© N O O AW N =

© O N O g b~ W DN = O ©

20

21
22
23
24
25
26
27

28
29
30
31
32
33

34
35
36

ERGO: Entropy-guided Resetting for Generation
Optimization in Multi-turn Language Models

Anonymous Author(s)
Affiliation
Address

email

Abstract

Interactive Al systems face critical reliability challenges as conversation length
increases, with Large Language Models (LLMs) exhibiting significant performance
degradation when deployed in extended multi-turn environments. This degradation,
manifesting as reduced accuracy, decreased confidence, and a 112% increase in
response variability (unreliability), represents a fundamental robustness failure
in interactive machine learning systems. We introduce ERGO (Entropy-guided
Resetting for Generation Optimization), a principled approach to maintaining
system reliability and performance in interactive environments by monitoring in-
ternal uncertainty signals and triggering automated context consolidation when
degradation is detected. ERGO uses Shannon entropy over next token probability
distributions as a real-time indicator of system robustness, automatically restruc-
turing interaction history when uncertainty spikes indicate potential failure modes.
Evaluated across multiple LLMs in interactive task scenarios, ERGO improves aver-
age performance by 56.6% over degraded multi-turn baselines, completely recovers
the 15% drop in peak performance reliability, and reduces response variability
by 35.3%. Our results demonstrate that entropy-based uncertainty monitoring
provides an effective framework for building robust interactive ML systems that
maintain consistent performance despite the inherent unreliability of accumulated
and noisy conversational context.

1 Introduction

Interactive machine learning systems must maintain reliable performance across extended user en-
gagements, yet recent research reveals a critical vulnerability. Large Language Models (LLMs)
experience substantial failures in multi-turn interactive environments compared to single-turn deploy-
ments (Laban et al.,[2025; |Gupta et al.,[2024). This degradation represents a fundamental challenge
for reliable ML deployment, as interactive systems accumulate contextual "noise" that progressively
corrupts their decision-making processes, leading to a 112% increase in response unreliability and
significant performance drops (Laban et al., 2025).

The robustness challenges in interactive environments stem from the mismatch between training
assumptions and deployment realities. While LLMs are typically trained and evaluated on clean,
well-structured single-turn examples, real-world deployment involves extended interactions where
context accumulates incrementally, creating distribution shift and progressive corruption of the input
signal. This accumulated context acts as increasingly unreliable data, causing models to become
"lost" in the interaction flow and exhibit unpredictable failure modes.

Existing approaches to maintaining reliability in interactive systems remain limited. Methods based
on task classification, retrieval, or context compression lack generality and often require system-
specific fine-tuning (Wu et al.||2023)). More critically, these approaches fail to address the fundamental

Submitted to Reliable ML from Unreliable Data Workshop @ NeurIPS 2025

37
38

39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56

57
58
59
60
61
62
63
64

65

66
67
68
69
70
71
72

multi-turn Conversation \
[(e & ERGO
D[“rtormmion e sncer” |

Jack averaged 2.4 points
every minute.

How many points did
} . Jack score in his first

basketball game? Jack

averaged 2.4 points

o every minute. Jack
Suppose Jack played for 30 played fu_r a total of 15
'm' minutes, to calculate . . . minutes.

A Predictive Entropy < a

...Jack scored
{ Jack played for a total of 15 } . 'm' 36 points.

minutes.

v ...Jack scored 32
Ep[e X
\\ A Predictive Entropy > a / /

Figure 1: Illustrative comparison of a standard multi-turn conversational Al and the ERGO system

issue, detecting when the interactive system has entered an unreliable state and requires intervention
to restore robustness.

We introduce ERGO (Entropy-guided Resetting for Generation Optimization), the first practical
framework for maintaining reliability and performance in interactive ML environments through dy-
namic uncertainty monitoring. ERGO addresses the core challenge of building reliable systems from
unreliable interactive data by computing Shannon entropy over next-token probability distributions
(Malinin and Gales| 2018} | Xiao and Wang, [2022) as a real-time indicator of system robustness. When
entropy spikes indicate that accumulated conversational context has become sufficiently corrupted
to threaten system reliability, ERGO triggers entropy-guided context reconstruction, automatically
distilling reliable information from the degraded interaction state while discarding accumulated noise
that compromises robustness, a visual representation of this can be seen in Figure[I]

Empirical results across multiple interactive scenarios demonstrate ERGO’s effectiveness for robust
interactive ML, 56.6% improvement in average performance compared to multi-turn baselines, 24.7%
increase in peak performance levels, and a 35.3% reduction in the response unreliability typically
observed in extended interactions. Our approach outperforms existing strategies while providing
better precision and timing compared to alternate baselines, establishing entropy-guided uncertainty
monitoring as an effective framework for reliable interactive ML systems. To verify our findings and
reproduce the results, please refer to the anonymized code repository found at the following link:
https://anonymous.4open.science/r/ERGO-2F58

2 Background and Related Works

Recent work has documented substantial performance degradation in multi-turn LLM conversations.
Laban et al.| (2025) demonstrated that model performance rates dropped by 39% on average in
multi-turn settings across six domains. |Gupta et al.|(2024) formalized task-switch sensitivity using
probability ratios, showing how conversation history compounds model confusion. While |[Laban
et al.| (2025) tested remediation approaches and managed to improve average performance losses by
15-20%, these face substantial verbosity and practicality constraints. Agent-based frameworks (Wu
et al.,|2023) explore system-level solutions but do not target fundamental model limitations during
generation.

