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Abstract: The scale and diversity of demonstration data required for imitation
learning is a significant challenge. We present EgoMimic, a full-stack framework
to scale manipulation via egocentric human demonstrations. EgoMimic intro-
duces a data collection system built on the Project Aria glasses, as well as an al-
gorithm which can leverage these demonstrations as a native data source. This ap-
proach improves performance over state-of-the-art imitation learning algorithms
on a set of real-world single-arm and bimanual manipulation tasks and enables
generalization to entirely new scenes. Finally, we exhibit favorable scaling prop-
erties, and find adding 1 hour of additional human data is more valuable than 1
hour of additional robot data. Videos available at ego-mimic.github.io
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Figure 1: EgoMimic enables anyone to collect human demonstrations for imitation learning, simply by wearing
a pair of Project Aria glasses [1]. Aria glasses record egocentric vision paired with hand tracking, which we
use to augment our robot training data. When combined, it can boost task performance by 34-228%.

1 Introduction

End-to-end imitation learning has shown remarkable performance in learning complex manipulation
tasks [2, 3, 4, 5], but it remains brittle when facing new scenarios and tasks. Recent works like RT1
and RT?2 improve generalization [6, 7], but require months of data collection effort. We see this as a
scalability bottleneck: where other domains like Natural Language Processing and Computer Vision
leverage Internet-sourced data to scale performance, robotics lacks such an equivalent.

To scale up data for robotics, there have been recent advances in data collection systems. For exam-
ple with intuitive leader-follower style teleoperation [2, 8, 9], or with hand-held grippers to collect
data without a robot [10]. However, these systems still require active effort in providing demonstra-
tions. We hypothesize that passive data collection [11] is critical to achieving Internet-scale robot
data. Just as the Internet was not built to curate data for vision and language models, an ideal robot
data system should allow users to generate sensorimotor behavior data without intending to do so.

Prior work has recognized the potential of human data for passive data scaling, but these works
generally view human data as auxiliary data source to train visual representations [12, 13, 14] or
understand scene dynamics through point track prediction [15, 16], intermediate state hallucination
in pixel space [17, 18], or affordance prediction [19]. We argue that to effectively scale robot perfor-
mance using human data, human videos should not be treated as an auxiliary data source requiring

*! Georgia Institute of Technology. > Stanford University. “Equal contribution. "Equal advising.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.


https://ego-mimic.github.io

separate processing. Instead, we should exploit the inherent similarities between egocentric human
data and robot data to treat them as equal parts in a continuous spectrum of embodied data sources.

To this end, our work treats human data as a first-class data source for robot manipulation. We
believe our system is a key step towards using passive data from wearable smart glasses to train
manipulation policies. We present EgoMimic (Fig. 1), a framework to collect data and co-train
manipulation policies from both egocentric human videos and teleoperated robot data consisting of:
(i) a system to collect human data via Project Aria glasses [1] (ii) a capable and low-cost bimanual
robot which minimizes the kinematic gap to human data (iii) data normalization and alignment
techniques to close the human-robot gap (iv) a unified imitation learning architecture which co-
trains on hand and robot data with a common vision encoder and policy network.

We empirically evaluate EgoMimic on three challenging long-horizon manipulation tasks in the
real world: continuous object-in-bowl, clothes folding, and grocery packing (Fig. 3). EgoMimic
enhances performance in all scenarios, with relative improvements of up to 200%. Further, we
observe that EgoMimic exhibits generalization to objects and scenes encountered exclusively in
human data. Finally, we analyze the scaling properties of EgoMimic, and find that training on an
additional hour of hand data significantly outperforms training on an additional hour of robot data.

2 EgoMimic

We aim to develop a unified framework that can simultaneously train on egocentric human and robot
data. While many works have tackled aspects of this problem, we innovate across the full stack from
human and robot data collection to algorithmic improvements.

2.1 Data Collection Systems and Hardware Design

Aria glasses for egocentric demonstration collection. An ideal system for human data needs to
capture rich information about the scene, while remaining passively scalable. EgoMimic fills this
gap by building a data collection system on top of the Project Aria glasses. A user can simply wear
these glasses and perform tasks with their own hands, which we process and use for imitation learn-
ing. These glasses have a wide FOV RGB camera and two mono-color scene cameras to estimate
device pose and hand-tracking (see Appendix A.1 for more details).

Low-cost bimanual manipulator. To better learn from human data, we built a bimanual robot
whose movement resembles that of humans. It consists of two 6DoF ViperX arms with wrist cameras
and Aria glasses for vision, mounted on a height-adjustable torso (Fig 4 and Appendix A.2).

