
Explaining Link Predictions in Knowledge Graph Embedding
Models with Influential Examples

Adrianna Janik
Accenture Labs, Dublin

adrianna.janik@accenture.com

Luca Costabello
Accenture Labs, Dublin

luca.costabello@accenture.com

1 Introduction

Link prediction is a common task in knowledge graphs, and often tackled with knowledge graph
embedding (KGE) models, such as ComplEx, DistMult, TransE [1–3], and others. However, these
models lack direct interpretability [4], which is crucial for applications in critical domains like drug
discovery and medicine [5]. Existing explainability methods for KGE models [6–9] are limited, and
their evaluation approaches and datasets vary. Moreover, the human readability of explanations is
often overlooked. Model explainability has been approached differently [10, 11], e.g., via gradient-
based methods, perturbations method, or via training simplified model from the original black-box
model to provide a model that is transparent and therefore could be interpreted more easily. Other
approaches focus on providing the most similar training examples for the predicted one – these we
call example-based explanations [12–14] and the ones that are the most important we call influential
examples. This form of explanations is coherent with human understanding of cases and therefore it
makes this form of explanations more understandable for the user. In this work, we propose a new
method that generates explanations for link predictions in KGE models using influential examples.

However, achieving explainability in KGE models presents several challenges. First, there is a lack
of evaluation protocols, metrics, and benchmark datasets specifically designed for assessing the
explainability of these models. Another challenge for explainability arises from lack of ground-truth
explanations apart from synthetic datasets and limited user studies on explanations in the existing
literature. Last but not least the model’s predictions are ranked based and are not calibrated to
represent probabilities directly, which makes it difficult to interpret the results quickly [15].

At the moment, understanding the factors contributing to predictions made by a Knowledge Graph
Embedding (KGE) model is a challenging task, the class of models is not designed with transparency
in mind [16]. One approach to address this challenge is to explore specialised interpretability methods
that can be applied post-hoc (after-training). For example, we can investigate the adaptation of
existing interpretability techniques designed for other machine learning models [16].

To address the lack of interpretability in KGE models, we propose post-hoc interpretability method.
Our goal is to provide explanations that link predictions back to the original graph, highlighting
the links and nodes that contribute the most to a given prediction. These explanations should be
understandable to users and provided quickly and efficiently.

Related Work The most basic way to identify influential triples would be to perform a simple search
over all possible triples that could be removed from the dataset and perform retraining after each
such modification of the dataset. This approach is very inefficient as it requires many retrainings
of the model. For example, if explanation size, we are interested in, is equal to |e| = 1 we need n
retrainings of the model for each triple, when n is the number of triples in the training dataset. The
number of retrainings is increasing if we allow the explanation to be greater than 1, |e| > 1.

Basic principle of the majority of explanation methods presented below is as follows: they try to
identify such existing links in the graph that their removal will strongly decrease the probability of
the predicted link (this holds for ExplaiNE [8] and GNNExplainer [17] but not for GraphLIME [18]).

A. Janik et al., Explaining Link Predictions in Knowledge Graph Embedding Models with Influential Examples
(Extended Abstract). Presented at the Second Learning on Graphs Conference (LoG 2023), Virtual Event,
November 27–30, 2023.

Explaining Link Predictions in Knowledge Graph Embedding Models with Influential Examples

Apart from work on explainability of Knowledge Graph Embedding models we would like to bring
attention to an overlapping subject of robustness and adversarial attack approaches for Knowledge
Graph Embedding models, where influential triples are sought after for a differnt reason. In recent
work, Bhardwaj et al [7] explored methods of poisoning KGEs with relation inference patterns, which
aims at targeting influential triples and design attacks based on it. Another work by Betz et al [9]
introduced adversarial explanations where they identify regularities in the knowledge graph and
plan attacks based on them. In [19], authors investigated robustness of knowledge graph embedding
models with regards to removal or addition of an influential triple to the training set.