2.1 Entropy Based Uncertainty Estimation

Entropy-based uncertainty estimation provides the theoretical basis for our method, grounding
ERGO’s use of internal model signals. Prior work has used predictive entropy to quantify model
confidence in classification and generation tasks (Malinin and Gales, [2018; X1ao and Wang} |2022),
implicitly linking internal uncertainty to external behavior. More recent approaches extend this to
semantic-level uncertainty using semantic-aware entropy measures (Kuhn et al.| 2023) or trainable
proxies derived from hidden representations (Kossen et al.l|[2024). While these methods improve
semantic fidelity, they often rely on sampling or auxiliary models. In contrast, we use token-level

https://anonymous.4open.science/r/ERGO-2F58

73
74
75

76

77
78
79
80
81

82

83
84
85

86

87
88
89
90
91
92

93
94
95
96
97
98

99

100

101
102

104
105

106

107

108
109
110

entropy, computed directly from the model’s next-token distribution, as a low-cost proxy for real-time
monitoring. Unlike prior work that applies entropy primarily for evaluation or filtering, we use it as a
temporal signal to detect context degradation and trigger prompt restructuring.

2.2 Inference-Time Interventions

Inference-time control methods intervene on frozen models by manipulating internal activations,
modifying output logits, or reranking candidate outputs. For example, |Li et al.| (2024) introduced
activation-level interventions to elicit truthful answers without fine-tuning, shifting hidden states to-
ward truthful completions. Similarly, Turner et al.|(2024) developed activation engineering techniques
that steer the behavior of the model by editing intermediate representations during decoding. These
methods act directly on the output path of the model and often rely on internal signal manipulation.

In contrast, our approach introduces a policy layer outside of the model that monitors uncertainty and
intervenes by restructuring the user’s input. We do not modify the internal computation or sampling
process of the model.

2.3 Backtracking and Prompt Restructuring

Several recent approaches have explored controlled backtracking during generation. |Cundy and
Ermon| (2024)) augmented the decoding space with a ’backspace’ action to revert low-probability
generations, while Zhang et al.|(2024) uses a special [RESET] token to discard unsafe prefixes. Other
strategies such as Self-Refine (Madaan et al., [2023)) allowed iterative refinement by prompting the
model to critique and revise its own output. These methods operate on generated content and typically
require multi-step decoding or auxiliary supervision.

Our intervention departs from this paradigm by focusing on upstream correction. Instead of rewriting
the model’s response, we update the user’s prompt to recover task coherence, using rising entropy
as the intervention trigger. This shifts the optimization target from output correction to input re-
specification, which is more lightweight and avoids cumulative reasoning errors. To our knowledge,
this is the first method that uses entropy-based signals to restructure user input mid-conversation,
rather than adjusting the model’s internal behavior or downstream output.

3 Entropy-Guided Context Resetting

3.1 Rise in Average Token Level Entropy
At each turn of the conversation, the average token-level entropy is calculated by measuring the
uncertainty of the model’s token probability distribution when generating each token in its output.

Suppose the model produces a sequence of tokens t1, to, ..., t, at a given turn. For each token ¢;,
the model assigns a probability distribution P; over the vocabulary V', where P;(v) is the probability
assigned to token v € V at position 1.

The entropy at position ¢ is computed as:

H; ==Y P;(v)log P;(v)
veV

The average token-level entropy H for the turn (covering n generated tokens) is then:

-2

S|
]
=

This metric quantifies the model’s overall uncertainty when generating the turn. Higher H indicates
greater uncertainty and a more diffuse token distribution, while the lower H indicates more confident
and peaked predictions (Malinin and Gales, [2018; |Xiao and Wang|, 2022).

111
112
113

114

115
116

117

118
119

120
121
122
123

124

125
126

127
128
129
130

131
132
133
134

135
136
137
138

139

140

141
142
143
144
145

146
147
148
149
150

151
152

For each subsequent turn ¢ in the conversation, the change in average token-level entropy is calculated
to monitor fluctuations in model uncertainty. Let (") denote the average token-level entropy at turn
t, as defined previously.

The change in predictive entropy between consecutive turns is defined as:

AF® — g0 _ g1

A positive AH® indicates that the uncertainty of the model has increased relative to the previous
turn.

3.2 Threshold-Based Trigger for Context Reset

For each model we calibrate an entropy change threshold (7). When the change in predictive entropy
satisfies the following condition:

AH® > 7

The system deems that the uncertainty of the model is rising beyond an acceptable margin. This
is interpreted as a signal that the evolving conversation context may be inducing compounding
uncertainty or drift. A detailed analysis of the threshold selection process is provided in Appendix |A]
while an analysis of ERGO’s sensitivity to entropy thresholds is provided in Appendix [B]

3.3 Context Reset Protocol

Upon detection of AH® > 7, an automated context reset protocol is initiated. This protocol
proceeds in the following steps:

I. Prompt Rewriting:
The user’s inputs up to turn ¢ are provided to the model. The model is asked to rewrite these
inputs into a single-turn, optimized prompt that preserves relevant task information while
reducing ambiguity and redundancy.

II. Isolated Generation (New Chat Simulation):
The rewritten prompt is passed into a new instance of the model, simulating a stateless chat
environment with no memory of prior turns. The model then generates a response Ry to this
rewritten prompt.

III. Branch Continuation:
A new dialogue branch is created that begins from the rewritten prompt and response. This
maintains continuity from the optimized state rather than the potentially degraded original
context.

4 Experimentation Background

4.1 Simulation Scale & Parameters

Our simulation follows the protocol of [Laban et al.| (2025]) with the only change being the implementa-
tion of ERGO. We evaluate a suite of five leading instruction-tuned LLMs: Phi-4 (Abdin et al.| 2024)),
LLaMA 3.1-8B Instruct (Grattafiori et al., [2024), GPT-40 (Hurst et al.|, [2024), GPT-4.1 (OpenAl,
2025)), and GPT-40-mini (OpenAll 2024). All models are used in their publicly released variants
without additional fine-tuning.

Generation settings are standardized across models with temperature set to 1.0. For entropy calcu-
lations, we note an important methodological constraint: OpenAl models provide access to only
the top-20 logprobs through their API. This limitation affects the precision of entropy estimates,
particularly for tasks with shorter responses such as Actions and Data-to-text, where the restricted
probability space may not capture the full uncertainty of the model’s predictions.

