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ABSTRACT

Protein language models have shown strong performance in predicting function
and structure across diverse tasks. These models undergo unsupervised pretrain-
ing on vast sequence databases to generate rich protein representations, followed
by finetuning with labeled data on specific downstream tasks. The recent surge in
computationally predicted protein structures opens new opportunities in protein
representation learning. In our study, we introduce a novel framework to enhance
transformer protein language models specifically on protein structures. Drawing
from recent advances in graph transformers, our approach refines the self-attention
mechanisms of pretrained language transformers by integrating structural infor-
mation with structure extractor modules. This refined model, termed the Protein
Structure Transformer (PST), is further pretrained on a protein structure database
such as AlphaFoldDB, using the same masked language modeling objective as
traditional protein language models. Our empirical findings show superior perfor-
mance on several benchmark datasets. Notably, PST consistently outperforms the
foundation model for protein sequences, ESM-2, upon which it is built. Our code
and pretrained models will be released upon publication.

1 INTRODUCTION

Proteins are fundamental building blocks of life, supporting an abundance of biological functions.
Their functional activities range from guiding cell division, intra/inter cellular transport, to reaction
catalysis and signal transduction. These multifaceted tasks are achieved because proteins, initially
formed as linear polymer chains, undergo a transformation to self-assemble into 3D folds. The ge-
ometry and physico-chemical characteristics of these folds dictate a range of interactions essential
for realizing a specific biological role. Consequently, disruptions in these processes can underlie nu-
merous diseases. However, there is a gap in understanding between a protein’s sequence and struc-
ture and depicting its overarching function. Bridging this gap can pave the way for breakthroughs,
especially in the realm of therapeutic innovations (Ren et al., 2023; Bhardwaj et al., 2022).

As databases of protein sequences have grown exponentially over the decades, data-driven ap-
proaches for modeling proteins at scale made substantial progress. Recent studies highlight the
efficacy of protein language models (PLMs) (Rives et al., 2021). By undergoing unsupervised pre-
training on large databases of hundreds of millions of sequences, these models capture both sec-
ondary and tertiary protein structures within the representation space, and can be subsequently used
for atomic-level structure prediction (Lin et al., 2023b). PLMs have also shown remarkable profi-
ciency in predicting various protein functions, including the effects of mutations (Meier et al., 2021),
metal ion binding (Hu et al., 2022a), and antibiotic resistance (Hu et al., 2022a).

Despite advances in sequence-based models, the potential of using protein structure for functional
prediction remains largely untapped. Delving into this relationship is paramount, given the intrinsic
connection between a protein’s structure and its function. Historically, developing structure-aware
models was challenging due to limited number of resolved protein structures. However, break-
throughs like AlphaFold (Jumper et al., 2021) have facilitated the generation of extensive, accurate
protein structure databases (Varadi et al., 2022), paving the way for more comprehensive structure-
based model development. Early efforts (Gligorijević et al., 2021; Wang et al., 2022) introduced
geometry or graph-based models that are pre-trained on protein structure databases often using com-
plex pre-training pipelines. However, their performance still lags behind PLMs despite drawing on,
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in principle, richer input data. More recent studies (Zhang et al., 2022; 2023b) aim to enhance
PLMs with protein structure data. However, many such methods simply overlay a structure encoder
upon the sequence representations derived from existing PLMs like Evolutionary scale modeling
(ESM) (Rives et al., 2021; Lin et al., 2023b), yielding suboptimal models in terms of parameter
efficiency. Additionally, the need to finetune these models for each downstream task amplifies com-
putational costs. An alternative research avenue involves deducing the sequence solely from the
structure, often referred to as the inverse folding problem (Ingraham et al., 2019; Jing et al., 2020;
Gao et al., 2022). However, these methods do not primarily aim to predict protein function and avoid
using sequence data as input.

In this work, we propose a novel framework that seamlessly incorporates protein structural informa-
tion into existing transformer PLMs. Drawing on the progress of graph transformers (Chen et al.,
2022), we enhance the cutting-edge PLM, ESM-2 (Lin et al., 2023b) by fusing structure extractor
modules within its self-attention architecture. The entire model can then be further pretrained by
simply optimizing its original masked language modeling objective on a protein structure database,
such as AlphaFoldDB. Notably, we highlight that refining only the structure extractors while keep-
ing the backbone transformer frozen can already yield substantial improvements, addressing the
concern of parameter efficiency. The refined model, termed Protein Structure Transformer (PST),
can serve dual purposes: extracting refined protein representations, or finetuning for specific down-
stream applications. Despite the simplicity of our method, empirical results demonstrate its supe-
riority over ESM-2 in diverse function and structure prediction tasks. Contrasting with many prior
structure-based models (Zhang et al., 2022; 2023b) that require exhaustive finetuning, PST’s protein
representations can serve broad purposes by merely introducing a linear or multilayer perceptron
atop them. Finally, our method sets a new benchmark in Enzyme Commission number and Gene
Ontology term predictions (Gligorijević et al., 2021), along with multiple tasks from the new Pro-
teinShake benchmarks1.

2 RELATED WORK

Protein representation models can be categorized on their primary input data modality into three
main types: sequence-based, structure-based, and hybrid models which utilize both sources of infor-
mation. Within each of these categories, models can adopt either a self-supervised or an end-to-end
supervised approach.

