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Abstract—The symmetric binary perceptron (SBP) is a
random constraint satisfaction problem (CSP) and a single-
layer neural network; it exhibits intriguing features, most
notably a sharp phase transition regarding the existence of
satisfying solutions. In this paper, we propose two novel gen-
eralizations of the SBP by incorporating random labels. Our
proposals admit a natural machine learning interpretation:
any satisfying solution to the random CSP is a minimizer
of a certain empirical risk. We establish that the expected
number of solutions for both models undergoes a sharp phase
transition and calculate the location of this transition, which
corresponds to the annealed capacity in statistical physics.
We then establish a universality result: the location of this
transition does not depend on the underlying distribution. We
conjecture that both models in fact exhibit an even stronger
phase transition akin to the SBP and give rigorous evidence
towards this conjecture through the second moment method.

I. INTRODUCTION

The focus of this paper is on the perceptron model, a
natural model in high-dimensional probability and a toy
shallow neural network, which stores random patterns [1,
2, 3]. Given patterns Xi ∈ Rn, 1 ≤ i ≤ M , storage
corresponds to finding a vector σ ∈ Rn of synaptic weights
consistent with all Xi: ⟨σ, Xi⟩ ≥ 0 for 1 ≤ i ≤ M . Our
focus is on the binary case where σ ∈ Σn ≜ {−1, 1}n,
see [4, 5, 6, 7, 8] for the spherical case where ∥σ∥2 =√
n. Statistical physics literature provided a very detailed

yet non-rigorous characterization of the storage capacity,
i.e. the maximum number of patterns one can store via
a suitable σ—see [9, 4, 10]. More general perceptron
models considered recently involve an activation function
U : R → {0, 1}. Here, an Xi ∈ Rn is stored with respect to
U if U(⟨σ, X⟩) = 1. Our particular focus is on symmetric
binary perceptron [11] defined by U(x) = 1{|x| ≤ κ

√
n}

(where U(x) = 1 iff |x| ≤ κ
√
n and U(x) = 0 otherwise),

see below. For even more general variants, see [12, 13].

A. Symmetric Binary Perceptron (SBP)

Fix κ > 0, α > 0, and let M = ⌊nα⌋ ∈ N. Generate
i.i.d. random vectors Xi ∼ N (0, In), 1 ≤ i ≤ M , where
N (0, In) is the centered multivariate normal distribution on
Rn with identity covariance. Consider the random set

Sα(κ) ≜
{
σ ∈ Σn : |⟨σ, Xi⟩| ≤ κ

√
n, 1 ≤ i ≤ M

}
. (1)

Observe that Sα(κ) is indeed symmetric about the origin:
σ ∈ Σn iff −σ ∈ Σn. Proposed by Aubin, Perkins, and

Zdeborová [11], the SBP is a symmetrized analogue of the
much studied asymmetric binary perceptron (ABP), where
the constraints are instead of the form ⟨σ, Xi⟩ ≥ κ

√
n,

1 ≤ i ≤ M . The rigorous study of ABP is an ongoing and
difficult mathematical quest, see [10, 14, 15, 16, 17, 18] for
related work. On the other hand, the SBP exhibits relevant
structural properties conjectured for ABP [19] (see below);
at the same time, it is more amenable to analysis.

Strikingly, the SBP exhibits a certain sharp phase tran-
sition, conjectured in [11] and verified independently by
Perkins and Xu [20] and Abbe, Li, and Sly [21]. Let
αc(κ) = −1/ log2 P[|N (0, 1)| ≤ κ]. Then,

lim
n→∞

P[Sα(κ) ̸= ∅] =

{
0, if α > αc(κ)

1, if α < αc(κ)
. (2)

