Temporal Sentence Grounding with Relevance
Feedback in Videos

Jianfeng Dong!?  Xiaoman Peng! Daizong Liu** Xiaoye Qu*

12+ Meng Wang®

Xun Yang® Cuizhu Bao
!Zhejiang Gongshang University
?Zhejiang Key Laboratory of Big Data and Future E-Commerce Technology
3Peking University “Huazhong University of Science and Technology
>University of Science and Technology of China *Hefei University of Technology

Abstract

As a widely explored multi-modal task, Temporal Sentence Grounding in videos
(TSG) endeavors to retrieve a specific video segment matched with a given query
text from a video. The traditional paradigm for TSG generally assumes that rel-
evant segments always exist within a given video. However, this assumption
is restrictive and unrealistic in real-world applications where the existence of a
query-related segment is uncertain, easily resulting in erroneous grounding. Mo-
tivated by the research gap and practical application, this paper introduces a new
task, named Temporal Sentence Grounding with Relevance Feedback (TSG-RF)
in videos, which accommodates the possibility that a video may or may not in-
clude a segment related to the query. This task entails localizing precise video
segments that semantically align with the query text when such content is present,
while delivering definitive feedback on the non-existence of related segments when
absent. Moreover, we propose a novel Relation-aware Temporal Sentence Ground-
ing (RaTSG) network for addressing this challenging task. This network first
reformulates the TSG-RF task as a foreground-background detection problem by
investigating whether the query-related semantics exist in both frame and video
levels. Then, a multi-granularity relevance discriminator is exploited to produce
precise video-query relevance feedback and a relation-aware segment grounding
module is employed to selectively conduct the grounding process, dynamically
adapting to the presence or absence of query-related segments in videos. To vali-
date our RaTSG network, we reconstruct two popular TSG datasets, establishing a
rigorous benchmark for TSG-RF. Experimental results demonstrate the effective-
ness of our proposed RaTSG for the TSG-RF task. Our source code is available at
https://github.com/HuiGuanLab/RaTSG!

1 Introduction

Grounding target content described by users in videos is a fundamental capability that facilitates
various multimedia applications, such as intelligent robotic service [[1], video on demand [2], and
metaverse [3]]. Following this demand, temporal sentence grounding in videos (TSG) [4] has recently
become a research hotspot, attracting wide attention from researchers in various fields [SH9]. Despite
the significant advancements made in this field, the existing TSG task is overly idealistic. It aims to
identify segments that are semantically relevant to a given query from a given long video, assuming
that relevant segments always exist in the given video [10-H12]]. However, this setting limits the
applicability of TSG in real-world scenarios as the given video may not contain the query-related
contents, resulting mismatched or wrong grounding results. As illustrated in Figure [T(a), given a
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(b) Temporal Sentence Grounding with Relevance Feedback (TSG-RF) in videos

Figure 1: The difference between the TSG and TSG-RF tasks. TSG always predicts the start and
end boundaries of the grounded segments, even in the absence of video content relevant to the given
query text. By contrast, TSG-RF provides relevance feedback on whether exist query-related content
in the given video, and selectively predicts the start and end boundaries of the grounded segments,
according to the presence or absence of query-related segments in videos.

video and a query, existing TSG methods always predict the start and end times of segments, even
when the video lacks content relevant to the given query text. This suggests a significant gap between
the literature and the real world.

To fill the gap, this paper makes the first attempt to introduce an expanded but challenging task for
TSG, named Temporal Sentence Grounding with Relevance Feedback (TSG-RF) in videos. This new
task aims to deliver more flexible grounding results for a given query and a video. Specifically, as
illustrated in Figure[I[b), if relevant segments are present in the video, the task is to pinpoint the
video segment that is semantically relevant to the given query description. Conversely, if no relevant
segments exist, it should be explicitly conveyed to the user that "there are no target segments related
to the query in the given video, and thus no corresponding segments can be localized."

To tackle this new task, it is necessary to first review the failure reason of traditional TSG methods
[16]. We argue the essential issue of previous TSG methods is their inability to discern whether
grounding results are warranted based on the presence or absence of relevant segments. To alleviate
this issue, a straightforward approach to address the TSG-RF task involves a two-stage process:
Firstly, a relevance discriminator is trained separately to assess the relevance between the query text
and the video, providing relevant feedback. Then, query-video samples identified as relevant by the
discriminator are processed using models designed for the TSG task to predict the target segment.
Despite the structural simplicity of this integrated approach, it requires training two distinct models,
leading to the redundant consumption of computational resources, increased storage demands, and
suboptimal overall inference efficiency. Therefore, how to design an end-to-end relevance-aware
TSG-RF method is an emerging problem.

Based on the above considerations, we propose to address the TSG-RF task by developing a multi-
task learning model, i.e, the Relation-aware Temporal Sentence Grounding (RaTSG) network. This
model promotes mutual enhancement between relevance discrimination and video segment grounding
through shared knowledge, thus facilitating a unified and efficient approach to both tasks. As the
essence of relevance discrimination lies in accurately measuring the semantic partial relevance
between the query text and the video, we propose to first explore the measurement of partial semantic
relevance between text and video at two different granularities: fine-grained and coarse-grained.
Specifically, to capture fine-grained partial relevance, we adopt the concept of multiple instance
learning [17H19], treating the entire video as a bag with each frame as an instance. Following [20], a
video is considered partially related to the text if it contains at least one foreground frame; if all frames
are background and irrelevant, the video is deemed unrelated to the text. Considering the semantic
incompleteness of individual video frames, a coarse-grained perspective is also adopted to learn the
relevance between the global video-level semantics and the full query text. Then, a multi-granularity
relevance discriminator is designed to integrate the discriminative capabilities of both granularities to
predict the final relevance score. As for the selective grounding process based on the relevance score,



existing segment grounding heads always make grounding for any query-video input, even when no
relevant segments are present in the video, which is not suitable for the TSG-RF task. Therefore,
we design a relation-aware segment grounding module that takes the previously predicted relevance
information of each query-video pair as prior knowledge, and selectively conducts grounding.

We find a recent concurrent work [21]] that shares a similar motivation with us. However, it simply
treats the irrelevant video contents from an open-set perspective and implicitly utilizes cross-dataset
evaluation. Instead, we implement original in-domain data to explicitly learn the potential irrelevant
relationship. Further, existing TSG datasets can not be directly used to evaluate our proposed network
for TSG-REF, since the datasets assume that a given query text can always localize a corresponding
relevant segment from the given video. Hence, we further reconstruct two commonly used datasets,
Charades-STA [22] and ActivityNet Captions [23], by including samples without grounding results
where the video does not contain the content relevant to the query.

