
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Disentangled Condensation for Large-scale Graphs
Anonymous Author(s)*

Abstract
Graph condensation has emerged as an intriguing technique to

save the expensive training costs of Graph Neural Networks (GNNs)
by substituting a condensed small graph with the original graph.
Despite the promising results achieved, previous methods usually
employ an entangled paradigm of redundant parameters (nodes,
edges, GNNs), which incurs complex joint optimization during
condensation. This paradigm has considerably impeded the scal-
ability of graph condensation, making it challenging to condense
extremely large-scale graphs and generate high-fidelity condensed
graphs. Therefore, we propose to disentangle the condensation pro-
cess into a two-stage GNN-free paradigm, independently condensing
nodes and generating edges while eliminating the need to optimize
GNNs at the same time. The node condensation module avoids the
complexity of GNNs by focusing on node feature alignment with
anchors of the original graph, while the edge translation module
constructs the edges of the condensed nodes by transferring the orig-
inal structure knowledge with neighborhood anchors. This simple
yet effective approach achieves at least 10 times faster than state-of-
the-art methods with comparable accuracy on medium-scale graphs.
Moreover, the proposed DisCo can successfully scale up to the Ogbn-
papers100M graph containing over 100 million nodes with flexible
reduction rates and improves performance on the second-largest
Ogbn-products dataset by over 5%. Extensive downstream tasks
and ablation study on five common datasets further demonstrate the
effectiveness of the proposed DisCo framework. The source code
will be made publicly available.

CCS Concepts
• Computing methodologies → Artificial intelligence.

Keywords
Graph Condensation, Large-scale Graphs, Graph Neural Networks

ACM Reference Format:
Anonymous Author(s). 2025. Disentangled Condensation for Large-scale
Graphs. In Proceedings of Apirl 28–May 2, 2025 (WWW ’25). ACM, New
York, NY, USA, 12 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Graph Neural Networks (GNNs) have emerged as a highly effec-

tive solution for modeling the non-Euclidean graph data in diverse
domains such as the World Wide Web [25, 6], social networks [1, 14,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’25, Sydney, Australia,
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

30], recommender systems [37, 27], fraud detection [3, 40, 19], mol-
ecule representations [33, 36, 38] and so on [21, 31, 47]. Despite the
remarkable accomplishments of GNNs in addressing graph-related
problems, they encounter substantial challenges when confronted
with the ever-expanding size of real-world data. For instance, web-
scale social platforms [4, 10] and e-commerce platforms [37, 46]
have grown to encompass millions of nodes and billions of edges,
posing prohibitively expensive costs of directly training on these
large-scale graphs. The burdensome computation costs not only hin-
der the dedicated performance tuning of existing GNNs, but also
constrain the exploration of other promising directions of GNNs
like Neural Architecture Search (NAS) [8, 24, 20] and Knowledge
Amalgamation [13]. As a result, there is a notable focus on reduc-
ing the computational expenses related to training GNNs on these
large-scale graphs.

To address this issue, graph condensation has emerged as a
promising approach to generating a compact yet informative small
graph for GNNs training, significantly reducing computational costs
while achieving comparable performance to training on the original
graph. The state-of-the-art graph condensation methods mainly
fall into three categories: gradient matching [7, 11, 12, 35], dis-
tribution matching [15, 16, 32], and trajectory matching [45, 41].
Gradient-matching methods aim to simulate the dynamic gradient
behaviors exhibited by GNNs during the training process. In contrast,
distribution-matching methods propose aligning the distribution of
both graphs. Despite their potential, both of these methods face
the challenge of a complex joint optimization task involving nodes,
edges and GNNs, which leads to huge computation complexity.
More recently, trajectory-matching methods have emerged, which
assess the similarity of training trajectories of GNNs in a graph-free
manner. However, the applicability of various GNNs on a graph-free
condensed graph still poses significant computational complexity.
Additionally, trajectory-based methods require multiple teacher tra-
jectories on the original graph, which can be very demanding and
burdensome, especially for large-scale graphs.

From the above analysis, we can notice that existing methods in-
herently adopt an entangled optimization paradigm, where redundant
parameters (nodes, edges, and GNNs) are optimized simultaneously.
The computation complexity of edges and GNNs causes two serious
scalability problems: Firstly, obtaining a condensed graph for large-
scale graphs with billions of edges is impractical, which reduces
the effectiveness of graph condensation as a technique, as the most
industrial scenario for graph condensation applications is graphs of
this scale. Secondly, it is doubtful whether a high-fidelity condensed
graph with adaptive reduction rates can be achieved. These draw-
backs of the entangled strategy motivate us to develop the GNN-free
disentangled graph condensation framework, named DisCo, which
separates the generation of condensed nodes and condensed edges
using the node condensation and edge translation modules, while
eliminating the need to train GNNs at the same time.

The node condensation module in DisCo focuses on preserving
the node feature distribution of the original graph. We achieve this

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, Sydney, Australia,
Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

by leveraging a pre-trained node classification model on the original
graph, along with class centroid alignment and anchor attachment. In
the edge translation module, our goal is to preserve the topological
structure of the original graph in the condensed graph. To accomplish
this, we pre-train a specialized link prediction model that captures the
topological structure. We then use anchors to transfer the acquired
knowledge from the link prediction model to the condensed nodes,
resulting in the generation of condensed edges. Notably, DisCo
can successfully scale up to the Ogbn-papers100M dataset with
flexible reduction rates. Extensive experiments conducted on five
common datasets and Ogbn-papers100M, covering various tasks
such as baseline comparison, scalability, and generalizability, further
validate the effectiveness of DisCo.

In summary, our contributions are listed as follows:
• Methodology. We present DisCo, a novel GNN-free disentangled

graph condensation framework that offers exceptional scalability
for large-scale graphs. Notably, DisCo introduces the unique dis-
entangled condensation strategy for the first time and effectively
addresses the scalability bottleneck.

• Scalability. DisCo can successfully scale up to the Ogbn-papers100M
dataset with flexible reduction rates, which contains over 100 mil-
lion nodes and 1 billion edges. Besides, DisCo significantly im-
proves performance on the second-largest Ogbn-products dataset
by over 5%.

• Generalizability and Time. Experimental comparisons against
baselines demonstrate that DisCo confirms the robust generaliz-
ability across five different GNN architectures, while requiring
comparable or even much shorter condensation time.

2 Related Work
Dataset Condensation. Data condensation methods aim to syn-
thesize smaller datasets from the original data while maintaining
similar performance levels of models trained on them [28]. Zhao et
al. [44, 43] propose to match the gradients with respect to model
parameters and the distribution between the condensed and origi-
nal datasets. Additionally, Zhao et al. [42] present Differentiable
Siamese Augmentation, resulting in more informative synthetic im-
ages. Nguyen et al. [17, 18] condense datasets by utilizing Kernel
Inducing Points (KIP) and approximating neural networks with ker-
nel ridge regression (KRR). Besides, Wang et al. [26] propose CAFE,
which enforces consistency in the statistics of features between syn-
thetic and real samples extracted by each network layer, with the
exception of the final layer.
Graph Condensation. Graph condensation aims to synthesize a
smaller graph that effectively represents the original graph. Cur-
rent graph condensation methods mainly fall into three categories:
gradient matching, distribution matching, and trajectory match-
ing. GCOND [12] achieves graph condensation by minimizing the
gradient-matching loss between the gradients of training losses with
respect to the GNN parameters of both the original and condensed
graphs. DosCond [11], SGDD [35] and EXGC [7] are also based on
gradient-matching, where DosCond simplifies the gradient-matching
process, SGDD proposes to broadcast the original structure informa-
tion to the condensed graph to maintain similar structure informa-
tion, and EXGC focuses on convergence acceleration and pruning
redundancy. GCDM [15] takes a distribution-matching approach

1 10 20 30 40 50
GPU Requirement (GB)

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Ac
cu

ra
cy

 (%
)

0.02%

0.04%
0.08%0.2% 0.4%0.8%

2%

4%

0.02%

0.04%
0.08%

0.02%

0.04%
0.08%

0.02%
0.04%

0.08%

0.02%
0.04%

0.08%

Ours
GCOND
GCDM
SFGC
SGDD

Figure 1: The GPU requirements and accuracy of different con-
densation methods on the second largest Ogbn-products dataset,
where “0.02%”, “0.04%”, “0.08%” refer to the reduction rates.

by treating the original graph as a distribution of reception fields
of specific nodes. Employing different distribution metrics from
GCDM, GCEM [16] suggests aligning the distributions of node
features with the eigenbasis, while SimGC [32] utilizes a pre-trained
multi-layer perceptron and heuristic rules to maintain such distri-
bution. SFGC [45] and GEOM [41] synthesize a condensed graph
by matching the training trajectories of the original graph. While
these methods demonstrate advantages over traditional approaches
in specific scenarios, they still face significant challenges in achiev-
ing scalability for graphs of any size. One common reason is the
entangled condensation strategy, which optimizes the nodes, edges,
and GNNs at the same time, contributing to the substantial GPU
memory requirement. Addressing this challenge would yield signifi-
cant implications for various applications that involve working with
large-scale graphs.