Sequence-based models. Transformers, introduced by Vaswani et al. (2017), demonstrated strong
performance in protein function prediction when self-supervised pretrained on large protein se-
quence datasets (Rao et al., 2019; Hu et al., 2022a). However, Shanehsazzadeh et al. (2020) later
revealed that even without pretraining, CNNs can surpass the performance of these pretrained trans-
formers.

Subsequent models, including ProtBERT-BFD (Elnaggar et al., 2021), xTrimoPGLM (Chen et al.,
2023), Ankh (Elnaggar et al., 2023), ESM-1b (Rives et al., 2021), and its evolved version, ESM-
2 (Lin et al., 2023b), have further enhanced the modeling capabilities within the protein domain.
This has led to strong predictive outcomes on a variety of downstream tasks, such mutation effect
prediction (Meier et al., 2021), enzymatic turnover prediction (Kroll et al., 2023b), and more (Kroll
et al., 2023a; Lin et al., 2023a; Hu et al., 2022b).

Structure-based models. Given the strong evolutionary conservation of protein structures and
their direct influence on protein functionality Illergård et al. (2009), structure-based models often
provide more accurate predictions Townshend et al. (2020). Several techniques have been proposed,
ranging from 3D Convolutional Neural Networks (CNNs) (Derevyanko et al., 2018), point cloud and
voxel models (Yan et al., 2022; Mohamadi et al., 2022), to graph-based representations.

Graph Neural Networks (GNNs), employed in models such as GVP (Jing et al., 2020) and
IEConv (Hermosilla et al., 2021), offer inherent flexibility to encode protein-specific features as
node or edge attributes. Furthermore, with the recent proliferation of protein folding models (Jumper
et al., 2021), structure-based models can leverage abundant protein structure datasets, although se-
quence datasets still remain predominant.

1https://proteinshake.ai
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Hybrid models. Hybrid models rely both on sequence and structural information to offer enriched
protein representations. For instance, DeepFRI by Gligorijević et al. (2021) combined LSTM-based
sequence extraction with a graph representation of protein structures. Similarly, Wang et al. (2022)
utilized ProtBERT-BFD embeddings as input features for the GVP model, resulting in enhanced
predictive capabilities.

A recent approach, ESM-GearNet, proposed by Zhang et al. (2023b), explored different ways of
combining ESM-1b representations with GearNet. The model set new benchmarks across various
function prediction tasks, though requiring fine-tuning separately on each task. In parallel, the work
of Zheng et al. (2023) also delved into similar ideas with a particular focus on the inverse protein
folding task. Unlike these prior works that simply append a structure-aware adapter to a PLM model,
our approach incorporates structural information directly into each self-attention layer of the PLM.
This strategy allows for a deeper interaction between structural and sequence features, setting our
model apart from previous models.

3 METHODS

We first introduce the state-of-the-art sequence models, ESM-2. Then we explain how to represent
proteins as graphs and how to adapt the ESM-2 models to account for structural information.

3.1 BACKGROUND: EVOLUTIONARY SCALE MODELING

ESM is a family of transformer protein language models. The initial version, called ESM-1b (Rives
et al., 2021), was trained with 650M parameters and 33 layers on a high-diversity sparse dataset
featuring UniRef50 representative sequences. The authors have recently unveiled an advanced gen-
eration, ESM-2 (Lin et al., 2023b), which ranges from 8M to 15B parameters. ESM-2 brings archi-
tectural enhancements, refined training parameters, and expands both computational resources and
size of the input data. When compared on equal parameter grounds, the ESM-2 model consistently
outperforms its predecessor, ESM-1b.

The ESM-2 language model employs the masked language modeling objective. This is achieved by
minimizing

LMLM = Ex∼XEM

∑
i∈M

− log p(xi |x/M ), (1)

for any given protein sequence x, a random set of indices, M , is selected to undergo masking.
This entails substituting the actual amino acid with a designated mask token. Subsequently, the log
likelihood of the genuine amino acid type is maximized, considering the unmasked amino acids x/M

as the context.

For the training phase, sequences are uniformly sampled across approximately 43 million UniRef50
training clusters, derived from around 138 million UniRef90 sequences. This ensures that during its
training, the model is exposed to roughly 65 million distinct sequences.

3.1.1 ESM-2 MODEL ARCHITECTURE

The ESM-2 models use BERT-style encoder-only transformer architecture with certain modifica-
tions (Vaswani et al., 2017; Kenton & Toutanova, 2019). These models are constructed with multi-
ple stacked layers, each comprising two primary building blocks: a self-attention layer followed by
a feed-forward layer. For the self-attention mechanism, token features X ∈ Rn×d are first projected
to the query (Q), key (K) and value (V ) matrices through linear transformations, as given by:

Q = XWQ, K = XWK , V = XWV , (2)

where W∗ ∈ Rd×dout represent trainable parameters. The resulting self-attention is defined as

Attn(X) = softmax(
QK⊤
√
dout

)V ∈ Rn×dout . (3)

It worth noting that multi-head attention, which concatenates multiple instances of Eq. 3, is com-
monly adopted and has been empirically effective (Vaswani et al., 2017). Then, the output of the

