
Harder, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast,
Memory Efficient, and Long Context Finetuning and Inference

Anonymous ACL submission

Abstract

Encoder-only transformer models such as001
BERT offer a great performance-size tradeoff002
for retrieval and classification tasks with re-003
spect to larger decoder-only models. Despite004
being the workhorse of numerous production005
pipelines, there have been limited Pareto im-006
provements to BERT since its release. In this007
paper, we introduce ModernBERT, bringing008
modern model optimizations to encoder-only009
models and representing a major Pareto im-010
provement over older encoders. Trained on011
2 trillion tokens with a native 8192 sequence012
length, ModernBERT models exhibit state-of-013
the-art results on a large pool of evaluations014
encompassing diverse classification tasks and015
both single and multi-vector retrieval on dif-016
ferent domains (including code). In addition017
to strong downstream performance, Modern-018
BERT is also the most speed and memory effi-019
cient encoder and is designed for inference on020
common GPUs.021

1 Introduction022

After the release of BERT (Devlin et al., 2019),023

encoder-only transformer-based (Vaswani et al.,024

2017) language models dominated most appli-025

cations of modern Natural Language Processing026

(NLP). Despite the rising popularity of Large Lan-027

guage Models (LLMs) such as GPT (Radford et al.,028

2018, 2019; Brown et al., 2020), Llama (Touvron029

et al., 2023; Dubey et al., 2024), and Qwen (Bai030

et al., 2023; Yang et al., 2024), encoder-only031

models remain widely used in a variety of non-032

generative downstream applications.033

The encoder’s popularity is largely due to their034

modest inference requirements, enabling them to035

efficiently process corpora of documents at scale036

for retrieval and quickly perform discriminative037

tasks. Encoder models offer a compelling trade-038

off in quality versus size, making them a popular039

option against encoder-decoder and decoder-only040

language models when dealing with substantial 041

amounts of data (Penedo et al., 2024). 042

Encoder models are particularly popular in In- 043

formation Retrieval (IR) applications, e.g., seman- 044

tic search, with notable progress on leveraging en- 045

coders for this task (Karpukhin et al., 2020; Khat- 046

tab and Zaharia, 2020). While LLMs have taken 047

the spotlight in recent years, they have also moti- 048

vated a renewed interest in encoder-only models 049

for IR. Indeed, encoder-based semantic search is 050

a core component of Retrieval-Augmented Gener- 051

ation (RAG) pipelines (Lewis et al., 2020), where 052

encoder models are used to retrieve and feed LLMs 053

with context relevant to user queries. 054

Encoder-only models are also still frequently 055

used for a variety of discriminative tasks such as 056

classification (Tunstall et al., 2022) or Natural En- 057

tity Recognition (NER) (Zaratiana et al., 2024), 058

where they often match the performance of special- 059

ized LLMs. Here again, they can be used in con- 060

junction with LLMs, for example detecting toxic 061

prompts (Ji et al., 2023; Jiang et al., 2024b) and pre- 062

venting responses, or routing queries in an agentic 063

framework (Yao et al., 2023; Schick et al., 2023). 064

Surprisingly, these pipelines currently rely on 065

older models, and quite often on the original BERT 066

itself as their backbone (Wang et al., 2022; Xiao 067

et al., 2023), without leveraging improvements de- 068

veloped in recent years. Practitioners face many 069

drawbacks: sequence lengths limited to 512 tokens, 070

suboptimal model design (Anthony et al., 2024) 071

and vocabulary sizes (Karpathy, 2023), and gen- 072

erally inefficient architectures, whether in terms 073

of downstream performance or computational ef- 074

ficiency. Finally, training data is limited in vol- 075

ume and restricted to narrow domains (especially 076

lacking code data) or lacking knowledge of recent 077

events. 078

Recent modernization efforts have only partially 079

addressed the shortcomings of encoder-only mod- 080

els due to limited breadth. MosaicBERT (Portes 081

1

et al., 2023), CrammingBERT (Geiping and Gold-082

stein, 2023), and AcademicBERT (Izsak et al.,083

2021) focused on matching BERT performance084

with better training efficiency. NomicBERT (Nuss-085

baum et al., 2024) and GTE-en-MLM (Zhang et al.,086

2024) (developed concurrently to this work) intro-087

duced longer-context encoder models focused on088

retrieval applications, but did not optimize for effi-089

ciency or classification performance, and re-used090

older training data mixtures which is especially091

apparent in programming-related tasks.092

Contributions We present ModernBERT, a mod-093

ernized encoder-only transformer model, with an094

improved architecture designed to increase down-095

stream performance and efficiency, especially over096

longer sequence lengths. We also bring encoder-097

only models to modern, larger data scales, by098

training on 2 trillion tokens, with a data mix-099

ture including code data. We release two mod-100

els, ModernBERT-base and ModernBERT-large,101

which reach state-of-the-art overall performance102

against all existing encoder models on a wide vari-103

ety of downstream tasks. These results are achieved104

with considerably higher inference efficiency, pro-105

cessing sequences of 8192 tokens almost two times106

faster than previous models.107

To support future research on encoder-only mod-108

els, we release FlexBERT1, our modular architec-109

ture framework allowing easy experimentation, and110

inspired by Pythia (Biderman et al., 2023), all in-111

termediate training checkpoints (further detailed in112

Section 2.2.2).113

2 Methods114

2.1 Architectural Improvements115