The main contributions of this paper are summarized as follows:

* We formalize a novel TSG task to explore more flexible segment grounding in videos,
i.e., Temporal Sentence Grounding with Relevance Feedback (TSG-RF) in videos, which
advances user-specified TSG towards more practical applications.

* Targeting the TSG-RF task, we propose a novel Relation-aware Temporal Sentence Ground-
ing (RaTSG) network, which mainly depends on a multi-granularity relevance discriminator
and a relation-aware segment grounding module. The multi-granularity relevance discrimi-
nator is devised to predict the relevance feedback based on fine-grained and coarse-grained
relevance between query text and videos, and the relation-aware segment grounding module
selectively predicts the start and end boundaries of the grounded segment.

* To facilitate the evaluation of the TSG-RF task, we reconstruct two commonly used TSG
datasets and establish appropriate performance evaluation metrics to meet the setting of
TSG-RF. Extensive experiments conducted on these reconstructed datasets demonstrate the
effectiveness of the proposed model.

2 Related Work

2.1 Temporal Sentence Grounding and Highlight Detection in Videos

The Temporal Sentence Grounding in Videos (TSG) task aims to retrieve video segments that match
user-input natural language descriptions. Recent efforts for TSG can be typically grouped into
proposal-based and proposal-free methods. Proposal-based methods [22, [24H39]] follow a two-stage
paradigm: generating proposals by dividing the video into clips and then aligning textual semantics
with visual features. Proposal-free methods [40-44] 10} [13], |45] offer an end-to-end paradigm,
predicting target segments without proposals, enhancing computational efficiency. Although efficient,
these methods struggled with segment-level feature capture. To combine strengths, Xiao et al. [43]]
used an anchor-free approach to generate candidates, then matched them with query statements using
anchor-based methods. However, the above methods cannot be directly applied to the TSG-RF task
proposed in this paper. They will still predict the start and end times of segments and output retrieved
segments, even in the absence of video content relevant to the query text.

Highlight detection task is similar to TSG, which mainly aims to identify the most interesting or
important segments within a video based on a given natural language query, focusing on segments
that are salient or engaging [46-49]. Recent works typically tackle this task using multi-modal
inputs, advanced transformers, or large-scale pretraining techniques. For instance, Moment-DETR
[46] introduce a transformer-based approach that simplifies highlight detection by treating it as
a set prediction task, eliminating traditional proposal steps. QD-DETR [48] enhances video-text
understanding with cross-attention and negative pairs to improve relevance predictions. UniVTG [49]]
unifies diverse temporal annotations and enables large-scale pretraining to improve generalization
across video grounding tasks. Notably, similar to TSG, highlight detection also assumes that every
video contains highlights. In contrast, our proposed TSG-RF task not only grounds relevant segments
but also accounts for cases where no relevant segments are present.



2.2 Cross-Modal Semantic Similarity Learning

This paper extends TSG by incorporating relevance feedback to discern the semantic connection
between text and video, introducing techniques for learning cross-modal semantic similarity [S0453]].
The prevailing approach aligns text and video semantics by learning a shared space, using a metric to
assess similarity. For instance, Miech et al. [50]] respectively represent text and video into a feature
vector, and compute their similarity via cosine similarity metric. Croitoru et al. [52] use distillation
techniques to combine knowledge from multiple pretrained models, enhancing cross-modal similarity
learning. Current mainstream methods involve learning multiple shared spaces, with relevance
computed as a weighted sum of similarities across these spaces. Li et al. [54] employe a multi-space,
multi-loss learning framework, enhancing cross-modal similarity by leveraging complementary
encoders. While these techniques assess the whole text-video similarity, TSG-RF requires learning
partial relevance, where the text relates to only some frames within the video. For non-retrievable
samples, the text is irrelevant to any frame. Therefore, the focus is on learning partial relevance.

3 The Proposed Method

3.1 Problem Definition and Overview

TSG-RF task. Given a video V' = [v1,vg,. .., v,] and a query text @ = [q1, q2, - - . , @] as inputs,
the TSG-RF task is asked to predict relevance feedback on whether exist query-related content in the
given video. Besides, if the query has relevance with the video, it is asked to conduct grounding to
identify the precise boundary indices of video segments that are semantically consistent with the query
text in the video V. Otherwise, the grounding results are ignored. Compared to the traditional TSG
task that always predicts grounding results for all videos, this TSG-RF task is more challenging as it
requires not only distinguishing the videos containing and not containing query-relevant segments but
also generating explicit non-existence signals for non-relevant videos besides the grounding results.

Overall framework. Figure [2]illustrates the framework of our proposed RaTSG network for the
TSG-REF task. Given an input video V' and a query text () encoded by the attention-based mechanisms,
the multi-granularity relevance discriminator first captures fine-grained and coarse-grained semantic-
aware relevance between the video and query text at the frame and segment levels. Subsequently, it
integrates the relevance determination capabilities of these two granularities to generate the relevance
discrimination score P, for distinguishing whether the video has a semantic-related content of the
query. Then, a relation-aware segment grounding module takes the multimodal enhanced video
features as the basic representation for generating the grounding probability distribution P; of the start
boundary and P, of the end boundary, while exploiting relevance feedback signal as additional input
to produce the separate final results of irrelevant and relevant segments. In the following sections, we
will provide detailed illustration of each component.

3.2 Preprocessing of Text and Video Features

Given an input video and a query text, we first use a pre-trained video feature extractor, such as
13D [53], to extract the video feature sequence V = [v1,vs,...,v,] € R"*% where d, is the
feature dimension. Subsequently, the query text features are extracted using a text feature extractor,
like GloVe [56]], producing word embeddings Q = [g1,¢2, .- ., qm] € R™*da_where d, represents
the feature dimension. Both the video feature sequence V" and the query text embeddings @) are
first mapped into the same dimension d through a fully connected layer respectively, resulting
inV € R and Q € R™*< To enhance the video semantic with the query contexts, we
utilize an attention mechanism to integrate word-wise query features () with the frame-wise video
feature V' for generating text-guided enhanced video feature V, [13]. To comprehend the whole
semantic of the query for latter global-level reasoning, we use a self-attention layer to perform the
intra-modal information interaction on the text feature sequences () to obtain the sentence-level
query representation hg. The final contextual multi-modal representation Vq’ can be obtained by
concatenating the frame-wise video feature V;, with sentence-level query feature hg. More details
can be found in Appendix|A.1
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Figure 2: The overall framework of our proposed RaTSG for addressing TSG-RF task. It mainly de-
pends on a multi-granularity relevance discriminator that is employed to learn query-video relevance,
and a relation-aware segment grounding module that is used to selectively perform grounding.