3 Preliminary and Pre-analysis
Preliminary. Suppose that there is a graph dataset T = {𝐴,𝑋,𝑌 }, 𝑁
denotes the number of nodes, 𝑋 ∈ R𝑁×𝑑 is the 𝑑-dimensional node
feature matrix, 𝐴 ∈ R𝑁×𝑁 is the adjacency matrix, 𝑌 ∈ {0, . . . ,𝐶 −
1}𝑁 represents the node labels over 𝐶 classes. The target of graph
condensation is to learn a condensed and informative graph dataset
S = {𝐴′, 𝑋 ′, 𝑌 ′} with 𝐴′ ∈ R𝑁 ′×𝑁 ′

, 𝑋 ′ ∈ R𝑁 ′×𝑑 , 𝑌 ′ ∈ {0, . . . ,𝐶 −
1}𝑁 ′

and 𝑁 ′ ≪ 𝑁 so that the GNNs trained on the condensed graph
are capable of achieving comparable performance to those trained
on the original graph. Thus, the objective function can be formulated
as follows:

min
S

L
(
GNN𝜃S (𝐴,𝑋), 𝑌

)
,

s.t 𝜃S = argmin
𝜃

L(GNN𝜃 (𝐴′, 𝑋 ′), 𝑌 ′), (1)

where GNN𝜃 represents the GNN model parameterized with 𝜃 , 𝜃S
denotes the parameters of the model trained on S, L denotes the
loss function such as cross-entropy loss. Directly optimizing the

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Disentangled Condensation for Large-scale Graphs
WWW ’25, Sydney, Australia,

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

objective function in this bi-level optimization problem is challeng-
ing. Additionally, it is also expensive to compute the second-order
derivatives with respect to GNN parameters.
Pre-analysis. Since the triple parameters of the condensed graph are
closely entangled together, existing methods resort to two kinds of
methods to simplify the condensation process. 𝑌 ′ are all predefined
according to the class distribution. 𝑋 ′ is usually initialized as nodes
from the original graph sampled randomly or by K-Center algo-
rithm [23]. On the one hand, gradient- [7, 11, 12, 35] and distribution-
matching [15] methods parameterize the adjacency matrix 𝐴′ as a
function of 𝑋 ′ using a pairwise multi-layer perceptron (MLP), writ-
ten as

𝐴′
𝑖 𝑗 = Sigmoid(

MLP𝜙 ([𝑋 ′
𝑖
;𝑋 ′

𝑗
]) + MLP𝜙 ([𝑋 ′

𝑗
;𝑋 ′

𝑖
])

2
), (2)

where [𝑋 ′
𝑖
;𝑋 ′

𝑗
] denotes the concatenation of the 𝑖 th and 𝑗 th nodes

features, 𝐴′
𝑖 𝑗

denotes the edge weight of the 𝑖 th and 𝑗 th nodes. Never-
theless, the convolution operation of GNNs involves both nodes and
edges within the condensed graph, necessitating the simultaneous
optimization of all these parameters during condensation, which
inherently leads to a complex and challenging joint optimization
problem. On the other hand, trajectory-matching methods [45] sim-
plify the adjacency matrix 𝐴′ as an identity matrix and align the
training trajectories between GNNs of the original graph and the con-
densed graph. However, imposing this graph-free constraint on 𝐴′

seems contradictory to the fundamental design principles of GNNs.
Additionally, these methods still require optimizing nodes and GNNs
simultaneously. As depicted in Figure 1, the entanglement of various
parameters results in significant GPU memory consumption, limiting
their scalability when applied to large-scale graphs. In contrast, our
method experiences only a slight increase in GPU memory usage
even when the reduction rate is increased by a hundredfold.

4 METHOD
4.1 Overall Framework

The drawbacks of the entangled optimization paradigm moti-
vate us to devise a GNN-free disentangled condensation framework,
DisCo. Our framework contains two complementary modules: the
node condensation module and the edge translation module, which
independently focus on condensing nodes and generating edges re-
spectively, while eliminating the need to train GNNs at the same
time, thus boosting the scalability of condensation methods. The
primary goal of the node condensation module is to preserve the
node feature distribution of the original graph. Thus, we employ a
pre-trained node classification MLP along with class centroid align-
ment and anchor attachment to ensure the preservation of the feature
distribution in the condensed nodes. In the edge translation module,
our objective is to preserve the topological structure of the original
graph in the condensed graph. Consequently, we pre-train a special-
ized link prediction model that captures the intricate relationships
between nodes within the original graph structure. We then transfer
this knowledge to the condensed nodes, enabling the efficient gener-
ation of condensed edges that accurately reflect the original graph’s
topology. The overall pipeline of the proposed DisCo framework is
shown in Figure 2.

4.2 Node Condensation
The node condensation module is designed to generate a con-

densed node set that accurately represents the original nodes for
training GNNs. The success of GNNs heavily relies on the distribu-
tion of node features, so the primary goal of the node condensation
module is to preserve the original node feature distribution. But
how can we preserve such distribution without including external
parameters (like complex GNNs) at the same time, ensuring light-
weight node condensation? To tackle this challenge, we introduce a
novel node condensation methodology that employs a pre-trained
MLP with two regularization terms to harmonize the node feature
distributions across both graphs.
MLP Alignment. Firstly, we pre-train a node classification MLP
model on the original nodes by optimizing the corresponding classi-
fication loss:

𝐿ori = L(MLP𝜙 (𝑋), 𝑌), (3)

where MLP𝜙 denotes the MLP classification model and L represents
the classification loss. Subsequently, the initial condensed nodes are
sampled using K-Center from the original graph. Then we leverage
the pre-trained MLP to optimize the condensed node features by
minimizing the classification loss, thereby ensuring that the feature
spaces of both graphs are effectively aligned. The corresponding can
be formulated as follows:

𝐿cls = L(MLP𝜙 (𝑋 ′), 𝑌 ′), (4)

where L represents the classification loss.
Class Centroid Alignment. The first regularization term is class
centroid alignment. Class centroid refers to the average node features
of each class, which is a crucial indicator of the distribution of node
features. It is essential to ensure that the condensed nodes have
comparable class centroids in order to preserve the same feature
distribution, so the first regularizer term is:

𝐿alg =

𝐶−1∑︁
𝑐=0

MSE(𝜇𝑐 , 𝜇′𝑐), (5)

where 𝜇𝑐 and 𝜇′𝑐 denote the centroids of 𝑐 class of the original and
condensed nodes respectively.
Anchor Attachment. The second regularization term is anchor
attachment. We want each condensed node to be adaptively mapped
to one or a few nodes in the original graph, thus achieving more
accurate feature preservation and explainable node condensation. To
achieve this, we introduce a set of important nodes named anchors,
which refer to the 𝑘 nearest original nodes that belong to the same
class as each condensed node. During the condensation process, we
enable each condensed node to be adaptively attached to its 𝑘-nearest
anchors among the original nodes using a distance term:

𝐿anc =

𝑁 ′∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝐷 (𝑋 ′
𝑖 , 𝑍𝑖 𝑗), (6)

where 𝑍𝑖 𝑗 is the 𝑗 th anchors of 𝑋 ′
𝑖
, 𝑀 is the anchor number, and 𝐷

is the distance function like L2 norm. By minimizing the distance
during the node condensation, we encourage each condensed node
to be closely associated with its most relevant anchor nodes from
the original graph. This helps to ensure better feature preservation
and condensation interpretability.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, Sydney, Australia,
Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

1 1 ⋯ 0 0
1 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 1
0 0 ⋯ 1 1

Condensed Nodes

Condensed Nodes

Original Nodes

Node Classification Loss

Anchor Attachment Loss

Class Centroid
Alignment Loss

Total
Loss

(d-dimension)

(d-dimension)

Nearest K Nodes as Anchors

Node Classification
Model

Original Graph

Node Classification
Model

Original Graph

Node Condensation

Convolution Pre-train

(2d-dimension)
(d-dimension)

Link Prediction
Model

Condensed Graph

·

Original Nodes

(d-dimension)

(d-dimension)

Edge Translation

Node Condensation Stage

Pre-training Stage Pre-training Stage

Edge Translation Stage

Frozen Pseudo NeighborClass CentroidTraining

·

Pre-train

Convolution

(2d-dimension)

Adjacency Matrix

Link Prediction
Model

Figure 2: An illustrative diagram of the proposed DisCo framework.

With the above regularization terms, the final node condensation
objective function is written as:

argmin
𝑋 ′

(𝐿cls + 𝛼𝐿alg + 𝛽𝐿anc), (7)

where 𝛼 and 𝛽 are hyperparameters that control the weights of two
regularizers. More theoretical analysis about node condensation can
be found in Appendix D.1.