2.2 Data Processing and Alignment

EgoMimic bridges three key human-robot gaps to promote seamless co-training: (1) unifying action
coordinate frames, (2) aligning action distributions, and (3) mitigating visual appearance gaps.

Raw data streams. We stream raw sensor data from the hardware setup as described in Sec. 2.1.
Aria glasses worn by the human and robot generate ego-centric RGB image streams. In addition,
the robot generates two wrist camera streams. For proprioception, we leverage the Aria Machine
Perception Service (MPS) [20] to estimate poses of both hands #p € SE(3) x SE(3). Robot
proprioception data includes both its end effector poses #p € SE(3) x SE(3) and joint positions
Rq € R?*7 (including the gripper jaw position). We in addition collect joint-space actions Fa? €
R2*7 for teleoperated robot data.

Unifying human-robot data coordinate frames. Robot actions and proprioception typically use
fixed reference frames (e.g., camera or robot base), but egocentric hand data from a moving camera
breaks this assumption. To unify these frames, we transform both robot and human data into a
camera-centered stable reference frame. For robot data we simply perform hand eye calibration to
map robot base actions into camera frame. For human data, we leverage Aria’s onboard SLAM to
account for device movement, and project hand positions to a stable frame (see Appendix B.1).
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Figure 3: We evaluate EgoMimic across three real world, long-horizon manipulation tasks.

Aligning human-robot pose distributions. Despite aligning human and robot data via hardware
design and data processing, there are still differences in the distributions of hand and robot end
effector poses, which prevent effective co-training [21, 22]. Drawing from prior work, we apply
Gaussian normalization to the actions and proprioception from each data source (Fig. 5) [22].

Bridging visual appearance gaps. Despite aligning sensor hardware for capturing robot and human
data, there still exists a large visual appearance gap between human hands and robots. Previous
works have acknowledged this gap and attempt to occlude or remove the manipulator in visual
observation [23], [24]. We follow similar ideas and mask out both the hand and the robot via
SAM [25] and overlay a red line to indicate end-effector directions (Fig 5).
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directly beneﬁt from large_scale human data‘ Figure 2: EgOMlmlC processes normalized hand and
robot data through shared vision and policy networks.
In contrast, our architecture enables unified co- It outputs pose predictions for both human and robot

training for both hand and robot data. All pa- data, and joint predictions robot data.

rameters in the policy are shared besides the

two shallow input and output heads. The input heads transform the visual and proprioceptive em-
beddings before passing to the policy transformer. The policy transformer processes these features,
and the two output heads map the transformer’s latent output into either pose or joint space pre-
dictions. The pose loss supervises both human and robot data via 7 a? and #aP, whereas the joint
action loss only supervises robot data fa9. Our architecture which processes both domains of data
with shared parameters helps force the model to learn a joint human-robot representation, and drives
performance scaling via human data (Sec. 3.2).

3 Experiments

We aim to validate three key hypotheses. H1: EgoMimic is able to leverage human data to boost in-
domain performance for complex manipulation tasks. H2: Human data helps EgoMimic generalize
to new objects and scenes. H3: Given sufficient initial robot data, it is more valuable to collect
additional human data than additional robot data.

3.1 Experiment Setup

Tasks. We evaluate our approach on a set of long-horizon real-world tasks (Fig. 3). Continuous
Object-in-Bowl: The robot picks a small toy, places it in a bowl, dumps it out, and continuously
repeats the process. Laundry: The robot folds a t-shirt using both arms in several stages. Groceries:
The robot grasps and opens a shopping bag with one arm while placing items inside it with the other



Table 1: Quantitative results for 3 real-world tasks. We report task suc-  Taple 2: Ablations - We ablate our

cess rates (%) and perfc_>rmance scores (pts) for all tasks and bag grab- method and report final task per-
bing rate for the Groceries tasks. (0% H) = No Human Data formance on Object-in-Bowl.
Method Bowl Laundry Groceries Method Pts
Pts |Pts SR |Pts SR Open Bag EgoMimic 128
ACT [2] 39 | 82 55% |82 22%  54% w/o Line 112
Mimicplay [5] 71 | 78 50% | 53 8%  40% w/o Line and Mask 95
EgoMimic (0% H) 68 | 104 73% | 92 28%  60% w/o Action Norm 79
EgoMimic 128 [114 88% [110 30% 70% w/o Hand Data 68

arm. Performance is measured in points (pts) and success rate (SR) across multiple trials for each
task. See Appendix D for details on task description.

