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1 Introduction

Link prediction is a common task in knowledge graphs, and often tackled with knowledge graph
embedding (KGE) models, such as ComplEx, DistMult, TransE [1-3], and others. However, these
models lack direct interpretability [4], which is crucial for applications in critical domains like drug
discovery and medicine [5]. Existing explainability methods for KGE models [6-9] are limited, and
their evaluation approaches and datasets vary. Moreover, the human readability of explanations is
often overlooked. Model explainability has been approached differently [10, 11], e.g., via gradient-
based methods, perturbations method, or via training simplified model from the original black-box
model to provide a model that is transparent and therefore could be interpreted more easily. Other
approaches focus on providing the most similar training examples for the predicted one — these we
call example-based explanations [12—14] and the ones that are the most important we call influential
examples. This form of explanations is coherent with human understanding of cases and therefore it
makes this form of explanations more understandable for the user. In this work, we propose a new
method that generates explanations for link predictions in KGE models using influential examples.

However, achieving explainability in KGE models presents several challenges. First, there is a lack
of evaluation protocols, metrics, and benchmark datasets specifically designed for assessing the
explainability of these models. Another challenge for explainability arises from lack of ground-truth
explanations apart from synthetic datasets and limited user studies on explanations in the existing
literature. Last but not least the model’s predictions are ranked based and are not calibrated to
represent probabilities directly, which makes it difficult to interpret the results quickly [15].

At the moment, understanding the factors contributing to predictions made by a Knowledge Graph
Embedding (KGE) model is a challenging task, the class of models is not designed with transparency
in mind [16]. One approach to address this challenge is to explore specialised interpretability methods
that can be applied post-hoc (after-training). For example, we can investigate the adaptation of
existing interpretability techniques designed for other machine learning models [16].

To address the lack of interpretability in KGE models, we propose post-hoc interpretability method.
Our goal is to provide explanations that link predictions back to the original graph, highlighting
the links and nodes that contribute the most to a given prediction. These explanations should be
understandable to users and provided quickly and efficiently.

Related Work The most basic way to identify influential triples would be to perform a simple search
over all possible triples that could be removed from the dataset and perform retraining after each
such modification of the dataset. This approach is very inefficient as it requires many retrainings
of the model. For example, if explanation size, we are interested in, is equal to |e| = 1 we need n
retrainings of the model for each triple, when 7 is the number of triples in the training dataset. The
number of retrainings is increasing if we allow the explanation to be greater than 1, |e| > 1.

Basic principle of the majority of explanation methods presented below is as follows: they try to
identify such existing links in the graph that their removal will strongly decrease the probability of
the predicted link (this holds for ExplaiNE [8] and GNNExplainer [17] but not for GraphLIME [18]).
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Apart from work on explainability of Knowledge Graph Embedding models we would like to bring
attention to an overlapping subject of robustness and adversarial attack approaches for Knowledge
Graph Embedding models, where influential triples are sought after for a differnt reason. In recent
work, Bhardwaj et al [7] explored methods of poisoning KGEs with relation inference patterns, which
aims at targeting influential triples and design attacks based on it. Another work by Betz et al [9]
introduced adversarial explanations where they identify regularities in the knowledge graph and
plan attacks based on them. In [19], authors investigated robustness of knowledge graph embedding
models with regards to removal or addition of an influential triple to the training set.

GradientRollback [6] works by storing gradient updates in a separate influence matrix per every
training example ¢ (during training) and also per every unique entity and relation in a triple. It then
refers to this gradient update matrix during the explanation phase. The influence updates regarding
the training triple (¢) are subtracted from the parameters matrix to obtain a new parameter matrix that
simulates the situations of retraining the model without ¢. This approach requires enabling a special
training mode, and requires much more memory than the initial dataset size to store training artefacts.
This method although time and memory consuming traces parameters in the training leading to
probably more accurate results on the expense of the high memory cost.