3.3 Multi-Granularity Relevance Discriminator

Before generating the grounding results for each query-video pair, we need to first investigate the
semantic relevance between them. To determine whether a given video contains segments relevant to
a query text, the key lies in assessing the existence of relevance between the text semantic and the
video content. Here, we delve into capturing the multi-grained query-video relevance by matching the
global sentence-level textual contexts with frame-level and video-level video semantics, respectively.

Frame-level relevance discriminator. Determining frame-level query-video relevance can be treated
as a foreground-background frame discrimination problem. Theoretically, for a video containing
query-related content, the foreground frames located within the start and end index boundaries should
exhibit strong relevance to the query text. Conversely, for a video lacking relevant segments, no
foreground frames in the video should relate to the text. To detect foreground frames from the query
text, we design a foreground frame detector that finely learns the similarity between the text and each
video frame. Specifically, we feed the fused multi-modal feature sequence V' into a fully connected
layer to predict a sequence of query-to-frame similarity scores. These scores are then mapped to
a range between 0 and 1 using the sigmoid function, resulting in the foreground frame prediction
score sequence Sy = sigmoid(FC(V)) € R™ where each score indicates the confidence of a frame
belonging to the foreground. To train the frame-level relevance discriminator, a binary cross-entropy
loss L fqme (Appendix @ is employed on each frame, which encourages the discriminator to
output large scores for foreground frames while small scores for background frames.

To obtain the relevance between text and video at a fine-grained frame-level, we apply the concept
of multiple instance learning [17H19]]. To be specific, the video is treated as a bag with video
frames as instances, categorized into foreground (positive) and background (negative) frames. Thus,
a video containing at least one foreground frame is considered a positive bag, indicating partial
relevance to the query text. In contrast, a video composed entirely of background frames is deemed a
negative bag, showing no relevance. Following [20], we utilize a max-pooling operator to transfer
the instance scores to bag scores, obtaining the fine-grained query-video discrimination score as
scoresqy = max(Sy). The low fine-grained discrimination score suggests that there are no foreground
frames in the video, while a high score indicates the presence of at least one foreground frame.

Video-level relevance discriminator. In addition to capturing the frame-level relevance, we also
attempt to perceive the semantic relevance from a more informationally complete video level. To
generate the comprehensive video-level visual representation, we need to aggregate all query-related
frame-wise features into a global one to determine its semantic similarity with the sentence contexts.
Specifically, we apply a frame-wise weighted sum operation on the text-guided enhanced video
feature V; to obtain the query-related video representation hy € R?, where we assign weights to



each frame by normalizing the previously obtained frame-level similarity scores (reflect the relative
relevance score between the text and each frame) using the softmax function. Then, we fuse the
sentence-level textual feature hg with the global video feature ., to obtain the video-level relation
signal vector g, which is then input into a fully connected layer with a sigmoid function to obtain the
final video-level similarity score score., = sigmoid(FC(g)), which globally describes the relevance
between the text and the entire video. To train the video-level relevance discriminator, a binary cross-
entropy loss Ly;qc0 (Appendix is employed on each query-video sample, which encourages
the discriminator output large scores for samples with grounding results while small scores for that
without grounding results.

Multi-level relevance prediction. The previously discussed two relevance discriminators assess the
relevance between query and video at the frame and video levels respectively, yielding fine-grained
relevance score (scoreyy) and coarse-grained relevance score (score.qy). Considering that both
granularity levels are deemed equally important for determining the relevance between text and
video, we calculate the average of both fine-grained and coarse-grained relevance scores as the final
multi-granularity relevance score P, as:

P, = (scorefqy + scorecq)/2. e

3.4 Relation-Aware Segment Grounding

After obtaining the query-video relevance score, we aim to design a flexible segment grounding
module to selectively predict the start and end boundaries of the target segments, according to the
presence or absence of query-related segments in videos. However, existing segment grounding
heads designed for TSG tasks [[13}[15} 157, [16]] are not suitable for the TSG-RF task. They always
generate high-confidence start/end boundaries of segments even when there are no relevant segments
in the video. To this end, we introduce a relation-aware segment grounding module that incorporates
previously obtained relevance feedback during the segment grounding process, which accommodates
the possibility that there may be no relevant segments within the video.

Specifically, to address situations where the video contains no relevant segments, we prepend a
special token to the general video feature sequence, representing index 0. This token serves as both
the starting and ending boundary indices for samples that do not have grounding results, indicating
that the query text does not align with any start and end boundaries in the given video. Therefore,
it is essential to introduce a contextual relevance-aware representation as the special feature token
to ensure that the segment predictor can effectively handle the absence of relevant segments in the
video. Considering the video-level relation signal vector g obtained from the video-level relevance
discriminator contains enough relevance-aware knowledge to determine whether the segment exists
or not, we utilize the video-level relation signal vector g as the special token in this segment predictor.
Consequently, the range of boundary indices for relevant segment grounding is [1, n]. Thus, as shown
in Figure 2 if a sample is determined to lack relevant segments, the ground-truth boundary index is
assigned as A = [0, 0]; if a sample is deemed to have grounding results, the ground-truth boundary
index is defined as A = [a®, a®], where 1 < a® < a® < n.

To predict the probability distributions of start and end boundaries, following [13]], we use two
unidirectional LSTMs with two feed-forward layers. The boundary prediction loss function Lyoundary
is represented as:

1
Lbou’rbda’r"y - _i(znlog(Ps) + ZY()log(Pe)), (2)
where Y and Y, are the one-hot vector representations of the ground-truth start (as) and end (a.)

boundary indices, respectively. Ps and P, indicate the predicted start and end boundary probability
distribution, respectively.

3.5 Training and Inference
In summary, the total training loss can be defined as:

Liotat = Lboundary + 5Lframe + vLyvideo, 3)

where (8 and ~y are hyperparameters used to balance the importance of the three losses.



During the inference phase, the multi-granularity relevance score P, is first compared with a threshold
m = (0.5 to determine whether query-related content exists or not in the given video:

{Has grounding result, if P, > m

. 4
No grounding result, if P, <m @

For samples judged to have grounding results, the model predicts the start (as) and end (a.) boundary
indices of the target segment. Specifically, we first compute the joint probability distribution according
to the start and the end boundary probability distributions Ps, P, generated by the relation-aware
segment grounding module. The predicted start (as) and end (G.) boundary indices are obtained by
maximizing the joint probability:

(as,a.) = arg qu(PgPe), 0<as <a. <n. 5)

As,0e

4 Evaluation

4.1 Experimental Setup

Datasets. To verify the viability of our proposed model for TSG-RF, samples without grounding
results where the video does not contain the content relevant to the query are required. Therefore,
we reconstruct two commonly used datasets, Charades-STA [22] and ActivityNet Captions [23]],
by adding samples without grounding results (Details of how we obtain them are illustrated in the
Appendix [A.5]). For each sample in both validation and test sets, we add a corresponding sample
without grounding result, resulting in 1:1 ratio of samples with and without grounding results.

