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Abstract

Interactive AI systems face critical reliability challenges as conversation length1

increases, with Large Language Models (LLMs) exhibiting significant performance2

degradation when deployed in extended multi-turn environments. This degradation,3

manifesting as reduced accuracy, decreased confidence, and a 112% increase in4

response variability (unreliability), represents a fundamental robustness failure5

in interactive machine learning systems. We introduce ERGO (Entropy-guided6

Resetting for Generation Optimization), a principled approach to maintaining7

system reliability and performance in interactive environments by monitoring in-8

ternal uncertainty signals and triggering automated context consolidation when9

degradation is detected. ERGO uses Shannon entropy over next token probability10

distributions as a real-time indicator of system robustness, automatically restruc-11

turing interaction history when uncertainty spikes indicate potential failure modes.12

Evaluated across multiple LLMs in interactive task scenarios, ERGO improves aver-13

age performance by 56.6% over degraded multi-turn baselines, completely recovers14

the 15% drop in peak performance reliability, and reduces response variability15

by 35.3%. Our results demonstrate that entropy-based uncertainty monitoring16

provides an effective framework for building robust interactive ML systems that17

maintain consistent performance despite the inherent unreliability of accumulated18

and noisy conversational context.19

1 Introduction20

Interactive machine learning systems must maintain reliable performance across extended user en-21

gagements, yet recent research reveals a critical vulnerability. Large Language Models (LLMs)22

experience substantial failures in multi-turn interactive environments compared to single-turn deploy-23

ments (Laban et al., 2025; Gupta et al., 2024). This degradation represents a fundamental challenge24

for reliable ML deployment, as interactive systems accumulate contextual "noise" that progressively25

corrupts their decision-making processes, leading to a 112% increase in response unreliability and26

significant performance drops (Laban et al., 2025).27

The robustness challenges in interactive environments stem from the mismatch between training28

assumptions and deployment realities. While LLMs are typically trained and evaluated on clean,29

well-structured single-turn examples, real-world deployment involves extended interactions where30

context accumulates incrementally, creating distribution shift and progressive corruption of the input31

signal. This accumulated context acts as increasingly unreliable data, causing models to become32

"lost" in the interaction flow and exhibit unpredictable failure modes.33

Existing approaches to maintaining reliability in interactive systems remain limited. Methods based34

on task classification, retrieval, or context compression lack generality and often require system-35

specific fine-tuning (Wu et al., 2023). More critically, these approaches fail to address the fundamental36
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Multi-turn Conversation
How many points did Jack score

in his first basketball game?

Sorry, I do not have enough
information to answer.

Jack averaged 2.4 points
every minute.

Suppose Jack played for 30
minutes, to calculate . . .

Jack played for a total of 15
minutes.

...Jack scored 32
points.

ERGO

How many points did
Jack score in his first

basketball game? Jack
averaged 2.4 points
every minute. Jack

played for a total of 15
minutes.

...Jack scored
36 points.

Figure 1: Illustrative comparison of a standard multi-turn conversational AI and the ERGO system

issue, detecting when the interactive system has entered an unreliable state and requires intervention37

to restore robustness.38

We introduce ERGO (Entropy-guided Resetting for Generation Optimization), the first practical39

framework for maintaining reliability and performance in interactive ML environments through dy-40

namic uncertainty monitoring. ERGO addresses the core challenge of building reliable systems from41

unreliable interactive data by computing Shannon entropy over next-token probability distributions42

(Malinin and Gales, 2018; Xiao and Wang, 2022) as a real-time indicator of system robustness. When43

entropy spikes indicate that accumulated conversational context has become sufficiently corrupted44

to threaten system reliability, ERGO triggers entropy-guided context reconstruction, automatically45

distilling reliable information from the degraded interaction state while discarding accumulated noise46

that compromises robustness, a visual representation of this can be seen in Figure 1.47

Empirical results across multiple interactive scenarios demonstrate ERGO’s effectiveness for robust48

interactive ML, 56.6% improvement in average performance compared to multi-turn baselines, 24.7%49

increase in peak performance levels, and a 35.3% reduction in the response unreliability typically50

observed in extended interactions. Our approach outperforms existing strategies while providing51

better precision and timing compared to alternate baselines, establishing entropy-guided uncertainty52

monitoring as an effective framework for reliable interactive ML systems. To verify our findings and53

reproduce the results, please refer to the anonymized code repository found at the following link:54

https://anonymous.4open.science/r/ERGO-2F5855

2 Background and Related Works56

Recent work has documented substantial performance degradation in multi-turn LLM conversations.57

Laban et al. (2025) demonstrated that model performance rates dropped by 39% on average in58

multi-turn settings across six domains. Gupta et al. (2024) formalized task-switch sensitivity using59

probability ratios, showing how conversation history compounds model confusion. While Laban60

et al. (2025) tested remediation approaches and managed to improve average performance losses by61