With the following shortcomings in mind we posed the following research question How to pro-
vide pertinent explanations for KGE models trained on large knowledge graphs with reasonable
time/memory constraints?

2 Method

In this section we introduce the intuition behind the proposed approach, notation, and our heuristics
to obtain influential examples and evaluation protocol.

Intuition We propose ExamplE, a post-hoc, local explanation approach that explains Knowledge
Graph Embedding predictions. Our approach is based on the assumption that to explain why a certain
link between two entities is predicted as plausible, we have to look at the latent space representation of
that triple (individually at its subject, object, and predicate embeddings) and try to "reverse-engineer"
the training samples that the pattern was extracted from. For example we are interested in the past
cases that contributed to this prediction the most, e.g., if our knowledge graph contains patients and
we want to make prediction on a single patient we would like our method to retrieve past patients that
are the most similar to the one we are predicted.

Preliminaries Let us introduce key concepts and the notation used throughout the article. Let
G be a knowledge graph, denoted as G = (£, R, T), where £ is a set of entities, R is a set of
predicates, and finally 7 is a set of statements - triples defining specific links between entities £
with types of relations R, e.g.: triple ¢(, , ,) € T represents a directed edge in the knowledge graph
G, where s is the head entity (subject), p is the relation (predicate), and o is the tail entity (object).
Let e be an entity in G. The 1-hop neighborhood of entity e, denoted as N (e, 1), is defined as:
N(e,1) ={(s,p,0) : (s,p,0) € G,e € {s,0}}, it contains such triples in graph G that either their
subject or their object is the same as the entity e for which the neighbourhood is being derived.
Consequently we will define an n-hop neighbourhood of an entity, denoted as N (e, n) as: N(e,n) =
{(s,p,0) : (s,p,0) € G;s,0€ S"UO'}U{N(e,n—1)}, where S’ = {s: (s,p,0) € N(e,n—1)}
and O' = {o: (s,p,0) € N(e,n — 1)}. It contains triples from the n — 1 neighbourhood and triples
that are connected to them. Building on top of this formalisation we will define a 1-hop neighbourhood
of a triple ¢ (5 .0 as: N(t(sp.0),1) = {N(s,1)UN(o, 1)\ ¢} and consequently we will define n-hop
neighbourhood of a triple ¢(, ;, ) as: N(t(sp.0),n) = {N(t,n—1)U{(s,p,0) : (s,p,0) € G;s,0 €
S'UO'}} where S = {s : (5,p,0) € N(tsposn—1)} and O’ = {0 : (5,p,0) € N(t,porn—1)}.

2.1 ExamplE algorithm:

ExamplE is an example-based heuristics that consists of four steps: sampling, filtering for examples,
aggregating for prototype and assembling the Explanation Graph. Prerequisites: Calibrated Knowl-
edge Graph Embedding model, returning probability estimates as predictions, following [15], in this
way we are ensuring that the predictions are bounded and are as close to the real probabilities as
the current SOTA allows. Input: Trained KGE model M, target triple ¢, training graph G. Output:
Explanation Graph E'G, sorted influential triples E.
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1. Latent space sampling: Given, s; is a subject of the target triple, and f is a method of KGE
model to obtain embedding of an element; and s; is another entity in G different than s;, and a dis-
tance measure: dist(sg,s’) we can define an ordered set of: S5, = {s; : dist(f(s¢), f(si-1)) <
dist(f(st), f(si))¥s; € £} and consquently set S, as an ordered set S™ = {s1, S2, ..., Sm }
S™ C Ss,, where elements of the set are entities with the same ordering as in set S;_, as
described above. We will also define an ordered set with distances between subject entity and
other entities as: Dgs, = {(si,d;) : d; = dist(f(s¢), f(si-1)) < dist(f(st), f(5:))Vs; € E}
We will now repeat the same operation for the object o, of the target triple to obtain set O™ =
{01,02,...;0m}, O™ € O,,, analogically to the target triple subject we will define ordering for
the object entities as follows: O,, = {0; : dist(f(0:), f(0i—1)) < dist(f(or), f(0;))Vo; € E}
Similarly we will also save distances to the object entity for the other entities in set Do, as below
and Dp, for predicates (omitted for brevity): Do,, = {(0i,d;) : d;y = dist(f(os), f(0i-1)) <
dist(f (o), f(0;))Vo; € E}