Our model architecture extends the standard trans-116

former architecture (Vaswani et al., 2017) by incor-117

porating extensively tested recent advances (Sec-118

tion 2.1.1). We introduce additional efficiency-119

oriented modifications, through both architectural120

and implementation improvements (Section 2.1.2)121

and a GPU optimized model design (Section 2.1.3).122

All of our architectural decisions were informed by123

ablations, which we detail in Appendix D.124

2.1.1 Modern Transformer125

Bias Terms Following (Dayma et al., 2021), we126

disable bias terms in all linear layers except for the127

1Link removed for review anonymity. FlexBERT is built
on top of a revised MosaicBERT (Portes et al., 2023) codebase.

final decoder linear layer2. We also disable all bias 128

terms in Layer Norms (Xu et al., 2019). These two 129

changes allow us to spend more of our parameter 130

budget in linear layers. 131

Positional Embeddings We use rotary posi- 132

tional embeddings (RoPE) (Su et al., 2024) instead 133

of absolute positional embeddings. This choice is 134

motivated by the proven performance of RoPE in 135

short- and long-context language models (Black 136

et al., 2022; Dubey et al., 2024; Gemma et al., 137

2024), efficient implementations in most frame- 138

works, and ease of context extension. 139

Normalization We use a pre-normalization 140

block (Xiong et al., 2020) with the standard layer 141

normalization (Lei Ba et al., 2016), which is known 142

to help stabilize training (Xiong et al., 2020). Sim- 143

ilar to CrammingBERT (Geiping and Goldstein, 144

2023) which also uses pre-normalization, we add 145

a LayerNorm after the embedding layer. To avoid 146

repetition, we remove the first layer norm in the 147

first attention layer. 148

Activation We adopt GeGLU (Shazeer, 2020), 149

a Gated-Linear Units (GLU)-based (Dauphin et al., 150

2017) activation function built on top of the origi- 151

nal BERT’s GeLU (Hendrycks and Gimpel, 2016) 152

activation function. This is in line with recent work 153

showing consistent empirical improvements when 154

using GLU variants (Shazeer, 2020; Geiping and 155

Goldstein, 2023). 156

2.1.2 Efficiency Improvements 157

Alternating Attention Following recent work on 158

efficient long context models (Gemma et al., 2024), 159

attention layers in ModernBERT alternate between 160

global attention, where every token within a se- 161

quence attends to every other token, and local atten- 162

tion, where tokens only attend to each other within 163

a small sliding window (Beltagy et al., 2020). In 164

ModernBERT, every third layer employs global 165

attention with a RoPE theta of 160,000 and the 166

remaining layers use a 128 token, local sliding win- 167

dow attention with a RoPE theta of 10,000. 168

Unpadding ModernBERT follows Mo- 169

saicBERT (Portes et al., 2023) and GTE (Zhang 170

et al., 2024) in employing unpadding (Zeng et al., 171

2022) for both training and inference. Encoder- 172

only language models typically use padding tokens 173

to ensure a uniform sequence length in a batch, 174

2While many efficient BERT training recipes disable the
bias term in the decoder, e.g. Geiping and Goldstein (2023),
we hypothesized a decoder bias might help alleviate weight
tying’s negative effects (Gao et al., 2019; Welch et al., 2020).

2

wasting compute on semantically empty tokens.175

Unpadding avoids this inefficiency by removing176

padding tokens, concatenating all sequences177

from a minibatch into a single sequence, and178

processing it as a batch of one. Prior unpadding179

implementations unpad and repad sequences180

internally for different model layers, wasting181

compute and memory bandwidth. We use Flash182

Attention’s variable length attention and RoPE183

implementations, allowing jagged attention masks184

and RoPE applications on one unpadded sequence.185

ModernBERT unpads inputs before the token186

embedding layer and optionally repads model187

outputs leading to a 10-to-20 percent performance188

improvement over other unpadding methods.189

Flash Attention Flash Attention (Dao et al.,190

2022) is a core component of modern transformer-191

based models, providing memory and compute ef-192

ficient attention kernels. At the start of this work,193

Flash Attention 3 (Shah et al., 2024), the most194

recent iteration for Nvidia H100 GPUs, did not195

include support for sliding window attention. Mod-196

ernBERT uses a mixture of Flash Attention 3 for197

global attention layers and Flash Attention 2 (Dao,198

2023) for local attention layers.199

torch.compile We leverage PyTorch’s built-in200

compiling (Ansel et al., 2024) to improve the train-201

ing efficiency by compiling all compatible modules.202

This yields a 10 percent improvement in throughput203

with negligible compilation overhead.204

2.1.3 Model Design205

At the same parameter count, models with more206

narrow layers (Deep & Narrow) have different207

learning patterns than models with fewer wide lay-208

ers (Shallow & Wide) (Nguyen et al., 2021). Tay209

et al. (2022) and (Liu et al., 2024) have shown210

that Deep & Narrow language models have bet-211

ter downstream performance than their shallower212

counterparts, at the expense of slower inference.213

Anthony et al. (2024) highlighted that large214

runtime gains can be unlocked by designing mod-215

els in a hardware-aware way, which had previ-216

ously been anecdotally observed by many prac-217

titioners (Shoeybi et al., 2019; Karpathy, 2023;218

Black et al., 2022). ModernBERT was designed219

through many small-scale ablations to maximize220

the utilization of a basket of common GPUs3, while221

3Which, at the time of this work, are server GPUs:
NVIDIA T4, A10, L4, A100, and H100 and consumer GPUs:
NVIDIA RTX 3090 and 4090. Prioritization was given to
inference GPUs (excluding A100 & H100).