The Charades-STA [22]] dataset comprises 6,672 videos, where the training set contains 12,408
video-text sample pairs, while the test set comprises 3,720 pairs. Since the original Charades-STA
does not have a validation set, we randomly halve the original test samples to form a validation
set and a test set. The ActivityNet Captions [23] dataset consists of approximately 20,000 videos
featuring diverse and open-content videos. Consistent with previous work [43]] for the TSG task, the
training set includes 37,421 video-text pairs, while the validation and test sets contain 17,505 and
17,031 samples, respectively. After reconstruction, the validation and test sets were augmented with
an equal number of samples without grounding results, doubling the total number of sample pairs to
35,010 and 34,062, respectively.

For ease of reference, we name the corresponding reconstructed datasets as Charades-RF and
ActivityNet-RF, respectively.

Performance metric. As our proposed TSG-RF task requires models to provide relevance feedback
indicating samples with or without grounding results, we use accuracy ("Acc") to measure the
ability of relevance feedback. For measuring the grounding ability, referring to the previous TSG
works [13}43]], we utilize the "R{n}@{m}" and "mloU". "R{n} @ {m}" indicates the percentage of
query texts in the top-n segments where at least one instance has an Intersection over Union (IoU)
greater than m. "mloU" represents the mean IoU across all test samples. It is worth noting that due to
the inclusion of samples with no grounding results, we redefine the calculation of Intersection over
Union (IoU) in four specific scenarios: (1) When the sample is predicted to have no grounding results
but actually has grounding results, the IoU is set to 0. (2) When both the prediction and the ground
truth indicate that the sample has no grounding results, the IoU is set to 1. (3) When the sample is
predicted to have grounding results but actually has no grounding results, the IoU is set to 0. (4)
When both the prediction and the ground truth indicate that the sample has grounding results, the IoU
is calculated as the Intersection over Union between the predicted segment and the ground truth.

Implementation details. The implementation details are presented in Appendix

4.2 Comparison with Baseline Methods

As models specifically designed for TSG-RF are non-existing, we compare our proposed model
with models targeted at conventional TSG, and adapt them to TSG-RF by adding an extra relevance
discriminator for relevance feedback. Specifically, we select six traditional TSG models, including
VSLNet [13]], SeqPAN [14], EAMAT [15], ADPN [16], UniVTG [49], QD-DETR [48] considering
their source code are released thus ensuring fair and replicable comparisons. For the relevance



Table 1: Performance comparison on Charades-RF and ActivityNet-RF dataset. Model ™" denotes
that the baseline model adapted to TRF-RF by utilizing an additional trained relevance discriminator,
using two cascaded models: a relevance discrimination model and a segment grounding model. Our
proposed RaTSG, a unified model for both relevance discrimination and segment grounding, achieves
the best performance with a very lightweight model for TRF-RF.

Method Charades-RF ActivityNet-RF Params (M)
Acc  R1@0.3 RI1@0.5 R1@0.7 mloU | Acc R1@0.3 R1@0.5 R1@0.7 mloU
VSLNet 50.00  33.74 27.31 1772 24.69 | 50.00  31.06 21.88 1282 2227 1.16
UniVTG 50.00  35.81 30.03 16.67 2496 | 50.00  30.89 21.67 1129  21.35 41.35
QD-DETR 50.00  35.16 29.46 19.27 2531 | 50.00  26.50 19.15 11.07 18.99 7.07
ADPN 50.00  35.62 28.44 19.87 2598 | 50.00  30.72 20.74 1238 22.05 227
SeqPAN 50.00  35.35 29.57 20.51 26.14 | 50.00  31.85 22.65 1334 22.86 1.19
EAMAT 50.00 37.12 30.59 20.86  27.27 | 50.00  31.10 20.80 12.07  22.07 94.12
VSLNet™ 71.94  61.40 56.77 49.65  54.67 | 81.60  66.15 58.37 50.64  58.65 5.34

UniVTG++ 71.94  62.58 58.55 48.79  54.65 | 81.60  66.15 58.36 49.46  58.00 45.53
QD-DETR** | 71.94  62.18 58.20 5096  55.13 | 81.60  62.43 56.13 49.27 55.97 11.25

ADPN*++ 71.94  62.26 57.23 51.16 5541 | 81.60  65.85 57.41 50.28 58.47 6.45
SeqPANTT 71.94  62.12 58.01 51.61 55.49 | 81.60  66.77 58.98 5111 59.11 5.37
EAMAT*+ 71.94  63.55 59.17 5196 5623 | 81.60  66.13 57.36 49.93 58.45 98.30
RaTSG (ours) | 76.85  68.17 61.91 54.19 5993 | 84.27  69.02 60.68 52.88  61.15 1.27

discriminator, we utilize a binary classification model which is trained separately to assess the
relevance between the query text and the video (For the details of the relevance discriminator, please
refer to Appendix [B.T). Then, query-video samples identified as relevant by the discriminator are
processed using models designed for the TSG task to predict the target segment. For ease of reference,
we denote the corresponding models associated with an extra relevance discriminator as VSLNet™ ™,
SeqPANTT, EAMAT ™+, ADPNTT, UniVTG™™, and QD-DETR* respectively.

Table [I] summarizes the performance comparison and model parameters on the Charades-RF and
ActivityNet-RF dataset. It is worth noting that traditional TSG models lack the ability to discriminate
relevance. These models assume all samples have grounding results, making them incapable of
correctly handling samples without grounding results. Hence, this often leads to mismatched
grounding prediction, resulting in low recall and mIoU performance for TSG-RF. Additionally, since
the test set has an equal ratio (1:1) of samples with and without grounding results, the relevance
prediction accuracy of these models is only 50%. Additionally, the enhanced versions of these
baseline models, namely VSLNet™ ™, SegPANTT, EAMAT ™, ADPN™T, UniVTG™™, and QD-
DETR*, include a relevance discriminator, which results in consistent performance gains compared
to their counterparts without the discriminator. However, these enhanced models require separate
and independent training of the relevance discriminator and video grounding components, leading to
redundant use of computational resources and increased model size. In contrast, our proposed RaTSG
model provides a more lightweight and comprehensive solution by integrating the discrimination and
grounding modules, achieving the best performance.