We conduct 3 independent simulation runs for each dataset using 100-question samples, with the
exception of the Data-to-text dataset, for which evaluations were performed on a 50-question subset

153
154

155

156
157
158
159
160

161
162

163

164
165

166

167
168
169
170
171
172
173

174

175
176

177
178
179

180
181
182

FULL

ofls SHARDED

CERGO

solve the following problem using all the
information given to you:

- How old was Bill when he first saw Comet
Halley?

- Comet Halley takes 75 years to complete one
orbit around the sun

- Bill's dad was 30 years old when he saw the
comet

- Bill saw Comet Halley for the second time
when he was three times as old as his dad was
when his dad saw it

MODEL ANSWER: 15

How old was Bill when he first saw Comet
Halley?

How old was Bill when he first saw Comet
Halley?

Comet Halley takes 75 years to complete one
orbit around the sun

Comet Halley takes 75 years to complete one
orbit around the sun

Bill's dad was 3@ years old when he saw the
comet

Bill's dad was 3@ years old when he saw the
comet

Bill saw Comet Halley for the second time
when he was three times as old as his dad was
when his dad saw it

Bill saw Comet Halley for the second time
when he was three times as old as his dad was
when his dad saw it

MODEL ANSWER: 75 ¥

/
RESET OCCURS AFTER ROW

Bill's dad was 30 years old when he saw Comet
Halley. The comet takes 75 years to complete
one orbit around the sun. Bill saw Comet

Halley for a second time when he was three
times as old as his dad was when his dad saw
it. How old was Bill when he first saw Comet
Halley?

MODEL ANSWER: 15

Figure 2: Example LLaMA 3.1-8B Instruct run on a GSMS8K question with &= FULL, o SHARDED and C
ERGO settings. Each row represents a separate prompt given to the model while each table represents a context
window.

over 3 runs. All other experimental settings and baseline figures are adopted directly from [Laban
et al.|(2025)).

We compare three settings:

B FULL: Simulates a single-turn, fully-specified conversation using the sharded instruction. The
shards are combined into a single bullet-point list (one shard per line), prefaced by a directive to
complete the task using all listed points. This setting serves as an upper bound for performance,
providing a target for evaluating how closely multi-turn intervention methods can approximate
single-turn optimality.

@ SHARDED: Sequential shard presentation as in the original (Laban et al., 2025} LLMs-lost-in-
conversation experiment.

C ERGO: Our entropy-guided reset mechanism applied upon exceeding the entropy threshold.

Figure 2] provides an example of a run on each setting. This evaluation isolates the effect of ERGO
relative to both single-pass and original multi-turn baselines.

4.2 Tasks

We evaluated models on five representative generation tasks, each framed as a multi-turn interaction
over sharded instructions and augmented them with our entropy-guided context resetting method
(Section[3). For each task, we used 220-325 constructed prompts from the datasets created by [Laban
et al.| (2025). We simulate a multi-turn conversation, feeding the model one shard at a time. At each
assistant turn, we compute the average token-level entropy and track its change AH). Whenever
AH® exceeds the calibrated threshold 7, we invoke our reset protocol - prompt rewriting, isolated
regeneration, branch continuation - before continuing.

Below we briefly summarize what the assistant must do in each task:

© CODE: Convert natural-language problem description into a correct Python function. Outputs are
validated by executing against the reference test suite (Chen et al., 2021} [Jain et al., 2024)).

& DATABASE: Given a database schema and a user request, generate an SQL query that returns the
requested data. Correctness is checked by running the query on the Spider-derived database (Yu et al.|
2018).

ACTIONS: Given API schemas plus high-level user instruction, emit valid code-style API calls
that fulfill the intent. This is verified against the Berkeley Function Calling Leaderboard definitions
(Yan et al.| 2024).

183
184
185

186
187
188

189

190
191
192

193

194
195

199

200
201

202
203
204

205

206

207
208
209
210
211

212
213
214

&) DATA-TO-TEXT: Take a structured data table and metadata and write a single caption that
highlights its key insight. Adapted from ToTTo and evaluated using BLEU (scaled 0-100) (Parikh
et al.,[2020; |Papineni et al.|, [2002)).

MATH: Solve an elementary math story problem by carrying out each arithmetic step and returnin

y Iy p y carrying P g
the numeric result. Simulates day-to-day problems LLMs may be tasked with by users. GSM8K
problems were used and scored by exact match (Cobbe et al., 2021).

4.3 Maetric Selection

We assess LLM performance in multi-turn tasks by repeating simulations for each instruction and
collecting success scores from multiple runs, following Laban et al.| (2025)). Each score, ranging from
0 to 100, reflects task success. More detailed information on metrics is available in Appendix [E]

4.4 Per-Run Scoring

I. Binary-Correctness Tasks (Code, Database, API, Math): A correct response at any turn
yields a score of 100, and the run ends. Otherwise, the score is 0.

II. Refinement Task (Data-to-Text): The final output is evaluated using BLEU, rescaled to 0—100.
4.5 Aggregate Metrics

From the scores collected across the 3 runs, we compute three metrics:

+ Average Performance (P): Average performance per instruction for a given task.

+ Aptitude (A%°): 90th-percentile score, measures a model’s peak capability, indicating its
potential to deliver high-quality results in critical multi-turn tasks. Averaged across all tasks.

s Unreliability (U7))): Difference between 90th and 10th percentiles, quantifies response
variability, where lower values reflect greater consistency, essential for user trust and system
reliability in long-horizon interactions. Averaged across all tasks.