aiming to be as Deep & Narrow as possible without 222

a significant inference slowdown. 223

ModernBERT has 22 and 28 layers for the base 224

and large models, for a total parameter count of 149 225

and 395 million, respectively, striking the balance 226

between downstream performance and hardware 227

efficiency. ModernBERT base has a hidden size of 228

768 with a GLU expansion of 2,304, while large 229

has a hidden size of 1,024 and GLU expansion 230

of 5,248. These ratios allow optimal tiling across 231

tensor cores and the most efficient tiling across the 232

differing number of streaming multiprocessors on 233

our target basket of GPUs. More details on model 234

design are provided in Appendix B. 235

2.2 Training 236

2.2.1 Data 237

Mixture Both ModernBERT models are trained on 238

2 trillion tokens of primarily English data from a 239

variety of data sources, including web documents, 240

code, and scientific literature, following common 241

modern data mixtures. We choose the final data 242

mixture based on a series of ablations. 243

Tokenizer Unlike the majority of recent en- 244

coders which reuse the original BERT tok- 245

enizer (Nussbaum et al., 2024; Portes et al., 2023; 246

Zhang et al., 2024), we opt to use a modern BPE 247

tokenizer. We use a modified version of the OLMo 248

tokenizer (Groeneveld et al., 2024) which provides 249

better token efficiency and performance on code- 250

related tasks. The ModernBERT tokenizer uses the 251

same special tokens (e.g., [CLS] and [SEP]) and 252

templating as the original BERT model (Devlin 253

et al., 2019), facilitating backwards compatibility. 254

To ensure optimal GPU utilization (Anthony et al., 255

2024; Karpathy, 2023), the vocabulary is set to 256

50,368, a multiple of 64 and includes 83 unused 257

tokens to support downstream applications. 258

Sequence Packing In order to avoid high 259

minibatch-size variance within our training batches 260

as a result of unpadding, we adopt sequence pack- 261

ing (Raffel et al., 2020; Krell et al., 2022) with 262

a greedy algorithm, which resulted in a sequence 263

packing efficiency of over 99 percent, ensuring 264

batch size uniformity. 265

2.2.2 Training Settings 266

MLM We follow the Masked Language Modeling 267

(MLM) setup used by MosaicBERT (Portes et al., 268

2023). We remove the Next-Sentence Prediction 269

objective which introduces noticeable overhead for 270

no performance improvement (Liu et al., 2019a; 271

3

Izsak et al., 2021), and use a masking rate of 30272

percent, as the original rate of 15 percent has since273

been shown to be sub-optimal (Wettig et al., 2023).274

Optimizer We use the StableAdamW opti-275

mizer (Wortsman et al., 2023), which improves276

upon AdamW (Loshchilov and Hutter, 2019) by277

adding Adafactor-style (Shazeer and Stern, 2018)278

update clipping as a per-parameter learning rate279

adjustment. StableAdamW’s learning rate clipping280

outperformed standard gradient clipping on down-281

stream tasks and led to more stable training. Hy-282

perparameters details are given in Appendix A.283

Learning Rate Schedule During pretraining,284

we use a modified trapezoidal Learning Rate285

(LR) schedule (Xing et al., 2018), also known as286

Warmup-Stable-Decay (WSD) (Zhai et al., 2022;287

Hu et al., 2024). After a short LR warmup, the288

trapezoidal schedule holds the LR constant for the289

majority of training, followed by a short LR de-290

cay. This schedule has been shown to match the291

performance of cosine scheduling (Hägele et al.,292

2024; Hallström et al., 2024) with the benefit of293

enabling continual training on any checkpoint with-294

out cold restart issues (Ash and Adams, 2019). Un-295

like most trapezoidal schedules, we use a 1− sqrt296

LR decay (Hägele et al., 2024), as we found it to297

outperform linear and cosine decay.298

We trained ModernBERT-base at a constant LR299

of 8e-4 for 1.7 trillion tokens following a 3 billion300

token warmup. After a 2 billion token warmup,301

we trained ModernBERT-large at a LR of 5e-4 for302

900 billion tokens. We rolled back and restarted303

training at 5e-5 for the remaining 800 billion tokens304

after large’s loss plateaued for a few hundred billion305

tokens at 5e-4.306

Batch Size Schedule Batch size scheduling307

starts with smaller gradient accumulated batches,308

increasing over time to the full batch size. In abla-309

tions, this schedule accelerated training progress.310

We warmup the batch size from 768 to 4,608 over311

50 billion tokens and from 448 to 4,928 over 10312

billion tokens, for ModernBERT-base and -large,313

respectively, with an uneven token schedule so each314

batch size has the same number of update steps.315

Details are provided in Appendix A.1.316

Weight Initialization and Tiling We initialize317

ModernBERT-base with random weights following318

the Megatron initialization (Shoeybi et al., 2019).319

For ModernBERT-large, we follow the Phi model320

family (Li et al., 2023; Javaheripi et al., 2023)4 and321

4As detailed in their 2023 NeurIPS presentation.