4.3 Edge Translation
Following node condensation, the subsequent step is to translate

the topology of the original graph into the condensed graph. As pre-
viously indicated, existing methods parameterize condensed edges
as a function of condensed nodes and simultaneously optimize nodes,
edges, and GNNs, which is highly unscalable due to the immense
computational complexity involved. So we introduce a novel edge
translation method that eliminates the need for optimizing condensed
edges. The edge translation process can be divided into two stages:
(1) preserving the topology of the original graph by pre-training a
specialized link prediction model considering neighbor information;
(2) transferring the link prediction model to the condensed nodes
with the aid of pseudo neighbors, obtaining the condensed edges.
Pre-training. In the first step, our aim is to preserve the topology
of the original graph through a link prediction model. However,
the absence of predefined edges in the condensed nodes makes it
difficult to utilize a GNN-based link prediction model. Existing con-
densation methods mostly rely on a simple MLP like Eq. (2) without
considering neighbor information to predict the edges of the con-
densed graph, which may not fully capture the relationships between
nodes. To investigate this critical issue, we conduct an experiment
on the original Ogbn-products and Reddit datasets to compare the
effectiveness of link prediction models with and without neighbor
information. Based on Table 1, it becomes evident that disregarding

Table 1: The performance comparison between link prediction
models with and without neighbor information. “With” refers
to our specialized model.

Ogbn-products Reddit

Accuracy Precision Recall Accuracy Precision Recall

Without 0.892 0.837 0.705 0.925 0.864 0.831

With 0.981 0.962 0.963 0.965 0.926 0.935

neighbor information can significantly undermine the effectiveness
of the link prediction model, thereby compromising the preservation
of the topology. Therefore, we propose a specialized link prediction
model to incorporate neighbor information from the original graph.
We first perform aggregation to attract neighbor information using
an aggregator (e.g. mean, sum and max aggregator) and obtain the
neighbor feature ℎ𝑁 (𝑣) of each node in the original graph. Then we
concatenate the node feature with the above neighbor feature and
obtain the convolved node feature: 𝐻𝑣 = [ℎ𝑣 ;ℎ𝑁 (𝑣)]. After that, we
can predict the link existence 𝑒𝑖 𝑗 as a function of 𝐻 , denoted as 𝑔𝜗
using the following:

𝑒𝑖 𝑗 = Sigmoid(
MLP𝜗 ([𝐻𝑖 ;𝐻 𝑗]) + MLP𝜗 ([𝐻 𝑗 ;𝐻𝑖])

2
), (8)

where MLP𝜗 represents the Multilayer Perceptron, [𝐻𝑖 ;𝐻 𝑗] denotes
the concatenation of the convolved node features of the 𝑖 th and 𝑗 th

original nodes, and 𝑒𝑖 𝑗 represents the edge exsitence between the 𝑖 th

and 𝑗 th original nodes. We can pre-train the link prediction model
using Eq. (8) and a binary cross-entropy (BCE) loss function.
Translation. To transfer the pre-trained link prediction model to the
condensed nodes, our strategy involves identifying suitable pseudo
neighbors for them. As mentioned in the node condensation section,
each condensed node has 𝑘-nearest anchors in the original nodes.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Disentangled Condensation for Large-scale Graphs
WWW ’25, Sydney, Australia,

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 2: The performance comparison of our proposed DisCo and baselines on different datasets under various reduction rates.
Performance is reported as test accuracy (%). ± corresponds to one standard deviation of the average evaluation over 5 trials. “Whole
Dataset” refers to training with the whole dataset without graph condensation.

Baselines Proposed

Dataset Reduction Rate Random Herding K-Center GCOND GCDM SFGC SGDD DisCo
Whole
Dataset

Cora
1.3% 63.6 ± 3.7 67.0 ± 1.3 64.0 ± 2.3 79.8 ± 1.3 69.4 ± 1.3 80.1 ±0.780.1 ±0.780.1 ±0.7 80.1 ± 0.480.1 ± 0.480.1 ± 0.4 76.9 ± 0.8

82.5 ± 1.22.6% 72.8 ± 1.1 73.4 ± 1.0 73.2 ± 1.2 80.1 ± 0.6 77.2 ± 0.4 80.6±0.8 81.7 ± 0.581.7 ± 0.581.7 ± 0.5 78.7 ± 0.3
5.2% 76.8 ± 0.1 76.8 ± 0.1 76.7 ± 0.1 79.3 ± 0.3 79.4 ± 0.1 80.4±1.6 81.6 ± 0.881.6 ± 0.881.6 ± 0.8 78.8 ± 0.5

Ogbn-arxiv
0.05% 47.1 ± 3.9 52.4 ± 1.8 47.2 ± 3.0 59.2 ± 1.1 53.1 ± 2.9 65.5 ± 0.765.5 ± 0.765.5 ± 0.7 60.8±1.3 64.0 ± 0.7

71.1 ± 0.20.25% 57.3 ± 1.1 58.6 ± 1.2 56.8 ± 0.8 63.2 ± 0.3 59.6 ± 0.4 66.1 ± 0.4 66.3±0.766.3±0.766.3±0.7 65.9 ± 0.5
0.5% 60.0 ± 0.9 60.4 ± 0.8 60.3 ± 0.4 64.0 ± 0.4 62.4 ± 0.1 66.8 ± 0.466.8 ± 0.466.8 ± 0.4 66.3±0.7 66.2 ± 0.1

Ogbn-products
0.02% 53.5 ± 1.3 55.1 ± 0.3 48.5 ± 0.2 55.0 ± 0.8 53.0 ± 1.9 61.7 ± 0.5 57.2±2.0 62.2 ± 0.562.2 ± 0.562.2 ± 0.5

74.0 ± 0.1
0.04% 58.5 ± 0.7 59.1 ± 0.1 53.3 ± 0.4 56.4 ± 1.0 53.5 ± 1.1 62.9 ± 1.2 58.1±1.9 64.5 ± 0.764.5 ± 0.764.5 ± 0.7
0.08% 63.0 ± 1.2 53.6 ± 0.7 62.4 ± 0.5 55.3 ± 0.3 52.9 ± 0.9 64.4 ± 0.4 59.3±1.7 64.6 ± 0.864.6 ± 0.864.6 ± 0.8

Reddit
0.05% 46.1 ± 4.4 53.1 ± 2.5 46.6 ± 2.3 88.0 ± 1.8 73.9 ± 2.0 89.7 ± 0.2 90.5±2.1 91.4 ± 0.291.4 ± 0.291.4 ± 0.2

93.9 ± 0.10.1% 58.0 ± 2.2 62.7 ± 1.0 53.0 ± 3.3 89.6 ± 0.7 76.4 ± 2.8 90.0 ± 0.3 91.8±1.991.8±1.991.8±1.9 91.8 ± 0.391.8 ± 0.391.8 ± 0.3
0.2% 66.3 ± 1.9 71.0 ± 1.6 58.5 ± 2.1 90.1 ± 0.5 81.9 ± 1.6 90.3 ± 0.3 91.6±1.8 91.7 ± 0.391.7 ± 0.391.7 ± 0.3

Reddit2
0.05% 48.3 ± 6.4 46.9 ± 1.2 43.2 ± 3.2 79.1 ± 2.2 73.5 ± 4.7 84.4 ± 1.7 86.7±0.8 90.9 ± 0.490.9 ± 0.490.9 ± 0.4

93.5 ± 0.10.1% 57.8 ± 3.1 62.5 ± 2.8 51.9 ± 0.7 82.4 ± 1.0 75.4 ± 1.8 88.1 ± 1.9 85.8±1.1 90.8 ± 0.590.8 ± 0.590.8 ± 0.5
0.2% 65.5 ± 2.5 71.4 ± 1.6 57.4 ± 1.8 80.6 ± 0.4 80.8 ± 3.1 88.6 ± 1.1 85.4±0.6 91.3 ± 0.391.3 ± 0.391.3 ± 0.3

We can utilize these anchors as pseudo neighbors for the condensed
nodes. By performing the same aggregation on the anchor nodes in
the original graph, we can obtain the neighbor feature ℎ′

𝑁 (𝑣) and the
convolved node feature 𝐻 ′

𝑣 = [ℎ′𝑣 ;ℎ′𝑁 (𝑣)] of each condensed node.
Finally, we can apply the pre-trained link prediction model to the 𝐻 ′

𝑣

and obtain the condensed edges using 𝑔′
𝜗

:

𝑎′𝑖 𝑗 = Sigmoid(
MLP𝜗 ([𝐻 ′

𝑖
;𝐻 ′

𝑗
]) + MLP𝜗 ([𝐻 ′

𝑗
;𝐻 ′

𝑖
])

2
), (9)

𝐴′
𝑖 𝑗 =

{
𝑎′𝑖 𝑗 , if 𝑎′𝑖 𝑗 ≥ 𝛿,
0 , if 𝑎′𝑖 𝑗 < 𝛿,

(10)

where 𝛿 is the threshold that decides whether there is an edge, 𝐴′
𝑖 𝑗

denotes the final edge weight of the 𝑖 th and 𝑗 th condensed nodes.
Finally, we can obtain the condensed edges and form the final con-
densed graph. Although the number of edges may have changed,
these edges still capture the underlying topological structure of the
original graph. More theoretical analysis about edge translation can
be found in Appendix D.2.