The part α > αc(κ) is established in [11] through the
first moment method: when α > αc(κ), E|Sα(κ)| =
o(1) and therefore Sα(κ) = ∅ w.h.p. by Markov’s in-
equality, where |Sα(κ)| is the cardinality of Sα(κ). The
same paper also considers α < αc(κ) and shows that
lim infn→∞ P[Sα(κ) ̸= ∅] ≥ δ for some 0 < δ < 1.
This is based on the second moment method; one requires
more advanced tools for the high probability guarantee (i.e.
for boosting δ to one), see [20, 21]. Furthermore, [22, 23]
showed that the aforementioned phase transition is very
sharp: the critical window around αc(κ) where the proba-
bility increases quickly from o(1) to 1−o(1) is of constant
width. So, the first moment method correctly predicts the
phase transition point in SBP. This is in stark contrast with
the ABP as the conjectured phase transition point [10] dif-
fers substantially from the first moment prediction, see [16].

Recalling that Sα(κ) is non-empty when α is below the
critical αc(κ) threshold, a natural goal is algorithmically
finding a σ ∈ Sα(κ). The best known polynomial-time
algorithm for the SBP is due to Bansal and Spencer [24]
from combinatorial discrepancy literature1, see also [18] for
a different algorithm. However, both of these algorithms
work at densities substantially below αc(κ), highlighting a
statistical-to-computational gap: for any κ > 0, there exists
an αALG(κ) ≪ αc(κ) such that finding a σ ∈ Sα(κ) is
likely to be computationally intractable when αALG(κ) <
α < αc(κ). Limits of efficient algorithms were recently

1See [25, Section 1.3] for details on the connection between the SBP
and combinatorial discrepancy.



explored in [26, 25] and tight lower bounds against stable
and online algorithms were obtained. For a more elaborate
discussion on SBP, see [20, 26, 25].

Notation. Given any p ∈ [0, 1], Ber(p) denotes the
Bernoulli distribution with parameter p. For any M ∈ N,
[M ] denotes the set {1, . . . ,M}. For any proposition E,
1{E} ∈ {0, 1} denotes its indicator. Given a set S, |S|
denotes its cardinality. For any Σ, N (0,Σ) denotes the cen-
tered multivariate normal distribution with covariance Σ;
the cases Σ = In (the identity matrix in Rn) and Σ = σ2

(σ ∈ R+) are of particular relevance. For any r > 0, logr(·)
and expr(·) respectively denote the logarithm and the expo-
nential functions base r; we omit the subscript when r = e.
We omit all floor/ceiling operators. We use the standard
asymptotic notation, e.g.Θ(·), O(·), o(·), ω(·), where the
underlying asymptotics are with respect to n → ∞.

II. MODELS AND MAIN RESULTS

In this section, we propose two novel generalizations of
the SBP by incorporating random labels.

Definition II.1. Fix κ > 0, α > 0, p ∈ [0, 1], and set M =
nα ∈ N. Let Xi ∼ N (0, In), 1 ≤ i ≤ M be i.i.d. random
vectors and U(x) = 1{|x| ≤ κ

√
n} be the activation.

• Let Yi ∼ Ber(p), 1 ≤ i ≤ M be i.i.d. Set

Sα(κ, p) =
{
σ ∈ Σn : Yi = U(⟨σ, Xi⟩),∀i ∈ [M ]

}
.

• Draw a I ⊂ {1, 2, . . . ,M} with |I| = Mp uniformly
at random and let Yi = 1{i ∈ I}, 1 ≤ i ≤ M . Set

S̃α(κ, p) =
{
σ ∈ Σn : Yi = U(⟨σ, Xi⟩),∀i ∈ [M ]

}
.

Several remarks are in order. Note that the SBP is indeed
a special case of the models arising in Definition II.1,
corresponding to the extreme case of p = 1. Furthermore,
our model also captures the activation 1{|x| > κ

√
n} by

considering the labels Y ′
i = 1 − Yi instead (equivalently

replacing p by 1−p). This is dubbed the u-function binary
perceptron (UBP), see [11] for details. We now highlight
some fundamental differences between our models and both
the SBP and the UBP. Note that for the SBP (resp. UBP),
the solution space gets larger (resp. smaller) as κ → ∞
and smaller (resp. larger) as κ → 0. Importantly though,
for p ∈ (0, 1), the sets Sα(κ, p) and S̃α(κ, p) shrink both
as κ → 0 as well as κ → ∞.