initialize -large’s weights from ModernBERT-base. 322

In ablation runs, this consistently matched Phi’s 323

improved training results and greatly speed up the 324

initial loss decrease of our model training5. Details 325

are provided in Appendix A.2. 326

Context Length Extension After training on 1.7 327

trillion tokens at a 1024 sequence length and RoPE 328

theta of 10,000, we extend the native context length 329

of ModernBERT to 8192 tokens by increasing the 330

global attention layer’s RoPE theta to 160,000 and 331

train for an additional 300 billion tokens. We first 332

train at a constant lower learning rate6 of 3e-4 for 333

250 billion tokens on an 8192 token mixture of the 334

original pretraining dataset sampled following Fu 335

et al. (2024). Next, we upsample higher-quality 336

sources following Gao et al. (2024) and conduct 337

the decay phase with a 1− sqrt LR schedule over 338

50 billion tokens. This context extension process 339

yielded the most balanced model on downstream 340

tasks, as most of our ablations using only one of 341

these strategies resulted in a performance loss on 342

either retrieval or classification tasks. 343

3 Downstream Evaluation 344

We performed an extensive set of evaluations, 345

across a large range of tasks, aiming to demon- 346

strate the versatility of ModernBERT in common 347

scenarios. 348

For all tasks, ModernBERT is evaluated against 349

existing encoders of similar size. The BASE size, 350

conventionally defined as under 150 million pa- 351

rameters, includes BERT-base (Devlin et al., 2019), 352

DeBERTa-v3-base (He et al., 2023), RoBERTa- 353

base (Liu et al., 2019a), as well as the more re- 354

cent 8192 context NomicBERT (Nussbaum et al., 355

2024) and GTE-en-MLM-base (Zhang et al., 2024). 356

The LARGE size, conventionally defined as above 357

300 million and under 500 million parameters, in- 358

cludes BERT-large-uncased (Devlin et al., 2019), 359

DeBERTa-v3-large (He et al., 2023) and RoBERTa- 360

large (Liu et al., 2019a) and GTE-en-MLM- 361

large (Zhang et al., 2024). 362

3.1 Evaluation Setting 363

3.1.1 Natural Language Understanding 364

The General Language Understanding Evaluation 365

(GLUE) benchmark (Wang et al., 2018) is the 366

standard Natural Language Understanding (NLU) 367

5This initialization reduced the amount of batch size and
LR warmup needed for ModernBERT-large

6We only lowered the LR for ModernBERT-base, as large
already decreased LR during the 1024 token training phase.

4

https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/microsoft/deberta-v3-base
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/nomic-ai/NomicBERT-2048
https://huggingface.co/Alibaba-NLP/GTE-en-MLM-base
https://huggingface.co/google-bert/bert-large-uncased
https://huggingface.co/microsoft/deberta-v3-large
https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/Alibaba-NLP/GTE-en-MLM-large
https://huggingface.co/Alibaba-NLP/GTE-en-MLM-large
https://huggingface.co/Alibaba-NLP/GTE-en-MLM-large

benchmark for encoder models, aiming to measure368

how well a model performs across a range of sen-369

tence or sentence-pair understanding tasks, such as370

sentiment detection (Liu et al., 2019b) or language371

entailment, through tasks such as MNLI (Williams372

et al., 2018). Although GLUE is often regarded373

as saturated by the best-performing models, such374

as large language models (Zhao et al., 2023), it375

remains one of the most commonly used evaluation376

suites for smaller encoder-based models, and pro-377

vides a good impression of a model’s performance378

on common classification tasks (Portes et al., 2023;379

Zhang et al., 2024; He et al., 2023).380

We follow the practice of previous studies (De-381

vlin et al., 2019; Liu et al., 2019a; He et al.,382

2023) and conduct a hyperparameter search on each383

GLUE subset (detailed in Appendix E.1) in order384

to provide values comparable to other models.7385

3.1.2 Text Retrieval386

Information Retrieval (IR) is one of the most com-387

mon applications of encoder-only models,8 where388

they are used to represent documents and queries389

in semantic search (Karpukhin et al., 2020). This390

domain has recently seen considerable growth and391

interest following the spread of LLMs where se-392

mantic search powered by lightweight models is393

used to provide relevant context to LLMs as part of394

Retrieval-Augmented Generation pipelines.395

We evaluate models in both the single-vector396

Dense Passage Retrieval (DPR) (Karpukhin et al.,397

2020) setting and the multi-vector ColBERT (Khat-398

tab and Zaharia, 2020) setting.399

We report retrieval results on the popular BEIR400

evaluation suite (Thakur et al., 2021), the com-401

mon standard for evaluating retrieval performance402

across a variety of tasks and domains, using the403

nDCG@10 metric. For each setting detailed below,404

we conduct a learning rate sweep based on results405

over a subset of the BEIR benchmarks to select the406

final model, detailed in Appendix E.2.407

Single vector retrieval One of the most com-408

mon approaches to neural retrieval using encoders409

is DPR (Karpukhin et al., 2020), where a single-410

vector is used to represent an entire document. The411

7As (Zhang et al., 2024) do not explicitly mention a param-
eter sweep, we initially ran the same hyperparameter sweep
as we did for ModernBERT, but observed inconsistencies in
the results. To avoid under-representing GTE-en-MLM’s ca-
pabilities, we choose to use their reported GLUE results.