5 Experiments
5.1 Experiment Settings
Datasets. We evaluate the downstream GNN performance of the
condensed graphs on six datasets, four of which are transductive
datasets such as Cora [14], Ogbn-arxiv, Ogbn-products and Ogbn-
papers100M [10] and two of which are inductive datasets such as
Reddit [9] and Reddit2 [39].
Baselines. We compare our approach with several baseline meth-
ods: (1) three coreset methods including Random, Herding [29]
and K-Center [23]; (2) four graph condensation methods including
GCOND [12], GCDM [15], SFGC [45] and SGDD [35].

Implementation. The experiment process is divided into three
stages: (1) obtaining the condensed graph with a reduction rate
𝑟 , (2) training a GNN𝑆 with the condensed graph, then selecting
the best-performed model using the original validation set, and (3)
evaluating the model with the original test set. The experiments for
Cora, Ogbn-arxiv, Reddit and Reddit2 are performed using a single
Quadro P6000, experiments for the others are performed using a
single NVIDIA A40 due to the substantial GPU memory demand.

5.2 Prediction Accuracy
To evaluate the downstream performance of the condensed graphs

generated by different condensation methods, we report the test accu-
racies for each method on different datasets with different reduction
rates in Table 2. Based on the results, the following observations can
be made:
▶ Observation 1. DisCo has not only shown comparable perfor-
mance but even superior performance on larger-scale graphs when
compared to the current state-of-the-art methods. This observation
suggests that the existing methods are not scalable and may perform
poorly on large-scale graphs. In contrast, the disentangled Disco con-
sistently achieves the best performance as the graph scale increases.
▶ Observation 2. DisCo achieves exceptional performance even
with significantly low reduction rates. Moreover, as the reduction
rate increases, the performance of DisCo improves and gradually
approaches that of the entire dataset. This indicates the importance
of the disentangled paradigm, as it allows for flexible reduction rates
of the original graph.
▶ Observation 3. Disco’s performance on Cora is subpar. The reason
is that the node condensation module requires labeled nodes to
ensure the node distribution’s integrity. However, labeled nodes are
fewer than one-tenth of the total on Cora, which poses challenges

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, Sydney, Australia,
Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

in preserving the full node distribution. It is important to note that
small datasets do not require graph condensation and it’s more vital
to highlight our SOTA performance on large-scale graphs.

5.3 Condensation Time
In this section, we compare the condensation time of our method

with four condensation methods. To provide a comprehensive analy-
sis, we report the time taken for node condensation and edge transla-
tion of our method separately, and then present the total condensation
time. It can be observed from Table 3 that the node condensation pro-
cess is highly efficient, with an extremely short time. While the edge
translation process takes longer than node condensation, the time
spent is largely devoted to pre-training a simple MLP-based link pre-
diction model, which remains efficient and stable even in large-scale
graphs like Ogbn-products. Upon examining the total time, DisCo
demonstrates a significantly shorter time compared to existing graph
condensation methods in the Ogbn-arxiv and Ogbn-products datasets.
Notably, the condensation time for Ogbn-products is reduced to just
one-fourth of the time required by the second most efficient method,
demonstrating its efficiency benefits on large-scale graphs. Analyz-
ing the average test accuracy rank and average condensation time
rank, we notice that while SFGC and SGDD achieve comparable
accuracy ranks to DisCo, they require significantly longer conden-
sation time. In contrast, although GCDM exhibits faster training
speed than DisCo on the dense graph Reddit, it consistently delivers
the poorest performance across all datasets. Notably, our method
successfully strikes a balance between condensation accuracy and
condensation time, achieving high performance on both fronts. The
time complexity analysis presented in Appendix B.3 substantiates
the efficiency of our method, demonstrating why it operates in a
notably shorter duration.

It is important to emphasize a significant advantage of DisCo lies
in its ability to pre-train the link prediction model only once and sub-
sequently apply it to different condensed nodes. This makes DisCo
a far more efficient option, particularly in scenarios where graph
condensation needs to be performed multiple times with varying
reduction rates.

5.4 Scalability
In this section, we will investigate the scalability of DisCo through

two experiments, evaluating its ability to condense extremely large-
scale graphs and generate high-fidelity condensed graphs. First, we
assess DisCo’s ability to condense extremely large-scale graphs. To
this end, we utilize the Ogbn-papers100M dataset, which comprises
over 100 million nodes and 1 billion edges. Since existing graph
condensation methods are incapable of handling such large-scale
graphs due to memory constraints, we compare DisCo with coreset
methods, including Random, Herding, and K-Center, using a Sim-
plified Graph Convolution (SGC) model. The results presented in
Table 4 demonstrate the effectiveness of DisCo in condensing the
Ogbn-papers100M dataset at various reduction rates while main-
taining a significant level of performance. Notably, DisCo achieves
performance improvements of over 7% at all reduction rates com-
pared to coreset methods, showcasing its superior effectiveness in
condensing super large-scale graphs.

0.008 0.02 0.04 0.08 0.2 0.4 0.8 2 4
Reduction Rate (%)

50

55

60

65

70

75

G
C

N
 A

cc
ur

ac
y

(%
)

DisCo
GCOND
GCDM

SFGC
SGDD

Figure 3: The performance comparison of DisCo and baselines
using GCN under different reduction rates on Ogbn-products.
“X” stands for out of GPU memory (49GB).

Scalability in the graph condensation problem also involves the
capability to obtain high-fidelity condensed graphs. Therefore, in the
second experiment, we compare the effectiveness of different con-
densation methods in condensing high-fidelity graphs by evaluating
their performance at various reduction rates using Ogbn-products.
The results presented in Figure 3 demonstrate that DisCo consis-
tently outperforms other condensation methods across all reduction
rates on Ogbn-products. Additionally, DisCo exhibits a much higher
upper limit for the reduction rate, exceeding 4%, allowing for the
generation of high-fidelity condensed graphs. In contrast, the other
methods have upper limits of only 0.08%. Beyond a reduction rate
of 0.08%, these methods cannot proceed due to insufficient GPU
resources, resulting in low-fidelity condensed graphs. Furthermore,
the optimal GCN performance achieved by DisCo is 69.4%, which
is over 5% higher than the optimal performance of the other meth-
ods. This indicates that a high-fidelity condensed graph is crucial in
achieving excellent GNN prediction accuracy, making scalability an
even more meaningful topic to consider. These findings highlight the
strong ability of DisCo to condense high-fidelity graphs compared
to other methods.

5.5 Generalizability
In this section, we illustrate the generalizability of different con-

densation methods using different GNN models (GCN, SGC, Graph-
SAGE [9], GIN [33], JKNet [34]). The results presented in Table 5
demonstrate the generalization capabilities of DisCo across various
GNN architectures and datasets. The condensed graph generated by
DisCo exhibits performance superiority over other methods across
the majority of datasets and models, except for the Cora dataset.
The small size of the Cora dataset poses challenges in maintain-
ing the node distribution during node condensation in our method.
Importantly, DisCo demonstrates consistently higher average perfor-
mance compared to other methods across almost all datasets. Fur-
thermore, MLP consistently demonstrates the lowest performance
among all the models across all datasets and condensation methods.
This highlights the crucial role of edges in the condensed graph and
emphasizes their indispensability.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Disentangled Condensation for Large-scale Graphs
WWW ’25, Sydney, Australia,

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: The condensation time (seconds) of our proposed DisCo and baselines on four large-scale datasets (#Node/#Edge). “Acc Rank”
means the average test accuracy rank among all baselines, while “Time Rank” means the average condensation time rank.

Ogbn-arxiv (169K/1M) Ogbn-products (2M/61M) Reddit (232K/114M) Reddit2 (232K/23M) Acc Time

0.05% 0.25% 0.5% 0.02% 0.04% 0.08% 0.05% 0.1% 0.2% 0.05% 0.1% 0.2% Rank Rank

GCOND Total 13,224 14,292 18,885 20,092 25,444 25,818 15,816 16,320 19,225 10,228 10,338 11,138 3.9 3.0

GCDM Total 1,544 5,413 13,602 11,022 12,316 13,292 1,912 2,372 4,670 1,615 1,833 4,574 4.7 1.7

SFGC Total 64,260 67,873 70,128 128,904 130,739 132,606 159,206 160,190 161,044 124,774 125,331 126,071 2.02.02.0 5.0

SGDD Total 15,703 17,915 21,736 28,528 39,579 59,622 46,096 54,165 55,274 35,304 38,233 40,987 2.1 4.0

DisCo
Node 99 106 107 216 251 351 315 326 368 327 356 382
Edge 1,244 1,244 1,244 2,760 2,760 2,760 2,798 2,798 2,798 1,654 1,654 1,654 2.02.02.0 1.31.31.3
Total 1,343 1,350 1,351 2,976 3,011 3,111 3,113 3,124 3,166 1,981 2,010 2,136

Table 4: The performance comparison of DisCo and coreset
methods using SGC on Ogbn-papers100M. “Whole Dataset”
refers to training with the whole dataset.