3



Under review as a conference paper at ICLR 2024

Figure 1: Overview of the proposed Protein Structure Transformer. A protein 3D structure is con-
verted to an ordered graph with nodes representing amino acid types and edges linking any pair
of residues within a specified threshold (8Å). Then, we sample a fraction of nodes and mask them
using a special mask token. The output of Protein Structure Transformer (PST) is fed into a linear
prediction head to predict the original amino acid types. Compared to ESM-2, PST uses a GNN to
extract local structural features around each node before computing the self-attention at each trans-
former layer. The PST model is initialized with the pretrained ESM-2 weights.

self-attention is followed by a skip-connection and a feedforward network (FFN), which jointly
compose a transformer layer, as shown below:

X ′ = X + Attn(X),

X ′′ = X ′ + FFN(X ′) := X ′ +ReLU(X ′W1)W2,
(4)

where W1 and W2 are trainable parameters and ReLU denotes the rectifier activation function.
While the original transformer uses absolute sinusoidal positional encoding to inform the model
about token positions, ESM-2 leverages the Rotary Position Embedding (RoPE) (Ho et al., 2019),
enabling the model to extrapolate beyond its trained context window. The main goal of our PST is
to slightly modify ESM-2 such that it can take protein structural information into account.

3.2 PROTEIN STRUCTURE TRANSFORMER

Recent advances in graph representation learning facilitated the adaptation of transformer architec-
tures to process graph-structured data, leading to the emergence of what are formally termed “graph
transformers”. In particular, structure-aware transformers (Chen et al., 2022) meld the vanilla trans-
former framework with graph neural networks. This integration proficiently captures complex in-
teractions inherent to local structures, offering substantial improvement over conventional GNNs.
Considering the intrinsic ability to represent protein structures as graphs, these advances position
graph transformers as particularly adequate for modeling protein structures. In the following, we
present the methodology for representing a protein as a graph and delineate the modifications imple-
mented in the ESM-2 model to construct our dedicated protein structure transformer. The model ar-
chitecture and the complete pretraining process are illustrated in Figure 1 and Figure 5, respectively.
In summary, we employ a structure extractor, e.g., a shallow GNN, that modifies each self-attention
calculation within the ESM-2 model. Note that the structure extractor may vary across layers. It
takes the residue embedding from the specific layer it is applied to, along with structural informa-
tion, and produces an updated residue embedding. This updated embedding is then transformed to
update the query, key, and value matrices provided by the ESM-2 for the self-attention mechanism.

Protein graph representation. Proteins can be conceptualized as ordered graphs, denoted as G.
In this representation, the node order encodes the sequence annotated with amino acid types. A con-
nection is drawn between two nodes when the spatial distance between the corresponding residues
remains within a specified threshold. Based on our empirical studies, this threshold is set at 8.0
Angstroms, primarily because a majority of local intermolecular interactions manifest within this
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range (Bissantz et al., 2010). The residue distances might serve as potential edge attributes for the
graph; however, omitting distance information proved more effective, as discussed in Section 4.4.

Protein Structure Transformer construction. The PST, built upon an ESM-2 model, accepts the
protein graph as input. A distinguishing feature is the substitution of traditional self-attention mech-
anisms with structure-aware attention mechanisms (Chen et al., 2022). Concretely, the residue em-
beddings at each self-attention layer, in conjunction with the graph structure, are processed through a
structure extractor φθ(X,G) ∈ Rn×d to ascertain local structural contexts surrounding each residue,
prior to computing the self-attention. These deduced structural embeddings subsequently undergo a
linear transformation prior to be added to the query, key and value matrices, as expressed by:

Qs = Q+ φθ(X,G)W s
Q, Ks = K + φθ(X,G)W s

K , Vs = V + φθ(X,G)W s
V . (5)

Here, W s
∗ ∈ Rd×dout signifies trainable parameters initialized at zero, ensuring that the nascent

model, prior to any training, mirrors the base ESM-2 model. Pertinently, the structure extractor can
be any function operating on the subgraphs around each node. For computational reasons, we select
a commonly utilized graph neural network, specifically GIN (Xu et al., 2018).

Pretraining the PST. The PST, initialized with the pretrained weights of an ESM-2 model, is fur-
ther pretrained on a protein structure database, employing the masked language modeling objective
same as the base ESM-2 model. One can opt to either update solely the parameters within the struc-
ture extractors θ and Ws or refine the entire model. Comparative evaluations of these strategies will
be discussed in the Section 4.4.

4 EXPERIMENTS

In this section, we conduct a comprehensive evaluation of PST models over a wide range of tasks
encompassing both structure and function predictions, sourced from various datasets. A focal point
of our experiments is to show the versatility of PST representations across relevant downstream
tasks, even in the absence of any fine-tuning. Additionally, we undertake an in-depth analysis of
the model’s architecture, the employed training strategy, and the degree of structural information
needed, aiming to identify the main contributors to performance. We summarize the results of our
experiments as follows:

• PST achieves state-of-the-art performance on function prediction tasks including enzyme
and gene ontology classification, as well as fold classification.

• The inherent adaptability of PST’s representations is evidenced by their robust performance
across a variety of tasks, without the need for task-specific fine-tuning on the representa-
tions.