8At the time of this paper’s writing, over half of the 100
most downloaded models on the HuggingFace Model Hub
were encoder-based retrieval models.

similarity between a query and a document can then 412

be computed through distance operations, such as 413

cosine similarity. Models are finetuned using con- 414

trastive learning to create representations which 415

are close if a document is relevant to a query, and 416

distant if not (van den Oord et al., 2018). 417

We train every base model using the MS- 418

MARCO (Bajaj et al., 2016) dataset with mined 419

hard negatives (Xuan et al., 2020) on 1.25M sam- 420

ples with a batch size of 16 and learning rate 421

warmup for 5% of the training using sentence- 422

transformers (Reimers and Gurevych, 2019). 423

Multi vector retrieval Multi-vector retrieval, 424

championed by ColBERT (Khattab and Zaharia, 425

2020), seeks to mitigate lost information from com- 426

pressing an entire sequence into a single vector. 427

In multi-vector retrieval, each document is repre- 428

sented by all of its individual token vectors, and 429

the similarity between a query and a document is 430

computed using the MaxSim9 operator. 431

We adopt the training setup of JaCol- 432

BERTv2.5 (Clavié, 2024), an update on the 433

ColBERTv2 (Santhanam et al., 2022) training 434

procedure, with a batch size of 16 and a 5% 435

learning rate warmup. We train all models by 436

distilling the knowledge of a teacher model by 437

using the KL-Divergence between the normalized 438

teacher and student scores. Models are trained 439

on 810k samples from MS-Marco (Bajaj et al., 440

2016) and teacher scores from BGE-M3 (Chen 441

et al., 2024), using the PyLate library (Chaffin and 442

Sourty, 2024). 443

3.1.3 Long-Context Text Retrieval 444

With a native 8192 context length, ModernBERT 445

improves long-context performance over most ex- 446

isting encoders. However, there are relatively 447

few standardized long-context benchmarks for 448

encoder-only models, and most benchmarks, such 449

as Needle-in-a-haystack (Kamradt, 2023) and 450

RULER (Hsieh et al., 2024) are geared towards gen- 451

erative tasks. Given this limitation, we demonstrate 452

improved long-context performance on the English 453

subset of MLDR (Chen et al., 2024), a long-context 454

retrieval benchmark comprised of over 200,000 455

long documents. We evaluate three settings: 456

Single Vector – Out-Of-Domain Models are 457

trained on short-context MS-MARCO as described 458

above, and is evaluated on long context MLDR 459

without any further fine-tuning. 460

9The sum for every query token of its similarity with the
most similar document token

5

https://huggingface.co/models
https://huggingface.co/datasets/Shitao/MLDR

IR (DPR) IR (ColBERT) NLU Code

Model BEIR MLDROOD MLDRID BEIR MLDROOD GLUE CSN SQA

B
as

e

BERT 38.9 23.9 32.2 49.0 28.1 84.7 41.2 59.5
RoBERTa 37.7 22.9 32.8 48.7 28.2 86.4 44.3 59.6
DeBERTaV3 20.2 5.4 13.4 47.1 21.9 88.1 17.5 18.6
NomicBERT 41.0 26.7 30.3 49.9 61.3 84.0 41.6 61.4
GTE-en-MLM 41.4 34.3 44.4 48.2 69.3 85.6 44.9 71.4
ModernBERT 41.6 27.4 44.0 51.3 80.2 88.4 56.4 73.6

L
ar

ge

BERT 38.9 23.3 31.7 49.5 28.5 85.2 41.6 60.8
RoBERTa 41.4 22.6 36.1 49.8 28.8 88.9 47.3 68.1
DeBERTaV3 25.6 7.1 19.2 46.7 23.0 91.4 21.2 19.7
GTE-en-MLM 42.5 36.4 48.9 50.7 71.3 87.6 40.5 66.9
ModernBERT 44.0 34.3 48.6 52.4 80.4 90.4 59.5 83.9

Table 1: Results for all models across an overview of all tasks. CSN refers to CodeSearchNet and SQA to StackQA.
MLDRID refers to in-domain (fine-tuned on the training set) evaluation, and MLDROOD to out-of-domain.