5 Results & Discussion

5.1 Average Performance Gains

Model @ Code & Database Actions 7 Data-to-Text Math
B & C B & C B & C B &L C B & C

09 Llama3.1-8b 21.2 21.7 52.01 47.7 259 64.37 83.0 455 60.07 157 133 123" 62.6 374 65.7"
© 40-mini 66.7 50.3 66.7" 90.7 402 9337 92.2 524 92,07 312 19.8 22.0' 88.0 58.7 85.0"

2" Phi-4 484 39.1 550" 79.6 33.1 62.07 76.0 34.1 65.77 28.6 232 28.0" 90.4 525 853"
®4.1 887 72.6 81.7" 86.5 46.0 96.07 98.5 629 847" 54.4 28.6 31.0' 89.7 70.7 91.7"
G40 82.9 61.3 763" 91.7 42.3 95.77 97.1 650 82.07 322 205 27.0' 91.9 67.9 89.3"

Table 1: Average Performance (P) comparison across three settings: B FULL (single-turn), % SHARDED
(multi-turn baseline), and C ERGO (multi-turn with entropy-guided resetting). Arrow represents change in
performance for C relative to &, with arrow size representing magnitude of change.

Table[I]shows that ERGO delivers substantial performance improvements across all models compared
to baseline multi-turn setups. By detecting moments of confusion and restarting interactions, models
avoid becoming "lost" in conversational flow. Nearly every dataset and model combination shows
increased average success rates, with performance improving by 56.6% on average and several
model-task combinations achieving over 100% gains compared to original multi-turn baselines.

While FULL is considered our performance upper-bound, ERGO frequently exceeded FULL in
both average performance and aptitude (Section[5.2)) as our method only corrects derailment when
calculated confusion rises significantly. This preserves the model’s ability to iteratively reason

215
216
217

218
219
220
221
222
223
224
225

226

227
228
229
230
231
232

234
235

237
238

240
241
242
243

244
245
246

and refine responses across shards while preventing the compounding errors typical in prolonged
multi-turn contexts. This approach effectively merges both paradigms’ strengths: single-turn stability
and clarity when needed, and iterative decompositional reasoning when the model remains on track.

Moreover, performance on the & Data-to-Text task improves over the multi-turn baseline, though
less substantially than in other datasets. This is partly due to model-specific constraints. LLaMA
3.1-8B struggles to rewrite large, structured prompts effectively (e.g., full tables), limiting the benefit
of consolidation. GPT models face difficulties in triggering resets, as entropy estimates are less
reliable, only top-20 log-probabilities are available, and outputs are typically short, reducing entropy
sensitivity. Phi-4 performs best, nearing single-turn levels, likely because it supports accurate entropy
tracking and handles prompt rewriting more effectively. These results indicate model-dependent
limitations in applying our method to high input structure tasks.

5.2 Aptitude and Unreliability Improvements

Along with performance gains, Figure [3]shows that ERGO demonstrates exceptional gains in aptitude,
often exceeding single-turn performance levels, while substantially reducing unreliability compared
to multi-turn baselines, two metrics introduced by |Laban et al.| (2025) to capture model consistency
across conversations. These results indicate that our intervention not only fully recovers the aptitude
lost in the transition from single-turn to multi-turn settings and achieves aptitude levels exceeding
single-turn baselines, but also makes behavior significantly more stable compared to baseline multi-
turn settings across repeated trials. When comparing to standard sharded conversations, the average
aptitude across models rose by 24.7%, achieving performance levels that surpass single-turn baselines,
enabling more effective handling of complex tasks while unreliability declined by 35.3%.

[] @® SHARDED
0.85 ° ® ERGO
|®
4.1 /7 e PHI-4
I, -
0.80 1 © ,/40 =
0.75 / _— ™
40-mini ~ b T

Aptitude (A)
o
s
[]

‘o |
| LLAMA3.1-8B

0.2 03 0.5 0.6

0:4
Unreliability (U)
Figure 3: Effect of SHARDED and ERGO on Aptitude and Unreliability. Icons represent models B FuLL

performance. Green dots represent performance with G ERGO while red dots represent ds SHARDED perfor-
mance

5.3 Evaluating Entropy-Guided Resets vs. Random Resets and Fixed Resets

We compared entropy-based context resets against random and fixed-interval baselines using

Llama3.1-8B across three tasks: %Dambase, Actions, and B3 Math. In these ablations, we
retained all experimental settings from the main condition, with the only change being that each
metric was tested on 50 question samples instead of 100. The random baseline used uniformly
random triggers with unconstrained reset frequency. The fixed baseline triggered resets every five
shards (quintet reset), matching the average reset frequency of Llama3.1-8B observed in our
ERGO system.

The results, visualized in Figure[d] demonstrate a clear advantage for ERGO over baseline approaches.
Entropy-guided resets consistently outperformed both random and fixed reset strategies while demon-
strating adaptive scaling behavior. In the Database task, ERGO achieved a performance gain vs

247
248
249
250
251
252

254

262

263
264
265
266

267
268

269
270
271

160 Method

[Entropy-guided

(22.57158) 3 Random

ol (22.6, 153) [Quintet Reset

120
n
2
7]
"
<
% 100 [=3J
5 &2
2

(40.0, 96)

£
S 80
H

60 [+]-]

(30.6, 59)

=
(4.5,55) [u-]
=

(26.1,44) as

(32.6, 38)
5 10 15 20 25 30 35 40
Performance Points Gained vs SHARDED

40 1

(12.5, 41)

Figure 4: Comparison of performance point gains (percentage-point increase in accuracy relative to
dls SHARDED) and number of resets across entropy-guided, random, and quintet reset methods on =] Database,
Actions, and =l Math tasks. Icons represent their respective task with their color determining method used.

SHARDED of 40.0 percentage points using 96 resets, compared to the quintet baseline’s 26.1 gain
with only 44 resets. This demonstrates the system’s ability to increase intervention frequency when
encountering greater model uncertainty. Conversely, in the Actions task, ERGO required only 41
resets, fewer than both baselines, while still achieving superior performance. This adaptive behavior
indicates that entropy guided resets effectively allocate computational resources by intervening only
when necessary, scaling both up and down based on task complexity and model confusion levels.