15-20%, these face substantial verbosity and practicality constraints. Agent-based frameworks (Wu62

et al., 2023) explore system-level solutions but do not target fundamental model limitations during63

generation.64

2.1 Entropy Based Uncertainty Estimation65

Entropy-based uncertainty estimation provides the theoretical basis for our method, grounding66

ERGO’s use of internal model signals. Prior work has used predictive entropy to quantify model67

confidence in classification and generation tasks (Malinin and Gales, 2018; Xiao and Wang, 2022),68

implicitly linking internal uncertainty to external behavior. More recent approaches extend this to69

semantic-level uncertainty using semantic-aware entropy measures (Kuhn et al., 2023) or trainable70

proxies derived from hidden representations (Kossen et al., 2024). While these methods improve71

semantic fidelity, they often rely on sampling or auxiliary models. In contrast, we use token-level72
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entropy, computed directly from the model’s next-token distribution, as a low-cost proxy for real-time73

monitoring. Unlike prior work that applies entropy primarily for evaluation or filtering, we use it as a74

temporal signal to detect context degradation and trigger prompt restructuring.75

2.2 Inference-Time Interventions76

Inference-time control methods intervene on frozen models by manipulating internal activations,77

modifying output logits, or reranking candidate outputs. For example, Li et al. (2024) introduced78

activation-level interventions to elicit truthful answers without fine-tuning, shifting hidden states to-79

ward truthful completions. Similarly, Turner et al. (2024) developed activation engineering techniques80

that steer the behavior of the model by editing intermediate representations during decoding. These81

methods act directly on the output path of the model and often rely on internal signal manipulation.82

In contrast, our approach introduces a policy layer outside of the model that monitors uncertainty and83

intervenes by restructuring the user’s input. We do not modify the internal computation or sampling84

process of the model.85

2.3 Backtracking and Prompt Restructuring86

Several recent approaches have explored controlled backtracking during generation. Cundy and87

Ermon (2024) augmented the decoding space with a ’backspace’ action to revert low-probability88

generations, while Zhang et al. (2024) uses a special [RESET] token to discard unsafe prefixes. Other89

strategies such as Self-Refine (Madaan et al., 2023) allowed iterative refinement by prompting the90

model to critique and revise its own output. These methods operate on generated content and typically91

require multi-step decoding or auxiliary supervision.92

Our intervention departs from this paradigm by focusing on upstream correction. Instead of rewriting93

the model’s response, we update the user’s prompt to recover task coherence, using rising entropy94

as the intervention trigger. This shifts the optimization target from output correction to input re-95

specification, which is more lightweight and avoids cumulative reasoning errors. To our knowledge,96

this is the first method that uses entropy-based signals to restructure user input mid-conversation,97

rather than adjusting the model’s internal behavior or downstream output.98

3 Entropy-Guided Context Resetting99

3.1 Rise in Average Token Level Entropy100

At each turn of the conversation, the average token-level entropy is calculated by measuring the101

uncertainty of the model’s token probability distribution when generating each token in its output.102

Suppose the model produces a sequence of tokens t1, t2, . . . , tn at a given turn. For each token ti,103

the model assigns a probability distribution Pi over the vocabulary V , where Pi(v) is the probability104

assigned to token v ∈ V at position i.105

The entropy at position i is computed as:106

Hi = −
∑
v∈V

Pi(v) logPi(v)

The average token-level entropy H̄ for the turn (covering n generated tokens) is then:107

H̄ =
1

n

n∑
i=1

Hi

This metric quantifies the model’s overall uncertainty when generating the turn. Higher H̄ indicates108

greater uncertainty and a more diffuse token distribution, while the lower H̄ indicates more confident109

and peaked predictions (Malinin and Gales, 2018; Xiao and Wang, 2022).110
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For each subsequent turn t in the conversation, the change in average token-level entropy is calculated111

to monitor fluctuations in model uncertainty. Let H̄(t) denote the average token-level entropy at turn112

t, as defined previously.113

The change in predictive entropy between consecutive turns is defined as:114

∆H̄(t) = H̄(t) − H̄(t−1)

A positive ∆H̄(t) indicates that the uncertainty of the model has increased relative to the previous115

turn.116

3.2 Threshold-Based Trigger for Context Reset117

For each model we calibrate an entropy change threshold (τ ). When the change in predictive entropy118

satisfies the following condition:119

∆H̄(t) > τ

The system deems that the uncertainty of the model is rising beyond an acceptable margin. This120

is interpreted as a signal that the evolving conversation context may be inducing compounding121

uncertainty or drift. A detailed analysis of the threshold selection process is provided in Appendix A,122

while an analysis of ERGO’s sensitivity to entropy thresholds is provided in Appendix B.123