Single Vector – In Domain Models trained461

on MS-MARCO are further fine-tuned on long-462

context MLDR training set before being evaluated.463

Multi-Vector – Out-Of-Domain Due to its464

token-level MaxSim mechanism, ColBERT mod-465

els are able to generalize to long-context without466

any specific training (Bergum, 2024). We directly467

evaluate the best checkpoints from Section 3.1.2468

without any further fine-tuning on MLDR.469

3.1.4 Code Retrieval470

Fueled by increasingly good code completion mod-471

els (Jiang et al., 2024a), downstream applications472

have quickly grown in popularity following the473

emergence of code assistants.10 Encoder-only mod-474

els are used to process and retrieve large quantities475

of code-related information under resource con-476

straints, increasing the importance of measuring477

and improving code capabilities of encoder models478

(Li et al., 2024). Unlike most previous encoders479

which were largely trained only on textual data (De-480

vlin et al., 2019; Liu et al., 2019a; Portes et al.,481

2023; Zhang et al., 2024; Nussbaum et al., 2024),482

ModernBERT is pre-trained on code and uses a483

code-aware tokenizer11.484

To measure programming-related performance,485

we evaluate all models on CodeSearchNet (Hu-486

sain et al., 2019), a code-to-text benchmark where487

the model must identify relevant docstring or com-488

ments for code blocks, and StackOverflow-QA (Li489

10Spearheaded by GitHub Copilot in 2021
11Avoiding issues such as the ones seen in T5 (Raffel et al.,

2020), whose vocabulary did not include curly braces.

et al., 2024), where the model must identify rel- 490

evant responses to StackOverflow questions, in a 491

"hybrid" setting where documents contain both text 492

and code. The latter benchmark also leverages long- 493

context capabilities, as its queries and documents 494

respectively contain 1,400 and 1,200 words on aver- 495

age, leading to average token counts of over 2000. 496

We evaluate these benchmarks using the CoIR 497

(CodeIR) framework (Li et al., 2024), as single- 498

vector retrieval tasks. All models are trained by 499

re-using the best hyper-parameters identified in 500

Section 3.1.2. 501

3.2 Downstream Results and Discussion 502

Aggregated results for all evaluations are presented 503

in Table 1. For BEIR and GLUE, the two common 504

evaluation suites, we follow existing practice in 505

reporting the average results. Detailed results are 506

provided in Appendix E. 507

In terms of downstream performance, Modern- 508

BERT is the strongest overall model at both the 509

BASE and LARGE model sizes. ModernBERT rep- 510

resents a Pareto improvement on all tasks over the 511

original BERT and RoBERTA models, with better 512

performance on every evaluation category. 513

Short-Context Retrieval On BEIR, both vari- 514

ants of ModernBERT outperform existing encoders 515

in both the DPR and ColBERT settings, including 516

the recent GTE-en-MLM and NomicBERT mod- 517

els designed to serve as better backbones for re- 518

trieval (Zhang et al., 2024; Nussbaum et al., 2024). 519

While ModernBERT-base only narrowly edges 520

out GTE-en-MLM-base on DPR evaluations, 521

6

https://github.com/features/copilot

Short Long

Model Params BS Fixed Variable BS Fixed Variable
B

as
e

BERT 110M 1096 180.4 90.2 – – –
RoBERTa 125M 664 179.9 89.9 – – –
DeBERTaV3 183M 236 70.2 35.1 – – –
NomicBERT 137M 588 117.1 58.5 36 46.1 23.1
GTE-en-MLM 137M 640 123.7 61.8 38 46.8 23.4
GTE-en-MLMxformers 137M 640 122.5 128.6 38 47.5 67.3
ModernBERT 149M 1604 148.1 147.3 98 123.7 133.8

L
ar

ge

BERT 330M 792 54.4 27.2 – – –
RoBERTa 355M 460 42.0 21.0 – – –
DeBERTaV3 434M 134 24.6 12.3 – – –
GTE-en-MLM 435M 472 38.7 19.3 28 16.2 8.1
GTE-en-MLMxformers 435M 472 38.5 40.4 28 16.5 22.8
ModernBERT 395M 770 52.3 52.9 48 46.8 49.8

Table 2: Memory (max batch size, BS) and Inference (in thousands of tokens per second) efficiency results on an
NVIDIA RTX 4090, averaged over 10 runs. Dashes indicate unsupported configurations.

