretical upper bound of Action-Swap Accuracy.

To determine the appropriate classes for Close and Far Action-Swap videos, we need to determine
how similar the backgrounds are across different classes. To do so, we first feed the frames from the
original validation videos into a Places365 [74] trained scene classification model. For each action
class, we then compute the average scene prediction vector by averaging the prediction probabilities
from all frames of all videos of this class. We can then rank all the other classes according to the L1
distance in their average scene prediction vector. We consider the class to be “close” if it’s among the
5 classes with the smallest L1 distance and “far” if it’s among the 200 largest (of 399 classes total).

For generating an Action-Swap counterfactual video, we thus:

(1) segment the human figure from the video using [24] as if creating a Human-Only video,
(2) randomly sample a background action class, depending on the particular Action-Swap set,
(3) randomly sample a video of the class from (2),

(4) generate the Background-Only version of the video from (3),

(5) paste in the human figure from (1) onto the video from (4)

One additional challenge is that we want to ensure that sufficient human and background cues are
present in every generated Action-Swap video. Thus, we only consider videos where all frames have
human masks taking up 5-50% of the pixels; when sampling background videos in step (3) we relax



the lower bound to allow videos with few human pixelsE] Therefore, unlike the Background-Only
and Human-Only sets, the Action-Swap sets have fewer video samples than the original dataset. In
Kinetics-400, we end up with 5,631 videos, whereas the original validation set has 19,877 videos. To
compensate for this, we run steps (2-5) three times for each video to generate three different videos.

3.3 Metrics

We use the generated counterfactual validation videos from Section [3.2)to evaluate the trained human
action recognition models. We measure how much of the original recognition accuracy comes from
the different cues:

Background-Only Accuracy

Background-Only Ratio (BOR) = €))

Original Accuracy
Human-Only Accuracy
Original Accuracy

Human-Only Ratio (HOR) = 2)
If a model shows high BOR, i.e., a model can get close to the original accuracy with just the
background cues, we see this as “right for the wrong reason.” In contrast, ideally models would have
high HOR since they should be able to recognize the human action without the background cues.

Finally, for Action-Swap videos recall that each counterfactual video is generated by combining
the human figure foreground from class A with the background from a different class B. We then
measure the Swap Human Accuracy (SHAcc) as the fraction of counterfactual videos the model
predicts correctly as class A, and Swap Background Error (SBErr) as the fraction of times the
model incorrectly predicts the video as the background class B. Human action recognition models
that successfully rely on human motion cues would be expected to have high SHAcc; those that are
driven primarily by background cues would be expected to have high SBErr.

4 Analyzing Action Recognition Models

We now demonstrate the capabilities of HAT by evaluating human action recognition models trained
on the popular Kinetics-400 [28] dataset. We present the results on the different types of counterfactual
videos in order (Background-Only in Section #.2] Human-Only in Section {f.3] and Action-Swap
in Section 4.4)), along with discussing our findings and drawing conclusions about different model
design decisions that appear to have contributed to the learned background bias. HAT is not limited
to Kinetics-400, and can be used on other human action recognition datasets [19,[23} 52]. Please refer
to the supplementary material for the experiments on UCF101.

4.1 Experimental Details

We test a number of different model designs, including TSN [61]], I3D [5], Non-local Neural
Networks [62], R(2+1)D [54]], TSM [36], SlowFast, and SlowOnly [15], CSN [58]], TIN [49],
TPN [68]], X3D [14], OmniSource [12], TANet [39], and TimeSformer [4]]. In total, we test 74
different trained models offered by the MMAction2 [8] implementation.

We extract the videos in 30 FPS with original resolution. For other pre-processing, such as resizing
and temporal sampling, we follow the configuration that each model specified. We list the details
of the tested models and their configuration in the supplementary material. Within the scope of the
paper, we chose not to retrain any models and rely on publicly released model weights. In drawing
conclusions we try to do an apples-to-apples comparison whenever possible; however, we are not able
to guarantee that all hyperparameter settings are directly comparable between the different models.