GradientRollback [6] works by storing gradient updates in a separate influence matrix per every
training example t (during training) and also per every unique entity and relation in a triple. It then
refers to this gradient update matrix during the explanation phase. The influence updates regarding
the training triple (t) are subtracted from the parameters matrix to obtain a new parameter matrix that
simulates the situations of retraining the model without t. This approach requires enabling a special
training mode, and requires much more memory than the initial dataset size to store training artefacts.
This method although time and memory consuming traces parameters in the training leading to
probably more accurate results on the expense of the high memory cost.

With the following shortcomings in mind we posed the following research question How to pro-
vide pertinent explanations for KGE models trained on large knowledge graphs with reasonable
time/memory constraints?

2 Method

In this section we introduce the intuition behind the proposed approach, notation, and our heuristics
to obtain influential examples and evaluation protocol.

Intuition We propose ExamplE, a post-hoc, local explanation approach that explains Knowledge
Graph Embedding predictions. Our approach is based on the assumption that to explain why a certain
link between two entities is predicted as plausible, we have to look at the latent space representation of
that triple (individually at its subject, object, and predicate embeddings) and try to "reverse-engineer"
the training samples that the pattern was extracted from. For example we are interested in the past
cases that contributed to this prediction the most, e.g., if our knowledge graph contains patients and
we want to make prediction on a single patient we would like our method to retrieve past patients that
are the most similar to the one we are predicted.

Preliminaries Let us introduce key concepts and the notation used throughout the article. Let
G be a knowledge graph, denoted as G = (E ,R, T), where E is a set of entities, R is a set of
predicates, and finally T is a set of statements - triples defining specific links between entities E
with types of relations R, e.g.: triple t(s,p,o) ∈ T represents a directed edge in the knowledge graph
G, where s is the head entity (subject), p is the relation (predicate), and o is the tail entity (object).
Let e be an entity in G. The 1-hop neighborhood of entity e, denoted as N(e, 1), is defined as:
N(e, 1) = {(s, p, o) : (s, p, o) ∈ G, e ∈ {s, o}}, it contains such triples in graph G that either their
subject or their object is the same as the entity e for which the neighbourhood is being derived.
Consequently we will define an n-hop neighbourhood of an entity, denoted as N(e, n) as: N(e, n) =
{(s, p, o) : (s, p, o) ∈ G; s, o ∈ S′ ∪O′}∪ {N(e, n− 1)}, where S′ = {s : (s, p, o) ∈ N(e, n− 1)}
and O′ = {o : (s, p, o) ∈ N(e, n− 1)}. It contains triples from the n− 1 neighbourhood and triples
that are connected to them. Building on top of this formalisation we will define a 1-hop neighbourhood
of a triple t(s,p,o) as: N(t(s,p,o), 1) = {N(s, 1)∪N(o, 1) \ t} and consequently we will define n-hop
neighbourhood of a triple t(s,p,o) as: N(t(s,p,o), n) = {N(t, n− 1)∪{(s, p, o) : (s, p, o) ∈ G; s, o ∈
S′ ∪O′}} where S′ = {s : (s, p, o) ∈ N(ts,p,o, n− 1)} and O′ = {o : (s, p, o) ∈ N(ts,p,o, n− 1)}.

2.1 ExamplE algorithm:

ExamplE is an example-based heuristics that consists of four steps: sampling, filtering for examples,
aggregating for prototype and assembling the Explanation Graph. Prerequisites: Calibrated Knowl-
edge Graph Embedding model, returning probability estimates as predictions, following [15], in this
way we are ensuring that the predictions are bounded and are as close to the real probabilities as
the current SOTA allows. Input: Trained KGE model M , target triple t, training graph G. Output:
Explanation Graph EG, sorted influential triples E.