We next compare the two models. On the one hand, they
are somewhat similar: if Yi ∼ Ber(p), 1 ≤ i ≤ M , are
i.i.d., then |{i : Yi = 1}| = Mp + O(

√
M) w.h.p. due

to concentration of measure. On the other hand, the labels
are not independent under the second model. Indeed, while
P[i ∈ I] = p for any i ∈ [M ], we have that for any j ̸= i,

P[j ∈ I|i ∈ I] =
(
M−1
Mp−1

)(
M
Mp

) =
Mp− 1

M − 1
< p = P[j ∈ I],

provided p < 1. In the next section, we show that breaking
the independence in fact lowers the critical threshold.

We now provide two interpretations of our models.

a) Random CSP Interpretation: Both the SBP and its
generalizations in Definition II.1 can be viewed as a random
constraint satisfaction problem (CSP): each pair (Xi, Yi)
defines a random constraint Yi = 1{|⟨σ, Xi⟩| ≤ κ

√
n}

and any σ ∈ Sα(κ, p) is a satisfying solution to the induced
CSP. Random CSPs have been thoroughly studied through
various angles, ranging from the existence of solutions to
the solution space geometry and the limits of polynomial-
time algorithms, see [20] for pointers to relevant literature.

b) Machine Learning Interpretation: Given data con-
sisting of feature/label pairs (Xi, Yi) ∈ Rn × {0, 1},
1 ≤ i ≤ M , a canonical task in machine learning is to
find a model f(·,σ), σ ∈ θ ‘accurately explaining’ these
data, where θ is some domain. This often entails solving
the empirical risk minimization (ERM) problem:

min
σ∈θ

L̂(σ), where L̂(σ) = 1

M

∑
1≤i≤M

ℓ
(
Yi; f(Xi,σ)

)
.

Here, ℓ : R2 → R≥0 is a loss function. Note that when
θ = Σn, ℓ(y;x) = 1{y ̸= x} and f(Xi,σ) = U(⟨σ, Xi⟩),
Sα(κ, p) is simply the set of interpolators:

Sα(κ, p) =
{
σ ∈ Σn : L̂(σ) = 0

}
.

The case of random labels as we do here is important both
from an optimization viewpoint and as a theoretical toy
model in statistics. Closely related to this is the negative
spherical perceptron with random labels, where ∥σ∥2 = 1
and the constraints are of the form Yi ⟨σ, Xi⟩ ≥ κ (note
that since ∥σ∥2 = 1, the right hand side scales as κ instead
of κ

√
n). See Montanari et al. [27] for a thorough study

of this model, including a rigorous phase transition and the
analysis of a certain linear program.

Annealed and Quenched Free Energies. In the next
section, we apply the first moment method to show that
the expected size of Sα(κ, p) (resp. S̃α(κ, p)) undergoes a
phase transition as α crosses an explicit threshold αc(κ, p)
(resp. α̃c(κ, p)). More precisely, we show that for Sα(κ, p),

lim
n→∞

logE
[
|Sα(κ, p)|

]
n

> 0, ∀α < αc(κ, p) (3)

lim
n→∞

logE
[
|Sα(κ, p)|

]
n

< 0, ∀α > αc(κ, p), (4)

and analogously for S̃α(κ, p). This result pertains
n−1 logE

[
|Sα(κ, p)|

]
, which is known as the annealed free

energy in statistical physics literature, see e.g. [28, 12].
This should be contrasted with the quenched free energy,
n−1E