2. Filtering for example triples: The second step is to obtain the Cartesian product of sets S™

and O™ to create a set of candidate triples with the target triple predicate p, as denoted below:
eGy ={S™ x O™ : (s;,p,0;) € G}

3. Aggregating for prototype: Obtain N-hop neighborhoods of example triples (eG}) from the
step above, and aggregate into a prototype graph pG; following strict or permissive strategy.
By strict - take the intersection of sets of triples between n-hop neighbourhoods of examples
and target triple, as: pG = ﬂlen(eGTt)N(t(s}pyo)i ;1) N N (t(sp.0),n) and by permissive - take
the union of sets of triples between n-hop neighbourhoods of examples and intersect it with the

target triple n-hood neighbourhood, as: pG; = Uie:l(T)N(t(syplo)i, n) NN (t(sp.o)>n)

4. Assembling the Explanation Graph: the last step combines the results of the previous steps into

an Explanation Graph: EG = pG;UeGU{t} Influential triples are the ones that are identified in
[S]+Doot [o]+Dp,, [p] ):

step 2 in eGY, and their scores are derived as follows: E = {((s,p, 0 )
V(s,p,0) € eGt}. The scores are used to sort the triples, and the most 1nﬂuent1a1 ones have the
lowest score (are most similar to the target triple).

2.2 Evaluation Protocol

To evaluate the method we generated explanations for TransE model on two different datasets with our
proposed approach and also using a baseline approach and then modified the training dataset based
on the explanations and retrained the models. To evaluate our explanation approach we consider only
generation of influential examples with associated scores specifically eGG;. The choice of a model is
arbitrary and the method works independently of this choice.

Baseline: As a baseline we utilized random explanation approach where we limit triples only to the
ones with same predicate without any constrains on how and if such triple is connected to the target
triple. We can denote the baseline in a mathematical formulation as follows. First, we define a set E' of
all triples that have the same predicate as target triple t: £ = {(e’,p’,¢e") : (¢/,p',€¢") € G,p' = p}
Then, we draw a random sample of n triples from set E as a baseline explanation, equal in a size
to the number of triples obtained from our heuristics. The sample is drawn without replacement
assuming uniform distribution.

Metrics In this work we used a metric called Probability Difference measured as percentage. It is
similar to the metric used in [6] with the difference that PD used in this work takes into account
both explanations that increase the score after retraining and the ones that decrease the triple scores
after retraining. It is used, to measure the difference between prediction scores obtained by originally

trained KGE model M on a target triple ¢ and a prediction obtained from the model trained on the
dataset without explanation of such training triple, it is defined as follows: PD = W,

where M (t) denotes KGE model prediction on target triple ¢. The choice of this metric is dictated by
easier interpretation of this metric.

3 Results

To analyze the performance of our approach we proposed two experiments. 1) Remove-and-Retrain
(ROAR) [20]: We removed explanation from the dataset and retrained the model (ROAR protocol)
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on the modified dataset without explanation for two cases removing only the most influential example
triple and removing full set of examples returned. 2) Reversed-Remove-and-Retrain (rev-ROAR):
We removed all triples with same predicate as Target Triple (set £) and instead added only the
explanation. In this scenario we wanted to test whether model can recover from a loss of majority of
its examples. We also explored two cases leaving only the most influential example triple and leaving
the full set of examples returned by the method.