4.3 Ablation Studies

4.3.1 Effectiveness of the Multi-Granularity Relevance Discriminator

To validate the effectiveness of the multi-granularity relevance discriminator, we compare it with
degraded models that use only coarse-grained or fine-grained discrimination scores. As shown in
Table 2] single-granularity models fail to perceive the various degrees of partial relevance between
text and video, therefore performing worse than the multi-granularity one.

4.3.2 Effectiveness of the Relation-aware Segment Grounding

To assess the viability of the relation-aware segment grounding module, we conduct ablations on
it by replacing the relation signal vector g with a randomly initialized one. As shown in Table [3|
the relation-aware segment grounding consistently outperforms the random counterpart. The result
demonstrates the benefit of using previously predicted relevance information of each query-video pair
as prior knowledge for TSG-RF. Additionally, in order to further explore how relation features are



Table 2: The effectiveness of the multi-
granularity discriminator on Charades-RF.

Granularity ' R1@03 RI@0S5 RI@07 mloU

coarse fine

X v 7535 67.34 60.91 53.84 59.27
v X 7573 67.63 60.48 53.25 59.18
v v 7685 68.17 61.91 54.19 59.93

Table 3: The effectiveness of the relation-

aware segment grounding on Charades-RF. Figure 3: t-SNE visualization of relation sig-

nal vectors of all test samples on Charades-
RF, where red dots represent relevant samples
X 7640 66.18  59.62 5196 5782 apnd blue points represent irrelevant samples
v 7685 6817 6191 5419 993 of queries and videos.

Relation-aware  Acc R1@0.3 R1@0.5 R1@0.7 mloU

Table 4: The performance comparison of rel- Table 5: The performance comparison of seg-

evance discrimination with and without the ment grounding with and without the rele-
segment grounding module on Charades-RF. vance discriminator on Charades-STA.

Segment Grounding  Acc Discriminator R1@0.3 R1@0.5 RI1@0.7 mloU

x 75.59 X 6747 5462 3543 4937

v 76.85 v 7419 5661 3747  53.02

Table 6: Our proposed multi-granularity relevance discriminator and relation-aware segment ground-
ing enhance can be jointly used to enhance traditional TSG methods for TSG-RF tasks.

Method Acc  R1@03 RI@05 R1@0.7 mloU
EAMAT 50.00 37.12 30.59 20.86 27.27
EAMAT*+ 71.94 63.55 59.17 51.96 56.23

EAMAT+Ours  76.37 67.47 62.02 54.83 59.58

learned, we visualize the relation signal feature g by t-SNE [58] in Figure |3} It is demonstrated that
dots with the same color are relatively more clustered than those with different colors. Overall, the
result shows the good discrimination ability of the learned relation feature in our model for relevant
and irrelevant samples.

4.3.3 Mutual Enhancement between Relevance Discrimination and Segment Grounding

Our proposed RaTSG is a unified model for both relevance discrimination and segment grounding
tasks, trained in a multi-task learning manner. To explore whether the two tasks mutually enhance
each other, we evaluate the counterparts with the corresponding segment grounding module or
relevance discriminator removed. As shown in Table 4] removing the segment grounding module
influences the performance of relevance discrimination. Similarly, as shown in Table[5] removing
the relevance discriminator degrades the performance of segment grounding. The results allow us to
conclude that the relevance discriminator and the segment grounding in our model mutually enhance
each other, which also demonstrates the effectiveness of our unified dual-branch framework design.

4.3.4 Enhancing traditional TSG methods to work for TSG-RF tasks.

To further investigate the scalability of our proposed multi-granularity relevance discriminator and
relation-aware segment grounding modules, we also conduct experiments to explore whether they
can be adapted for traditional TSG methods to enable them to work for the TSG-RF task. Specifically,
we integrate these components into an existing traditional TSG model, EAMAT, for comparison. As
shown in Table[6l EAMAT with our devised multi-granularity relevance discriminator and relation-
aware segment grounding outperforms the original EAMAT and the enhanced EAMAT ™ with an
extra relevance discriminator. These results demonstrate the adaptability and effectiveness of our
proposed modules for enhancing traditional TSG methods to work for the TSG-RF task.



4.4 Analysis of Grounding Examples

Figure@visualizes grounding examples obtained by our proposed RaTSG and VSLNet™ . The results
show that our RaTSG effectively handles samples with and without grounding results. For the first
sample with grounding results, RaTSG localizes video segments more accurately than VSLNet™ .
Furthermore, foreground frame prediction scores obtained by RaTSG are more reasonable. We
attribute it to the fact that RaTSG is trained using samples without grounding results, allowing the
model to learn the similarity characteristics between background frames and the text, thus enhancing
its ability to distinguish foreground and background frames in videos.

For the second sample with-
out grounding results in Figure
[l RaTSG consistently predicts
low foreground frame scores,

Query Text: The man put the pillow down.
g &

Ground Truth  5.20sF
Relevance feedback: Has relevance

ith grounding results)

M M 2 L - -
providing accurate relevance o .4-7" Ground T provaity diibion of en boundany.
feedback. BCSldeS, the relation_ @ 7 st Truth S B —-- 5 (foreground frame prediction scores)
aware segment grounding mod- < s

. - .1 < T = = —— — —

ule assigns a high probability 2 | Ground 7T [ iy derion o by
of the special index of 0, in- 2 N Truth 1T L s Goreground fameprdicon scoes

. . . + — —
dicating no grounding result. ®=—=-——————=—====—+ SITL16s
In contrast, VSLNet** pro- ‘Query Text: A man is sitting on a chair.
vides incorrect relevance feed-
baCk fOr thlS Sample’ ShOWIHg Ground Truth There is no relevant video segment (without grounding results)
hlgh foreground frame predic_ 2 Relevance feedback: Lacks relevance

. . . . j, \ —— Ps (probability distribution of start boundary)
tion scores and resultlng in in- ® \ ~~- P (probability distribution of end boundary)

R 6 \\ S —-- S (foreground frame prediction scores)

correct groundlng Segments‘ \5; 0 == There 15 1o relevant video segment

. . = Relevance feei:lback: Has relevance
In Figure 5} we illustrate two & |~ o e e
bad examples to dlSCllSS the g A R — - s (foreground frame prediction scores)

T a4l S o

limitations of our model. In oo == ST
the first example, our model in-
correctly judges the relevance
feedback due to the lack of au-
dio cues which are crucial for
identifying the action of sneez-

Figure 4: Visualization of grounding examples obtained by our
proposed RaTSG and the VSLNet* ™ baseline.

Query Text: A person starts sneezing.