[
log |Sα(κ, p)|

]
(which is upper bounded by the an-

nealed free energy via Jensen’s inequality). An ultimate
goal towards which we give some rigorous evidence in
Theorem II.7 is to show that (a) Sα(κ, p) ̸= ∅ (w.h.p.)
if α < αc(κ) and (b) Sα(κ, p) = ∅ (w.h.p.) if α > αc(κ).
Note that when α > αc(κ, p), (4) yields Sα(κ, p) = ∅
(w.h.p.) via Markov’s inequality, see Theorems II.2-II.3 for
details. However for α < αc(κ, p), (3) does not necessarily



imply Sα(κ, p) ̸= ∅: it is possible that E[|Sα(κ, p)|] is
large, while |Sα(κ, p)| is in fact zero w.h.p. To establish
Sα(κ, p) ̸= ∅ for α < αc(κ, p), it might help studying
the quenched free energy instead, e.g. if n−1 log |Sα(κ, p)|
concentrates around its mean. For the SBP this was done
in [20]. For our models, this is left for future work. For
more on the annealed and quenched energies, see [28, 11].
In light of the preceding discussion, the quantities αc(κ, p)
and α̃c(κ, p) are dubbed as the annealed capacity.

A. Main Results

Throughout this section, q(κ) denotes P[|N (0, 1)| ≤ κ].
Our first main result addresses the case of i.i.d. labels.

Theorem II.2. Recall Sα(κ, p) from Definition II.1 and let

αc(κ, p) = −1/ log2
(
pq(κ) + (1− p)(1− q(κ))

)
. (5)

Then

E
[∣∣Sα(κ, p)

∣∣] = {exp(−Θ(n)), if α > αc(κ, p)

exp(Θ(n)), if α < αc(κ, p)
.

In particular, P[Sα(κ, p) = ∅] ≥ 1− e−Θ(n) if α > αc(κ).

Proof of Theorem II.2. Our proof is based on the first
moment method: note that by Markov’s inequality,

P
[∣∣Sα(κ, p)

∣∣ ≥ 1
]
≤ E[

∣∣Sα(κ, p)
∣∣],

so that Sα(κ, p) = ∅ w.h.p. if E
[∣∣Sα(κ, p)

∣∣] = o(1). So,
the remainder of proof estimates E

[∣∣Sα(κ, p)
∣∣]. Fix any

σ ∈ Σn and let Zi(σ) = 1
{
Yi = U(⟨σ, Xi⟩)

}
. Then,

|Sα(κ, p)| =
∑

σ∈Σn

Z(σ), where Z(σ) =
∏

1≤i≤M

Zi(σ).

Now fix any σ ∈ Σn and observe that Z1(σ), . . . , ZM (σ)
are i.i.d. Bernoulli. Moreover, ⟨σ, Xi⟩ ∼ N (0, n). So,

P[Zi(σ) = 1] = P[Zi(σ) = 1|Yi = 1]P[Yi = 1]

+ P[Zi(σ) = 1|Yi = 0]P[Yi = 0]

= pP[|⟨σ, Xi⟩| ≤ κ
√
n]

+ (1− p)P[|⟨σ, Xi⟩| > κ
√
n]

= pq(κ) + (1− p)(1− q(κ)).

Thus, E
[∣∣Sα(κ, p)

∣∣] = exp2
(
nf(α, p, κ)

)
where

f(α, p, κ) = 1 + α log2
(
pq(κ) + (1− p)(1− q(κ))

)
.

As f(α, p, κ) > 0 iff α < αc(κ) the proof is complete.

Our second main result addresses the case where the set
{i : Yi = 1} is drawn uniformly at random.

Theorem II.3. Recall S̃α(κ, p) from Definition II.1 and let

α̃c(κ, p) = −1/
(
p log2 q(κ)+ (1− p) log2(1− q(κ)

)
. (6)

Then,

E
[∣∣S̃α(κ, p)

∣∣] = {exp(−Θ(n)), if α > α̃c(κ, p)

exp(Θ(n)), if α < α̃c(κ, p)
.