Ogbn-papers100M

0.005% 0.01% 0.02% 0.05% Whole Dataset

Random 12.8 17.8 29.8 37.5

63.3
Herding 21.3 26.8 36.2 43.7
K-Center 8.7 10.4 17.2 26.3

DisCo 48.348.348.3 48.748.748.7 49.649.649.6 50.950.950.9

0 1000 3000 5000 7000
Optimization Step

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

Ac
cu

ra
cy

 (%
)

Ours
SFGC
GCOND

Figure 4: The optimization step and performance comparison of
DisCo and baselines on Ogbn-arxiv (0.5%) using GCN.

5.6 Optimization Step
We compare various methods’ optimization steps and correspond-

ing GCN test accuracies on the Ogbn-arxiv (0.5%) dataset. As shown
in Table. 4, DisCo requires significantly fewer optimization steps
to achieve optimal performance. This efficiency stems from our
method’s use of first-order optimization, in which we directly op-
timize the targeted condensed graph without considering other pa-
rameters. In contrast, second-order optimization methods require

Table 5: The generalization capabilities of different condensa-
tion methods using a high reduction rate. “SAGE” stands for
GraphSAGE, and “Avg.” stands for the average test accuracy of
five GNNs.

Methods MLP GCN SGC SAGE GIN JKNet Avg.

Cora
(2.6%)

GCOND 73.1 80.1 79.379.379.3 78.2 66.5 80.780.780.7 77.0
GCDM 69.7 77.2 75.0 73.4 63.9 77.8 73.5
SFGC 81.181.181.1 81.181.181.1 79.1 81.981.981.9 72.9 79.9 79.079.079.0
SGDD 76.8 79.8 78.5 80.4 72.8 76.9 77.7
DisCo 59.5 78.6 75.0 75.6 74.274.274.2 78.7 76.4

Ogbn-arxiv
(0.5%)

GCOND 43.8 64.0 63.6 55.9 60.1 61.6 61.0
GCDM 41.8 61.7 60.1 53.0 58.4 57.2 58.1
SFGC 46.6 67.667.667.6 63.8 63.8 61.9 65.7 64.6
SGDD 36.9 65.6 62.2 53.9 59.1 60.1 60.2
DisCo 49.549.549.5 66.2 64.964.964.9 64.264.264.2 63.263.263.2 66.266.266.2 64.964.964.9

Ogbn-products
(0.04%)

GCOND 33.9 56.4 52.3 44.5 50.5 46.3 50.0
GCDM 37.1 54.4 49.0 48.1 50.4 49.3 50.2
SFGC 40.9 64.2 60.4 60.460.460.4 58.9 61.6 58.3
SGDD 25.5 57.0 50.1 51.5 51.3 49.5 51.9
DisCo 45.345.345.3 65.165.165.1 59.159.159.1 60.2 63.263.263.2 61.061.061.0 61.961.961.9

Reddit
(0.2%)

GCOND 48.4 91.7 92.2 73.0 83.6 87.3 85.6
GCDM 40.5 83.3 79.9 55.0 78.8 77.3 74.9
SFGC 45.4 87.8 87.6 84.5 80.3 88.2 85.7
SGDD 24.8 89.8 87.5 73.7 85.2 88.9 85.0
DisCo 55.255.255.2 91.891.891.8 92.592.592.5 89.089.089.0 85.485.485.4 90.590.590.5 89.889.889.8

Reddit2
(0.2%)

GCOND 35.7 82.4 77.1 59.8 79.6 73.0 74.4
GCDM 32.5 84.7 78.0 55.3 75.3 70.6 72.8
SFGC 42.6 88.0 86.8 77.9 74.8 86.0 82.7
SGDD 25.1 86.0 87.5 73.1 79.4 84.7 82.1
DisCo 50.250.250.2 91.691.691.6 92.092.092.0 88.288.288.2 87.087.087.0 89.589.589.5 89.789.789.7

training an inner loop GNN to obtain a trajectory or gradient. These
GNN metrics are then used to proceed with alignment, meaning that
the condensed graph heavily relies on the trained GNNs and their
different initializations. This approach results in substantial com-
putational demands and instability. Notably, the solution achieved
through first-order optimization demonstrates comparable or even
superior performance to other methods. This makes DisCo an easily
optimized and high-performance choice for graph condensation.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, Sydney, Australia,
Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Graph Visualization with Node Features and Edge Weights Graph Visualization with Node Features and Edge Weights

(a) Cora (5.2%)
Graph Visualization with Node Features and Edge Weights Graph Visualization with Node Features and Edge Weights

(b) Reddit (0.2%)

Figure 5: The T-SNE plots of the condensed nodes. Left:
SFGC(NeurIPS 2023) [45], Right: DisCo.

5.7 Visualization and Analysis
We present visualization results for the Cora (5.2%) and Reddit

(0.2%) datasets, comparing three clustering indexes and homophily
with the SOTA method SFGC and GCOND. The indexes we use
here include Silhouette Coefficient [22], Davies-Bouldin [5] and
Calinski-Harabasz Index [2]. Figure 5 and Table 6 illustrate that the
condensed graphs of Cora displays clear clustering tendencies under
both SFGC and DisCo. Notably, DisCo’s condensed graph for Reddit
demonstrates significantly enhanced clustering patterns, highlighting
that our method’s advantage in maintaining the node distribution in
large-scale graphs. Moreover, DisCo surpasses GCOND in preserv-
ing the homophily of the original graph, consistently upholding a
high level of homophily similarity. This indicates that the condensed
graphs exhibit similar connectivity patterns and topology to the orig-
inal graphs. These findings collectively provide robust evidence that
our disentangled approach can effectively capture high-quality node
features and topology, delivering superior downstream performance.

5.8 Ablation Study
In this subsection, we aim to validate the effectiveness of the link

prediction model utilized in DisCo by comparing it with a traditional
method Eq. (2) that ignores neighbor information (referred to as
simple in Figure 6). Based on the obtained results in Figure 6, we can
observe that our link prediction method consistently outperforms the
simple link prediction method across all datasets and reduction rates.
Furthermore, in the Ogbn-products dataset, the performance gap
between the two methods increases as the reduction rate increases,
with the gap exceeding 2% when the reduction rate reaches 0.8%.
These findings highlight the effectiveness of our link prediction

Table 6: Comparison of clustering patterns and homophily be-
tween our method and GCOND, SFGC. SC (Silhouette Coeffi-
cient), DB (Davies-Bouldin Index), and CH (Calinski-Harabasz
Index) are used as clustering metrics. ↑ indicates that higher
values represent better clustering patterns, while ↓ indicates the
opposite.

SC (↑) DB (↓) CH (↑) Homophily

SFGC DisCo SFGC DisCo SFGC DisCo GCOND DisCo Whole

Cora 0.090.090.09 0.090.090.09 2.562.562.56 2.76 6.276.276.27 6.03 0.79 0.97 0.81
Reddit -0.32 -0.16-0.16-0.16 4.684.684.68 5.17 2.41 3.223.223.22 0.04 0.88 0.78

0.05% 0.25% 0.50%
Reduction Rates (%)

60
61
62
63
64
65
66
67
68
69
70

Te
st

 A
cc

ur
ac

y
(%

)

Ogbn-arxiv
Simple
Ours

0.02% 0.04% 0.08% 0.80%
Reduction Rates (%)

60
61
62
63
64
65
66
67
68
69
70

Te
st

 A
cc

ur
ac

y
(%

)

Ogbn-products
Simple
Ours

0.05% 0.10% 0.20%
Reduction Rates (%)

87
88
89
90
91
92
93
94

Te
st

 A
cc

ur
ac

y
(%

)

Reddit
Simple
Ours

0.05% 0.10% 0.20%
Reduction Rates (%)

87
88
89
90
91
92
93
94

Te
st

 A
cc

ur
ac

y
(%

)

Reddit2
Simple
Ours

Figure 6: Evaluation of the proposed link prediction model.
“Simple” refers to simple link prediction model.

model in preserving the topological structure, primarily due to its
ability to capture neighbor information.

6 Conclusion
This paper introduces DisCo, a novel GNN-free disentangled

graph condensation framework designed to address the entangled
optimization issues observed in existing methods, which greatly
limit their scalability. DisCo obtains the condensed nodes and edges
via the node condensation and edge translation modules respectively,
while eliminating the need to train GNNs at the same time. This
simple yet remarkably effective approach results in significant GPU
savings in terms of condensation. Consequently, DisCo scales suc-
cessfully to Ogbn-papers100M, a dataset consisting of over 100
million nodes and 1 billion edges, providing highly tunable reduc-
tion rates. Besides, DisCo significantly improves performance on
the second-largest Ogbn-products dataset by over 5%. Extensive
experiments conducted on five datasets demonstrate that DisCo
consistently performs on par with or outperforms state-of-the-art
baselines while maintaining an extremely low cost.
Limitations and Future Work. Although disentangling the con-
densation process can offer scalability advantages, this disentangled
paradigm lacks explicit theoretical robustness and the intuitive logic
found in gradient or trajectory matching methods. In future work, we
will focus on enhancing the theoretical robustness of this framework.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Disentangled Condensation for Large-scale Graphs
WWW ’25, Sydney, Australia,

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Shaked Brody, Uri Alon, and Eran Yahav. “How Attentive are Graph Attention

Networks?” In: International Conference on Learning Representations. 2021.
[2] Tadeusz Caliński and Jerzy Harabasz. “A dendrite method for cluster analysis”.