• In a comparative analysis with the state-of-the-art sequence model ESM-2, PST consis-
tently exhibits superior performance, emphasizing the value of incorporating structural
knowledge. Interestingly, this enhancement is more pronounced for smaller ESM-2 mod-
els, suggesting a heightened impact of structural data on them.

• Incorporating more subtle structural data into PST augments its pretraining efficacy. How-
ever, this augmentation may inadvertently compromise the model’s performance in down-
stream applications. Such a phenomenon is potentially attributable to the inherent sim-
plicity of the masked language modeling objective, suggesting a possible need for more
intricate objectives when integrating advanced structural data.

• While a full pretraining of the PST model yields optimal results, a targeted pretraining of
just the structure extractors produces both sequence and structural representations within
a unified model framework. This approach is more parameter efficient while retaining
efficacy.

5



Under review as a conference paper at ICLR 2024

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

Function and structure prediction datasets. To evaluate the performance of the PST models and
compare them to a number of comparison partners, we use several sets of benchmarks covering a
diverse range of tasks. We use a set of experimentally resolved protein structures and predict their
function. The function of a protein is either encoded as their Gene Ontology (GO) term or Enzyme
Commission (EC) number. The curation and splitting of these datasets are detailed in Gligorijević
et al. (2021). Each of those downstream tasks consists of multiple binary classification tasks. For
each task, we calculate the Fmax score as well as the AUPR score for evaluation. Additionally, we
consider the fold classification dataset curated by Hou et al. (2018). More information on those
datasets and metrics is provided in Appendix C.5 and C.2.

ProteinShake benchmark datasets We use ProteinShake, a convenient library making the eval-
uation of machine learning models across a wide variety of biological tasks easier. The tasks in this
library include functional and structural classification tasks such as enzyme commission and gene
ontology class predictions (similar to the previous benchmark, but on a different set of proteins), a
task where one seeks to classify the protein family (Pfam) label of a protein (Mistry et al., 2021), as
well as a classification task of the SCOPe labels of proteins (Chandonia et al., 2022). Another task
is a residue-level classification task identifying the residues involved in a binding pocket of a protein
(Gallo Cassarino et al., 2014). Importantly, the software library provides metrics and precomputed
splits on the basis of sequence similarity and structural similarity for each task. In this work, we ex-
clusively use the most stringent structure-based splits provided by ProteinShake. The documentation
and implementation of this library can be found at https://proteinshake.ai.

Variant effect prediction (VEP). An common use of protein representations is to predict the
effect of a mutation at a given position in the sequence, saving valuable bench time (Riesselman
et al., 2018; Meier et al., 2021). Here, we use the computationally predicted AlphaFold structure
of each wild-type sequence as input to the structural model, and swap each mutated position in
the resulting graph before computing the (mutated) protein’s representation. The collection of 38
proteins evaluated here were first presented in (Riesselman et al., 2018) and further used in (Meier
et al., 2021). The Spearman’s correlation coefficient ρ between a model’s predicted scores and an
experimentally acquired outcomes is then used to benchmark models. Note that all predictions are
made without any fine-tuning, further allowing us to fairly compare the quality of the representations
obtained from PST compared to ESM-2. The performance of our model on each protein, as well as
more information on this benchmark can be found in Appendix C.6.

4.1.2 TRAINING

Pretraining. We build PST models on several ESM-2 variants, including esm2_t6_8M_UR50D,
esm2_t12_35M_UR50D, esm2_t30_150M_UR50D, esm2_t33_650M_UR50D. The two
largest models did not fit in the VRAM of our GPUs. For each ESM-2 model, we endow it with
structural knowledge by incorporating the structure extractor in every self-attention, as described
in Section 3.2. We use GIN (Xu et al., 2018) as our structure extractor with two GNN layers, as
suggested in Chen et al. (2022). We pretrain all four PST models on AlphaFold’s SwissProt subset
of 542,378 predicted structures (Jumper et al., 2021; Varadi et al., 2022). We initialize the model
weights with the corresponding pretrained ESM-2 weights, except for the structure extractors which
are initialized randomly (for θ) or to zeroes for the linear projection parameters W s

∗ .

Task-specific models. In order to evaluate the generalizability of the protein representations from
PST models, we choose to fix the representations instead of fine-tuning them for each specific task.
This is meaningful in practice, as it can save a lot of computation. Specifically, we compute the
average representation across residues in the protein and concatenate the representations from each
layer. Once the representations are extracted, we train a task-specific classifier (classification head)
atop them. We choose an MLP for multilabel classification and a linear model for other types of
classification. More details can be found in Appendix C.4.

6

https://proteinshake.ai


Under review as a conference paper at ICLR 2024

Table 1: Performance of PST models compared to others on protein function prediction tasks. MVC:
multiview contrast. Relevant comparison partners have been selected from Zhang et al. (2023b).

Method EC GO-BP GO-MF GO-CC Fold Class (ACC)

Fmax AUPR Fmax AUPR Fmax AUPR Fmax AUPR Fold Super. Fam.