For image segmentation and video inpainting, we used 20 Nvidia RTX 3090 GPUs with 20 hours of
forward pass to generate synthetic videos of the full Kinetics-400 validation set. See supplementary
material for examples of the synthetic videos on Kinetics-400.

4.2 Analysis on background-only videos

“Please see visualization examples here https://github.com/princetonvisualai/HAT/blob/main/
doc/review_discussion.md#percentage-of-synthetic-pixels
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Figure 2: We plot Original Accuracy and Background-Only Ratio (BOR) of different models. TSN,
SlowFask, and SlowOnly: Among models with similar original accuracy, models trained with fewer
frames tend to show higher BOR. TSM: While the difference between two sampling strategies is not
clear from the original accuracy, it is clear when using BOR.

Table 1: Accuracy on Background-Only Videos. When the human figure is removed, the models still
tend to show high accuracy. OAcc and BAcc denote original accuracy and accuracy on Background-
Only Videos, respectively. Models using additional large-scale data are tabulated separately. We only
include the setting with the highest OAcc per backbone; full results of the 74 weights are in appendix.

Model Backbone Pre-trained OAcc (%) BAcc (%) BOR = %
Normal-scale dataset

TSM [36] MNetV2 [44]] ImageNet 69.87 48.84 0.6990
R(2+1)D [54] ResNet34 - 74.22 52.99 0.7140
TSN [61] ResNet50 ImageNet 71.75 49.02 0.6833
TIN [49] ResNet50 TSM-Kinetics400 70.89 48.32 0.6816
TSM [36] ResNet50 ImageNet 74.09 52.25 0.7053
13D 5] ResNet50 ImageNet 73.57 52.26 0.7104
NL-TSM [62] ResNet50 ImageNet 71.57 47.62 0.6654
NL-I3D [62] ResNet50 ImageNet 7491 52.84 0.7054
NL-SlowOnly [62] ResNet50 ImageNet 75.78 53.51 0.7062
CSN [58] ResNet50 - 73.22 51.97 0.7098
TPN [68] ResNet50 ImageNet 76.16 54.40 0.7143
SlowOnly [[15] ResNet50 ImageNet 75.35 53.97 0.7163
SlowFast [[15] ResNet50 - 76.61 53.46 0.6978
SlowOnly [15] ResNet101 - 76.26 54.38 0.7131
SlowFast [15]] ResNet101+50 - 76.55 55.19 0.7210
SlowFast [15] ResNet101 - 78.10 56.14 0.7189
CSN [58]] ResNet152 - 77.62 54.33 0.6999
SlowFast [13]] ResNet152+50 - 77.24 55.46 0.7179
X3D [14] X3D_S - 72.67 50.61 0.6964
X3D [14] X3D_M - 75.55 52.47 0.6944
TANet [39]] TANet ImageNet 76.10 53.71 0.7059
Large-scale dataset

TSN [61]] ResNet50 1G-1B [65]] 70.96 49.05 0.6912
Omni-TSN [12] ResNet50 1G-1B [65] 74.70 52.09 0.6973
Omni-SlowOnly [12] ResNet50 - 76.49 55.00 0.7190
CSN [58]] ResNet50 1G65M [16] 79.09 55.83 0.7059
Omni-SlowOnly [12] ResNet101 - 80.00 58.05 0.7255
CSN [58] ResNet152 IG65M [16] 82.38 58.97 0.7159
TimeSFormer [4] TimeSformer  ImageNet-21K [10] 77.97 53.88 0.6910

Accuracy and Background-Only Ratio. Table|l|tabulates the model accuracies in Background-
Only Videos. For a fair comparison, we have separated the weights that use additional large-scale
datasets [10, 12} [16} 26} 165]. Despite removing a human body from the video, thus removing any
human action, all the models still show a strong tendency to predict the removed action. This hints at
the possibility that the performance of the human action recognition models is highly dependent on
the background, rather than the action itself.