3.3 Context Reset Protocol124

Upon detection of ∆H̄(t) > τ , an automated context reset protocol is initiated. This protocol125

proceeds in the following steps:126

I. Prompt Rewriting:127

The user’s inputs up to turn t are provided to the model. The model is asked to rewrite these128

inputs into a single-turn, optimized prompt that preserves relevant task information while129

reducing ambiguity and redundancy.130

II. Isolated Generation (New Chat Simulation):131

The rewritten prompt is passed into a new instance of the model, simulating a stateless chat132

environment with no memory of prior turns. The model then generates a response Ropt to this133

rewritten prompt.134

III. Branch Continuation:135

A new dialogue branch is created that begins from the rewritten prompt and response. This136

maintains continuity from the optimized state rather than the potentially degraded original137

context.138

4 Experimentation Background139

4.1 Simulation Scale & Parameters140

Our simulation follows the protocol of Laban et al. (2025) with the only change being the implementa-141

tion of ERGO. We evaluate a suite of five leading instruction-tuned LLMs: Phi-4 (Abdin et al., 2024),142

LLaMA 3.1-8B Instruct (Grattafiori et al., 2024), GPT-4o (Hurst et al., 2024), GPT-4.1 (OpenAI,143

2025), and GPT-4o-mini (OpenAI, 2024). All models are used in their publicly released variants144

without additional fine-tuning.145

Generation settings are standardized across models with temperature set to 1.0. For entropy calcu-146

lations, we note an important methodological constraint: OpenAI models provide access to only147

the top-20 logprobs through their API. This limitation affects the precision of entropy estimates,148

particularly for tasks with shorter responses such as Actions and Data-to-text, where the restricted149

probability space may not capture the full uncertainty of the model’s predictions.150

We conduct 3 independent simulation runs for each dataset using 100-question samples, with the151

exception of the Data-to-text dataset, for which evaluations were performed on a 50-question subset152
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FULL 

Solve the following problem using all the 
information given to you:

- How old was Bill when he first saw Comet
Halley?

- Comet Halley takes 75 years to complete one
orbit around the sun

- Bill's dad was 30 years old when he saw the
comet

- Bill saw Comet Halley for the second time
when he was three times as old as his dad was
when his dad saw it

MODEL ANSWER: 15 ✅

  SHARDED

How old was Bill when he first saw Comet
Halley?

Comet Halley takes 75 years to complete one
orbit around the sun

Bill's dad was 30 years old when he saw the
comet

Bill saw Comet Halley for the second time
when he was three times as old as his dad was
when his dad saw it

MODEL ANSWER: 75 ❌

 ERGO

How old was Bill when he first saw Comet
Halley?

Comet Halley takes 75 years to complete one
orbit around the sun

Bill's dad was 30 years old when he saw the
comet

Bill saw Comet Halley for the second time
when he was three times as old as his dad was
when his dad saw it

RESET OCCURS AFTER ROW

Bill's dad was 30 years old when he saw Comet
Halley. The comet takes 75 years to complete 
one orbit around the sun. Bill saw Comet 
Halley for a second time when he was three 
times as old as his dad was when his dad saw
it. How old was Bill when he first saw Comet 
Halley?

MODEL ANSWER: 15 ✅

Figure 2: Example LLaMA 3.1-8B Instruct run on a GSM8K question with FULL, SHARDED and
ERGO settings. Each row represents a separate prompt given to the model while each table represents a context
window.

over 3 runs. All other experimental settings and baseline figures are adopted directly from Laban153

et al. (2025).154

We compare three settings:155

FULL: Simulates a single-turn, fully-specified conversation using the sharded instruction. The156

shards are combined into a single bullet-point list (one shard per line), prefaced by a directive to157

complete the task using all listed points. This setting serves as an upper bound for performance,158

providing a target for evaluating how closely multi-turn intervention methods can approximate159

single-turn optimality.160

SHARDED: Sequential shard presentation as in the original (Laban et al., 2025) LLMs-lost-in-161

conversation experiment.162

ERGO: Our entropy-guided reset mechanism applied upon exceeding the entropy threshold.163

Figure 2 provides an example of a run on each setting. This evaluation isolates the effect of ERGO164

relative to both single-pass and original multi-turn baselines.165

4.2 Tasks166

We evaluated models on five representative generation tasks, each framed as a multi-turn interaction167

over sharded instructions and augmented them with our entropy-guided context resetting method168

(Section 3). For each task, we used 220-325 constructed prompts from the datasets created by Laban169

et al. (2025). We simulate a multi-turn conversation, feeding the model one shard at a time. At each170

assistant turn, we compute the average token-level entropy and track its change ∆H̄(t). Whenever171

∆H̄(t) exceeds the calibrated threshold τ , we invoke our reset protocol - prompt rewriting, isolated172

regeneration, branch continuation - before continuing.173

Below we briefly summarize what the assistant must do in each task:174

CODE: Convert natural-language problem description into a correct Python function. Outputs are175

validated by executing against the reference test suite (Chen et al., 2021; Jain et al., 2024).176