In: Communications in Statistics-theory and Methods (1974), pp. 1–27.
[3] Dawei Cheng et al. “Graph neural network for fraud detection via spatial-

temporal attention”. In: IEEE Transactions on Knowledge and Data Engineering
34 (2020), pp. 3800–3813.

[4] Avery Ching et al. “One trillion edges: Graph processing at facebook-scale”. In:
Proceedings of the VLDB Endowment 8 (2015), pp. 1804–1815.

[5] David L Davies and Donald W Bouldin. “A cluster separation measure”. In:
IEEE transactions on pattern analysis and machine intelligence (1979), pp. 224–
227.

[6] Wenqi Fan et al. “Graph neural networks for social recommendation”. In: Inter-
national World Wide Web Conference. 2019, pp. 417–426.

[7] Junfeng Fang et al. “Exgc: Bridging efficiency and explainability in graph
condensation”. In: International World Wide Web Conference. 2024.

[8] Yang Gao et al. “Graph neural architecture search”. In: International Joint
Conference on Artificial Intelligence. 2021.

[9] William L. Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive Representa-
tion Learning on Large Graphs”. In: Advances in Neural Information Processing
Systems. 2017.

[10] Weihua Hu et al. “Open graph benchmark: Datasets for machine learning on
graphs”. In: Conference on Neural Information Processing Systems. Vol. 33.
2020, pp. 22118–22133.

[11] Wei Jin et al. “Condensing graphs via one-step gradient matching”. In: ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 2022, pp. 720–
730.

[12] Wei Jin et al. “Graph condensation for graph neural networks”. In: arXiv preprint
arXiv:2110.07580 (2021).

[13] Yongcheng Jing et al. “Amalgamating knowledge from heterogeneous graph
neural networks”. In: Proceedings of the IEEE/CVF Conference on Computer
vision and Pattern Recognition. 2021, pp. 15709–15718.

[14] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph
Convolutional Networks”. In: International Conference on Learning Represen-
tations. 2017.

[15] Mengyang Liu et al. “Graph condensation via receptive field distribution match-
ing”. In: arXiv preprint arXiv:2206.13697 (2022).

[16] Yang Liu, Deyu Bo, and Chuan Shi. “Graph condensation via eigenbasis match-
ing”. In: International Conference on Machine Learning. 2024.

[17] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. “Dataset meta-learning
from kernel ridge-regression”. In: arXiv preprint arXiv:2011.00050 (2020).

[18] Timothy Nguyen et al. “Dataset distillation with infinitely wide convolutional
networks”. In: vol. 34. 2021, pp. 5186–5198.

[19] Tahereh Pourhabibi et al. “Fraud detection: A systematic literature review of
graph-based anomaly detection approaches”. In: Decision Support Systems
(2020), p. 113303.

[20] Yijian Qin et al. “Nas-bench-graph: Benchmarking graph neural architecture
search”. In: Advances in Neural Information Processing Systems. 2022, pp. 54–
69.

[21] Patrick Reiser et al. “Graph neural networks for materials science and chemistry”.
In: Communications Materials 3 (2022), p. 93.

[22] Peter J Rousseeuw. “Silhouettes: a graphical aid to the interpretation and valida-
tion of cluster analysis”. In: Journal of computational and applied mathematics
(1987), pp. 53–65.

[23] Ozan Sener and Silvio Savarese. “Active learning for convolutional neural
networks: A core-set approach”. In: arXiv preprint arXiv:1708.00489 (2017).

[24] Felipe Petroski Such et al. “Generative teaching networks: Accelerating neural
architecture search by learning to generate synthetic training data”. In: Interna-
tional Conference on Machine Learning. 2020, pp. 9206–9216.

[25] Lilapati Waikhom and Ripon Patgiri. “Graph neural networks: Methods, appli-
cations, and opportunities”. In: arXiv preprint arXiv:2108.10733 (2021).

[26] Kai Wang et al. “Cafe: Learning to condense dataset by aligning features”. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp. 12196–12205.

[27] Shoujin Wang et al. “Graph learning based recommender systems: A review”.
In: arXiv preprint arXiv:2105.06339 (2021).

[28] Tongzhou Wang et al. “Dataset distillation”. In: arXiv preprint arXiv:1811.10959
(2018).

[29] Max Welling. “Herding dynamical weights to learn”. In: International Confer-
ence on Machine Learning. 2009, pp. 1121–1128.

[30] Zhiyuan Wu et al. “Rumor detection based on propagation graph neural net-
work with attention mechanism”. In: Expert Systems with Applications (2020),
p. 113595.

[31] Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In:
IEEE Transactions on Neural Networks and Learning Systems 32 (2020), pp. 4–
24.

[32] Zhenbang Xiao et al. “Simple graph condensation”. In: Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases. 2024,
pp. 53–71.

[33] Keyulu Xu et al. “How Powerful are Graph Neural Networks?” In: International
Conference on Learning Representations. 2018.

[34] Keyulu Xu et al. “Representation learning on graphs with jumping knowledge
networks”. In: International Conference on Machine Learning. 2018, pp. 5453–
5462.

[35] Beining Yang et al. “Does Graph Distillation See Like Vision Dataset Counter-
part?” In: Advances in Neural Information Processing Systems. 2023.

[36] Chengxuan Ying et al. “Do transformers really perform badly for graph rep-
resentation?” In: Advances in Neural Information Processing Systems. 2021,
pp. 28877–28888.

[37] Rex Ying et al. “Graph convolutional neural networks for web-scale recom-
mender systems”. In: ACM SIGKDD international Conference on Knowledge
Discovery and Data Mining. 2018, pp. 974–983.

[38] Zhitao Ying et al. “Hierarchical graph representation learning with differentiable
pooling”. In: Advances in Neural Information Processing Systems. 2018.

[39] Hanqing Zeng et al. “Graphsaint: Graph sampling based inductive learning
method”. In: arXiv preprint arXiv:1907.04931 (2019).

[40] Muhan Zhang and Yixin Chen. “Link prediction based on graph neural net-
works”. In: Conference on Neural Information Processing Systems. Vol. 31.
2018.

[41] Yuchen Zhang et al. “Navigating complexity: Toward lossless graph condensa-
tion via expanding window matching”. In: International Conference on Machine
Learning. 2024.

[42] Bo Zhao and Hakan Bilen. “Dataset condensation with differentiable siamese
augmentation”. In: International Conference on Machine Learning. 2021, pp. 12674–
12685.

[43] Bo Zhao and Hakan Bilen. “Dataset condensation with distribution matching”.
In: IEEE/CVF Winter Conference on Applications of Computer Vision. 2023,
pp. 6514–6523.

[44] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. “Dataset Condensation with
Gradient Matching”. In: International Conference on Learning Representations.
2021.

[45] Xin Zheng et al. “Structure-free Graph Condensation: From Large-scale Graphs
to Condensed Graph-free Data”. In: arXiv preprint arXiv:2306.02664 (2023).

[46] Hongkuan Zhou et al. “TGL: a general framework for temporal GNN training
on billion-scale graphs”. In: Proceedings of the VLDB Endowment 15 (2022),
pp. 1572–1580.

[47] Jie Zhou et al. “Graph neural networks: A review of methods and applications”.
In: AI Open 1 (2020), pp. 57–81.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, Sydney, Australia,
Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Appendix
In this appendix, we provide more details of the proposed DisCo

in terms of detailed algorithm, dataset statistics, baselines and exper-
imental settings with some additional analysis and experiments.

A Algorithm
The whole condensation process is divided into two parts in

order: node condensation and edge translation. We show the detailed
algorithm of DisCo in Algorithm 1.

Algorithm 1: The Proposed DisCo Framework
Input: Original graph T = (𝐴,𝑋,𝑌) .
Initialize 𝑋 ′ randomly and pre-define condensed labels 𝑌 ′.
Node Condensation:
Pre-train a node classification model MLP𝜙 .
for 𝑡 = 0, . . . ,𝑇 − 1 do

𝐿cls = L(MLP𝜙 (𝑋 ′), 𝑌 ′) .
𝐿alg = 0.
for 𝑐 ∈ {0, . . . ,𝐶 − 1} do

Compute the proportion of this class 𝜆𝑐 .
Compute the feature mean 𝜇 and 𝜇′ of 𝑐 class.
𝐿alignment+ = 𝜆𝑐 ∗ MSE(𝜇𝑐 , 𝜇′𝑐)

𝐿anc =
∑𝑁 ′

𝑖=1
∑𝑀

𝑗=1 𝐷 (𝑋 ′
𝑖
, 𝑍𝑖 𝑗) .