2

Explaining Link Predictions in Knowledge Graph Embedding Models with Influential Examples

1. Latent space sampling: Given, st is a subject of the target triple, and f is a method of KGE
model to obtain embedding of an element; and si is another entity in G different than st, and a dis-
tance measure: dist(st, s′) we can define an ordered set of: Sst = {si : dist(f(st), f(si−1)) ≤
dist(f(st), f(si))∀si ∈ E} and consquently set Sm as an ordered set Sm = {s1, s2, ..., sm},
Sm ⊂ Sst , where elements of the set are entities with the same ordering as in set Sts , as
described above. We will also define an ordered set with distances between subject entity and
other entities as: DSst

= {(si, di) : di = dist(f(st), f(si−1)) ≤ dist(f(st), f(si))∀si ∈ E}
We will now repeat the same operation for the object ot of the target triple to obtain set Om =
{o1, o2, ..., om}, Om ∈ Oot , analogically to the target triple subject we will define ordering for
the object entities as follows: Oot = {oi : dist(f(ot), f(oi−1)) ≤ dist(f(ot), f(oi))∀oi ∈ E}
Similarly we will also save distances to the object entity for the other entities in set DOot

as below
and DPpt

for predicates (omitted for brevity): DOot
= {(oi, di) : di = dist(f(ot), f(oi−1)) ≤

dist(f(ot), f(oi))∀oi ∈ E}
2. Filtering for example triples: The second step is to obtain the Cartesian product of sets Sm

and Om to create a set of candidate triples with the target triple predicate p, as denoted below:
eGt = {Sm ×Om : (si, p, oi) ∈ G}

3. Aggregating for prototype: Obtain N-hop neighborhoods of example triples (eGt) from the
step above, and aggregate into a prototype graph pGt following strict or permissive strategy.
By strict - take the intersection of sets of triples between n-hop neighbourhoods of examples
and target triple, as: pGt = ∩len(eGTt)

i=1 N(t(s,p,o)i , n) ∩N(t(s,p,o), n) and by permissive - take
the union of sets of triples between n-hop neighbourhoods of examples and intersect it with the
target triple n-hood neighbourhood, as: pGt = ∪len(T)

i=1 N(t(s,p,o)i , n) ∩N(t(s,p,o), n)

4. Assembling the Explanation Graph: the last step combines the results of the previous steps into
an Explanation Graph: EG = pGt∪eGt∪{t} Influential triples are the ones that are identified in

step 2 in eGt, and their scores are derived as follows: E = {((s, p, o), DSst
[s]+DOot

[o]+DPpt
[p]

3) :
∀(s, p, o) ∈ eGt}. The scores are used to sort the triples, and the most influential ones have the
lowest score (are most similar to the target triple).

2.2 Evaluation Protocol

To evaluate the method we generated explanations for TransE model on two different datasets with our
proposed approach and also using a baseline approach and then modified the training dataset based
on the explanations and retrained the models. To evaluate our explanation approach we consider only
generation of influential examples with associated scores specifically eGt. The choice of a model is
arbitrary and the method works independently of this choice.

Baseline: As a baseline we utilized random explanation approach where we limit triples only to the
ones with same predicate without any constrains on how and if such triple is connected to the target
triple. We can denote the baseline in a mathematical formulation as follows. First, we define a set E of
all triples that have the same predicate as target triple t: E = {(e′, p′, e′′) : (e′, p′, e′′) ∈ G, p′ = p}
Then, we draw a random sample of n triples from set E as a baseline explanation, equal in a size
to the number of triples obtained from our heuristics. The sample is drawn without replacement
assuming uniform distribution.

Metrics In this work we used a metric called Probability Difference measured as percentage. It is
similar to the metric used in [6] with the difference that PD used in this work takes into account
both explanations that increase the score after retraining and the ones that decrease the triple scores
after retraining. It is used, to measure the difference between prediction scores obtained by originally
trained KGE model M on a target triple t and a prediction obtained from the model trained on the
dataset without explanation of such training triple, it is defined as follows: PD = (M(t)−M ′(t))∗100

M(t) ,
where M(t) denotes KGE model prediction on target triple t. The choice of this metric is dictated by
easier interpretation of this metric.