Ground Truth 05— — — — — — — — — —— — — — S|

ing. In the second example,
our model misinterprets the
temporal sequence of actions,
mistaking the closing action
for the opening action. These

Relevance feedback: Lacks relevance

—— P (probabiliy disribution o start boundary)
~ =P (end boundary probability distrbution) Ground Truth
— - 5 (foreground frame prediction scores) . -

(s1n0) 9s18Y

o There is no relevant video segment

Query Text: A person opening a laptop.

examples demonstrate that our
proposed model struggles with
handling audio-related actions
and temporal-sensitive content.
However, such limitation can
be alleviated by integrating au-
dio features and temporal mod-
eling in the video representa-
tion moudel.

Ground Truth There is no rel t Vi jment

Relevance feedback: Has relevance

st N e —— P, (start boundary probability distribution)
=== Pe (end boundary probability distribution)
— -+ Sy (foreground frame prediction scores)

5.0 ———————— >]13.81s

(s1n0) 95184

b

Figure 5: Visualization of two bad examples obtained by our pro-
posed RaTSG.

5 Conclusions

This paper breaks through the bottleneck of existing TSG works that can not handle the cases where
query-related segments do not exist, by introducing a more realistic and natural task, i.e., TSG-RF. By
incorporating the multi-granularity relevance discriminator into the segment grounding model with
further mutual enhancement designs, our proposed method can effectively and efficiently localize
precise video segments that closely match the query text for videos containing relevant content, while
providing clear feedback indicating the absence of related segments for videos not containing relevant
content. Besides, two constructed datasets for TSG-RF are contributed.
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A More Technical Details

A.1 Video and Text Encoders

Considering the need for intra-modal interaction among features, this paper implements a single layer of
the simplest Transformer encoder to achieve self-attention. Since the Transformer primarily models global
information interactions and does not capture local region information within the feature sequence, four
convolutional layers are added prior to the multi-head attention mechanism in the Transformer to enhance the
capability for local area interaction.

A.1.1 Self-Attention Mechanism

To capture the complete semantic information and obtain sentence-level features of the query text, a self-attention
mechanism is employed to aggregate the word embedding sequence. Specifically, the sentence-level feature hg
of the query text can be calculated with the word-wise query feature @ as follows:

ho = QT - softmax(QW), (0)

where hg € R, and W € R**! is a learnable weight matrix that represents the importance of each word in the
sentence.

A.1.2 Text-Guided Video Feature Enhancement

To enhance the video semantic with the query contexts, we employ a query-video bidirectional attention
mechanism [59, [60]], which allows for simultaneous focus on the interaction between text words and video
frames. The query-video bidirectional attention mechanism calculates attention scores from two directions: from
video to text and from text to video. Both directions of attention matrices are derived from a common similarity
matrix S € R™*™, which can be expressed as:

sij = Vi, Qj), ©)
where s;; € R represents the similarity score between the i-th video feature vector V; and the j-th word vector
Q;. The function «(-) is a trilinear function [61]] used to measure the similarity between the two input vectors
Vi and Q;:

a(v, q) = Wolv; g0 © g], ®)
where W) represents a trainable weight matrix, and ® denotes element-wise multiplication. Normaliz-
ing the rows of the common similarity matrix S yields the attention weights from video to text A"?7 =
[a¥?9,ay??, ..., a%?7 € R™*™. Similarly, normalizing the columns of S gives the attention weights from
text to video A% = [a?" a2, ..., ad?’] € R™*™. Subsequently, using the attention weights A¥2%, the
weighted text feature sequence @ is used to construct the video feature sequence C¥ = A2 . Q € R™*<.
Similarly, utilizing the attention weights A92Y, the text feature sequence reconstructed from video features
C7?Y = A7 ./ ¢ R™*4 is obtained. The reconstructed text feature sequence C'" is then mapped back
into the video encoding space using the attention weights A”2?, producing a text-aware video feature sequence
C? = Av%7. (9% ¢ R™*<, Finally, through a simple feedforward network, the original video feature sequence
V, the video feature sequence reconstructed from text features C', and the text-aware video feature sequence
C' are fused to obtain the text-guided enhanced video feature Vj:

V, = FEN([V;C";V 0 C*; V 6 C9)), ©)

where V, € R™*%; FEN(-) denotes the feedforward network; © indicates element-wise multiplication.

A.1.3 Multi-Modal Feature Fusion

Although the bidirectional attention mechanism facilitates cross-modal interaction and information fusion
between query text and video, this process primarily enables local interaction between individual words and
video frames. Therefore, we further integrate sentence-level features k¢, which contain complete semantic
information, with the text-guided enhanced video feature V, to generate the final contextual multi-modal
representation V. This is achieved through the feature concatenation operation:

Vq/:FC([hQ;’l}ql,hQ;qu,‘..7hQ;an])7 (10)

where [; ] denotes concatenation along the feature dimension, and FC(-) represents a fully connected layer that
maps the features to a d-dimensional space.

A.2 Supervision of the Frame-level Relevance Discriminator

Considering that the similarity score between text and each video frame depends on the fully connected layer’s
understanding of foreground and background frames, this paper introduces a binary cross-entropy 10ss L fame to
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supervise the learning of the rrame-level relevance discriminator. This supervision ensures that the discriminator
correctly learns the differences between foreground frames and background frames. The loss function is defined
as follows:

1 n
Lyrame = n Z (yfi IOg(Sfi) + (1 - yfi) IOg(l - Sfi)) ) (11
i=1

where yy, is the i-th element of the binary sequence Y7, and sy, is the i-th element of the foreground frame
prediction score sequence Sy, with n being the length of sequence. The binary sequence Y} is constructed as
follows: for a video feature sequence of length n, as and a. denote the start and end boundary indices of the
target segment, respectively. Frames within these indices are labeled as 1 (indicating foreground frames), while
those outside are labeled as O (indicating background frames).

A.3 Supervision of the Video-level Relevance Discriminator

The sentence-level query feature h¢ and the query-related video representation hy are concatenated to produce a
video-level relation signal vector g € R?, represented as g = FC([hq; hv]). To train the video-level relevance
discriminator and ensure that the video-level relation signal vector accurately learns the semantic relationship
between the query text and video segments, this paper introduces a video-level relation constraint L. ;deo.
Specifically, the video-level relation signal vector g is input into a fully connected layer with a sigmoid function
to obtain the video-level similarity score score., = sigmoid(FC(g)), which globally describes the relevance
between the text and the video. The video-level relation constraint is calculated as:

Lyideo = —(yn log(scorecq) + (1 — yp) log(1 — scoreey)), (12)

where yy, is the ground truth label indicating whether a sample has retrievable results or not.