Note: Both models: original and the one retreined in each experiment were trained exactly the same,
with SOTA hyperparameters for the TransE model on the dataset with early stopping. This has the
following consequence of evaluation time being very long, for the four scenarios presented we had
to train 5 models per dataset per target triple. For FB15k-237 trained with TransE model we got
0.20 Hits@1 (H@1), and 0.30 Mean Reciprocal Rank (MRR). For WN18RR trained with TransE we
obtained 0.05 H@1 and 0.22 MRR, the results are reported in Appendix for this dataset. We have
also trained other models and generated explanations with our method for them, their performance is
reported in the Appendix along with example explanations obtained for them.

epoch average r1ev-ROAR [%] ROAR [%] Table 1: TransE on Fb15k-
1 all 1 all 237.  Probability differ-
10 ours | -0.507 69.694 63971 0.106 5.717 ence between original model
rand. | -0.478 73.757 62.186 0.013  14.647 and models retrained using
20 ours | -0.066 25457 23.819 -0.0 _ -0.009 ROAR and rev-ROAR w.r.t.
rand. | 0.007 27.968 21.456 0.001 -0.011 most influential triple (1) and
30ours | -0.181 10911 827  -0.003 0.013 all explaining triples (all).
rand. | -0.348  11.117 8.388 -0.001 -0.073 When retraining the model
40 ours | 0.009 5312 4735 00 0.034 with a single triple of given
rand. | 0.096 5435 4154  0.002 0.048 predicate (rev-ROAR-1) the
50 ours | -0.049 2707 2227 0.03 0.036 model recovers from it’s ini-
rand. | 0.021  2.863 2196 0.031 0.022  tal 70% probability drop at
60ours | -0.112  1.635 1456 -0.002 -0.016  epoch 10thto 0.2 difference
rand. | -0.057  1.718 1332  -0.001 -0.007 at epoch 100th. The same
70ours | -0.135  0.894 0.786 00 _ -0.011 pattern but faster is present
rand. | -0.072  0.94 0721 -0.0  -0.015  for the training with full ex-
80ours | 0.053 0574 0496 -0.001 -0.001  Planation. In the ROAR
rand. | 0.002 0.599  0.456 -0.001 -0.038 experiment removing a sin-
90 ours | -0.153 0384 0325 00 _ 0.028 gle triple has only influence
rand. | 0421 0402 0303 -0.0  -0.0 epoch 10th of training with
100 ours | -0.153 023 0203 -0.007 -0.01 0.1% probability drop, this is

rand. | -0.03 0244 0176 -0007 -0.005 increased when all triples are
: : . . . : removed to 6%.

4 Discussion

In this work we introduce a novel heuristics to generate explanations for knowledge graph embedding
models. It works by generating influential examples from the constrained latent space search. For
future work we plan to compare how this approach work on the GNNs. One disadvantage, that we
are aware of, is that our approach is a heuristics, we are doing a follow-up research on how to provide
estimation guarantees for this approach. The research question posed at the beginning of the article
states two component of the approach 1) its quality and 2) complexity. To evaluate the quality of
the method in our future work we will compare the results with other methods in the literature. The
second part of the question was a motivation for developing our approach, mainly in relation to [6].
In appendix we include the time it takes to obtain explanations. We were able to reduce the time from
minutes [6] to seconds in this work.

Overall, the evaluation results support the effectiveness of our explanation approach based on
influential examples. By removing these examples and retraining the model, we observed a decrease
in the plausibility of the target triple, indicating the importance of the identified examples in the
original prediction. This demonstrates the potential of our method to provide meaningful and
informative explanations for link predictions in knowledge graph embedding models.
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A Appendix

Method time/triple
ExamplE 5.09s
GradientRollback | 67 min

Table 2: Time to obtain explanations for triples for model trained on different FB15k-237 dataset
according to ExamplE and GradientRollback [6]

epoch average r1ev-ROAR [%] ROAR [%]