𝐿 = 𝐿cls + 𝛼𝐿alg + 𝛽𝐿anc.
Update 𝑋 ′ = 𝑋 ′ − 𝜂 ▽𝑋 ′ 𝐿.

Edge Translation:
Obtain convolved original node features 𝐻𝑣 .
Pre-train a link prediction model 𝑔𝜗 with Eq. (8).
Obtain convolved condensed node features 𝐻 ′

𝑣 .
Predict the condensed edges with Eq. (9) and (10).
Output: S = (𝐴′, 𝑋 ′, 𝑌 ′) .

B Datasets, Baselines and Hyperparameters
B.1 Datasets

We evaluate the condensation performance of our method on six
datasets, four of which are transductive datasets such as Cora [14],
Ogbn-arxiv, Ogbn-products and Ogbn-papers100M [10] and two of
which are inductive datasets like Reddit [9] and Reddit2 [39]. The
Cora dataset can be accessed using the pytorch-geometric library.
All the Ogbn datasets can be accessed using the Ogb library. And the
inductive datasets can also be accessed with the pytorch-geometric
library. We directly use public splits to split them into the training,
validation, and test sets. The detailed statistics are summarized in
Table 7. In the condensation process, We make full use of the com-
plete original graph and training set labels for transductive datasets,
whereas we use only the training set subgraph and corresponding
labels for inductive datasets.

B.2 Baselines
We compare our DisCo framework with several baseline meth-

ods: (1) three coreset methods including Random, Herding [29]
and K-Center [23]; (2) four graph condensation methods including
GCOND [12], GCDM [15], SFGC [45] and SGDD [35]. For these
coreset methods, we derive the condensed graph from the original
graph by identifying a small set of core nodes using the three coreset

methods and then inducing a subgraph from these selected nodes.
As for the condensation methods, since the source code for GCDM
cannot be provided by the authors, we have to re-implement our own
version of GCDM from scratch. The experimental results demon-
strate that our implemented GCDM yields consistent results with
those reported in the original paper [15]. To ensure reliability, we
employ the published results of [15].

B.3 Hyperparameter Settings
In the baseline comparison experiment, we evaluate the perfor-

mance of the condensed graph by training a GCN on the condensed
graph and testing it on the original graph. Our GCN employs a 2-
layer architecture with 256 hidden units, and we set the weight decay
to 1e-5 and dropout to 0.5. In the node condensation module, we
utilize a 3-layer MLP with 256 hidden units and no dropout for Cora,
and a 4-layer MLP with 256 hidden units and 0.5 dropout for the
others. And in the link prediction model, we utilize a 3-layer MLP
with 256 hidden units and 0 dropout. The learning rates for MLP
parameters are both set to 0.01. During the pre-training of the link
prediction model, we use a mini-batch of positive and negative edges
during each epoch with the number of negative edges typically set to
three times that of the positive edges. And the aggregator we utilize
in this stage is a max aggregator. For the transductive datasets Cora,
Ogbn-arxiv, Ogbn-products, the labeling rates are 5.2%, 53%, and 8%,
respectively. We choose reduction rate 𝑟 {25%, 50%, 100%}, {0.1%,
0.5%, 1%}, {0.25%, 0.5%, 1%} of the label rate, with corresponding
final reduction rates of being {1.3%, 2.6%, 5.2%}, {0.05%, 0.25%,
0.5%} and {0.02%, 0.04%, 0.08%}. And in the inductive datasets
Reddit and Reddit2, the reduction rates are both set to {0.05%, 0.1%,
0.2%}. For DisCo, we perform 1500 epochs for Cora and Ogbn-arxiv,
and 2500 epochs for the remaining datasets.

C Time Complexity Analysis
Assuming the number of nodes and edges in the original graph is

𝑁 and 𝐸, the node number in the condensed graph is 𝑁 ′. Assume
𝑑 as node feature dimensions, and there are 𝐿 layers with 𝑑 hidden
units for the node condensation MLP, edge translation MLP and
GNN in other methods. The number of sampled neighbors per node
is 𝑟 in GCOND, the anchor number is 𝑀 in DisCo, 𝑃 is the number
of the experts in SFGC. Considering there are 𝑇 iterations and 𝐾
different initializations in GCOND and SFGC.

The complexity of GCOND includes𝑇𝐾𝑂 (𝐿𝑁 ′2𝑑 +𝐿𝑁 ′𝑑) on the
condensed graph and 𝑇𝐾𝑂 (𝑟𝐿𝑁𝑑2) on the original graph. The com-
plexity of SFGC includes 𝑇𝐾𝑂 (𝐿𝑁 ′𝑑2 + 𝐿𝑁 ′𝑑) on the condensed
graph and 𝑇𝑃𝑂 (𝑟𝐿𝑁𝑑2) on the original trajectories. Disco’s com-
plexity includes𝑇𝑂 (𝑁 ′𝐿𝑑2+𝑁+(1+𝑀)𝑁 ′) in the node condensation
stage and 𝑇𝑂 (𝐸𝐿𝑑2) in the edge translation stage. From the analysis
above, it becomes evident that our method offers an improvement of
at least one order of magnitude, which explains the the accelerated
performance of our approach compared to gradient-matching and
trajectory-matching methods.

D Theoretical Analysis
D.1 Node Condensation

The initial condensed nodes are directly sampled using K-Center
from the original graph, so given the K-center node features 𝑋 , the

10

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html#torch-geometric-datasets-planetoid
https://ogb.stanford.edu/docs/nodeprop
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Reddit.html#torch_geometric.datasets.Reddit

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Disentangled Condensation for Large-scale Graphs
WWW ’25, Sydney, Australia,

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 7: The statistics of six datasets.

Dataset Task Type #Nodes #Edges #Classes #Training #Validation #Test

Cora Node Classification (transductive) 2,708 10,556 7 140 500 1,000
Ogbn-arxiv Node Classification (transductive) 169,343 1,166,243 40 90,941 29,799 48,603
Ogbn-products Node Classification (transductive) 2,449,029 61,859,140 47 196,615 39,323 2,213,091
Ogbn-papers100M Node Classification (transductive) 111,059,956 1,615,685,872 172 1,207,179 125,265 214,338

Reddit Node Classification (inductive) 232,965 114,615,892 41 153,431 23,831 55,703
Reddit2 Node Classification (inductive) 232,965 23,213,838 41 153,932 23,699 55,334

condensed features 𝑋 ′ are perturbed versions of 𝑋 , i.e.,

𝑋 ′ = 𝑋 + Δ𝑋,

where Δ𝑋 represents a small perturbation constrained by anchor
attachment and centroid alignment. The loss function is denoted by
L(𝑓𝜙∗ (𝑋), 𝑌), where 𝑓𝜙∗ is a pre-trained model.

Using a first-order Taylor expansion of the loss function around
𝑋 , we have:

L(𝑓𝜙∗ (𝑋 ′), 𝑌 ′) ≈ L(𝑓𝜙∗ (𝑋), 𝑌)+∇𝑋L(𝑓𝜙∗ (𝑋), 𝑌)·Δ𝑋+𝑂 (∥Δ𝑋 ∥2) .

Since the model 𝑓𝜙∗ was pre-trained to minimize the loss L(𝑓𝜙∗ (𝑋), 𝑌),
we have:

∇𝑋L(𝑓𝜙∗ (𝑋), 𝑌) ≈ 0.
Thus, the first-order term vanishes, and we are left with:

L(𝑓𝜙∗ (𝑋 ′), 𝑌 ′) ≈ L(𝑓𝜙∗ (𝑋), 𝑌) +𝑂 (∥Δ𝑋 ∥2) .

This means the change in the loss function depends on the magnitude
of ∥Δ𝑋 ∥.

Consider the anchor number to be 1, the anchor attachment term
𝐴(𝑋 ′) is:

𝐴(𝑋 ′) = ∥𝑋 ′ − 𝑋 ∥ = ∥Δ𝑋 ∥ ≤ 𝜖.
Since both anchor attachment and centroid alignment terms enforce
small perturbations, 𝜖 is a small constant. We have:

𝑂 (∥Δ𝑋 ∥2) = 𝑂 (𝜖2),

L(𝑓𝜙∗ (𝑋 ′), 𝑌 ′) ≈ L(𝑓𝜙∗ (𝑋), 𝑌) +𝑂 (𝜖2).
As a results, the second term introduces flexibility, allowing the
condensed nodes to capture more informative and representative
features without deviating significantly from the basic distribution
(𝑋,𝑌) of the first term.