Baselines. We benchmark EgoMimic against ACT [2], a state-of-the-art imitation learning algo-
rithm, as well as Mimicplay [5], a state-of-the-art method which leverages human hand data.

3.2 Results

EgoMimic improves in-domain task performance. Across all tasks, we observed a relative im-
provement in score of 34-228%, and an improvement in absolute task success rate from 8-33% over
ACT. Our largest improvement is on the Cont. Object-in-Bowl task, in which we yield a 228% im-
provement in task score over ACT. We observe the baselines often miss the toy or bowl by a few
inches, which seems to indicate that our use of hand data helps the policy precisely reach the toy.
We show qualitative results in Fig. 6. To ensure this increase was due to leveraging hand data rather
than architectural changes, we compare to EgoMimic (0% human), and find we improve score by
10-88% and success rate by 2-15%.

EgoMimic enables generalization to new objects and even scenes. We evaluate our method on
two domain shifts: attempting to fold shirts of an unseen color, and performing the Cont. Object-
in-Bowl task in an entirely different scene. As shown in Fig. 7, we observe that ACT struggles
on shirts of unseen colors (25% SR) whereas EgoMimic fully retains its performance (85% SR).
Further, by learning from human data in a new scene (unseen background and lighting), EgoMimic
is able to generalize to this new environment without any additional robot data, scoring 63 points,
outperforming Mimicplay (4 pts) and ACT (7 pts).

Scaling human vs. robot data. To investigate the scaling effect of human and robot data sources on
performance, we conducted additional data collection for the Cont. Object-in-bowl task. As illus-
trated in Fig. 8, EgoMimic trained on 2 hours of robot data and 1 hour of human data significantly
outperforms ACT trained on 3 hours of robot data (128 vs 74 points). Notably, one hour of human
data yields 1400 demonstrations, compared to only 135 demonstrations from an hour of robot data.
These results demonstrate EgoMimic’s ability to effectively leverage the efficiency of human data
collection, leading to a more pronounced scaling effect that substantially boosts task performance
beyond what is achievable with robot data alone. We note that EgoMimic at 2 hours of robot data
outperforms ACT at 2 hours of robot data, so some improvement is attributed to architecture.

Ablation studies. Ablations on the Object-in-Bowl task (Table 2) indicate that human data (-47%),
action normalization (-38%) and hand/robot masking (-26%) are integral to EgoMimic.

4 Conclusions

We presented EgoMimic, a framework to co-train manipulation policies from human egocentric
videos and teleoperated robot data. By leveraging Project Aria glasses, a low-cost bimanual robot
setup, cross-domain alignment techniques, and a unified policy learning architecture, EgoMimic
improves over state-of-the-art baselines on real-world tasks, shows generalization to new scenes,
and has favorable scaling properties.
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A Data Collection Systems and Hardware Design

A.1 Aria glasses for egocentric demonstration collection

Aria glasses are head-worn devices for capturing multimodal egocentric data. The device assumes
an ergonomic glasses form factor that weighs only 75g, permitting long wearing time and passive
data collection. Our work leverages the front-facing wide-FoV RGB camera for visual observation
and two mono-color scene cameras for device pose and hand tracking (See Fig. 4 for sample data).
In particular, the side-facing scene cameras track hand poses even when they move out of the main
RGB camera’s view, significantly mitigating the challenges posed by humans’ natural tendency to
move their head and gaze ahead of their hands during sequential manipulation tasks.

Further, there are large-scale data collection efforts underway with Project Aria [26, 27], and the de-
vices are made available broadly to the academic community through an active research partnership
program. In the future, our system can enable users to seamlessly merge data they collect with these
large datasets. Ultimately, we present a system that enables passive yet feature-rich data collection
to help scale up robot manipulation.

A.2 Low-cost bimanual manipulator

To effectively utilize egocentric hu-
man data, a robot manipulator should
be capable of moving in ways that re-
semble human arm movements. Prior
works often rely on table-mounted
manipulators such as the Franka
Emika Panda [28]. While these sys-
tems are capable, they differ signif-
icantly from human arms in terms
of kinematics. Moreover, their sub-
stantial weight and inertia necessi-
tate slow, cautious movements due
to safety concerns, largely prevent-
ing them from performing manipu-
lation tasks at speeds comparable to
humans. In response to these limita-
tions, we have purpose-built a biman-  Figure 4: Our system uses Aria glasses to capture Egocentric RGB
ual manipulator that is lightweight, and uses its side SLAM cameras to localize the device and track
agile, and cost-effective. Drawing hands. The robot consists of two Viper X arms with Intel Re-

alSense wrist cameras. Our robot uses identical Aria glasses as the
main vision sensor to help minimize the camera-to-camera gap.