In particular, P[S̃α(κ, p) = ∅] ≥ 1 − e−Θ(n) if
α > α̃c(κ, p).

Proof of Theorem II.3. The proof is quite similar to that of
Theorem II.2; we only point out necessary modifications.
Define Z̃(σ) =

∏
1≤i≤M Z̃i(σ), where Z̃i(σ) = 1

{
Yi =

U(⟨σ, Xi⟩)} for 1 ≤ i ≤ M . Let It, 1 ≤ t ≤
(
M
Mp

)
be the

subsets of [M ] of size Mp. Notice that P[Z̃(σ) = 1|I =
It] =

∏
i∈It

P[|⟨σ, Xi⟩| ≤ κ
√
n] ·
∏

i∈[M ]\It
P[|⟨σ, Xi⟩| >

κ
√
n] = q(κ)Mp(1−q(κ))M(1−p), using the fact ⟨σ, Xi⟩ ∼

N (0, n) and the independence of X1, . . . , XM . Hence,

P[Z̃(σ) = 1] =

(M
Mp)∑
t=1

(
M

Mp

)−1

P[Z̃(σ) = 1|I = It]

= q(κ)Mp(1− q(κ))M(1−p).

As M = αn, we immediately obtain E
[∣∣S̃α(κ, p)

∣∣] =

exp2
(
nf̃(α, p, κ)

)
, where

f̃(α, p, κ) = 1 + α
(
p log2 q(κ) + (1− p) log2(1− q(κ))

)
.

This yields Theorem II.3.

a) Universality: We next result establish a universal-
ity result: under mild assumptions, the quantities αc(κ, p)
and α̃c(κ, p) do not depend on the distribution of Xi.

Theorem II.4. Theorems II.2-II.3 still hold if Xi =
(Xi(j) : j ∈ [n]) ∈ Rn consists of i.i.d. coordinates with
E[Xi(1)] = 0, E[Xi(1)

2] > 0 and E[|Xi(1)|3] < ∞.

We note that several related universality results appeared
in the literature. In particular, [26] establishes the universal-
ity of a certain intricate geometrical property in the solution
space of the SBP and [29] establishes the universality of the
training error for linear classification with random inputs.

Proof of Theorem II.5. We show the extension for Theo-
rem II.2; that of Theorem II.3 is analogous. Our argument is
based on the Berry-Esseen inequality [30, 31], reproduced
below for convenience.

Theorem II.5. There exists an absolute constant C >
0 such that the following holds. Let T1, . . . , Tn be
i.i.d. random variables with E[T1] = 0, E[T 2

1 ] = σ2 > 0
and E[|T1|3] = ρ < ∞. Then, for Z ∼ N (0, 1),

sup
x∈R

∣∣∣∣P [T1 + · · ·+ Tn

σ
√
n

≤ x

]
− P[Z ≤ x]

∣∣∣∣ ≤ Cρ

σ3
√
n
.

Equipped with Theorem II.5, fix any i ∈ [M ] and let Xi =
(Xi(j) : j ∈ [n]) with E[Xi(j)] = 0, E[Xi(j)

2] = σ2

(where σ > 0) and E[|Xi(j)|3] = ρ < ∞. Note that

P[Yi = U(⟨σ, Xi⟩)]
= P[Yi = U(⟨σ, Xi⟩)|Yi = 1]P[Yi = 1]

+ P[Yi = U(⟨σ, Xi⟩)|Yi = 0]P[Yi = 0]

= P
[
|⟨σ, Xi⟩| ≤ κ

√
n
]
p+ P

[
|⟨σ, Xi⟩| > κ

√
n
]
(1− p).