DATABASE: Given a database schema and a user request, generate an SQL query that returns the177

requested data. Correctness is checked by running the query on the Spider-derived database (Yu et al.,178

2018).179

ACTIONS: Given API schemas plus high-level user instruction, emit valid code-style API calls180

that fulfill the intent. This is verified against the Berkeley Function Calling Leaderboard definitions181

(Yan et al., 2024).182
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DATA-TO-TEXT: Take a structured data table and metadata and write a single caption that183

highlights its key insight. Adapted from ToTTo and evaluated using BLEU (scaled 0-100) (Parikh184

et al., 2020; Papineni et al., 2002).185

MATH: Solve an elementary math story problem by carrying out each arithmetic step and returning186

the numeric result. Simulates day-to-day problems LLMs may be tasked with by users. GSM8K187

problems were used and scored by exact match (Cobbe et al., 2021).188

4.3 Metric Selection189

We assess LLM performance in multi-turn tasks by repeating simulations for each instruction and190

collecting success scores from multiple runs, following Laban et al. (2025). Each score, ranging from191

0 to 100, reflects task success. More detailed information on metrics is available in Appendix E192

4.4 Per-Run Scoring193

I. Binary-Correctness Tasks (Code, Database, API, Math): A correct response at any turn194

yields a score of 100, and the run ends. Otherwise, the score is 0.195

II. Refinement Task (Data-to-Text): The final output is evaluated using BLEU, rescaled to 0–100.196

4.5 Aggregate Metrics197

From the scores collected across the 3 runs, we compute three metrics:198

• Average Performance (P̄ ): Average performance per instruction for a given task.199

• Aptitude (A90): 90th-percentile score, measures a model’s peak capability, indicating its200

potential to deliver high-quality results in critical multi-turn tasks. Averaged across all tasks.201

• Unreliability (U90
10 ): Difference between 90th and 10th percentiles, quantifies response202

variability, where lower values reflect greater consistency, essential for user trust and system203

reliability in long-horizon interactions. Averaged across all tasks.204

5 Results & Discussion205

5.1 Average Performance Gains206

Model Code Database Actions Data-to-Text Math

Llama3.1-8b 21.2 21.7 52.0↑ 47.7 25.9 64.3↑ 83.0 45.5 60.0↑ 15.7 13.3 12.3↓ 62.6 37.4 65.7↑

4o-mini 66.7 50.3 66.7↑ 90.7 40.2 93.3↑ 92.2 52.4 92.0↑ 31.2 19.8 22.0↑ 88.0 58.7 85.0↑

Phi-4 48.4 39.1 55.0↑ 79.6 33.1 62.0↑ 76.0 34.1 65.7↑ 28.6 23.2 28.0↑ 90.4 52.5 85.3↑

4.1 88.7 72.6 81.7↑ 86.5 46.0 96.0↑ 98.5 62.9 84.7↑ 54.4 28.6 31.0↑ 89.7 70.7 91.7↑

4o 82.9 61.3 76.3↑ 91.7 42.3 95.7↑ 97.1 65.0 82.0↑ 32.2 20.5 27.0↑ 91.9 67.9 89.3↑

Table 1: Average Performance (P̄ ) comparison across three settings: FULL (single-turn), SHARDED
(multi-turn baseline), and ERGO (multi-turn with entropy-guided resetting). Arrow represents change in
performance for relative to , with arrow size representing magnitude of change.

Table 1 shows that ERGO delivers substantial performance improvements across all models compared207

to baseline multi-turn setups. By detecting moments of confusion and restarting interactions, models208

avoid becoming "lost" in conversational flow. Nearly every dataset and model combination shows209

increased average success rates, with performance improving by 56.6% on average and several210

model-task combinations achieving over 100% gains compared to original multi-turn baselines.211

While FULL is considered our performance upper-bound, ERGO frequently exceeded FULL in212

both average performance and aptitude (Section 5.2) as our method only corrects derailment when213

calculated confusion rises significantly. This preserves the model’s ability to iteratively reason214
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and refine responses across shards while preventing the compounding errors typical in prolonged215

multi-turn contexts. This approach effectively merges both paradigms’ strengths: single-turn stability216

and clarity when needed, and iterative decompositional reasoning when the model remains on track.217

Moreover, performance on the Data-to-Text task improves over the multi-turn baseline, though218

less substantially than in other datasets. This is partly due to model-specific constraints. LLaMA219