1 all 1 all
10ours | 0.0 13.515 15.018 1.118 1.696
rand. | -0.004 0.089  -0.306

20 ours | -0.004 26.975 29.598 0.008 3.5
rand. | -0.027 - 25.585 -0.021 -0.058
30 ours | 0.018 34791 37518 0.031 1.198
rand. | 0.005 34.384 - -0.046  0.035
40 ours | -0.004 38.778 42265 0.048  0.041
rand. | 0.02 - - 0.021  0.036
50 ours | 0.006 40.661 44588 0.038  0.095
rand. | 0.025 42.159 41.134 -0.01  0.004
60 ours | 0.015 42.071 45949 0.054 0.018
rand. | 0.042 43.586 42388 0.011  0.028
70 ours | -0.032 43.149 46.509 0.071  0.021
rand. | -0.309 44.506 - 0.005 -0.002
80 ours | -0.017 42.835 46.048 0.025 0.017
rand. | -0.252 44.057 - 0.001 -0.02
90 ours | 0.047 42.512  45.655 0.01 0.012
rand. | 0.058 43.58 - 0.011 0.013
100 ours | -0.008 41.778 44.503 0.023  0.002
rand. | 0.01 42.673 41.57 0.021 0.014

Table 3: TransE on WN18RR - Probability difference between original model and models retrained
using two different scenarios ROAR and rev-ROAR considering most influential triple (1) and all
triples from the obtained explanation (all). We can see that when retraining the model with only a
single triple of given predicate (rev-ROAR-1) the model cannot recover from initial 14% probability
drop at epoch 10th instead it worsen to reach it’s peak at around epoch 70th (amounting to 43%) to
settle on nearly 42% difference at epoch 100th, we can observe the same pattern but faster for the
training with full explanation. On the other hand when we look at the ROAR experiment we can see
that removing a single triple has only influence epoch 10th of training with 1.1% probability drop,
this is increased when all triples are removed to 1.7%, the difference above epoch 10th is smaller
than 1%.

Table 4 lists training parameters for models used in the experiments.

model/dataset WNI18RR Fb15k-237
TransE k=350, eta=30 k=400, eta=30

Table 4: Parameters used for model training, trained with early stopping for 4000 epochs using Adam
optimizer with Ir=0.0001, multiclass-nll loss, seed=0, regularizer L2 with lambda=0.0001

B Computational Complexity Analysis

We have analyzed computational complexity of the ExamplE in the scenario of batch explanations.
ExamplE requires access to the training dataset so space complexity starts from O(t). Given: e -
number of entities (e.g.: 14,541 in Fb15k-237). k - embedding vector dimension (e.g. k=400, TransE
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Figure 1: Probability differences between ExamplE and random baseline, TransE trained on Fb15k-

237.
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reversed ROAR only explanations is left in the training dataset among triples with same predicates as
target triple. Above epoch 20 the Pearson correlation coefficient is 1 and predictions are perfectly

correlated.
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Approach TransE ComplEx DistMult ConvE
H@l MRR H@l MRR H@l1 MRR H@l] MRR

Fb15k-237 ‘ 0.20 0.30 0.21 031 021 0.30 0.21 0.30

WNISRR ‘ 005 0.22 0.47 0.50 043 0.47 0.44 0.47

Table 5: MRR and Hits@1 on the Fb15k-237 and WN18RR benchmark datasets.
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Figure 4: TransE on Fb15k-237. Target triple probability across different epochs. We can see that
the probability difference between models before and after explanation removal is the lowest at the
beginning of the training. It changes in such a way that model can recover it’s predictive ability to
predict on a given triple. It means that to make an evaluation of an explainability method, one has to
consider the time aspect of the prediction.