(7)



Let q(κ) = P[−κ ≤ Z ≤ κ] where Z ∼ N (0, 1). Applying
Theorem II.5 to Xi(j), j ∈ [n], together with triangle
inequality, we obtain∣∣∣P[|⟨σ, Xi⟩| ≤ κ

√
n
]
− q(κ)

∣∣∣ ≤ 2Cρ

σ3
√
n
≜

C√
n
, (8)

where C = 2Cρ
σ3 = O(1). Combining (7) and (8), we obtain

P[Yi = U(⟨σ, Xi⟩)] ≤ q(κ)p+(1−q(κ))(1−p)+
C√
n
. (9)

Recall now the Taylor expansion for logarithm: as x → 0,

log2(1 + x) = − x

log 2
+O(x2). (10)

We now combine (9) with (10) to obtain

P[Yi = U(⟨σ, Xi⟩)]αn

≤
(
q(κ)p+ (1− q(κ))(1− p)

)αn
×

(
1 +

C
√
n
(
q(κ)p+ (1− q(κ))(1− p)

))αn

= exp2

(
αn log2

(
q(κ)p+ (1− q(κ))(1− p)

)
+

αn log2

(
1 +

C
√
n
(
q(κ)p+ (1− q(κ))(1− p)

)))
= exp2

(
αn log2

(
q(κ)p+ (1− q(κ))(1− p)

)
+Θ(

√
n)
)
.

With this, we obtain immediately that

E
∣∣Sα(κ, p)

∣∣ = exp2
(
nf(α, p, κ) + Θ(

√
n)
)
.

The extension for Theorem II.3 is similar.

b) Comparison of Thresholds in Theorems II.2-II.3:
Inspecting (5) and (6), observe that Jensen’s inequality and
the concavity of the map x 7→ log2 x on (0,∞) collectively
yield αc(κ, p) ≥ α̃c(κ, p). We found it quite remarkable
that breaking the independence lowers the critical threshold:
the model with independent labels has a higher annealed
capacity. We are unaware of any prior work in the random
CSP literature that investigates whether and how the crit-
ical threshold changes with the dependence structure. We
believe that this direction merits further investigation.

c) A Sharp Phase Transition Conjecture: Recall that
the prior works [20, 21] establish a sharp phase transi-
tion (2) for the SBP, and show that the first moment method
correctly predicts the location of this transition. Further,
Theorems II.2-II.3 collectively yield a phase transition for
the first moment itself. In light of these, we conjecture an
analogous phase transition for the models we propose.

Conjecture II.6. There exists a κ∗ > 0 such that the fol-
lowing holds for every κ < κ∗. The quantity P

[
Sα(κ, p) ̸=

∅
]

(resp. P
[
S̃α(κ, p) ̸= ∅

]
) undergoes a phase transition

at value αc(κ, p) (resp. α̃c(κ, p)) as n → ∞:

lim
n→∞

P[Sα(κ, p) ̸= ∅] =

{
0, if α > αc(κ, p)

1, if α < αc(κ, p),

lim
n→∞

P[S̃α(κ, p) ̸= ∅] =

{
0, if α > α̃c(κ, p)

1, if α < α̃c(κ, p).

For the UBP (corresponding to p = 0), [11] shows that
the moment method works only for κ < κ∗ ≈ 0.817.
Remarkably, the value 0.817 corresponds to the onset of
replica symmetry breaking, see [11] for details. In light of
this, we anticipate Conjecture II.6 to be valid for small κ,
more concretely for κ < κ∗ ≈ 0.817. The behaviour of our
models beyond κ∗ is a very interesting open question.

Towards Conjecture II.6, we establish the following
result, contingent on a certain assumption.

Theorem II.7. For any κ > 0, there exists a p∗κ < 1
such that the following holds. Fix any p ∈ [p∗κ, 1] and any
α < α̃c(κ, p). Then, lim infn→∞ P

[
S̃α(κ, p) ̸= ∅

]
> 0.