Human

Robot Aria

inspiration from the ALOHA sys-
tem [2], our robot setup comprises
two 6-DoF ViperX arms mounted in an inverted configuration on a height-adjustable rig as the
torso (Fig 4), kinematically mimicking the upper body of a human. The ViperX arms are lean and
relatively similar in size to human arms, contributing to their enhanced agility. The entire rig can be
assembled for less than $1,000 excluding the ViperX arms (the BOM will be made available). We
also built a leader robot rig to collect teleoperation data, similar to ALOHA [2].

Further, as our method jointly learns visual policies from human egocentric and robot data, it is
essential to align the visual observation space. Thus in addition to alignment through data post-
processing (Sec. 2.2), we directly match the camera hardware by using a second pair of Aria glasses
as the main sensor for the robot, which we have mounted directly to the top of the torso at a location
similar to that of human eyes (Fig 4). This enables us to mitigate the observation domain gap
associated with the camera devices, including FOVs, exposure levels, and dynamic ranges.



B Data Processing and Domain Alignment

B.1 Proprioception and Visual Alignment

We independently normalize the action distributions in both human and robot embodiments to
ensure alignment across modalities. To further mitigate the appearance discrepancy between
these embodiments, we apply a red line overlay and masking using SAM2 [25], as shown in
Fig. 5. The SAM point prompts are generated by the robot end effector and human hand
poses transformed to image frames. These preprocessing steps facilitate the seamless integra-
tion of both data sources, enabling effective co-training of our model on the dual modalities.

a) Action Distribution b) Masking-Based
Alignment

Appearance Alignment

B.2 Unifying
human-robot coordinate frames:

Robot action and proprioception data typically
use fixed reference frames (e.g., camera or
robot base frame). However, egocentric hand
data from moving cameras breaks this assump- Robot
tion. To unify the reference frames for joint \ 3 ,
policy learning, we transform both human hand /Aascer Norm \—\\
and robot end effector trajectories into camera- 0 50 20 S Coordinate "’ 0 a0
Centc.ared stable rt.afe.rence frames. Following Figure 5: a) Action normalization: The pose distribu-
the idea of predicting action chunks [3, 21, on are different between hand and robot data, specif-
we aim to construct action chunks af,  , for ically in the y (left-right) dimension. We apply Gaus-
both human hand and robot end effector. To sian normalization individually to the hand and robot

simplify the notation, we describe the single- Pose data before feeding them to the model. b) Visual
arm case that generalizes to both arms. The masking: To help bridge the appearance gap of human

. . F 3 and and the robot arm, we apply a black mask to the
ra}V trgjticltory I}“i +2 sequence of 3D pPoses  pang and robot via SAM, then overlay a red line onto
(27 i Dy ], where F; denotes the the image.

coordinate frame of the camera when estimat-

ing p;. F; remains fixed for the robot but

changes constantly for human egocentric data.

Our goal is to construct a?, 45, by transforming each position in the trajectory into the observa-
tion camera frame F;. This allows the policy to predict actions without considering future camera
movements. For human data, we use the MPS visual-inertial SLAM to obtain the Aria glasses pose
TF: € SE(3) in the world frame and transform the action trajectory:

B = (TP T pft for i€ ft,t+1,...,t+h]
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A sample trajectory is visualized in Fig. 4 (top-left). Robot data is transformed similarly using the
fixed camera frame estimated by hand-eye calibration. By creating a unified reference frame, we
enable the policy to learn from action supervisions regardless of whether they originate from human
videos or teleoperated demonstrations.

C Robot Action Space

A critical challenge in this unified approach is the choice of the robot action space. While the robot
end-effector poses align more closely with human data in semantic meaning and format, control-
ling our robot with end-effector poses via cartesian-based controller (e.g., differential IK) proves
difficult: the 6 DoF ViperX arms offer low solution redundancy, and we empirically found that
robots often encounter singularities or non-smooth solutions in a trajectory. Consequently, we opt
for joint-space control and use pose space prediction for learning joint human-robot representation.



Success

(a) Success: Object-in-Bowl |

(e) Fails to pick/place object (f) Fails to grab bag/chip (g) Fails to grab sleeve

Figure 6: We highlight EgoMimic’s success, as well as failure modes, for instance (e) failure to correctly align
with the toy, (f) failure to grasp the bag’s handle, or (g) policy only grabs 1 side of the shirt. EgoMimic reduces
the frequency of these failure modes, improving success rates by 8-33% over the baselines.