D.2 Edge Translation
The original edge existence is:

𝑎𝑖 𝑗 = Sigmoid(MLP𝜗 (𝑍1) + MLP2 (𝑍2)
2

),

where 𝑍1 = [𝑋𝑖 ;𝑋𝑁 (𝑖) ;𝑋 𝑗 ;𝑋𝑁 (𝑗)] and 𝑍2 = [𝑋 𝑗 ;𝑋𝑁 (𝑗) ;𝑋𝑖 ;𝑋𝑁 (𝑖)].
Suppose two nodes are initially derived from 𝑋𝑖 and 𝑋 𝑗 . The con-
densed edge existence can then be expressed as

𝑍 ′
1 = 𝑍1 + Δ𝑍1 = [𝑋𝑖 + Δ𝑋𝑖 ;𝑋𝑁 (𝑖) + Δ𝑋𝑁 (𝑖) ;𝑋 𝑗 + Δ𝑋 𝑗 ;𝑋𝑁 (𝑗) + Δ𝑋𝑁 (𝑗)],

𝑍 ′
2 = 𝑍2 + Δ𝑍2 = [𝑋 𝑗 + Δ𝑋 𝑗 ;𝑋𝑁 (𝑗) + Δ𝑋𝑁 (𝑗) ;𝑋𝑖 + Δ𝑋𝑖 ;𝑋𝑁 (𝑖) + Δ𝑋𝑁 (𝑖)],

such that

𝑎′𝑖 𝑗 = Sigmoid(
MLP𝜗 (𝑍 ′

1) + MLP2 (𝑍 ′
2)

2
).

Using the mean value theorem for the Sigmoid function, the differ-
ence between the original and condensed edge existence prediction
Δ𝑎𝑖 𝑗 = 𝑎

′
𝑖 𝑗
− 𝑎𝑖 𝑗 is:

Sigmoid′ (𝜉) ·
(MLP𝜗 (𝑍 ′

1) + MLP𝜗 (𝑍 ′
2)

2
− MLP𝜗 (𝑍1) + MLP𝜗 (𝑍2)

2

)
.

where 𝜉 is some value between (𝑍1, 𝑍2) and (𝑍 ′
1, 𝑍

′
2).

The derivative of the Sigmoid function is:

Sigmoid′ (𝑥) = Sigmoid(𝑥) · (1 − Sigmoid(𝑥)).
which is bounded by

0 ≤ Sigmoid′ (𝑥) ≤ 1
4
.

Thus, we can bound the change in 𝑎′
𝑖 𝑗

as follows:

|Δ𝑎𝑖 𝑗 | ≤
1
4
·
����MLP𝜗 (𝑍 ′

1) + MLP𝜗 (𝑍 ′
2) − (MLP𝜗 (𝑍1) + MLP𝜗 (𝑍2))

2

���� .
MLP𝜗 is a continuous and differentiable function. As demon-

strated in the node condensation theoretical analysis, the perturba-
tions Δ𝑋𝑖 and Δ𝑋 𝑗 are small. Δ𝑋𝑁 (𝑖) and Δ𝑋𝑁 (𝑗) are even smaller
because neighbor features are smoothed during aggregations. So we
have:

MLP𝜗 (𝑍 ′
1) ≈ MLP𝜗 (𝑍1) + ∇MLP𝜗 (𝑍1) · Δ𝑍1

and
MLP𝜗 (𝑍2) ≈ MLP𝜗 (𝑍2) + ∇MLP𝜗 (𝑍2) · Δ𝑍2 .

Finally, the difference can be approximated as:

Δ𝑎𝑖 𝑗 ≈
����∇MLP𝜗 (𝑍1) · Δ𝑍1 + ∇MLP𝜗 (𝑍2) · Δ𝑍2

8

���� .
The change in MLP𝜗 due to a small perturbation Δ𝑍 is small, so as
Δ𝑎𝑖 𝑗 , which proves that the condensed edge existence 𝑎′

𝑖 𝑗
remains

close to the original prediction. Consequently, the connectivity pat-
tern and topology of the original graph are effectively preserved,
allowing the condensed graph to train GNNs similarly to the original
one, thereby achieving good results.

E More Experiments
E.1 Neural Architecture Search

In this section, we aim to evaluate the effectiveness of our ap-
proach in conducting NAS. We conduct a NAS experiment on the
condensed graph and compare it to a direct search on the original
graph. Our investigation focuses on a search space that includes 162
GCN architectures with different configurations of layers, hidden
units, and activation functions. To assess the performance of the

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’25, Sydney, Australia,
Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 8: Evaluation of Neural Architecture Search. Performance
is reported as test accuracy (%). “BT” and “AT” refer to evalua-
tion before tuning and after tuning. “WD” refers to searching
with the whole dataset.

GNN𝑆 GNN𝑁𝐴𝑆 Time

BT AT DisCo WD DisCo WD

Ogbn-arxiv (0.5%) 65.6 66.8 72.1 72.1 15s 104s

Reddit (0.2%) 92.1 92.6 94.5 94.6 32s 518s

search process, we employ two benchmark datasets: Ogbn-arxiv
and Reddit. The procedure for conducting the search on the con-
densed graph is outlined as follows: (1) Utilize the original graph or
condensed graph to train 162 GNNs (GNN𝑆) using different GNN
architectures from the search space. (2) Select the GNN architecture
of the best-performing GNN𝑆 using the original validation set as the
optimal GNN architecture. (3) Train the optimal GNN𝑆 architecture
on the original graph and obtain the NAS result GNN𝑁𝐴𝑆 .

By comparing the performance of GNN𝑁𝐴𝑆 obtained from both
the condensed graph and the original graph, we can evaluate the
effectiveness of the condensed graph approach in guiding the NAS
process. The comprehensive search space encompasses a wide range
of combinations involving layers, hidden units, and activation func-
tions: (1) Number of layers: We search the number of layers in the
range of {2, 3, 4}. (2) Hidden dimension: We search the number
of hidden dimensions in the range of {128, 256, 512}. (3) Activa-
tion function: The available activation functions are: {Sigmoid(·),
Tanh(·), Relu(·), Softplus(·), Leakyrelu(·), Elu(·)}. Table 8 sum-
marizes our research findings, including the test accuracy of GNN𝑆

before and after tuning (we utilize the results obtained in the base-
line comparison section as the pre-tuning results), the NAS result
GNN𝑁𝐴𝑆 , and the average time required to search a single architec-
ture on both the condensed and original graphs.

Our experimental results demonstrate that the condensed graph of
DisCo offers efficient parameter tuning and performance improve-
ments of over 0.5% for both the Ogbn-arxiv and Reddit datasets. The
best architectures discovered through NAS on the condensed graphs
are {3, 512, elu(·)} and {2, 128, tanh(·)} for Ogbn-arxiv and Red-
dit, respectively. Remarkably, we observe that the best architectures
obtained by the condensed graphs achieve comparable GNN𝑁𝐴𝑆

performance to those obtained using the original graph, with a negli-
gible NAS result gap of less than 0.1%. Furthermore, utilizing the
condensed graph significantly reduces the search time, with a speed
improvement of more than six times compared to the original graph.
These findings highlight the viability and efficiency of leveraging the
condensed graph for NAS, as it provides comparable performance
while substantially reducing the required time.

E.2 Hyperparameter Robustness
DisCo has three hyperparameters 𝛼 , 𝛽 and 𝛿 in DisCo. Our exper-

iments suggest these parameters are straightforward to tune. We’ve
found effective performance across datasets by setting 𝛼 = {50, 100},
𝛽 = {1, 2, 5}, and 𝛿 = {0.9, 0.95, 0.99}. The 𝛼 term is crucial due to
small class centroid distances, requiring significant weight (>=50)
to preserve class distribution similarity. 𝛽 is kept small relative to

Table 9: The performance comparison between different hyper-
parameters on Ogbn-arxiv (0.05%).

𝜆 𝛽 𝛿 Acc (%)

50 1 0.95 64.12
50 1 0.99 64.18
50 2 0.95 63.25
50 2 0.99 63.14

100 1 0.95 63.98
100 1 0.99 63.93
100 2 0.95 63.74
100 2 0.99 63.90
100 5 0.95 63.42
100 5 0.99 63.76

𝛼 (<=0.05 𝛼) to avoid the condensed nodes being mere samples,
preserving the condensed graph’s representational power. Lastly,
𝛿 performs well above 0.9. Our results indicate that setting these
hyperparameters according to these guidelines consistently yields
good outcomes, as shown in Table. 9.

12

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary and Pre-analysis
	4 METHOD
	4.1 Overall Framework
	4.2 Node Condensation
	4.3 Edge Translation

	5 Experiments
	5.1 Experiment Settings
	5.2 Prediction Accuracy
	5.3 blackCondensation Time
	5.4 Scalability
	5.5 Generalizability
	5.6 Optimization Step
	5.7 Visualization and Analysis
	5.8 Ablation Study

	6 Conclusion
	A Algorithm
	B Datasets, Baselines and Hyperparameters
	B.1 Datasets
	B.2 Baselines
	B.3 Hyperparameter Settings

	C Time Complexity Analysis
	D Theoretical Analysis
	D.1 Node Condensation
	D.2 Edge Translation

	E More Experiments
	E.1 Neural Architecture Search
	E.2 Hyperparameter Robustness