3.1–8B struggles to rewrite large, structured prompts effectively (e.g., full tables), limiting the benefit220

of consolidation. GPT models face difficulties in triggering resets, as entropy estimates are less221

reliable, only top-20 log-probabilities are available, and outputs are typically short, reducing entropy222

sensitivity. Phi-4 performs best, nearing single-turn levels, likely because it supports accurate entropy223

tracking and handles prompt rewriting more effectively. These results indicate model-dependent224

limitations in applying our method to high input structure tasks.225

5.2 Aptitude and Unreliability Improvements226

Along with performance gains, Figure 3 shows that ERGO demonstrates exceptional gains in aptitude,227

often exceeding single-turn performance levels, while substantially reducing unreliability compared228

to multi-turn baselines, two metrics introduced by Laban et al. (2025) to capture model consistency229

across conversations. These results indicate that our intervention not only fully recovers the aptitude230

lost in the transition from single-turn to multi-turn settings and achieves aptitude levels exceeding231

single-turn baselines, but also makes behavior significantly more stable compared to baseline multi-232

turn settings across repeated trials. When comparing to standard sharded conversations, the average233

aptitude across models rose by 24.7%, achieving performance levels that surpass single-turn baselines,234

enabling more effective handling of complex tasks while unreliability declined by 35.3%.235

0.2 0.3 0.4 0.5 0.6
Unreliability (U)

0.60

0.65

0.70

0.75

0.80

0.85

Ap
ti

tu
de

 (
A)

PHI-4

LLAMA3.1-8B

4.1

4o-mini

4o

SHARDED
ERGO

Figure 3: Effect of SHARDED and ERGO on Aptitude and Unreliability. Icons represent models FULL
performance. Green dots represent performance with ERGO while red dots represent SHARDED perfor-
mance

5.3 Evaluating Entropy-Guided Resets vs. Random Resets and Fixed Resets236

We compared entropy-based context resets against random and fixed-interval baselines using237

Llama3.1-8B across three tasks: Database, Actions, and Math. In these ablations, we238

retained all experimental settings from the main condition, with the only change being that each239

metric was tested on 50 question samples instead of 100. The random baseline used uniformly240

random triggers with unconstrained reset frequency. The fixed baseline triggered resets every five241

shards (quintet reset), matching the average reset frequency of Llama3.1-8B observed in our242

ERGO system.243

The results, visualized in Figure 4, demonstrate a clear advantage for ERGO over baseline approaches.244

Entropy-guided resets consistently outperformed both random and fixed reset strategies while demon-245

strating adaptive scaling behavior. In the Database task, ERGO achieved a performance gain vs246

7



5 10 15 20 25 30 35 40
Performance Points Gained vs SHARDED

40

60

80

100

120

140

160

N
um

be
r 

of
 R

es
et

s

(40.0, 96)

(22.1, 158)

(26.1, 44)
(12.5, 41)

(8.5, 123)

(4.5, 55)

(32.6, 38)

(22.6, 153)

(30.6, 59)

Method
Entropy-guided
Random
Quintet Reset

Figure 4: Comparison of performance point gains (percentage-point increase in accuracy relative to
SHARDED) and number of resets across entropy-guided, random, and quintet reset methods on Database,
Actions, and Math tasks. Icons represent their respective task with their color determining method used.

SHARDED of 40.0 percentage points using 96 resets, compared to the quintet baseline’s 26.1 gain247

with only 44 resets. This demonstrates the system’s ability to increase intervention frequency when248

encountering greater model uncertainty. Conversely, in the Actions task, ERGO required only 41249

resets, fewer than both baselines, while still achieving superior performance. This adaptive behavior250

indicates that entropy guided resets effectively allocate computational resources by intervening only251

when necessary, scaling both up and down based on task complexity and model confusion levels.252

The primary risk posed by resets is semantic drift. Poorly timed or excessive context rewriting can253

lose critical details through increased abstraction, compromising semantic faithfulness to the original254

input (Dreyer et al., 2023). This degradation in semantic faithfulness can offset or even negate the255

benefits of resetting. Furthermore, resets incur computational overhead; each reset involves having256

two additional forward passes through the model. Together, these considerations underscore why257

ERGO outperforms both methods as the frequency and timing of resets are more carefully controlled258

in our framework. Not only to avoid wasted computation, but, more critically, to prevent semantic259

degradation. For more information on computation and average reset frequency across models, please260

refer to Appendix C.261

5.4 Comparison to Existing Intervention Strategies262

To contextualize ERGO’s improvements as a novel conversational intervention system, we compare263

against existing prompt engineering approaches from Laban et al. (2025): SNOWBALL and RECAP264

as, to our knowledge, no other methods exist that perform comparable inference time conversational265

restructuring266

SNOWBALL: Reiterates all prior shards at each new turn, effectively growing the prompt267

cumulatively.268

RECAP: Reiterates all prior shards only at the final turn. While more efficient, this strategy is269

impractical in real-world deployments, since the system would not know prior when the final user270