End-to-end training
CNN 0.545 0.526 0.244 0.159 0.354 0.351 0.287 0.204 11.3 13.4 53.4
Transformer 0.238 0.218 0.264 0.156 0.211 0.177 0.405 0.210 9.22 8.81 40.4
DeepFRI 0.631 0.547 0.399 0.282 0.465 0.462 0.460 0.363 15.3 20.6 73.2
ESM-1b 0.864 0.889 0.452 0.332 0.657 0.639 0.477 0.324 26.8 60.1 97.8
ProtBERT-BFD 0.838 0.859 0.279 0.188 0.456 0.464 0.408 0.234 26.6 55.8 97.6
LM-GVP 0.664 0.710 0.417 0.302 0.545 0.580 0.527 0.423 – – –
GearNet MVC 0.874 0.892 0.490 0.292 0.654 0.596 0.488 0.336 54.1 80.5 99.9
ESM-1b-Gearnet MVC 0.894 0.907 0.516 0.301 0.684 0.621 0.506 0.359 – – –
ESM-2-Gearnet MVC 0.896 – 0.514 – 0.683 – 0.497 – – – –
ESM-2 (finetuned) 0.893 0.901 0.460 0.308 0.663 0.627 0.427 0.331 38.5 81.5 99.2
PST (finetuned) 0.897 0.919 0.489 0.348 0.675 0.648 0.475 0.375 42.3 85.9 99.7

Fixed representations + classification head
Ankh 0.870 0.897 0.466 0.347 0.650 0.647 0.500 0.393 33.3 74.9 98.7
Gearnet MVC 0.826 0.852 0.428 0.303 0.594 0.589 0.433 0.337 38.5 68.3 98.8
ESM-2 0.892 0.910 0.509 0.355 0.686 0.629 0.529 0.394 39.7 80.4 98.8
PST 0.899 0.918 0.513 0.371 0.686 0.637 0.541 0.387 40.9 83.6 99.4

4.2 COMPARISON TO STATE-OF-THE-ART METHODS FOR PROTEIN FUNCTION AND
STRUCTURE PREDICTION

In this section, we evaluate the performance of PST models against several state-of-the-art counter-
parts on several function and structure prediction datasets, as shown in Table 1. The comparison
partners include sequence models without pretraining such as CNN (Shanehsazzadeh et al., 2020),
Transformer (Rao et al., 2019), with pretraining such as ProtBERT-BFD (Elnaggar et al., 2021),
Ankh (Elnaggar et al., 2023), ESM-1b (Rives et al., 2021), ESM-2 (Lin et al., 2023b), structure
models with pretraining such as DeepFRI (Gligorijević et al., 2021), LM-GVP (Wang et al., 2022),
GearNet MVC (Zhang et al., 2022), and a hybrid model ESM-GearNet MVC (Zhang et al., 2023b)
which integrates ESM-1b and GearNet MVC, as well as its newer versions ESM-2-Gearnet MVC
and ESM-2-Gearnet SiamDiff, recently introduced in Zhang et al. (2023a).

While previous studies focusing on training independent models for each individual, we take a
distinct approach, aiming to assess the universality of protein representations from pretrained mod-
els. To this end, we fix the representations across tasks following the procedure described in Sec-
tion 4.1.2. This procedure is equally applied to both GearNet MVC and ESM-2. Contrary to the
claims in the work by Zhang et al. (2022), our analysis suggests that ESM outperforms GearNet
MVC in the sense that it generates more general-purpose representations. Notably, our PST models
surpass ESM-2 in performance, particularly evident in the fold classification task where PST models
outperform ESM-2 significantly, underscoring the efficacy of structure-centric models in discerning
protein structural variations. Furthermore, PST models with fixed representations demonstrate com-
petitive or superior performance against several end-to-end models while demanding substantially
reduced computational time, emphasizing their enhanced adaptability and applicability in diverse
real-world scenarios.

Additionally, we engage in task-specific fine-tuning of our PST models. Though computationally
more intensive than employing fixed representations, the fine-tuned PST models consistently achieve
superior AUPR scores across function prediction tasks. It is worth noting that PST surpasses the
state-of-the-art ESM-GearNet MVC, a model that integrates ESM in a decoupled fashion.

4.3 STRUCTURE VS. SEQUENCE: A COMPARATIVE ANALYSIS OF PST AND ESM-2 MODELS

In this section, we provide further evidence that our PST model consistently outperforms the ESM-2
model on which is based. As highlighted in Section 4.2, across a wide range of function preditc-
tion tasks, employing PST embeddings alongside an MLP classification head consistently achieves
enhanced performance, relative to using ESM embeddings with a comparable MLP head.

To mitigate the potential influences of optimization and inherent randomness in training the MLP, we
opt for a simple linear model over the representations for a variety of tasks from ProteinShake. As
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Table 2: Comparison of PST and ESM-2 on ProteinShake tasks and VEP datasets. Details of evalu-
ation metrics can be found in Appendix C.2.

Method GO EC Protein Family Binding Site Structural Class Zero-shot VEP
Fmax ACC ACC MCC ACC mean |ρ|

ESM-2 0.648 0.858 0.698 0.431 0.791 0.489
PST 0.650 0.883 0.704 0.436 0.797 0.501
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Figure 2: Performance of PST models trained with and without distance information serving as edge
attributes.

seen in Table 2, PST exhibits consistent superiority over ESM-2 across these tasks. This distinction
is particularly pronounced in the EC classification, where PST markedly surpasses ESM-2.