Table [T] tabulates the Background-Only Ratio. It shows that on all the tested models, we see around
70% of the accuracy is coming from the non-human regions, revealing the problematic behavior,
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Figure 3: Left: Some models (e.g., CSN, OmniSource) perform consistently well on both original
accuracy and HOR. However, there are some exceptions: for example, TSM (pink with black border)
and TSN (violet with black border) perform similarly on original accuracy but TSM significantly
outperforms TSN on HOR. Right: In random action-swap videos, all models are more likely to make
predictions consistent with the new background (Swap Background Error) as opposed to with the
human figure (Swap Human Acc).

“right for the wrong reason”, is common in human action recognition. Next, we show examples of
using Background-Only Ratio to analyze and improve the model design.

Number of Frames used to Train. The first three plots of Figure 2] visualize how the number of
video frames used during the training can worsen the Background-Only Ratio. This shows that the
models trained with fewer temporal frames tend to suffer more, with a lot of their accuracy coming
from the background. A possible explanation is that when fewer frames are given, the model is
not able to learn to understand temporal information, thus given a video with or without the human
movement, the model will perform similarly, as they never learned to understand such complex human
movement during training. Thus the accuracy would come from the temporally static background.
While exact behavior can be different per model structure, we see this to be most severe on TSN [61]]
which lacks any sophisticated temporal modeling.

Sampling Strategy. We check if the frame sampling strategy can affect the Background-Only Ratio.
The results are visualized on the last plot of Figure[2] Unlike uniform sampling, i.e., getting uniformly
distributed frames, dense sampling strategy, i.e., sampling frames with a specified stride, shows higher
BOR in general. We believe this is due to the dense sampling strategy having a smaller temporal
window so that the model was not able to learn the body movement sufficiently. Surprisingly, the
effect of the sampling strategy would have not been clear if we only used original accuracy alone (see
x-axis), showing a clear benefit of using BOR for model training analysis.

4.3 Analysis on human-only videos

Accuracy and Human-Only Ratio. We plot HOR in left of Figure 3] We tabulated the evaluation
results in the supplementary material. Given only the human action, all the models suffer significantly
with an accuracy of around 20%. Despite Human-Only modification keeping the human action intact,
the ratio is far lower than Background-Only Accuracy. By comparing BOR (with around 0.7) and
HOR (with around 0.3), we quantitatively measure the well-believed problem of the current state of
human action recognition, that most existing methods are all highly influenced by the background,
more than the foreground human action.

Thankfully, we see a strong correlation between Human-Only Ratio and the original accuracy. This
could hint that the performance improvement of the action recognition model is benefited from a
better understanding of the human body, showing the important direction of where the human action
recognition field needs to focus. Next, we show one example case where HOR can be used to evaluate
different model structures.

TSN vs TSM. While the original paper on TSM [36] claims +4% accuracy improvements over
TSN [61]] on Kinetics-400, using different training and testing conditions, MMAction2 [61] shows
that the accuracy of TSN can be achieved on par with TSM, as shown in the x-axis of left of Figure
However, using Human-Only Ratio as a metric, we show that TSM does indeed show superior
performance over TSN when a non-human region is removed. One possible explanation is that,



Table 2: Action-Swap experiment results. We average the numbers from 3 random runs. We show
standard deviation as well. See supplementary material for the full experiments.

Same Random Swap Close Far

Model Backbone Pre-trained SHAccy SHAcc + SBErr) SHAcc+ SBErr; SHAcc+ SBErr;
Normal-scale dataset