3 Results
To analyze the performance of our approach we proposed two experiments. 1) Remove-and-Retrain
(ROAR) [20]: We removed explanation from the dataset and retrained the model (ROAR protocol)

3

Explaining Link Predictions in Knowledge Graph Embedding Models with Influential Examples

on the modified dataset without explanation for two cases removing only the most influential example
triple and removing full set of examples returned. 2) Reversed-Remove-and-Retrain (rev-ROAR):
We removed all triples with same predicate as Target Triple (set E) and instead added only the
explanation. In this scenario we wanted to test whether model can recover from a loss of majority of
its examples. We also explored two cases leaving only the most influential example triple and leaving
the full set of examples returned by the method.

Note: Both models: original and the one retreined in each experiment were trained exactly the same,
with SOTA hyperparameters for the TransE model on the dataset with early stopping. This has the
following consequence of evaluation time being very long, for the four scenarios presented we had
to train 5 models per dataset per target triple. For FB15k-237 trained with TransE model we got
0.20 Hits@1 (H@1), and 0.30 Mean Reciprocal Rank (MRR). For WN18RR trained with TransE we
obtained 0.05 H@1 and 0.22 MRR, the results are reported in Appendix for this dataset. We have
also trained other models and generated explanations with our method for them, their performance is
reported in the Appendix along with example explanations obtained for them.

epoch average rev-ROAR [%] ROAR [%]
1 all 1 all

10 ours -0.507 69.694 63.971 0.106 5.717
rand. -0.478 73.757 62.186 0.013 14.647

20 ours -0.066 25.457 23.819 -0.0 -0.009
rand. 0.007 27.968 21.456 0.001 -0.011

30 ours -0.181 10.911 8.27 -0.003 0.013
rand. -0.348 11.117 8.388 -0.001 -0.073

40 ours 0.009 5.312 4.735 0.0 0.034
rand. 0.096 5.435 4.154 0.002 0.048

50 ours -0.049 2.707 2.227 0.03 0.036
rand. 0.021 2.863 2.196 0.031 0.022

60 ours -0.112 1.635 1.456 -0.002 -0.016
rand. -0.057 1.718 1.332 -0.001 -0.007

70 ours -0.135 0.894 0.786 -0.0 -0.011
rand. -0.072 0.94 0.721 -0.0 -0.015

80 ours 0.053 0.574 0.496 -0.001 -0.001
rand. 0.002 0.599 0.456 -0.001 -0.038

90 ours -0.153 0.384 0.325 -0.0 0.028
rand. -0.421 0.402 0.303 -0.0 -0.0

100 ours -0.153 0.23 0.203 -0.007 -0.01
rand. -0.03 0.244 0.176 -0.007 -0.005

Table 1: TransE on Fb15k-
237. Probability differ-
ence between original model
and models retrained using
ROAR and rev-ROAR w.r.t.
most influential triple (1) and
all explaining triples (all).
When retraining the model
with a single triple of given
predicate (rev-ROAR-1) the
model recovers from it’s ini-
tial 70% probability drop at
epoch 10th to 0.2 difference
at epoch 100th. The same
pattern but faster is present
for the training with full ex-
planation. In the ROAR
experiment removing a sin-
gle triple has only influence
epoch 10th of training with
0.1% probability drop, this is
increased when all triples are
removed to 6%.

4 Discussion

In this work we introduce a novel heuristics to generate explanations for knowledge graph embedding
models. It works by generating influential examples from the constrained latent space search. For
future work we plan to compare how this approach work on the GNNs. One disadvantage, that we
are aware of, is that our approach is a heuristics, we are doing a follow-up research on how to provide
estimation guarantees for this approach. The research question posed at the beginning of the article
states two component of the approach 1) its quality and 2) complexity. To evaluate the quality of
the method in our future work we will compare the results with other methods in the literature. The
second part of the question was a motivation for developing our approach, mainly in relation to [6].
In appendix we include the time it takes to obtain explanations. We were able to reduce the time from
minutes [6] to seconds in this work.