Additionally, we compare PST with ESM-2 in the context of zero-shot variant prediction tasks, con-
ducted without any further tuning. PST equally outperforms ESM-2 in terms of average spearman’s
rank correlations. The better results in tasks like binding site detection and VEP imply that PST not
only offers enhanced protein-level representations but also refines residue-level representations.

4.4 HYPERPARAMETER STUDIES

While Section 4.3 showcases the added value of PST relative to its base ESM-2 model, we now
dissect the components of PST to identify what drives the performance.

Amount of structural information required for refining ESM-2. We start the analysis by in-
vestigating the extent of structural information required for refining the ESM-2 models. For this
purpose, we construct two ϵ-neighborhood graphs from protein 3D structures: one that does not in-
corporate distance information as edge attributes, and another enriched with 16-dimensional features
related to residue distances serving as edge features. Structure extractors are then adapted accord-
ingly to account for edge attributes. Details about these features can be found in the Appendix C.7.
Subsequently, PST models, equipped with structure extractors either with or without edge attributes
are pretrained. Their generated representations are then assessed using the ProteinShake datasets.

While incorporating more granular structural information augments pretraining accuracy (e.g., from
47% to 55% for the 6-layer models), it brings a negative transfer to downstream tasks, as depicted
in Figure 2. We note that the PST model leveraging edge attributes underperforms compared to its
counterpart without edge attributes across all the tasks. Such a phenomenon could plausibly stem
from the inherent simplicity of the masked language modeling objective, suggesting a potential
necessity to devise more nuanced objectives when integrating advanced structural features.

Effect of model size. We evaluate PST models across various model sizes and measure the per-
formance uplift relative to its base ESM-2 model. We pretrained four distinct PST models, each
based on the ESM-2 models with sizes spanning 8M, 35M, 150M, 650M parameters. Owing to our
employment of shallow, lightweight GINs as structure extractors, the resulting PST models maintain
a parameter count that is less than double that of their base ESM-2 models.

Figure 3 presents the outcomes of our assessment. Notably, as model size increases, both ESM-2
and PST display enhanced performance across the majority of tasks, with exceptions observed in
EC (ProteinShake) and Protein Family classification. While PST typically surpasses its base ESM-2
counterpart at similar model sizes, this performance gain tapers off with increasing model size. This
trend is potentially due to large language models like ESM-2 being optimized for predicting atomic-
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Figure 3: Performance of PST and ESM-2 across varied model sizes on ProteinShake datasets.
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Figure 4: Effect of pretraining strategies on model performance. “Full” refers to the strategy where
one updates the full model during pretraining, including both ESM-2 and structure extractor weights.
“Struct Only” refers to the strategy where only the structure extractor weights are being updated
during training. “Struct Only + Seq” is an extension of “Struct Only” at inference. By bypassing the
structure extractors, the PST model is capable to obtain same sequence representations as the base
ESM-2 model. Averaging both structure and sequence representations leads to “Struct Only + Seq”.

level protein structures, as referenced in Lin et al. (2023b). Consequently, for scenarios constrained
by computational resources, opting for structure-aware models might offer a strategic advantage.

Pretraining strategies. In Section 3.2, we delineate the distinctions between PST and ESM-2
models, pinpointing the addition of structure extractors as the only difference. Here, our experiments
seek to ascertain if solely updating the structure extractors (including the linear transformation Ws)
yields comparable results to a full model pretraining. Figure 4 offers a performance comparison on
ProteinShake tasks, where the orange bars signify updates to the structure extractors, and the blue
bars represent full model updates.

Remarkably, pretraining restricted to the structure extractors produces performance outcomes akin to
a full model pretraining. Beyond parameter efficiency, this selective updating confers an additional
advantage: the capability to derive the base ESM-2 model’s sequence representation from the same
model at inference, achieved through bypassing the structure extractors. By averaging both structure
and sequence representations, we obtain enhanced representations beneficial for multiple tasks, as
depicted by the “Struct Only + Seq” (green bars) in Figure 4.

5 DISCUSSION

In this work, we presented the PST model, a novel approach that endows pretrained PLMs with
structural knowledge. Unlike previous models that need training from scratch, our approach refines
existing transformer-based PLMs, amplifying their accumulated sequence knowledge.

Our evaluations reveal that PST generates general-purpose protein representations, excelling across a
broad range of function prediction tasks. Notably, PST surpasses the benchmarks set by the cutting-
edge PLM, ESM-2 and achieves state-of-the-art performance in various protein property prediction
tasks. Finally, we envision that using more structural data and advanced pretraining objectives
beyond traditional masked language modeling will unlock the full potential of larger models within
the PST paradigm.
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Appendix

A LIMITATIONS AND IMPACT

This work is dedicated to deriving general-purpose protein representations through unsupervised
pretraining on vast amounts of unlabeled protein structures. By incorporating structural data, our
methodology outperforms sequence-based models, offering richer protein representations. This en-
hanced capability paves the way for deeper insights into protein research, with potential implications
for areas such as protein function prediction and protein design.