The primary risk posed by resets is semantic drift. Poorly timed or excessive context rewriting can
lose critical details through increased abstraction, compromising semantic faithfulness to the original
input (Dreyer et al., [2023)). This degradation in semantic faithfulness can offset or even negate the
benefits of resetting. Furthermore, resets incur computational overhead; each reset involves having
two additional forward passes through the model. Together, these considerations underscore why
ERGO outperforms both methods as the frequency and timing of resets are more carefully controlled
in our framework. Not only to avoid wasted computation, but, more critically, to prevent semantic
degradation. For more information on computation and average reset frequency across models, please
refer to Appendix [C|

5.4 Comparison to Existing Intervention Strategies

To contextualize ERGO’s improvements as a novel conversational intervention system, we compare
against existing prompt engineering approaches from|Laban et al.|(2025): SNOWBALL and RECAP
as, to our knowledge, no other methods exist that perform comparable inference time conversational
restructuring

O SNOWBALL: Reiterates all prior shards at each new turn, effectively growing the prompt
cumulatively.

M RECAP: Reiterates all prior shards only at the final turn. While more efficient, this strategy is
impractical in real-world deployments, since the system would not know prior when the final user
input will occur.

Model | BFULL | dSHARDED | O SNOWBALL | MIRECAP | CERGO
GPT-do-mini | 73.8 44.3 54.0 577 718
GPT-40 79.2 51.4 57.4 66.3 75.6

Table 2: Comparison of combined average performance (P) across @ Code, & Database, ¥ Actions, & Data-
to-Text and &= Math tasks.

272
273
274
275

276

277
278
279
280
281
282

283
284
285

287
288

290

291
292
293

294

296
297
298

299

300
301
302
303
304
305
306
307
308
309
310
311
312
313

As shown in Table [2] ERGO significantly outperforms both alternatives. ERGO nearly matches
single-turn performance for both models. Furthermore, ERGO prevents input bloating at each
iteration unlike SNOWBALL, and operates without requiring prior knowledge of the final input
unlike RECAP.

5.5 [Evaluating Length Bias in Entropy-Based Reset Triggers

One potential concern regarding ERGO’s entropy-based reset mechanism is whether it inadvertently
functions as a proxy for response length. Specifically, since entropy is calculated over token probabil-
ity distributions, it is plausible that longer outputs, which involve more tokens and potentially more
diffuse distributions, may naturally exhibit higher entropy. If true, this would raise the possibility that
ERGO’s resets are effectively triggered by length increases rather than genuine uncertainty spikes,
undermining the validity of entropy as an internal behavioral signal.

We analyze response behavior from the Phi-4 model across all tasks and questions used in the main
evaluation suite. For each turn ¢ in a given multi-turn conversation, we compute two quantities
relative to the previous turn: the change in average token-level entropy, AH (t), and the change in
response length, AL(t), measured in tokens.

We evaluate the relationship between these using two standard correlation metrics: Spearman’s
rank correlation coefficient (p), which captures monotonic associations without assuming linearity
(Spearman, |1904)), and Pearson’s correlation coefficient (), which quantifies the strength of linear
correlation (Pearson, |1895)). The results for the Phi-4 model are summarized in TableE}

The Spearman result indicates no meaningful monotonic relationship between changes in entropy
and length. The Pearson coefficient, while statistically significant due to the large sample size, has
negligible magnitude and a negative sign, indicating no positive linear correlation.

Coefficient p-value
Spearman’s p —0.0143 0.4525
Pearson’s r —0.0796 2.7 x 107°

Table 3: Correlation between changes in entropy and response length for the Phi-4 model.

These findings demonstrate that entropy fluctuations are not systematically associated with output
length changes in the Phi-4 model. This supports the claim that ERGO’s reset mechanism is not
driven by verbosity or token count, but rather by internal signals of model uncertainty. Entropy-based
resets therefore retain validity as an independent control signal rather than acting as a surrogate for
response length.

6 Conclusion

Our results demonstrate that ERGO provides an effective solution to reliability challenges in interac-
tive ML systems by using Shannon entropy to detect system degradation and trigger automatic context
reconstruction. Shannon entropy, despite its computational simplicity, serves as a reliable and precise
signal for when interactive systems require intervention to maintain robustness, enabling targeted
restoration while minimizing unnecessary computational overhead. ERGO consistently outperformed
existing methods, achieving 56.6% performance gains over standard baselines, improving aptitude by
24.7%, and reducing unreliability by 36.3%. ERGO offers a practical, model-agnostic framework
for maintaining reliable performance in real-world interactive ML deployments where accumulated
context progressively corrupts system behavior. The success of entropy-guided reliability monitoring
establishes a new paradigm for robust interactive systems, rather than attempting to prevent degrada-
tion, systems can monitor their own reliability in real-time and intervene when uncertainty signals
indicate potential failure modes. Future work will explore advanced context consolidation strategies,
including multi-stage summarization and adaptive techniques for long-form conversations. More
information on Future Works can be found in Appendix

314

315
316

317
318

320
321
322

323
324

325
326
327
328

329
330

331
332
333

334
335

336
337
338

339
340
341

342
343

344
345

346
347

349
350
351

352
353

354

355

356
357
358

References

M. Abdin, J. Aneja, H. Behl, S. Bubeck, R. Eldan, S. Gunasekar, M. Harrison, R. J. Hewett,
M. Javaheripi, P. Kauffmann, et al. 2024. |Phi-4 Technical Report. In arXiv preprint.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Girish Hernandez, Chelsea Edwards, Yuri Burda, Nicholas Joseph, et al. 2021. Evaluating
large language models trained on code. arXiv preprint arXiv:2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. 2021. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168.