Overall, the evaluation results support the effectiveness of our explanation approach based on
influential examples. By removing these examples and retraining the model, we observed a decrease
in the plausibility of the target triple, indicating the importance of the identified examples in the
original prediction. This demonstrates the potential of our method to provide meaningful and
informative explanations for link predictions in knowledge graph embedding models.

4

Explaining Link Predictions in Knowledge Graph Embedding Models with Influential Examples

References
[1] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard.

Complex embeddings for simple link prediction. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48, ICML’16, pages
2071–2080, New York, NY, USA, June 2016. JMLR.org. 1

[2] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding Entities and
Relations for Learning and Inference in Knowledge Bases. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating Embeddings for Modeling Multi-relational Data. In Advances in Neural Information
Processing Systems, volume 26. Curran Associates, Inc., 2013. 1

[4] Federico Bianchi, Gaetano Rossiello, Luca Costabello, Matteo Palmonari, and Pasquale Min-
ervini. Knowledge graph embeddings and explainable AI. 2020. doi: 10.3233/SSW200011.
URL http://arxiv.org/abs/2004.14843. 1

[5] Luca Costabello, Sumit Pai, Nicholas McCarthy, and Adrianna Janik. Knowledge graph
embeddings tutorial: From theory to practice, September 2020. URL https://doi.org/10.
5281/zenodo.4268208. https://kge-tutorial-ecai2020.github.io/. 1

[6] Carolin Lawrence, Timo Sztyler, and Mathias Niepert. Explaining neural matrix factorization
with gradient rollback. 2020. URL http://arxiv.org/abs/2010.05516. 1, 2, 3, 4, 7

[7] Peru Bhardwaj, John Kelleher, Luca Costabello, and Declan O’Sullivan. Poisoning Knowledge
Graph Embeddings via Relation Inference Patterns. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pages 1875–1888, Online, August
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.147. URL
https://aclanthology.org/2021.acl-long.147. 2

[8] Bo Kang, Jefrey Lijffijt, and Tijl De Bie. ExplaiNE: An approach for explaining network
embedding-based link predictions. 2019. URL http://arxiv.org/abs/1904.12694. 1

[9] Patrick Betz, Christian Meilicke, and Heiner Stuckenschmidt. Adversarial Explanations for
Knowledge Graph Embeddings. In Proceedings of the Thirty-First International Joint Con-
ference on Artificial Intelligence, pages 2820–2826, Vienna, Austria, July 2022. International
Joint Conferences on Artificial Intelligence Organization. ISBN 978-1-956792-00-3. doi:
10.24963/ijcai.2022/391. URL https://www.ijcai.org/proceedings/2022/391. 1, 2

[10] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in Graph Neural Networks:
A Taxonomic Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(05):
5782–5799, May 2023. ISSN 0162-8828. doi: 10.1109/TPAMI.2022.3204236. URL https:
//www.computer.org/csdl/journal/tp/2023/05/09875989/1GqajxgkWcM. Publisher:
IEEE Computer Society. 1

[11] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham
Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins,
Raja Chatila, and Francisco Herrera. Explainable artificial intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible AI. 58:82–115. ISSN 1566-
2535. doi: 10.1016/j.inffus.2019.12.012. URL http://www.sciencedirect.com/science/
article/pii/S1566253519308103. 1

[12] Mark T. Keane and Eoin M. Kenny. How case-based reasoning explains neural networks: A
theoretical analysis of XAI using post-hoc explanation-by-example from a survey of ANN-CBR
twin-systems. In Kerstin Bach and Cindy Marling, editors, Case-Based Reasoning Research
and Development, Lecture Notes in Computer Science, pages 155–171. Springer International
Publishing. ISBN 978-3-030-29249-2. doi: 10.1007/978-3-030-29249-2_11. 1

[13] R. Caruana, H. Kangarloo, J. D. Dionisio, U. Sinha, and D. Johnson. Case-based explanation of
non-case-based learning methods. Proceedings. AMIA Symposium, pages 212–215, 1999. ISSN
1531-605X.