Limitations. The scope of this paper is limited to pretraining on 542K protein structures. With the
AlphaFold Protein Structure Database now hosting over 200 million proteins, there is ample oppor-
tunity to develop more sophisticated structure-based models using expansive datasets in subsequent
studies. However, as datasets grow, the challenge of scalability arises. Furthermore, our evalua-
tions are restricted to function and structure prediction tasks. Expanding the model’s application to
other domains, like protein-protein interaction modeling or the design of ligand molecules guided by
protein structures, holds promising potential, given their relevance in many biological applications.

Potential negative impact. The power of advanced pretrained models can inadvertently be lever-
aged for detrimental purposes, such as crafting harmful drugs. We hope that subsequent research
will address and mitigate such risks.

B PIPELINE OVERVIEW

An overview of the pipeline described in this work is provided in Figure 5.
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Figure 5: Overview of the pretraining pipeline of the propose Protein Structure Transformer.

C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

C.1 COMPUTATION DETAILS

We perform all the pretraining of PST models on 4 H100 GPUs. 20GiB H100 MIGs were used to
fine-tune the classification heads.

C.2 EVALUATION METRICS

In this Section, we briefly describe the performance metrics we used in the experimental evaluation
of the models.
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Protein-centric Fmax score The Fmax score is computed as follows. Let Px(τ) be the positive
functions for the protein x, i.e. the

Precision (pri) and recall (rci) for a given protein i at threshold τ are defined as

pri(τ) =

∑
f 1 (f ∈ Pi(τ) ∩ Ti)∑

f 1 (f ∈ Pi(τ))
,

rci(τ) =

∑
f 1 (f ∈ Pi(τ) ∩ Ti)∑

f 1 (f ∈ Ti)
,

where Pi(τ) is the set of terms that have predicted scores greater than or equal to τ for a protein i
and Ti denotes the ground-truth set of terms for that protein. Then the set Pi(τ) ∩ Ti is the set of
true positive terms for protein i.

The average precision and average recall are then defined as

pr(τ) =
1

n(τ)

n(τ)∑
i=1

pri(τ),

rc(τ) =
1

N

N∑
i=1

rci(τ),

where N is the number of proteins and n(τ) is the number of proteins with at least one predicted
score greater than or equal to τ .

Then, we define the Fmax score as

Fmax = max
τ

{
2 · pr(τ) · rc(τ)
pr(τ) + rc(τ)

}
.

Pair-centric AUPR The AUPR score we use in the evaluation, following Zhang et al. (2022) is
computed by area under the precision-recall curve, is defined as the average, over all protein-term
pairs (i, f), of the AUPR score of the classifier on that binary classification task.

MCC Matthew’s correlation coefficient, abbreviated MCC, is defined, for a binary classification
task, as follows. Let TP , FP , TN and FN be the number of true positives, false positives, true
negatives and false negatives, respectively. Then we define

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + TN)(TN + FN)(FP + FN)
.

A score of 1 indicates perfect agreement between prediction and labels, a score of 0 indicates no
correlation among the two, and a score of −1 indicates perfect disagreement.

Spearman’s rank correlation coefficients ρ . Spearman’s rank correlation coefficient can be
calculated using:

ρS = 1− 6
∑

d2i
n(n2 − 1)

where di = R(X) − R(Y ) is the difference between two ranks of each observation. ρS ≈ 1 or
ρS ≈ −1 indicates that the ranks of the two observations have a strong statistical dependence,
ρS ≈ 0 indicates no statistical dependence between the ranks of two observations. In this work, we
look at |ρS |, as 1 and -1 carry the same meaning in the context of zero-shot VEP. See Appendix C.6
for more details.

C.3 DETAILS ON BASELINES

We took performance values from Zhang et al. (2022) for the following baselines: CNN, Trans-
former, DeepFRI, ESM-1b, ProtBERT-BFD, LM-GVP, GearNet MVC (end-to-end training), ESM-
Gearnet MVC. Moreover, we finetuned ourselves ESM-2 on the tasks at hand. Finally, we used
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the embeddings obtained from the Ankh, GearNet MVC and ESM-2 models as input to a MLP
classification head.

Table 3 reports the number of parameters for the models that we trained ourselves. We were not able
to find the number of parameters for the other baselines.

Table 3: Number of parameters of the baseline models.

Model name Number of parameters

GearNet MVC 20 M
Ankh 1151 M
ESM-2 (esm2_t33_650M_UR50D) 651 M
PST (esm2_t33_650M_UR50D) 1137 M (where 486 M was trainable)

C.4 TRAINING DETAILS AND HYPERPARAMETER CHOICE

For the pretraining of PST models, we use an AdamW optimizer with linear Warmup and inverse
square root decay, as used by Vaswani et al. (2017); Rives et al. (2021). The other hyperparameters
for optimization are provided in Table 4. The number of epochs are selected such that the training
time for each model is about 10 hours on 4 H100 GPUs.