Chris Cundy and Stefano Ermon. 2024. Sequencematch: Imitation learning for autoregressive
sequence modelling with backtracking,

Markus Dreyer, Mengwen Liu, Feng Nan, Sandeep Atluri, and Sujith Ravi. 2023. Evaluating the
tradeoff between abstractiveness and factuality in abstractive summarization. In Findings of the
Association for Computational Linguistics: EACL 2023, pages 2089-2105, Dubrovnik, Croatia.
Association for Computational Linguistics.

A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Vaughan, et al. 2024. The LLaMA 3 Herd of Models. In arXiv preprint.

Akash Gupta, Ivaxi Sheth, Vyas Raina, Mark Gales, and Mario Fritz. 2024. LLM Task Interference!
An Initial Study on the Impact of Task-Switch in Conversational History. In Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing (EMNLP).

A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark, A. Ostrow, A. Welihinda,
A. Hayes, A. Radford, et al. 2024. GPT-40 System Card. In arXiv preprint.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. 2024. Livecodebench: Holistic and contamination
free evaluation of large language models for code. arXiv preprint arXiv:2403.07974.

Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa Schut, Shreshth Malik, and Yarin Gal. 2024.
Semantic entropy probes: Robust and cheap hallucination detection in llms. arXiv preprint
arXiv:2406.15927.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023. Semantic uncertainty: Linguistic invariances
for uncertainty estimation in natural language generation. arXiv preprint arXiv:2302.09664.

Philippe Laban, Hiroaki Hayashi, Yingbo Zhou, and Jennifer Neville. 2025. LLMs Get Lost In
Multi-Turn Conversation. In Proceedings of the 2025 Conference on Language Modeling (COLM).

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. 2024. Inference+
time intervention: Eliciting truthful answers from a language model.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. 2023. Self-refine:
Iterative refinement with self-feedback.

Andrey Malinin and Mark Gales. 2018. Predictive uncertainty estimation via prior networks. Advances
in neural information processing systems, 31.

OpenAl 2024. OpenAl 03 and 04-mini System Card.
OpenAl 2025. Introducing gpt-4.1 in the api.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a Method for Automatic
Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics.

10

https://arxiv.org/abs/2412.08905
http://arxiv.org/abs/2306.05426
http://arxiv.org/abs/2306.05426
http://arxiv.org/abs/2306.05426
https://doi.org/10.18653/v1/2023.findings-eacl.156
https://doi.org/10.18653/v1/2023.findings-eacl.156
https://doi.org/10.18653/v1/2023.findings-eacl.156
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2402.18216
https://arxiv.org/abs/2402.18216
https://arxiv.org/abs/2402.18216
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2406.15927
https://arxiv.org/abs/2505.06120
https://arxiv.org/abs/2505.06120
https://arxiv.org/abs/2505.06120
http://arxiv.org/abs/2306.03341
http://arxiv.org/abs/2306.03341
http://arxiv.org/abs/2306.03341
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4-1/
https://aclanthology.org/P02-1040.pdf
https://aclanthology.org/P02-1040.pdf
https://aclanthology.org/P02-1040.pdf

359
360
361
362

363

365
366

367
368

369
370
371
372

373
374
375

Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhingra, Diyi Yang,
and Dipanjan Das. 2020. ToTTo: A controlled table-to-text generation dataset. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1173-1186.

Karl Pearson. 1895. Note on regression and inheritance in the case of two parents. Proceedings of
the Royal Society of London, 58:240-242.

Charles Spearman. 1904. The proof and measurement of association between two things. The
American Journal of Psychology, 15(1):72-101.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J. Vazquez, Ulisse Mini, and
Monte MacDiarmid. 2024. Steering language models with activation engineering.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. 2023. |AutoGen: Enabling Next-Gen LLM Applications
via Multi-Agent Conversation. In Proceedings of the 2023 Conference on Language Modeling
(COLM).

Yuxia Xiao and William Yang Wang. 2022. Uncertainty quantification with pre-trained language mod-
els: A large-scale empirical analysis. Findings of the Association for Computational Linguistics:
EMNLP 2022, pages 7608-7621.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. 2024. Berkeley function-calling leaderboard. https://gorilla.cs.
berkeley.edu/leaderboard.html.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. 2018. Spider: A large-scale human-labeled dataset for
complex and cross-domain semantic parsing and text-to-sql task. In Proceedings of EMNLP, pages
811-820.

Yiming Zhang, Jianfeng Chi, Hailey Nguyen, Kartikeya Upasani, Daniel M. Bikel, Jason Weston,
and Eric Michael Smith. 2024. Backtracking improves generation safetyl.

11

https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.1098/rspl.1895.0041
https://doi.org/10.2307/1412159
http://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://gorilla.cs.berkeley.edu/leaderboard.html
https://gorilla.cs.berkeley.edu/leaderboard.html
https://gorilla.cs.berkeley.edu/leaderboard.html
http://arxiv.org/abs/2409.14586

385

386
387
388
389

390
391
392
393

395
396

398
399
400
401

402
403
404
405

407
408

410
411
412

A Threshold Selection Procedure

Model Name Version 7 Percentile Provider

2" Phi-4 N/A 0.1 90th HuggingFace
M Llama3.1-8b N/A 0.03 65th HuggingFace
©®GprT-4.1 gpt-4.1-2025-04-14 0.2 90th OpenAl API
© GPT-40-mini gpt-40-mini-2024-07-18 0.2 85th OpenAl API
©® GPT-40 gpt-40-2024-08-06 0.3 90th OpenAI API

Table 4: Model versions, thresholds, and calibration percentiles used in our experiments. (Versions included
where applicable.)

To determine appropriate entropy thresholds (7) for triggering context resets, we conducted a calibra-
tion procedure specific to each model. The goal was to identify a rise in entropy that reliably signals
when a model is ’lost’ in the conversation, that is, when its internal uncertainty increases sharply,
suggesting that it is struggling to integrate or reason over the accumulated context.