input will occur.271

Model FULL SHARDED SNOWBALL RECAP ERGO

GPT-4o-mini 73.8 44.3 54.0 57.7 71.8
GPT-4o 79.2 51.4 57.4 66.3 75.6

Table 2: Comparison of combined average performance (P̄ ) across Code, Database, Actions, Data-
to-Text and Math tasks.
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As shown in Table 2, ERGO significantly outperforms both alternatives. ERGO nearly matches272

single-turn performance for both models. Furthermore, ERGO prevents input bloating at each273

iteration unlike SNOWBALL, and operates without requiring prior knowledge of the final input274

unlike RECAP.275

5.5 Evaluating Length Bias in Entropy-Based Reset Triggers276

One potential concern regarding ERGO’s entropy-based reset mechanism is whether it inadvertently277

functions as a proxy for response length. Specifically, since entropy is calculated over token probabil-278

ity distributions, it is plausible that longer outputs, which involve more tokens and potentially more279

diffuse distributions, may naturally exhibit higher entropy. If true, this would raise the possibility that280

ERGO’s resets are effectively triggered by length increases rather than genuine uncertainty spikes,281

undermining the validity of entropy as an internal behavioral signal.282

We analyze response behavior from the Phi-4 model across all tasks and questions used in the main283

evaluation suite. For each turn t in a given multi-turn conversation, we compute two quantities284

relative to the previous turn: the change in average token-level entropy, ∆H̄(t), and the change in285

response length, ∆L(t), measured in tokens.286

We evaluate the relationship between these using two standard correlation metrics: Spearman’s287

rank correlation coefficient (ρ), which captures monotonic associations without assuming linearity288

(Spearman, 1904), and Pearson’s correlation coefficient (r), which quantifies the strength of linear289

correlation (Pearson, 1895). The results for the Phi-4 model are summarized in Table 3.290

The Spearman result indicates no meaningful monotonic relationship between changes in entropy291

and length. The Pearson coefficient, while statistically significant due to the large sample size, has292

negligible magnitude and a negative sign, indicating no positive linear correlation.293

Coefficient p-value

Spearman’s ρ −0.0143 0.4525
Pearson’s r −0.0796 2.7× 10−5

Table 3: Correlation between changes in entropy and response length for the Phi-4 model.

These findings demonstrate that entropy fluctuations are not systematically associated with output294

length changes in the Phi-4 model. This supports the claim that ERGO’s reset mechanism is not295

driven by verbosity or token count, but rather by internal signals of model uncertainty. Entropy-based296

resets therefore retain validity as an independent control signal rather than acting as a surrogate for297

response length.298

6 Conclusion299

Our results demonstrate that ERGO provides an effective solution to reliability challenges in interac-300

tive ML systems by using Shannon entropy to detect system degradation and trigger automatic context301

reconstruction. Shannon entropy, despite its computational simplicity, serves as a reliable and precise302

signal for when interactive systems require intervention to maintain robustness, enabling targeted303

restoration while minimizing unnecessary computational overhead. ERGO consistently outperformed304

existing methods, achieving 56.6% performance gains over standard baselines, improving aptitude by305

24.7%, and reducing unreliability by 36.3%. ERGO offers a practical, model-agnostic framework306

for maintaining reliable performance in real-world interactive ML deployments where accumulated307

context progressively corrupts system behavior. The success of entropy-guided reliability monitoring308

establishes a new paradigm for robust interactive systems, rather than attempting to prevent degrada-309

tion, systems can monitor their own reliability in real-time and intervene when uncertainty signals310

indicate potential failure modes. Future work will explore advanced context consolidation strategies,311

including multi-stage summarization and adaptive techniques for long-form conversations. More312

information on Future Works can be found in Appendix D.313
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A Threshold Selection Procedure385

Model Name Version τ Percentile Provider

Phi-4 N/A 0.1 90th HuggingFace
Llama3.1-8b N/A 0.03 65th HuggingFace
GPT-4.1 gpt-4.1-2025-04-14 0.2 90th OpenAI API
GPT-4o-mini gpt-4o-mini-2024-07-18 0.2 85th OpenAI API
GPT-4o gpt-4o-2024-08-06 0.3 90th OpenAI API

Table 4: Model versions, thresholds, and calibration percentiles used in our experiments. (Versions included
where applicable.)