[14] Tim Miller. Explanation in Artificial Intelligence: Insights from the Social Sciences, August
2018. URL http://arxiv.org/abs/1706.07269. arXiv:1706.07269 [cs]. 1

5

http://arxiv.org/abs/2004.14843
https://doi.org/10.5281/zenodo.4268208
https://doi.org/10.5281/zenodo.4268208
http://arxiv.org/abs/2010.05516
https://aclanthology.org/2021.acl-long.147
http://arxiv.org/abs/1904.12694
https://www.ijcai.org/proceedings/2022/391
https://www.computer.org/csdl/journal/tp/2023/05/09875989/1GqajxgkWcM
https://www.computer.org/csdl/journal/tp/2023/05/09875989/1GqajxgkWcM
http://www.sciencedirect.com/science/article/pii/S1566253519308103
http://www.sciencedirect.com/science/article/pii/S1566253519308103
http://arxiv.org/abs/1706.07269

Explaining Link Predictions in Knowledge Graph Embedding Models with Influential Examples

[15] Pedro Tabacof and Luca Costabello. Probability calibration for knowledge graph embedding
models. 2020. URL http://arxiv.org/abs/1912.10000. 1, 2

[16] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Dino Pedreschi, and
Fosca Giannotti. A survey of methods for explaining black box models. 2018. URL http:
//arxiv.org/abs/1802.01933. 1

[17] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNNExplainer:
Generating explanations for graph neural networks. 32:9240–9251, 2019. ISSN 1049-5258.
URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138248/. 1

[18] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, Dawei Yin, and Yi Chang.
GraphLIME: Local interpretable model explanations for graph neural networks. 2020. URL
http://arxiv.org/abs/2001.06216. 1

[19] Pouya Pezeshkpour, Yifan Tian, and Sameer Singh. Investigating robustness and inter-
pretability of link prediction via adversarial modifications. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3336–
3347. Association for Computational Linguistics, 2019. doi: 10.18653/v1/N19-1337. URL
https://aclanthology.org/N19-1337. 2

[20] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for inter-
pretability methods in deep neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d{\textbackslash}textquotesingle Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. 3

6

http://arxiv.org/abs/1912.10000
http://arxiv.org/abs/1802.01933
http://arxiv.org/abs/1802.01933
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138248/
http://arxiv.org/abs/2001.06216
https://aclanthology.org/N19-1337

Explaining Link Predictions in Knowledge Graph Embedding Models with Influential Examples

A Appendix

Method time/triple
ExamplE 5.09 s
GradientRollback 6±7 min

Table 2: Time to obtain explanations for triples for model trained on different FB15k-237 dataset
according to ExamplE and GradientRollback [6]