For each model, we selected a held-out subset of approximately 80 shard-level examples from
the GSMS8K dataset. These examples were drawn from outside the final evaluation set to avoid
contamination, with GSM8K being chosen due to its hybrid structure, requiring both reasoning and
natural language generation. We then ran each model in a standard multi-turn setting over these
shards and computed the change in average token-level predictive entropy at each turn.

From the resulting distribution of entropy rises, we selected a threshold based on a percentile aligned
with the model’s baseline aptitude on GSMS8K. For instance, since GPT-4.1 achieves a baseline
aptitude of ~ 90% on GSMS8K in single-turn settings, we selected the 90th percentile of the entropy
rise distribution as its reset threshold. The underlying rationale was to calibrate the threshold so
that only the most atypical (high-entropy) turns, those statistically associated with likely failure,
would trigger an intervention. Details of the models used, including their version identifiers, selected
entropy thresholds, and corresponding calibration percentiles, are summarized in Table 4]

Once determined, this threshold was fixed across all datasets for a given model. We made this decision
intentionally, as our goal was to evaluate the feasibility of a general-purpose, model-specific threshold
rather than tuning thresholds for each dataset individually. This “one-size-fits-all” approach allows
for a more robust and realistic assessment of whether entropy-based context resets can generalize
across tasks without requiring per-task adjustment.

Interestingly, while both GPT-4.1 and Phi-4 shared the same 90th percentile threshold, Phi-4 triggered
significantly more resets during evaluation. This was due to Phi-4’s strong performance on GSM8K
but much weaker performance on the broader set of tasks. This divergence illustrates that the system
remains sensitive to task-specific confusion, with the number of resets scaling appropriately even
under a fixed, model-specific threshold, highlighting the adaptive behavior of the method across
domains. More information on number of resets incurred is available in Appendix [C]

12

413

414
415
416
417
418

419
420
421
422
423
424

425
426
427
428

429
430
431

B Sensitivity to Entropy Threshold (7)

(40.0, 102
—
=
100 A t (40.0, 96)
=]
=_)
(4.5, 79)
80 :
(32.0, 73)
n
1]
n 30.6, 63)
[} 30.0, 60)
(-4
4= 60
°
-
]
-1
g (12.5, 41)
2] (32.6, 38)
40 oB
~(246,31) x[=)
(+[-]
(8.5,22) (x]=) Thresholds
7 1 0.03
201
(-1.5,12) 3 0.00
'EOF‘ (166, 9) /1 0.05
ot o =3 0.08
0 10 20 30 40

Performance Gained vs SHARDED

Figure 5: Comparison of maximum performance point gains (i.e., highest percentage-point increase in accuracy
relative to & SHARDED) and number of resets between different thresholds on 8 Database, £ Actions, and
Math tasks. Icons represent their respective task with their color determining method used.

To evaluate the sensitivity of our method to the entropy threshold parameter 7, we conducted an
ablation study using the same controlled setup described in Section [5.3] with the L1ama3.1-8B
model on the Database, Actions, and Math tasks. The only variable changed in this study was
the value of 7, the threshold used to trigger entropy-guided resets. We tested four settings: 7 €
{0.00,0.03, 0.05,0.08}, where 0.03 corresponds to the threshold selected for the main experiments.

The results, visualized in Figure [5|showed a clear performance peak at 7 = 0.03, which consistently
achieved the highest gains across all tasks. This setting struck a balance between reactivity and
restraint, triggering resets selectively at moments of genuine confusion without introducing excessive
rewrites that risk semantic drift. In contrast, the lowest threshold 7 = 0.00 resulted in the highest
number of resets and either matched or underperformed the 0.03 setting, suggesting that overly
aggressive resetting is not beneficial and may lead to instability due to frequent context rewrites.

At the other extreme, the highest threshold 7 = 0.08 yielded the fewest resets and consistently
underperformed, likely due to failing to intervene even when the model was demonstrably confused.
The intermediate value 7 = 0.05 behaved as expected, yielding results that were approximately
midpoint between 0.03 and 0.08 in both performance and reset count.

Taken together, these findings support the robustness of our selected threshold and highlight the im-
portance of calibrating reset triggers to maintain a balance between informativeness and intervention
overhead.

13

432

433
434
435

441
442
443
444
445
446

447
448
449

450
451
452
453
454

455
456
457
458

459
460
461
462

C Computational Cost and Reset Overhead Analysis

A key consideration in deploying entropy-guided context resets is the computational overhead they
introduce. In our system, two sources of computational cost must be considered: (1) the cost of
computing predictive entropy at each turn, and (2) the cost incurred when a context reset is triggered.

Entropy Computation Cost: While more advanced measures of model uncertainty such as seman-
tic entropy require sampling multiple outputs over the same input (Kuhn et al., 2023), our method uses
token-level Shannon entropy, which is extracted directly from the next-token probability distribution
during generation. This choice imposes negligible additional cost beyond standard decoding and was
selected for its practicality and compatibility with real-time systems.

Reset Overhead: Each reset introduces two additional forward passes through the model: one to
rewrite the accumulated user context into a consolidated prompt, and a second to respond to that
prompt. This introduces latency and compute proportional to the number of resets triggered per
run. Table[5]showcases the average performance of models with ERGO along with the approximate
number of shards per reset and the selected threshold percentile for each model. Averaged across all
datasets, one question equates to ~ 6 shards.

Model Average Performance ~ Shards per Reset Threshold Percentile
GPT-40 75.6 51 92nd
GPT-4.1 77.2 38 90th
GPT-40-mini 71.8 29 85th
Phi-4 59.2 7 90th
Llama3.1-8B 50.9 5 63rd

Table 5: Average Performance with ERGO along with the number of shards before reset occurs for each model
and its threshold percentile, measured as an average across all datasets.