ModernBERT-large increases its lead despite hav-522

ing comparatively fewer parameters at 395M to523

GTE-en-MLM-large’s 435M.524

Long-Context Retrieval - Single Vector In the525

DPR setting, ModernBERT achieves impressive526

performance on MLDR, a long-context text re-527

trieval task. However, these results also highlight528

an interesting phenomenon: without long-context529

finetuning ModernBERT outperforms both shorter-530

context models and the long-context NomicBERT531

but performs noticeably worse than GTE-en-MLM.532

The performance gap narrows considerably when533

evaluated in-domain, with both models performing534

similarly. This suggests that ModernBERT can ef-535

fectively process long context sequences as a dense536

encoder but may require more adapted tuning. We537

plan to explore multiple potential explanations for538

this phenomenon in future work, including the im-539

pact of local attention or GTE-en-MLM having540

spent a larger part of its pretraining compute bud-541

get on longer sequence lengths (Zhang et al., 2024).542

Long-Context Retrieval - Multi-Vector In543

the ColBERT setting, long-context models (GTE-544

en-MLM, NomicBERT, and ModernBERT) all545

outperform short-context models by at least 40546

NDCG@10 points without requiring any specific547

finetuning. These results confirm the findings of548

Bergum (2024), who showed that ColBERT models549

are particularly well-suited to long-context retrieval550

tasks. Among the long-context models, Modern-551

BERT outperforms other long-context models, with552

at least a 9 NDCG@10 point lead on both model 553

sizes. We theorize that these sizable gains could 554

be explained by our long pretraining ensuring few, 555

if any, tokens are under-trained, as well as a po- 556

tentially synergistic effect of local attention with 557

ColBERT-style retrieval, but leave further explo- 558

ration of this phenomenon to future work. 559

Natural Language Understanding Both Mod- 560

ernBERT models demonstrate exceptional NLU 561

results, as measured by GLUE. ModernBERT- 562

base surpasses all existing base models, includ- 563

ing DeBERTaV3-base, becoming the first MLM- 564

trained model to do so. This is surprising, 565

as DeBERTaV3 was trained with the Replaced- 566

Token-Detection objective, which was previously 567

thought to yield stronger downstream NLU per- 568

formance (Clark et al., 2020; He et al., 2023). 569

ModernBERT-large is the second-best large en- 570

coder on GLUE, almost matching DeBERTaV3- 571

large with one-tenth fewer parameters while pro- 572

cessing tokens in half the time (see Section 4). 573

Code On programming tasks, in both code-to- 574

text (CodeSearchNet) and longer-context hybrid 575

settings (StackQA), ModernBERT outperforms all 576

other models. This result was expected, as it is the 577

only evaluated encoder to be trained on a data mix- 578

ture including programming data. These results, 579

combined with ModernBERT’s strong showings 580

on other tasks, indicates that ModernBERT has im- 581

proved understanding of code at no detriment to its 582

ability to process natural text. 583

7

4 Efficiency584

4.1 Evaluation Setting585

To measure inference efficiency across multiple586

sequence lengths, we create 4 synthetic sets of587

8192 documents12. The first two document sets588

are fixed-length: in fixed short-context, all docu-589

ments contain 512 tokens and in fixed long-context590

all documents contain 8192 tokens13. To account591

for the impact of unpadding, we also create two592

varying-length document sets, where the number593

of tokens in each set are defined by a normal dis-594

tribution centered on half the maximum sequence595

length, 256 and 4096 tokens, respectively. Full data596

statistics are provided in Appendix F.597

We then evaluate all models based on the number598

of tokens they can process per second, averaged599

over ten runs. All efficiency evaluations are ran600

on a single NVIDIA RTX 4090, one of the target601

GPUs of ModernBERT outlined in Section 2.1.3602

We evaluate the GTE-en-MLM models under two603

settings: out-of-the box, and with the use of the604

xformers (Lefaudeux et al., 2022) library, which en-605

ables efficiency enhancements such as unpadding.606

4.2 Results607

All tokens-per-second efficiency results are pre-608

sented in Table 2, with absolute run-times provided609

in Appendix F. ModernBERT stands out as the610

most efficient model overall. On short context, it611

processes fixed-length 512 token inputs faster than612

all other recent encoders, although slower than the613

original BERT and RoBERTa models14. On long-614

context, ModernBERT is faster than all competing615

encoders, processing documents 2.65 and 3 times616

faster than the next-fastest encoder at the BASE and617

LARGE sizes, respectively. ModernBERT-large’s618

processing speed at length 8192 (46,801 tokens619

per second) is closer to that of GTE-en-MLM base620

(47,507 tokens per second) than it is to GTE-en-621

MLM-large (16,532 tokens per second).622

On variable-length inputs, both GTE-en-MLM623

and ModernBERT models are considerably faster624

than all other models, largely due to unpadding.625

However, ModernBERT remains noticeably more626

efficient than GTE-en-MLM, processing 14.5-30.9627

12Many common benchmarks are biased towards low and
uniform sequence lengths, which is unrepresentative of many
real-world situations.

13512 being the maximum length of most existing encoders,
while 8192 is the maximum length of all long-context ones.

14This is partially due to the relatively low parameter count
of BERT and RoBERTa compared to more recent encoders.