To determine appropriate entropy thresholds (τ ) for triggering context resets, we conducted a calibra-386

tion procedure specific to each model. The goal was to identify a rise in entropy that reliably signals387

when a model is ’lost’ in the conversation, that is, when its internal uncertainty increases sharply,388

suggesting that it is struggling to integrate or reason over the accumulated context.389

For each model, we selected a held-out subset of approximately 80 shard-level examples from390

the GSM8K dataset. These examples were drawn from outside the final evaluation set to avoid391

contamination, with GSM8K being chosen due to its hybrid structure, requiring both reasoning and392

natural language generation. We then ran each model in a standard multi-turn setting over these393

shards and computed the change in average token-level predictive entropy at each turn.394

From the resulting distribution of entropy rises, we selected a threshold based on a percentile aligned395

with the model’s baseline aptitude on GSM8K. For instance, since GPT-4.1 achieves a baseline396

aptitude of ∼ 90% on GSM8K in single-turn settings, we selected the 90th percentile of the entropy397

rise distribution as its reset threshold. The underlying rationale was to calibrate the threshold so398

that only the most atypical (high-entropy) turns, those statistically associated with likely failure,399

would trigger an intervention. Details of the models used, including their version identifiers, selected400

entropy thresholds, and corresponding calibration percentiles, are summarized in Table 4.401

Once determined, this threshold was fixed across all datasets for a given model. We made this decision402

intentionally, as our goal was to evaluate the feasibility of a general-purpose, model-specific threshold403

rather than tuning thresholds for each dataset individually. This “one-size-fits-all” approach allows404

for a more robust and realistic assessment of whether entropy-based context resets can generalize405

across tasks without requiring per-task adjustment.406

Interestingly, while both GPT-4.1 and Phi-4 shared the same 90th percentile threshold, Phi-4 triggered407

significantly more resets during evaluation. This was due to Phi-4’s strong performance on GSM8K408

but much weaker performance on the broader set of tasks. This divergence illustrates that the system409

remains sensitive to task-specific confusion, with the number of resets scaling appropriately even410

under a fixed, model-specific threshold, highlighting the adaptive behavior of the method across411

domains. More information on number of resets incurred is available in Appendix C412

12



B Sensitivity to Entropy Threshold (τ )413
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Figure 5: Comparison of maximum performance point gains (i.e., highest percentage-point increase in accuracy
relative to SHARDED) and number of resets between different thresholds on Database, Actions, and

Math tasks. Icons represent their respective task with their color determining method used.

To evaluate the sensitivity of our method to the entropy threshold parameter τ , we conducted an414

ablation study using the same controlled setup described in Section 5.3 with the Llama3.1-8B415

model on the Database, Actions, and Math tasks. The only variable changed in this study was416

the value of τ , the threshold used to trigger entropy-guided resets. We tested four settings: τ ∈417

{0.00, 0.03, 0.05, 0.08}, where 0.03 corresponds to the threshold selected for the main experiments.418

The results, visualized in Figure 5 showed a clear performance peak at τ = 0.03, which consistently419

achieved the highest gains across all tasks. This setting struck a balance between reactivity and420

restraint, triggering resets selectively at moments of genuine confusion without introducing excessive421

rewrites that risk semantic drift. In contrast, the lowest threshold τ = 0.00 resulted in the highest422

number of resets and either matched or underperformed the 0.03 setting, suggesting that overly423

aggressive resetting is not beneficial and may lead to instability due to frequent context rewrites.424

At the other extreme, the highest threshold τ = 0.08 yielded the fewest resets and consistently425

underperformed, likely due to failing to intervene even when the model was demonstrably confused.426

The intermediate value τ = 0.05 behaved as expected, yielding results that were approximately427

midpoint between 0.03 and 0.08 in both performance and reset count.428

Taken together, these findings support the robustness of our selected threshold and highlight the im-429

portance of calibrating reset triggers to maintain a balance between informativeness and intervention430

overhead.431
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C Computational Cost and Reset Overhead Analysis432

A key consideration in deploying entropy-guided context resets is the computational overhead they433

introduce. In our system, two sources of computational cost must be considered: (1) the cost of434

computing predictive entropy at each turn, and (2) the cost incurred when a context reset is triggered.435

Entropy Computation Cost: While more advanced measures of model uncertainty such as seman-436

tic entropy require sampling multiple outputs over the same input (Kuhn et al., 2023), our method uses437

token-level Shannon entropy, which is extracted directly from the next-token probability distribution438

during generation. This choice imposes negligible additional cost beyond standard decoding and was439

selected for its practicality and compatibility with real-time systems.440

Reset Overhead: Each reset introduces two additional forward passes through the model: one to441

rewrite the accumulated user context into a consolidated prompt, and a second to respond to that442

prompt. This introduces latency and compute proportional to the number of resets triggered per443

run. Table 5 showcases the average performance of models with ERGO along with the approximate444

number of shards per reset and the selected threshold percentile for each model. Averaged across all445

datasets, one question equates to ∼ 6 shards.446

Model Average Performance ∼ Shards per Reset Threshold Percentile
GPT-4o 75.6 51 92nd
GPT-4.1 77.2 38 90th
GPT-4o-mini 71.8 29 85th
Phi-4 59.2 7 90th
Llama3.1–8B 50.9 5 63rd

Table 5: Average Performance with ERGO along with the number of shards before reset occurs for each model
and its threshold percentile, measured as an average across all datasets.