Moreover, for any κ ∈ (0, 0.817), there exists a p∗∗κ > 0
such that the following holds. Fix any p ∈ [0, p∗∗κ ] and any
α < α̃c(κ, p). Then, lim infn→∞ P

[
S̃α(κ, p) ̸= ∅

]
> 0.

We highlight that our proof is contingent on an assump-
tion regarding (the critical points of) a certain real function,
akin to [11, Hypothesis 3]. See the supplementary material
for details. Theorem II.7 covers the cases when p is close
to 1 (corresponding to SBP) and close to 0 (corresponding
to UBP). We prove Theorem II.7 by adapting the second
moment argument of [11] with few extra steps.

III. OPEN PROBLEMS

a) Sharp Phase Transition: In light of earlier dis-
cussion, we conjecture that both models exhibit a sharp
phase transition (Conjecture II.6). It is plausible that Con-
jecture II.6 can be resolved by employing an argument
similar to [20, 21]; we leave this as an open problem.

b) Interplay between the Critical Threshold and De-
pendence Structure: Recall that αc(κ, p) ≥ α̃c(κ, p) for
any κ > 0 and p ∈ [0, 1]. The interplay between the critical
threshold and the dependence structure in the context of
other random CSPs or neural network models (such as the
Hopfield model) is an interesting question for future work.

c) Other Perceptron Models: It would be very inter-
esting to extend our results to the spherical case (∥σ∥2 =
1). We believe that the arguments of [27] may transfer.
Similarly, it would be interesting to consider different acti-
vations U(x) and more general perceptron models [12, 13].

d) Algorithms: While [24] and [18] devise efficient
algorithms for finding solutions of the SBP and the UBP
at sufficiently low densities, it is not clear whether they
apply to our models. Let I = {i : Yi = 1}, M ∈ R|I|×n

with rows Xi ∈ Rn, i ∈ I, and M ∈ R(M−|I|)×n with
rows Xi ∈ Rn, i ∈ [M ] \ I. Note that when 0 < p < 1
holds strictly, both I and Ic are w.h.p. non-empty. Ob-
serve that finding a σ ∈ Sα(κ, p) (or a σ ∈ S̃α(κ, p))
amounts to finding a σ such that both ∥Mσ∥∞ ≤ κ

√
n

and mini
∣∣(Mσ

)
i

∣∣ > κ
√
n hold. To that end, one can

potentially run (a) the discrepancy minimization algorithm



to find a σ1 ∈ Σn with ∥Mσ∥∞ ≤ κ
√
n and (b) the

algorithm of Abbe, Li, and Sly [18] to find a σ2 ∈ Σn

with mini
∣∣(Mσ

)
i

∣∣ > κ
√
n. It is, however, unclear if these

algorithms return the same solution (i.e. σ1 = σ2) even
at very low densities. Assuming that solutions do exist
for densities below the critical threshold, it is thus a very
interesting open question to find efficient algorithms finding
these solutions at certain densities.

e) Solution Space Geometry: A large body of litera-
ture on random CSPs is devoted to the study of their solu-
tion space geometry [20]. Intricate geometrical properties of
their solution spaces are linked to the failure of algorithms,
see [32, 33, 20, 26, 25] for a discussion. Gamarnik,
Kızıldağ, Perkins and Xu [26] studied the solution space
geometry of the SBP and established the presence of
the multi Overlap Gap Property (m-OGP) in order to
obtain nearly tight lower bounds against the class of stable
algorithms. More recently, the same authors established a
different intricate geometrical property and leveraged it to
obtain tight hardness guarantees against online algorithms,
see [25]. The class of online algorithms captures, in partic-
ular, the best known algorithm for the SBP [24]. It would
be very interesting to study the solution space geometry of
these models via the m-OGP to obtain algorithmic lower
bounds. We anticipate that the fact Sα(κ, p) shrinks both
as κ → 0 and as κ → ∞ may simplify the analysis. For
more on the OGP, see the survey by Gamarnik [34].
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