epoch average rev-ROAR [%] ROAR [%]
1 all 1 all

10 ours 0.0 13.515 15.018 1.118 1.696
rand. -0.004 - - 0.089 -0.306

20 ours -0.004 26.975 29.598 0.008 3.5
rand. -0.027 - 25.585 -0.021 -0.058

30 ours 0.018 34.791 37.518 0.031 1.198
rand. 0.005 34.384 - -0.046 0.035

40 ours -0.004 38.778 42.265 0.048 0.041
rand. 0.02 - - 0.021 0.036

50 ours 0.006 40.661 44.588 0.038 0.095
rand. 0.025 42.159 41.134 -0.01 0.004

60 ours 0.015 42.071 45.949 0.054 0.018
rand. 0.042 43.586 42.388 0.011 0.028

70 ours -0.032 43.149 46.509 0.071 0.021
rand. -0.309 44.506 - 0.005 -0.002

80 ours -0.017 42.835 46.048 0.025 0.017
rand. -0.252 44.057 - 0.001 -0.02

90 ours 0.047 42.512 45.655 0.01 0.012
rand. 0.058 43.58 - 0.011 0.013

100 ours -0.008 41.778 44.503 0.023 0.002
rand. 0.01 42.673 41.57 0.021 0.014

Table 3: TransE on WN18RR - Probability difference between original model and models retrained
using two different scenarios ROAR and rev-ROAR considering most influential triple (1) and all
triples from the obtained explanation (all). We can see that when retraining the model with only a
single triple of given predicate (rev-ROAR-1) the model cannot recover from initial 14% probability
drop at epoch 10th instead it worsen to reach it’s peak at around epoch 70th (amounting to 43%) to
settle on nearly 42% difference at epoch 100th, we can observe the same pattern but faster for the
training with full explanation. On the other hand when we look at the ROAR experiment we can see
that removing a single triple has only influence epoch 10th of training with 1.1% probability drop,
this is increased when all triples are removed to 1.7%, the difference above epoch 10th is smaller
than 1%.

Table 4 lists training parameters for models used in the experiments.

model/dataset WN18RR Fb15k-237
TransE k=350, eta=30 k=400, eta=30

Table 4: Parameters used for model training, trained with early stopping for 4000 epochs using Adam
optimizer with lr=0.0001, multiclass-nll loss, seed=0, regularizer L2 with lambda=0.0001

B Computational Complexity Analysis
We have analyzed computational complexity of the ExamplE in the scenario of batch explanations.
ExamplE requires access to the training dataset so space complexity starts from O(t). Given: e -
number of entities (e.g.: 14,541 in Fb15k-237). k - embedding vector dimension (e.g. k=400, TransE

7

Explaining Link Predictions in Knowledge Graph Embedding Models with Influential Examples

Figure 1: Probability differences between ExamplE and random baseline, TransE trained on Fb15k-
237.

Figure 2: TransE on Fb15k-237 - Probabilities correlation before and after retraining model with
reversed ROAR only explanations is left in the training dataset among triples with same predicates as
target triple. Above epoch 20 the Pearson correlation coefficient is 1 and predictions are perfectly
correlated.

Figure 3: TransE on WN18RR - Probabilities correlation before and after retraining model with
ROAR.

8

Explaining Link Predictions in Knowledge Graph Embedding Models with Influential Examples

Approach TransE ComplEx DistMult ConvE
H@1 MRR H@1 MRR H@1 MRR H@1 MRR

Fb15k-237 0.20 0.30 0.21 0.31 0.21 0.30 0.21 0.30

WN18RR 0.05 0.22 0.47 0.50 0.43 0.47 0.44 0.47

Table 5: MRR and Hits@1 on the Fb15k-237 and WN18RR benchmark datasets.

Figure 4: TransE on Fb15k-237. Target triple probability across different epochs. We can see that
the probability difference between models before and after explanation removal is the lowest at the
beginning of the training. It changes in such a way that model can recover it’s predictive ability to
predict on a given triple. It means that to make an evaluation of an explainability method, one has to
consider the time aspect of the prediction.

on Fb15k-237). m - number of nearest neighbours considered (parameter of ExamplE default m=25).
t - number of triples in the train set. x - number of examples, as explanation x << t. we can split
computational complexity into steps: 1) Sampling - this step is entirely dependent on the nearest
neighbour algorithm implementation, in the experiments we used implementation provided in sklearn,
which by default tries to adjust parameters for best efficiency. In the worst case scenario it uses a brute
force approach which complexity of the prediction time is O(e× k ×m) with negligible complexity
of initialization of the algorithm and negligible space complexity too. In the best case scenario
kNN algorithm tries to adjust the inner data structure for optimized inference time with the cost of
initialization and space e.g. in the case of KD-Tree it is O(k × e × log(e)) of extra initialization
time and O(k × e) space with a benefit of inference time being O(m × log(e)). ExamplE needs

Figure 5: TransE on WN18RR. Target triple probability across different epochs.