on Fb15k-237). m - number of nearest neighbours considered (parameter of ExamplE default m=25).
t - number of triples in the train set. = - number of examples, as explanation x << ¢. we can split
computational complexity into steps: 1) Sampling - this step is entirely dependent on the nearest
neighbour algorithm implementation, in the experiments we used implementation provided in sklearn,
which by default tries to adjust parameters for best efficiency. In the worst case scenario it uses a brute
force approach which complexity of the prediction time is O(e x k x m) with negligible complexity
of initialization of the algorithm and negligible space complexity too. In the best case scenario
kNN algorithm tries to adjust the inner data structure for optimized inference time with the cost of
initialization and space e.g. in the case of KD-Tree it is O(k X e x log(e)) of extra initialization
time and O(k X e) space with a benefit of inference time being O(m x log(e)). ExamplE needs
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Figure 5: TransE on WN18RR. Target triple probability across different epochs.
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initialization
step time sapce
samplingx p—rTree O(k x e xlog(e)) Ok xe)
Samplingbrute—force O(l) 0(1)

Table 6: Computational time and space complexity of initialization phase.

prediction
step time sapce
samplingx p—Tree O(m x log(e)) O(1)
samplingprute— force  Ole Xk xm)  O(1)
product O(m?) 0(1)
mapping O(t) O(t)
filtering O(min(t,m?)) O(1)
post-processing O(x) 0(1)

Table 7: Computational time and space complexity of prediction phase.

to find m nearest neighbours for both subject and object entity (in the default case) in this step. 2)
Filtering for example triples - in this step we need to take a cartesian product of obtained sets of
neighbours in step 1: which leaves us with O(m?) (default case, in full case it is O(m?) if we are
considering predicates embedding as well) and forces us to filter examples according to the dataset.
First we are mapping it into a tuples (O(t), where ¢ is a number of train triples), than we utilize sets
intersections implementation in Python with complexity of O(min(t,m?)). In the post-processing
step we compute the score per each example obtained. The computational complexity in batch explain
is always dependent on the number of target triples to obtain explanations for.

S P (@] Score
Billy Idol languages spoken, written, or signed | English TT
Johnny Marr languages spoken, written, or signed | English 0.00075
Chester Bennington | languages spoken, written, or signed | English 0.00076
Morrissey languages spoken, written, or signed | English 0.00077

Loreena McKennitt | languages spoken, written, or signed | English 0.00077
Gordon Lightfoot languages spoken, written, or signed | English 0.00080

Alan Stivell languages spoken, written, or signed | English 0.00080
Robert Plant languages spoken, written, or signed | English 0.00080
Oleg Skripka languages spoken, written, or signed | French 0.00091
Alan Stivell languages spoken, written, or signed | French 0.00091
Oleg Skripka languages spoken, written, or signed | Russian 0.00097
Oleg Skripka languages spoken, written, or signed | Ukrainian | 0.00117

Table 8: Example explanation for a test triple in CODEX-M dataset - first row represents Target
Triple (TT). The lower the score, the closer is example to the Target Triple.

S P (@) Score
Artie Lange /influence/influence_node/influenced_by | Jackie Gleason | TT
George Carlin /influence/influence_node/influenced_by | Danny Kaye 0.17232

Conan O’Brien (aka Big Red) | /influence/influence_node/influenced_by | Danny Kaye 0.19481

Conan O’Brien (aka Big Red) | /influence/influence_node/influenced_by | Steve Allen 0.24502

Bill Maher /influence/influence_node/influenced_by | Steve Allen 0.25498

Table 9: Example explanation for a test triple in Fb15k-237 dataset - first row represents Target
Triple (TT). The lower the score, the closer is example to the Target Triple.
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S p o Score
02314321 | _hypernym | 08102555 | TT
02314001 | _hypernym | 08102555 | 0.02788
02313495 | _hypernym | 08102555 | 0.04839
01928360 | _hypernym | 08102555 | 0.05155
02314717 | _hypernym | 08102555 | 0.06077
01928737 | _hypernym | 08102555 | 0.06294
02321759 | _hypernym | 02316038 | 0.09046

Table 10: Example explanation for a test triple in WN18RR dataset - first row represents Target
Triple (TT). The lower the score, the closer is example to the Target Triple.
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