D Experiments

D.1 Tasks

We select a set of long-horizon real world tasks to evaluate our claims. Our tasks require precise
alignment, complex motions, and bimanual coordination (Fig. 3).

Continuous Object-in-Bowl: The robot picks a small plush toy (about 6¢cm long), places it in a
bowl, picks up the bowl to dump the object onto the table, and repeats continuously for 40 seconds.
We randomly choose from a set of 3 bowls and 5 toys which randomly positioned on the table
within a 45cm x 60cm range. The task stress-tests precise manipulation, spatial generalization, and
robustness in long-horizon execution. We award Pts each time the toy is placed in a bowl, or the
bowl is emptied. We perform 45 total evaluation rollouts across 9 bowl-toy-position combinations.

Laundry: A bimanual task that requires the robot to fold a t-shirt placed with random pose in a 90cm
x 60cm range and a rotation range of £30 deg. The robot must use both arms to fold the right side
sleeve, the left side sleeve, then the whole shirt in half. We award Pts for each of these stages, and
calculate Success Rate (SR) based as the percentage of runs where all stages were successful. We
perform 40 total evaluation rollouts across 8 shirt-position combinations.

Groceries: The robot fills a grocery bag with 3 packs of chips. It uses its left arm to grab the top
side of the bag handle to create an opening, then uses the right arm to pick the chip packs and places
them into the bag. The task requires high-precision manipulation (picking up a deformable bag
handle) and robustness in long-horizon rollout. We award Pts for picking the handle and for each
pack placed in the grocery bag. We report SR as the percentage of runs where all three packs were
successfully placed in the bag, and Open Bag as the percentage of runs where the handle of the
bag was grasped, which is a difficult stage of this task. We perform 50 evaluations across 10 bag
positions.

For Continuous Object-in-Bowl we collect 1 hour of human data and 2 hours robot data. For the
other tasks we collect 1.5 hours of hand data and 5 hours of robot data.
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D.2 Results

EgoMimic’s success and common failure modes We evaluate EgoMimic’s performance by high-
lighting both its successes and failure modes across different tasks. While EgoMimic significantly
reduces the occurrence of common failure modes such as misalignment with objects, improper
grasps, or partial actions like grabbing only one side of a shirt, there are still instances where these
issues arise. Fig. 6 illustrates examples of such failure cases, including (e) failure to align with the
toy, (f) failure to grasp the bag’s handle, and (g) incomplete shirt grasping. Despite these, EgoMimic
demonstrates an 8-33% improvement in success rates compared to baselines.

Generalization to new objects and scenes EgoMimic demonstrates strong generalization to un-
seen objects, such as performing laundry on an unseen shirt, where baselines fail. Quantitatively,
EgoMimic exhibits only a minor performance drop of 3-5%, compared to a significant 30% drop ob-
served in the baselines when handling unseen objects in the laundry task. Additionally, EgoMimic
is able to generalize to scenes that were only present in the human data. (See Fig.7).

(a) Color Generalization

-3%

goy, @ Orginal 120 - @ Original
® Unseen 5% ® New
100
60%
’ -30% 5 80
-25% -94%
40% I 60
40
20%
20
. N BN =

ACT ] [Mimicplay] (EgoMimic|(ggomimic Mimicplay) [EgoMimic|(gqomimic

0% human 0% human

X

Figure 7: Evaluation Results on Policy Generalization. (a) We evaluate the policy on the laundry task using
unseen cloth colors and report the success rate for each method. (b) We test the policy on the Object-in-Bowl
task in unseen scenes.

Scaling properties We also find that 120 @ EgoMimic X Hours Hand & Roban /
EgoMimic’s performance scales effectively @ ACT (X Hours Robot) - i
with the addition of human demonstrations, 100 o i
when given a sufficient amount of teleoperation = 80 |
data. Specifically, EgoMimic trained on 2 £ . OHandV
hours of robot data and 1 hour of human @&

data significantly outperforms ACT, which is 40 e

trained on 3 hours of robot data (128 vs. 74 20 /
points).  Our results demonstrate favorable 0
scaling properties, showing that adding 1 hour
of human data is more beneficial than adding 1
hours of additional robot data (see Fig. 8).

0.5 1.0 1.5 2.0 2.5 3.0
Hours of data

Figure 8: Scaling robot vs. human data. EgoMimic

trained on 2 hours robot data + 1 hour hand data (Blue)

strongly outperforms ACT [2] trained on 3 hours of

robot data (Orange).
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