These results reflect the adaptive nature of the system: more capable models (e.g., GPT-4.1, GPT-40)
experience fewer high-entropy turns and thus require fewer resets, minimizing overhead. Conversely,
less capable models like Phi~4 trigger resets more frequently, aligning with their observed confusion.

Prompt Length Reduction: An additional consequence of context resets is that they tend to truncate
the context window, potentially removing stale or redundant information. Across all runs, the average
token length of model prompts for questions where resets occurred was 260 tokens, compared to 309
tokens in questions where no resets were triggered. While this reduction does not eliminate the cost
of the reset itself, it may partially offset it by reducing input size in subsequent turns.

Retrieval-Augmented Consolidation (Future Work): More advanced consolidation techniques,
such as retrieval-augmented synthesis, could further improve the quality of resets but would introduce
additional retrieval and ranking costs. We leave the exploration of such hybrid architectures to future
work.

Taken together, these results indicate that while entropy-guided resets do introduce compute overhead
via additional forward passes, the system remains adaptive. Reset frequency scales with model
confusion, and thresholds derived from a single reasoning heavy dataset generalize effectively across
diverse tasks.

14

463

464
465
466

467
468
469
470
471
472

473
474
475
476
477
478

479
480
481
482

484

485

487

488
489

D Future Works

While ERGO has demonstrated substantial improvements in multi-turn performance through entropy-
guided context resets, several avenues remain open to extend its applicability and robustness in
broader conversational settings.

Dialogue Trace Consolidation: Our current context-reset protocol rewrites prior user inputs into
a single-turn prompt but does not incorporate preceding assistant responses. This simplification
was chosen to enable stateless resets with minimal overhead in instruction-shard tasks, where user
inputs encode the majority of required task information. However, in more open-ended or exploratory
conversations, where assistant turns may introduce novel entities, explanations, or intermediate
reasoning, this exclusion could result in loss of critical context.

To address this, future work will explore multi-stage consolidation mechanisms that explicitly
summarize both user and assistant dialogue turns. One natural extension is a two-pass strategy: the
first pass summarizes user queries, and the second distills assistant responses. A final generation
step would synthesize these into a coherent prompt, preserving key semantic and referential content
across turns. This approach maintains ERGO’s core design, resetting when confusion is detected via
internal uncertainty signals, while enhancing its fidelity in dialogic settings.

Adaptive Consolidation Strategies: Incorporating assistant responses also raises new design chal-
lenges around content selection, co reference resolution, and context prioritization. We anticipate
integrating lightweight discourse-aware filtering or retrieval-augmented synthesis to further improve
semantic coverage without incurring significant computational cost. Evaluating these techniques
on long-form conversations, assistance tasks, and real-world dialogue logs will be a focus of future
iterations.

These extensions do not alter the core entropy-based mechanism but instead refine how reset inputs
are constructed. As such, they represent a natural progression of ERGO’s architecture toward more
general-purpose deployment. Further exploration will also include model-internal dynamics beyond
entropy, adaptive thresholding tuned to conversation domain, and integration with memory or retrieval
components to support resets over extended dialogue spans.

15

490

491

492
493
494

495
496

497

498
499
500

501
502
503

504

505
506

507

508
509

510
511

512
513

E Metrics

E.1 Metric Selection

LLMs employ a stochastic decoding process, yielding different outputs even under fixed prompts
and sampling parameters. We leverage this by repeating our multi-turn simulation on each sharded
instruction and observing the resulting success scores. Let

S = {Si}zN:I

be the set of scores from N independent runs on a single instruction, where each S; € [0, 100]
measures task success at the end of that simulation.

E.1.1 Per-run scoring:

I. Binary-correctness tasks (Code, Database, API, Math): At each turn, we evaluate the
model’s response; if it produces a correct solution at any turn, we immediately assign .S; = 100
and terminate that run. If no turn yields a correct answer, S; = 0.

II. Refinement task (Data-to-Text): We compute the native metric (BLEU for data-to-text; joint
coverage/attribution score for summarization) on the final generated output and rescale it to
[0, 100].

E.1.2 Aggregate metrics

From the per-run scores S, we define three summary statistics, following the methodology from
Laban et al. (2025):

1 X

P= ; Si (1)
A% = percentilegy(S) 2
Uy = percentileg,(S) — percentile;(S) 3)

-P (Average Performance): An unbiased estimate of the model’s mean score on an instruction.

-A% (Aptitude): Estimates the 90th-percentile performance, reflecting what one can achieve in the
top decile of runs.

- U% (Unreliability): Measures the gap between the 90th and 10th percentiles, capturing the degree
of stochastic variability in outputs.

Aptitude and Unreliability are computed per instruction and then averaged over the full set of tasks.
Binary-correctness accuracy is mapped onto the 0—100 scale to ensure every task’s score aligns.

16

	Introduction
	Background and Related Works
	Entropy Based Uncertainty Estimation
	Inference-Time Interventions
	Backtracking and Prompt Restructuring

	Entropy-Guided Context Resetting
	Rise in Average Token Level Entropy
	Threshold-Based Trigger for Context Reset
	Context Reset Protocol

	Experimentation Background
	Simulation Scale & Parameters
	Tasks
	Metric Selection
	Per-Run Scoring
	Aggregate Metrics

	Results & Discussion
	Average Performance Gains
	Aptitude and Unreliability Improvements
	Evaluating Entropy-Guided Resets vs. Random Resets and Fixed Resets
	Comparison to Existing Intervention Strategies
	Evaluating Length Bias in Entropy-Based Reset Triggers

	Conclusion
	Threshold Selection Procedure
	Sensitivity to Entropy Threshold ())
	Computational Cost and Reset Overhead Analysis
	Future Works
	Metrics
	Metric Selection
	Per‐run scoring:
	Aggregate metrics