9

Explaining Link Predictions in Knowledge Graph Embedding Models with Influential Examples

initialization
step time sapce
samplingKD−Tree O(k × e× log(e)) O(k × e)
samplingbrute−force O(1) O(1)

Table 6: Computational time and space complexity of initialization phase.

prediction
step time sapce
samplingKD−Tree O(m× log(e)) O(1)
samplingbrute−force O(e× k ×m) O(1)
product O(m2) O(1)
mapping O(t) O(t)
filtering O(min(t,m2)) O(1)
post-processing O(x) O(1)

Table 7: Computational time and space complexity of prediction phase.

to find m nearest neighbours for both subject and object entity (in the default case) in this step. 2)
Filtering for example triples - in this step we need to take a cartesian product of obtained sets of
neighbours in step 1: which leaves us with O(m2) (default case, in full case it is O(m3) if we are
considering predicates embedding as well) and forces us to filter examples according to the dataset.
First we are mapping it into a tuples (O(t), where t is a number of train triples), than we utilize sets
intersections implementation in Python with complexity of O(min(t,m2)). In the post-processing
step we compute the score per each example obtained. The computational complexity in batch explain
is always dependent on the number of target triples to obtain explanations for.

S P O Score
Billy Idol languages spoken, written, or signed English TT

Johnny Marr languages spoken, written, or signed English 0.00075
Chester Bennington languages spoken, written, or signed English 0.00076
Morrissey languages spoken, written, or signed English 0.00077
Loreena McKennitt languages spoken, written, or signed English 0.00077
Gordon Lightfoot languages spoken, written, or signed English 0.00080
Alan Stivell languages spoken, written, or signed English 0.00080
Robert Plant languages spoken, written, or signed English 0.00080
Oleg Skripka languages spoken, written, or signed French 0.00091
Alan Stivell languages spoken, written, or signed French 0.00091
Oleg Skripka languages spoken, written, or signed Russian 0.00097
Oleg Skripka languages spoken, written, or signed Ukrainian 0.00117

Table 8: Example explanation for a test triple in CODEX-M dataset - first row represents Target
Triple (TT). The lower the score, the closer is example to the Target Triple.

S P O Score
Artie Lange /influence/influence_node/influenced_by Jackie Gleason TT
George Carlin /influence/influence_node/influenced_by Danny Kaye 0.17232
Conan O’Brien (aka Big Red) /influence/influence_node/influenced_by Danny Kaye 0.19481
Conan O’Brien (aka Big Red) /influence/influence_node/influenced_by Steve Allen 0.24502
Bill Maher /influence/influence_node/influenced_by Steve Allen 0.25498

Table 9: Example explanation for a test triple in Fb15k-237 dataset - first row represents Target
Triple (TT). The lower the score, the closer is example to the Target Triple.

10

Explaining Link Predictions in Knowledge Graph Embedding Models with Influential Examples

S P O Score
02314321 _hypernym 08102555 TT
02314001 _hypernym 08102555 0.02788
02313495 _hypernym 08102555 0.04839
01928360 _hypernym 08102555 0.05155
02314717 _hypernym 08102555 0.06077
01928737 _hypernym 08102555 0.06294
02321759 _hypernym 02316038 0.09046

Table 10: Example explanation for a test triple in WN18RR dataset - first row represents Target
Triple (TT). The lower the score, the closer is example to the Target Triple.

11

	1 Introduction
	2 Method
	2.1 ExamplE algorithm:
	2.2 Evaluation Protocol

	3 Results
	4 Discussion
	A Appendix
	B Computational Complexity Analysis