These results reflect the adaptive nature of the system: more capable models (e.g., GPT-4.1, GPT-4o)447

experience fewer high-entropy turns and thus require fewer resets, minimizing overhead. Conversely,448

less capable models like Phi-4 trigger resets more frequently, aligning with their observed confusion.449

Prompt Length Reduction: An additional consequence of context resets is that they tend to truncate450

the context window, potentially removing stale or redundant information. Across all runs, the average451

token length of model prompts for questions where resets occurred was 260 tokens, compared to 309452

tokens in questions where no resets were triggered. While this reduction does not eliminate the cost453

of the reset itself, it may partially offset it by reducing input size in subsequent turns.454

Retrieval-Augmented Consolidation (Future Work): More advanced consolidation techniques,455

such as retrieval-augmented synthesis, could further improve the quality of resets but would introduce456

additional retrieval and ranking costs. We leave the exploration of such hybrid architectures to future457

work.458

Taken together, these results indicate that while entropy-guided resets do introduce compute overhead459

via additional forward passes, the system remains adaptive. Reset frequency scales with model460

confusion, and thresholds derived from a single reasoning heavy dataset generalize effectively across461

diverse tasks.462
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D Future Works463

While ERGO has demonstrated substantial improvements in multi-turn performance through entropy-464

guided context resets, several avenues remain open to extend its applicability and robustness in465

broader conversational settings.466

Dialogue Trace Consolidation: Our current context-reset protocol rewrites prior user inputs into467

a single-turn prompt but does not incorporate preceding assistant responses. This simplification468

was chosen to enable stateless resets with minimal overhead in instruction-shard tasks, where user469

inputs encode the majority of required task information. However, in more open-ended or exploratory470

conversations, where assistant turns may introduce novel entities, explanations, or intermediate471

reasoning, this exclusion could result in loss of critical context.472

To address this, future work will explore multi-stage consolidation mechanisms that explicitly473

summarize both user and assistant dialogue turns. One natural extension is a two-pass strategy: the474

first pass summarizes user queries, and the second distills assistant responses. A final generation475

step would synthesize these into a coherent prompt, preserving key semantic and referential content476

across turns. This approach maintains ERGO’s core design, resetting when confusion is detected via477

internal uncertainty signals, while enhancing its fidelity in dialogic settings.478

Adaptive Consolidation Strategies: Incorporating assistant responses also raises new design chal-479

lenges around content selection, co reference resolution, and context prioritization. We anticipate480

integrating lightweight discourse-aware filtering or retrieval-augmented synthesis to further improve481

semantic coverage without incurring significant computational cost. Evaluating these techniques482

on long-form conversations, assistance tasks, and real-world dialogue logs will be a focus of future483

iterations.484

These extensions do not alter the core entropy-based mechanism but instead refine how reset inputs485

are constructed. As such, they represent a natural progression of ERGO’s architecture toward more486

general-purpose deployment. Further exploration will also include model-internal dynamics beyond487

entropy, adaptive thresholding tuned to conversation domain, and integration with memory or retrieval488

components to support resets over extended dialogue spans.489
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E Metrics490

E.1 Metric Selection491

LLMs employ a stochastic decoding process, yielding different outputs even under fixed prompts492

and sampling parameters. We leverage this by repeating our multi-turn simulation on each sharded493

instruction and observing the resulting success scores. Let494

S = {Si}Ni=1

be the set of scores from N independent runs on a single instruction, where each Si ∈ [0, 100]495

measures task success at the end of that simulation.496

E.1.1 Per-run scoring:497

I. Binary-correctness tasks (Code, Database, API, Math): At each turn, we evaluate the498

model’s response; if it produces a correct solution at any turn, we immediately assign Si = 100499

and terminate that run. If no turn yields a correct answer, Si = 0.500

II. Refinement task (Data-to-Text): We compute the native metric (BLEU for data-to-text; joint501

coverage/attribution score for summarization) on the final generated output and rescale it to502

[0, 100].503

E.1.2 Aggregate metrics504

From the per-run scores S, we define three summary statistics, following the methodology from505

Laban et al. (2025):506

P̄ =
1

N

N∑
i=1

Si (1)

A90 = percentile90(S) (2)

U90
10 = percentile90(S)− percentile10(S) (3)

-P̄ (Average Performance): An unbiased estimate of the model’s mean score on an instruction.507

-A90 (Aptitude): Estimates the 90th-percentile performance, reflecting what one can achieve in the508

top decile of runs.509

- U90 (Unreliability): Measures the gap between the 90th and 10th percentiles, capturing the degree510

of stochastic variability in outputs.511

Aptitude and Unreliability are computed per instruction and then averaged over the full set of tasks.512

Binary-correctness accuracy is mapped onto the 0–100 scale to ensure every task’s score aligns.513
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