A.4 Relation-Aware Segment Predictor

Considering the video-level relation signal vector g obtained from the video-level relevance discriminator
contains enough relevance-aware knowledge to determine whether the segment exists or not, we utilize the video-
level relation signal vector g as the special token in this segment predictor. Specifically, using the foreground
frame prediction score sequence Sy produced by the Frame-level relevance discriminator, the foreground frames
in the text-guided enhanced video feature V; are enhanced, while the background features unrelated to the query
text are diminished. The foreground-enhanced video feature sequence Vq is calculated as:

Vo=V, 08y, (13)

where ® denotes element-wise multiplication. Subsequently, the video-level relation signal vector g is concate-
nated to the front of the foreground-enhanced video feature sequence V,, forming the input feature sequence

V= lg; f/q} for the relation-aware segment predictor, in dimension R(™"+1)*?_ This sequence is then fed into a
stacked two-layer LSTM network. The first layer of the LSTM generates the time-sequential feature sequence for

predicting the start boundary H® = [k, hS, ..., h3] in R4
generate the end boundary feature sequence H® = [h§, hS, ..., hS] € RMTYUX4 45 follows:

, and the second layer processes this output to

hi = LSTM (v, , hi_1),

14
hS = LSTMa(hS, he_ ), (14)

where hi/ ¢ denotes the ¢-th time-sequential feature vector in H s/e and vJ, represents the ¢-th video feature

vector in V7. LSTM. indicates the corresponding layer of the LSTM network. The start and end time-sequential
feature sequences H® and H*® are each fed into their respective feedforward networks to obtain the boundary
probability distributions P; /. € R™HD:

P, = softmax(F F Ny ([H?; V),

15
P, = softmax(FF Nena([H®; V])), (4

where P represents the start boundary probability distribution, and P. the end boundary probability distribution.
The boundary prediction loss function Lyoundary 1 represented as:

1
Lboundary = *g(ZYleg(Ps) +Z}/elog(Pe)), (16)
where Y and Y. are the one-hot vector representations of the ground-truth start (as) and end (a.) bound-

ary indices, respectively. Ps and P. indicate the predicted start and end boundary probability distribution,
respectively.
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— Sample pair with retrieval results === Sample pair without retrieval results

Figure 6: The organizational structure of reconstructed dataset.

Table 7: The detailed statistics of the different datasets.

Dataset Domain | #Videos #Anno. #Anno-RF.
Charades-STA [22] Indoor 6,672 12,408/1,860/1,860 -
ActivityNet Captions [23] Open 19,207 | 37,421/17,505/17,031 -
Charades-RF Indoor 6,672 12,408/3,720/3,720 -/1,860/1,860
ActivityNet-RF Open 19,207 | 37,421/35,010/34,062 | -/17,505/17,031

! #Anno. denotes the number of video-text annotation pairs in different sets (train/val/test).
#Anno-RF. denotes the number of video-text annotation pairs without retrieval results in different sets
(train/val/test).

® The original Charades-STA dataset lacked a validation set, so we randomly split the test set into two
equal parts to create a validation set and a new test set

A.5 Dataset Reconstruction

Due to the absence of datasets specifically created for the TSG-RF task, this paper has reconstructed the
validation and test sets of two widely used datasets in the TSG domain: Charades-STA [22]] and ActivityNet
Captions [23],, to construct a testing environment for this task. In the original datasets, a single video corresponds
to multiple query texts, as illustrated in Figure[f] where video V1 corresponds to m query texts with grounding
results [S11, 512, . . ., S1m]. For each text with grounding results, a corresponding sample without grounding
results (i.e., the video does not contain segments relevant to the query text) is constructed.

Specifically, the reconstruction process is exemplified by the sample pair (S11, V1). By randomly selecting
another video V,, from the video library to pair with the query text Sq1, a sample pair without grounding
results (S11, V4 ) is formed. To ensure the quality of reconstructed sample pairs and remove low-quality ones,
this paper utilizes Large Language Models [62H64] for their deep and precise text modeling capabilities to
achieve sample selection. Specifically, the BERT model [62]] is used to extract features from the query text.
Subsequently, the cosine similarity between the query text S11 and the query texts with grounding results from
the randomly selected video [Sn1, . .., Snm] is calculated. If the maximum similarity is less than a threshold
value (empirically set to 0.2), the reconstructed sample pair without grounding results (S11, V5,) is added to the
dataset. Otherwise, a new video is randomly selected until the condition is met. This methodology ensures the
relevance and integrity of the dataset for accurately simulating the TSG-RF task.

As shown in Table[7} we name the corresponding reconstructed datasets as Charades-RF and ActivityNet-RF for
the TSG-REF task. In these reconstructed datasets, we added an equal number of samples without grounding
results to the validation and test sets. This augmentation ensures that the datasets more accurately reflect
real-world scenarios where not all query texts correspond to relevant video segments.

A.6 Implementation Details

Each word in the query text is initialized using GloVe300d, which remains frozen during training. Visual features
of videos are extracted using a pre-trained I3D network. The maximum video feature sequence length is set to
128. Sequences longer than this are uniformly downsampled to 128, while shorter sequences are zero-padded to
the same length. During training, since the training set was not reconstructed and only contains samples with
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grounding results, each batch includes randomly selected videos paired with the original query text to create
samples without grounding results. In Equation EL we empirically set 5 = 6 and v = 6 to balance all loss
functions at the start of training. For the threshold m in Equation[d] the value providing the highest accuracy on
the validation set is chosen: 0.5 for Charades-RF and 0.3 for ActivityNet-RF. All experiments are conducted
on a workstation with an NVIDIA GeForce RTX 3090Ti GPU and 256G RAM. Training our proposed model
on the Charades-RF dataset takes approximately 2 hours, while training it on the ActivityNet-RF dataset takes
approximately 5 hours.

B More Experiments

B.1 Implement of the Enhanced Baseline with Relevance Feedback

Since there are currently no models specifically designed for the TSG-RF task, we select representative open-
source models developed for the TSG task in recent years as baseline models to ensure fair and replicable
comparisons, including VSLNet [13], SeqPAN [14], EAMAT [15], ADPN [16]], UniVTG [49], QD-DETR
[48]. While these baseline models demonstrate strong video segment grounding capabilities, they lack the
ability to discern the relevance between the video and text in input samples, and thus assume that all samples
contain retrievable results. Considering that directly training an additional relevance determination model is
the most straightforward and efficient strategy to enable the above baseline models to discern relevance, this
paper constructs a simple relevance determination model. By integrating this independently trained relevance
determination model with the aforementioned baseline models, we compensate for their lack of relevance
discernment capability, forming enhanced baseline models: VSLNet™, SeqPANT, EAMATt+, ADPNT,
UniVTG™™, and QD-DETR . Figure illustrates the architecture of the simple relevance discrimination
model. Specifically, the query text and video are processed through separate feature encoders. The encoded
features of text and video are then concatenated along the sequence length dimension, with a CLS token added at
the beginning to aid in learning the relevance between text and video. This concatenated sequence is subsequently
input into a Transformer encoder to facilitate the interaction of information between feature vectors. Finally, the
CLS token from the input sequence is processed through a fully connected layer to obtain the case discrimination
score P,.
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Figure 7: The architecture of the simple relevance discrimination Model.