TSM [36] MNetV2 ImgNet 6224 3 139412984+ 2 2444 32644 4 11.24 135542
RQ2+1)D [54] Res34 - 645+ 3 15843303145 26.6+.327.1+ 4 13.04.135.6+1
TSN [61]] Res50 ImgNet 60242 1334128142 2344226743 1194132742
TIN [49] Res50 Kind400 58.611 18312208+ 1 27.11221.0L2 16.6+123.54 3
TSM [36] Res50 ImgNet 66.64+4 1724533745 27.84.129.24 2 1434+ 34044 2
13D [5] Res50 ImgNet 64944 17.04.22994 1 2744 326.64+5 14.84 5348+ 5
NL-TSM [62] Res50 ImgNet  58.6+.4 16.54+.221.84 2 2594.621.7+.2 15.04.325.0+1
NL-I3D [62] Res50 ImgNet  64.9+4 1624 230.0+ 4 27.04.226.64.1 1344 33564 4

NL-SlowOnly [62]] Res50 ImgNet  63.84.1 17.54.228.5+5 27.04.225.64.3 14.84.534.0+ 4

CSN [58] Res50 65.9+.3 1794231640 2824227645 1524237145
TPN [68]] Res50 ImgNet 69312 1884233245 29.0+.329.04.6 15.84.238.9+ 4
SlowOnly [[15] Res50 ImgNet 68.24+.1 17.54+232.8+ 5 28.14.428.7+.2 14.84.338.8+.4
SlowFast [[13]] Res50 - 68413 18.0+.333.71.6 28.84.229.7+ 5 15.04.240.04 2
SlowOnly [13] Res101 - 6944+ 4 1984 331.1+6 31.04128.14+.3 17.04.237.04 4
SlowFast [[15]] Res101+50 - 679+ 2 175433194 4 2841+.329.0L 0 1514137716
SlowFast [[13] Res101 - 69.64+.3 1824+ 233.646 292432944 3 15.44.140.04.5
CSN [58]] Res152 - 67.84.4 204+ 530.1+ 3 3084226343 17.6143352+ 0
SlowFast [[15]] Res152+50 - 69.3+5 20.3+.631.9+.7 31.04.1 28.5+.3 17.54+.236.94+ 2
X3D [[14] X3D_S - 60.84.3 1394326747242+ 22474+.3 11.04.132.0+ 3
X3D [[14] X3D_M - 6431+ 3 1564227341 2654425541 12.84.032.8+.6
TANet [39] TANet ImgNet 67.1+.3 18.3+.330.5+ 4 28.54+.227.0+.3 15.5+.136.6+ .4

Large-scale dataset

TSN [l61] Res50  IG-1B [65] 57.7+.5 12.0+.327.44.3 21.44+325.7+.1 10.14.332.1+ >
Omni-TSN [12] Res50  IG-1B [65] 63.9+.6 13.8+4.430.74.1 2444127942 11.84.236.846
Omni-Slow [12] Res50 - 69.5+.3 18.0+.634.44+5 29.14.229.84 2 15.04.240.84 2
CSN [58] Res50  IG65M [16] 70.44.3 22.14.532.74 .2 32.44 42894+ 4 18.84.138.74 2

TSFormer [4] TSformer Img21K [10] 65.3+.3 15.64+.328.84.1 25.84.127.4+.3 13.0+£.333.24 5
Omni-Slow [12] Res101 - 73314 22.64233.54.4 3344530.1+5 1944 23924 3
CSN [58] Res152 IGO6SM [16] 72.9+.1 252+ 43221 5 35.61.328.4+ 6 22.1+ 338.0+ 3

as TSM design makes use of temporal difference, e.g., human body movement, it can capture the
information of the human body better, as TSN cannot distinguish between human and background
using its basic temporal modeling design.

4.4 Analysis on Action-Swap videos

Accuracy on Action-Swap. Table 2]and right of Figure [3|details the performance of different models
over the Action-Swap Videos. It shows that when we randomly swap background with other videos,
all the models lean towards predicting the class of the background, rather than the foreground human
action. Swapping between classes that are similar/different shows a gain/drop in SHAcc, showing
that the output of a human action recognition model is largely dependent on the background.