After pretraining, we extract and fix representations of proteins. Once the representaions are ex-
tracted, we train a task-specific classifier. These classifiers are chosen to be an MLP for multilabel
classification and a linear model for other types of classification. The MLPs consist of three layers,
with the dimension of each hidden layer reduced by the factor of 2 each time. We also use a dropout
layer after each activation, with its dropout ratio to be 0 or 0.5, optimized on the validation set. Each
model is trained for 100 epochs using the binary cross-entropy loss, the AdamW optimizer, and the
learning rate was reduced by a factor of 0.5 if the validation metric of interest is not increasing after
5 epochs.

Table 4: Hyperparameters used for pretraining PST models.

Model name Learning rate Batch size Epochs Warmup epochs

esm2_t6_8M_UR50D 0.0003 128 50 5
esm2_t12_35M_UR50D 0.0001 64 20 5
esm2_t30_150M_UR50D 5e-5 16 10 1
esm2_t33_650M_UR50D 3e-5 12 5 1

C.5 DETAILS OF FUNCTION PREDICTION AND STRUCTURAL CLASSIFICATION DATASETS

Function prediction Similar to (Gligorijević et al., 2021) and (Zhang et al., 2022), the EC num-
bers are selected from the third and fourth levels of the EC tree, since the EC classification numbers
is hierarchical. This forms a set of 538 binary classification tasks, which we treated here as a multi-
label classification task. GO terms with training samples ranging from 50 to 5000 training samples
are selected. The sequence identity threshold is also set to 95% between the training and test set,
which is again in line with Gligorijević et al. (2021); Zhang et al. (2022) and Wang et al. (2022).
Note that Zhang et al. (2022) also performs additional quality control steps in their code, and to
ensure a fair comparison we extracted the graphs and sequence directly from their data loader.

Fold classification Like (Zhang et al., 2022), we follow (Hou et al., 2018) to predict the SCOPe
label of a protein. There are three different splits that we use for predicting the label: Fold, where
proteins from the same superfamily are unseen during training; Superfamily, in which proteins from
the same family are not present during training; and Family, where proteins from the same family
are present during training.
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Table 5: Dataset statistics for downstream tasks.

Dataset Train Validation Test
Fold / Superfamily / Family

Enzyme Commission 15,550 1,729 1,919
Gene Ontology 29,898 3,322 3,415
Fold Classification 12,312 736 718 / 1,254 / 1,272

C.6 VARIANT EFFECT PREDICTION DATASETS

A set of deep mutational scans (DMS) from diverse proteins curated by Riesselman et al. (2018) are
used to benchmark sequence-based models and PST, since it was used to evaluate state-of-the-art
models (Meier et al., 2021). DMS experiments are routinely used in biology to assess the sequence-
function landscape of a protein by mutating one or more of its residues and evaluating the resulting
mutant function with respect to the wild type protein. The function of a protein can be measured us-
ing various mechanisms, such as growth of the cell in which the (mutated) protein is expressed,
resistance to antibiotics, or fluorescence, depending on the protein and experimental conditions
(Fowler & Fields, 2014). In this collection of DMS experiments, a wide variety of readouts and
proteins are evaluated depending on the task, and they are summarized in Supplementary Table 1 in
Riesselman et al. (2018). Let G be the graph representation of the wild type protein structure, xmut

and xwt be the mutant and wild type sequences, respectively. Let x/M be a sequence with masked
node indices M , and M the total set of mutations applied to a single wild type protein. Then, the
log masked marginal probability is defined as:∑

i∈M

log p(xi = xmut
i |x/M , G)− log p(xi = xwt

i |x/M , G). (6)

This procedure allows us to perform mutational effect prediction without any additional supervision
or experimental data on each task, deriving knowledge solely from the semi-supervised pre-training
process. 2 We then compute the Spearman correlation coefficient between this set of scalar values
obtained for each mutation and the observed effect in the variable of interest (depending on the
protein).

Figure 6 shows the performance of ESM-2 and PST representations on deep mutational scan datasets
collected by Riesselman et al. (2018). The standard deviations are obtained using 20 bootstrapped
samples, in accordance with previous work (Meier et al., 2021). The mean score between the ESM-2
score and PST were used for obtaining the PST model.

C.7 EDGE ATTRIBUTES DETAILS

We follow (Ingraham et al., 2019) and extract 16 Gaussian RBFs isotropically spaced from 0 to 20
Å. This maximizes the value of the RBF kernel when the interatomic distance is close to the value
of the center in the RBF kernel.

D ILLUSTRATION OF DIFFERENT PRETRAINING STRATEGIES

The different pretraining strategies studied in section 4.4 are illustrated in Figure 7.

2We substitute the amino acid label in the wild-type structure, as AlphaFold2 authors explicitely said that
point mutant structures are unreliable. See (Jumper et al., 2021) for more details.
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Figure 6: 33-layer ESM and PST model performance on deep mutational scanning tasks.
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Figure 7: Illustration of different pretraining strategies: “Full” refers to the strategy where one
updates the full PST model inclduing both ESM-2 and structure extractor weights. “Struct Only”
refers to the strategy where only the structure extractor weights are being updated during training.
“Struct Only” employs the same pre-training strategy as “Struct Only”, and the only difference lies
in the inference. Specifically, by bypassing the the structure extractors, the PST model trained with
the “Struct Only” strategy is capable to obtain the base ESM-2’s sequence representations. By
averaging both structure and sequence representations, we obtain the “Struct Only + Seq” strategy.
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