B.2 Grouped Performance Comparison with Baseline Methods

To further explore model performance under unbalanced data conditions, the number of samples without
grounding results in the test set was randomly decreased in proportion, yielding six groups of test sets with ratios
of non-grounding to retrieval samples at 0, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively. Observing Figure 8] from
left to right, when the proportion of non-grounding samples is 0, the test set contains only grounding-result
samples, testing all models on their TSG task performance. Starting from a 0.2 ratio, all models are assessed
on their TSG-RF task performance. As the proportion of non-grounding samples in the test set increases,
although there is a general improvement in the mIoU of all models, the increase exhibited by RaTSG is the most
significant. This is attributed to RaTSG’s multi-scale learning of the semantic relationships between text and
video, effectively integrating relevance feedback during the segment grounding process. Particularly in test sets
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with a high proportion of non-grounding samples, RaTSG demonstrates superior performance compared to other
models, showcasing its exceptional ability in case discrimination and fine-grained grounding.

651 VSLNet** EAMAT*+ QD — DETR*+ RaTSG(ours)
601 SeqPAN™** ADPN** UniviG*+

mloU
(9]
o

0.0 0.2 0.4 0.6 0.8 1.0
Sample quantity ratios

Figure 8: Performance Comparison across different models at varying sample quantity ratios.

B.3 Performance Comparison in the Context of TSG Task

As illustrated in Table[8] we present a performance comparison of various models on the Charades-STA and
ActivityNet Captions datasets for the TSG task. While our model, RaTSG, does not outperform all other models
in every metric, it remains highly competitive. On the Charades-STA dataset, RaTSG achieves an R1@0.3 of
74.19%, which is very close to the top-performing EAMAT at 74.25%. For R1@0.5, RaTSG scores 56.61%,
just slightly behind SeqPAN’s 59.14%. In terms of mloU, RaTSG records 53.02%, comparable to ADPN’s
51.96%. Similarly, on the ActivityNet Captions dataset, RaTSG attains an R1@0.3 of 61.46%, nearly matching
ADPN’s 61.46% and EAMAT’s 63.20%. For R1@0.5, RaTSG scores 42.36%, close to SeqPAN’s 45.31%. In
terms of mIoU, RaTSG achieves 43.72%, demonstrating its competitiveness alongside other models. Although
RaTSG is not consistently the highest performer, it demonstrates competitive results across various metrics. It is
important to note that our model is specifically designed for the TSG-RF task, which includes the challenge of
handling samples without grounding results. This specialized focus may slightly affect its performance on the
standard TSG task, yet RaTSG remains highly competitive. This demonstrates the robustness and versatility of
our approach, indicating its strong potential in more complex real-world scenarios.

Table 8: Comparison on Charades-STA and ActivityNet Captions in the context of TSG task.

Method Charades-STA ActivityNet Captions
R1@0.3 R1@0.5 RI1@0.7 mloU | R1@0.3 RI@0.5 RI1@0.7 mloU
VSLNet 67.47 54.62 3543 49.37 62.12 43.76 25.64 4454
SeqPAN 70.70 59.14 41.02 5232 | 63.71 45.31 26.69 4573
EAMAT 74.25 61.18 4172 54.53 62.20 41.60 24.14  44.15
ADPN 71.24 56.88 39.73  51.96 | 61.46 41.49 24778 44.12
QD-DETR 70.32 58.92 3854  50.62 | 62.20 41.60 24.14  44.15
UniVTG 71.62 60.06 3334 4992 | 61.78 43.34 2259 4271
RaTSG(ours) | 74.19 56.61 3747  53.02 | 61.46 42.36 2474 4372

B.4 Comparison to CLIP as relevance discriminator

As shown in Table[9] we also try to compare our designed relevance discriminator with large-scale pre-trained
vision-language models due to their strong cross-modal representation capabilities. To implement the comparison,
we choose the CLIP model, a large-scale pre-trained vision-language model, to assess the relevance between
the query text and video. Specifically, we first utilize the CLIP to measure the cosine similarity score between
the query text and each frame of a video, and then aggregate the similarity scores over all frames to obtain the
final relevance. In particular, we use two aggregate methods implemented by the CLIP model: (1) averaging all
scores (CLIP-Avg) and (2) averaging on top-5 scores (CLIP-Top5). We incorporate CLIP with the SOTA method
EAMAT to achieve the joint relevance feedback and grounding framework. The experimental results on the
Charades-RF dataset are summarized in Table[9] We can find that CLIP-based EAMAT models achieve relatively
lower performance, demonstrating that the CLIP model has a poor ability to predict relevance. We attribute it
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to the fact that the CLIP model is simply pre-trained on common scenarios without additional fine-tuning on
specific downstream task, thus severely suffering from domain shift issues on the target dataset.

Table 9: Comparison of relevance discrimination ability with CLIP on Charades-RF dataset.
Method Acc R1@03 R1@05 R1@0.7 mloU
EAMAT T+ 71.94  63.55 59.17 5196  56.23
EAMATCLIP—Avs 6070  54.92 51.96 47.10  50.21

EAMATCEIP=Top5 6352 5575 52.47 4694  50.25
RaTSG(Ours) 76.85  68.17 61.91 5419  59.93
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction of this paper accurately reflect its contributions and scope.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

 The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the paper discusses the limitations of the work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

¢ The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:
* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the necessary information to reproduce the main experimen-
tal results, ensuring that the main claims and conclusions can be independently verified.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
Justification: The code and data have been submitted as supplementary material in ZIP format.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: As mentioned in Section[4.1] this paper provides comprehensive details on the training
and test settings, including data splits, hyperparameters.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

¢ The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer:

Justification: The paper does not provide error bars, confidence intervals, or statistical significance
tests for the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

 Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of Normality of errors is
not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: In Appendix [A.6] we provide the type of compute workers (GPUs) and the size of
memory. Additionally, we provide the training time of our proposed model on each dataset.

Guidelines:

¢ The answer NA means that the paper does not include experiments.
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9.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research fully adheres to the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: As mentioned in Section[T} the TSG-RF task proposed in this paper improves upon the
limitations of existing TSG tasks, making it more suitable for real-world applications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

« Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

¢ The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

24


https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

15.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]
Justification: paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

¢ The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?
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Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

¢ We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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