Original Accuracy vs. Action-Swap Accuracy. Among models using normal-scale datasets,
SlowFast-Res101 [15] shows the best accuracy when the background is relevant to the foreground
action, on both original Kinetics accuracy (See Tab.[I)) and Same Swap (See Tab.[2). However, given
counterfactual videos that have irrelevant backgrounds, their performance drops to 18%, while the
model falsely predicts 34 percent of the validation videos as their background class, one of the highest
among the models we have tested. Such low performance on human action could be due to its reliance
on the background, as models with better Random Swap SHAcc (CSN-Res152, SlowFast-Res152+50,
etc.) show fewer background errors. Such experiment shows that models showing good accuracy in
original Kinetics-400, might not be a good human action recognition model, due to their reliance on
the background.



Table 3: Performance comparison when using a Non-local module [62]. NL-EG, NL-G, and NL-
Dot denote Non-local method using embedded Gaussian, Gaussian, and dot product, respectively.
Numbers are bolded when the Non-local module improves the metric.

Model frames OAccy SHAcct SBErr,
TSM 8 72.89 16.55 22.64

TSM + NL-EG 8 7406115 1654001 217756
TSM + NL-G 8 7261027y 175201008 2007256
TSM + NL-Dot 8 7352063 1727073 2091, 7o)
I3D 32 75.33 17.05 31.78

13D + NL-EG 32 76.90(+1_53> 16.23(70,83) 30.04(,1,73)
13D + NL-G 32 7596 065 172201017 30.94(_os3)
13D + NL-Dot 32 76.17(+0<84> 15.63(,1,43) 30'14(71,64)
SlowOnly 4 75.28 14.75 33.27
SlowOnly + NL-EG 4 7610 0.52) 1546 0.70) 30.21(_3.07)
SlowOnly 8 75.18 16.12 31.49
SlOWOHly + NL-EG 8 77'74(+2A56) 17.54(.{.1‘42) 28.48(_&01)

Table 4: Performance when using a large-scale dataset. We compare the same settings except for the
initial weight. Numbers are bolded when the large-scale dataset improves the metric.

Model Backbone  Pre-trained OAccq SHAccy SBErr,
TSN [61] ResNet50 ImageNet  72.55 11344015  28.62+40.16
TSN [61] ResNet50 1G-1B 73.39  11.96+0.35 27.45410.28

ir-CSN [58]] ResNet50 None 75.51 17.88+0.18  31.58+0.17
ir-CSN [58]] ResNet50 1G65M 81.46 22.05410.49 32.6810.17
I
I

ir-CSN [58 ResNet152 None 78.08 19.514+0.11 30.76+0.23
ir-CSN [58 ResNetl52  SportsIM  78.98 20.524021 31.144051
ir-CSN [58]] ResNet152 1G65M 83.17 25.2510.36 32.07+0.39
ip-CSN [58] ResNetl52 None 79.26 20.374+0.50  30.11+0.34
ip-CSN [58] ResNetl152 Sports1M 79.38 20.37+0.36 32.06+0.31
ip-CSN [58] ResNetl52 1G65M 83.92 25194041  32.1640.46

Use of Non-local Module.To demonstrate the evaluation of a model design using Action-Swap, we
select Non-local [62] module as an example. Table E] tabulates the evaluation results on Random
Swap. We see that the Non-local module not only improves the original accuracy, but also drops the
background error on all the tested models, showing reduced background bias. However, Non-local
module do not always improve the focus on the human body, as for I3D [5] models, we see that
SHAcc tends to drop.

Use of Large-scale Dataset for Pre-training. Table [ tabulates the performance of models where
we compare trained weight with/without additional large-scale pre-training. It shows that in all the
cases, using a large-scale dataset improves the original accuracy and Random Swap Human Accuracy.
However, as CSN shows an increase in the Background Error, this does not necessarily mean that
the model is being better at recognizing the human. We expect the model is recognizing the image
feature better when pre-trained with large-scale dataset, regardless of the scene or the person.

Comparison with Existing Methods. We compare Mimetics [63] dataset accuracy and Random
Action-Swap SHAcc by evaluating different models. Given that Mimetics dataset contains non-
synthetic counterfactual videos where the action is performed on unrelated backgrounds, i.e., non-
synthetic version of Action-Swap, we expect SHAcc to show correlations with Mimetics accuracy.
The (a) of Figure 4] visualizes the comparisons between Mimetics and SHAcc. As expected, we
see that there is a strong correlation between Mimetics accuracy and SHAcc. This shows that our
synthetic counterfactual dataset can bring similar conclusions as using non-synthetic ones.

Moreover, we compare our metric with the pointing game, a popular methodology [21} [70] of
converting GradCAM into a quantitative metric. To convert, one needs to generate an activation map
and count whether the highest activation point falls into the target segmentation or not. Here, we
choose TSN model and use the activation map of the second last ReLU of the penultimate layer and
check if the highest activation point falls into the human segmentation. In (b) of Figure 4| we plot
pointing game evaluation and random Action-Swap SHAcc of different classes. (c-d) of Figure[d]
plot each of SHAcc and pointing game with regards to human segmentation size over the image size.
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Figure 4: (a): SHAcc and Mimetics accuracy of different trained models. Our SHAcc using synthetic
videos is strongly correlated with the results on the manually-collected Mimetics videos. (b): In
contrast, our SHAcc metric is not strongly correlated with the pointing game. This is likely because
the pointing game is strongly correlated with the human size (c), whereas our metric is not (d).

We see that the pointing game seems to be heavily affected by the size of the human figure. The
pointing game evaluation have a large correlation coefficient of 0.9018, thus favoring the videos with
large human segmentation. Such correlation is less visible in our SHAcc metric that has a correlation
coefficient of 0.4115. This result shows that our metric may be a more suitable metric for evaluating
background bias of human action recognition models.

5 Conclusion

We introduce a general framework for human-centric analysis for human action recognition models.
We test Human-centric Analysis Toolkit on the Kinetics-400 dataset and evaluate the generated
dataset on a number of existing action recognition models.

Through extensive experiments over 74 trained models, we find that all the models we tested have
stronger background bias. However, we found that the background bias can be mitigated when
more frames are fed during the training, the temporal stride between frames is increased, and
temporal/spacial modeling is improved using Non-local module. Moreover, we see that the original
accuracy do not fully represent the human understanding as the accuracy cannot differentiate TSN
and TSM, large-scale dataset and Non-local module improves original accuracy but not necessarily
SHACcc. Lastly, we show that using our generated dataset can bring similar conclusions as using a
non-synthetic counterfactual dataset.

From our findings, we suggest the future researchers to (1) not rely on the accuracy as the only metric,
as original accuracy do not fully represent the performance of the model based on the human action;
(2) carefully select the temporal hyper-parameters, as temporal parameters can improve/worsen the
background bias of human action recognition models; and (3) use HAT toolkit to see if the model
design (e.g., as Non-local) can improve your model on accuracy and reduce the background bias. We
hope that this tool can be adopted by future researchers for a better human-centric analysis of human
action recognition models.

6 Discussion

Limitation As we use an off-the-shelf image semantic segmentation model and a video inpainting
model, the quality of the synthetic dataset is limited by the performance of the aforementioned models.
Ethical Concerns Our tool requires the use of image segmentation and inpainting tool to generate a
dataset, requiring computation cost for the initial setup. However, as human-centric analysis using
our tool does not require any new training, we believe our tool is more environmentally friendly than
the existing methods. Moreover, as our tool is automated, human labor for data collection is not
required. Also, as we generate a dataset from an existing dataset, we show fewer concerns about
privacy issues when a new video dataset is generated.

License MMAction?2 [8] and SeMask [24]] follow Apache License 2.0. We used author-released code
for Deep Video Inpainting [29] which did not specify any license. Kinetics-400 annotation data is
licensed under a Creative Commons Attribution 4.0 International License, but some of the video
sources do not specify any license. Please refer to the individual licenses when using our released
code.
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