percent more tokens per second at low context 628

lengths and 98.8-118.8 percent more at longer con- 629

text lengths, thanks to its use of local attention. 630

ModernBERT is the overall most memory effi- 631

cient model on both model sizes. ModernBERT- 632

base is able to process batch sizes twice as 633

large as every other model on both input lengths. 634

ModernBERT-large is slightly less memory effi- 635

cient than the original BERT-large on short-context 636

inputs, but can process batches at least 60 percent 637

bigger than every other large model. 638

5 Conclusion 639

We present ModernBERT, an open family of 640

encoder-only models which set a new state of the 641

art over existing encoder models on a wide range 642

of classification and retrieval tasks. We show that 643

encoders benefit from both recent pretraining data 644

scales and architecture improvements from autore- 645

gressive LLMs. 646

ModernBERT has a native sequence length of 647

8,192 tokens and incorporates recent architecture 648

improvements, such as GeGLU layers, RoPE po- 649

sitional embeddings, and alternating local-global 650

attention. ModernBERT is the first open model 651

to feature entire model unpadding and is the first 652

encoder designed in a hardware-aware way to max- 653

imize inference efficiency. 654

ModernBERT pushes the encoder state of the art 655

forward across a wide range of benchmarks. On 656

GLUE, ModernBERT-base is the first encoder to 657

beat DeBERTaV3-base since its release in 2021. 658

ModernBERT is in a class of its own in ColBERT- 659

style code and long-context retrieval benchmarks, 660

scoring at least 6.85 and 9.1 percentage points 661

higher than the closest model, respectively, while 662

remaining state-of-the-art on short-context retrieval 663

in both single and multi-vector settings. 664

At the same time, ModernBERT processes short 665

context inputs twice as fast as DeBERTaV3 and 666

long-context inputs two times faster than the next 667

fastest model with best-in-class memory efficiency. 668

ModernBERT is a generational leap over the 669

original encoder models, with notable performance 670

improvements over BERT and RoBERTa on both 671

classification and retrieval tasks. ModernBERT is 672

one of the few encoders to support long-context and 673

programming applications, while simultaneously 674

setting a new record in encoder inference efficiency. 675

8

6 Limitations676

Language This study focuses exclusively on the677

English language, and trains on a very large num-678

ber of tokens. As such, a major limitation of our679

work is that it is not directly applicable to other680

languages, and potentially even less-so to lower681

resources languages.682

Biases Our model is trained largely on web data,683

as a result, all of its representations are subject to684

the biases present in such data.685

Harmful Content Generation The MLM objec-686

tive gives the model some ability to generate text687

by suggesting a given token to replace the [MASK]688

token (Samuel, 2024), which could result in the689

generation of harmful content. However, Modern-690

BERT is not, primarily, a generative model, and as691

such, has not been trained to and therefore cannot692

generate longer sequences of text. As a result, it is693

considerably less likely to be at risk of generating694

harmful content of any kind.695

MLM-only objective Given the strong results of696

DeBERTav3 on classification tasks but weak ones697

on retrieval, it seems that a training leveraging both698

MLM and RTD might be better suited to achieve699

best results on classification. Extending our work700

to RTD is thus a promising line of research.701

Scaling Besides the architectural modifications,702

a key aspect of our studies is data scaling. How-703

ever, other scaling axes, notably in terms of model704

parameters are left unexplored.705

References706

Jason Ansel, Edward Yang, Horace He, Natalia707
Gimelshein, Animesh Jain, Michael Voznesensky,708
Bin Bao, Peter Bell, David Berard, Evgeni Burovski,709
et al. 2024. Pytorch 2: Faster machine learning710
through dynamic python bytecode transformation and711
graph compilation. In Proceedings of the 29th ACM712
International Conference on Architectural Support713
for Programming Languages and Operating Systems,714
volume 2, pages 929–947.715

Quentin Anthony, Jacob Hatef, Deepak Narayanan,716
Stella Biderman, Stas Bekman, Junqi Yin, Aamir717
Shafi, Hari Subramoni, and Dhabaleswar Panda.718
2024. The case for co-designing model architectures719
with hardware. Preprint, arXiv:2401.14489.720

Jordan T. Ash and Ryan P. Adams. 2019. On the721
difficulty of warm-starting neural network training.722
CoRR, abs/1910.08475.723

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,724
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei725

Huang, et al. 2023. Qwen technical report. arXiv 726
preprint arXiv:2309.16609. 727

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, 728
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, 729
Andrew McNamara, Bhaskar Mitra, Tri Nguyen, 730
et al. 2016. Ms marco: A human generated ma- 731
chine reading comprehension dataset. arXiv preprint 732
arXiv:1611.09268. 733

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 734
2020. Longformer: The long-document transformer. 735
Preprint, arXiv:2004.05150. 736

Jo Kristian Bergum. 2024. Announcing vespa long- 737
context ColBERT. Vespa Blog. 738

Stella Biderman, Hailey Schoelkopf, Quentin Gregory 739
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal- 740
lahan, Mohammad Aflah Khan, Shivanshu Purohit, 741
USVSN Sai Prashanth, Edward Raff, et al. 2023. 742
Pythia: A suite for analyzing large language mod- 743
els across training and scaling. In International 744
Conference on Machine Learning, pages 2397–2430. 745
PMLR. 746

Sidney Black, Stella Biderman, Eric Hallahan, Quentin 747
Anthony, Leo Gao, Laurence Golding, Horace He, 748
Connor Leahy, Kyle McDonell, Jason Phang, et al. 749
2022. Gpt-neox-20b: An open-source autoregres- 750
sive language model. In Proceedings of BigScience 751
Episode# 5–Workshop on Challenges & Perspectives 752
in Creating Large Language Models, pages 95–136. 753

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 754
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 755
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 756
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 757
Gretchen Krueger, Tom Henighan, Rewon Child, 758
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 759
Clemens Winter, Christopher Hesse, Mark Chen, Eric 760
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 761
Jack Clark, Christopher Berner, Sam McCandlish, 762
Alec Radford, Ilya Sutskever, and Dario Amodei. 763
2020. Language models are few-shot learners. In Ad- 764
vances in Neural Information Processing Systems 33: 765
Annual Conference on Neural Information Process- 766
ing Systems 2020, NeurIPS 2020, December 6-12, 767
2020, virtual. 768

Antoine Chaffin and Raphaël Sourty. 2024. Pylate: 769
Flexible training and retrieval for late interaction 770
models. 771

Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun 772
Luo, Defu Lian, and Zheng Liu. 2024. M3- 773
embedding: Multi-linguality, multi-functionality, 774
multi-granularity text embeddings through self- 775
knowledge distillation. In Findings of the Asso- 776
ciation for Computational Linguistics, ACL 2024, 777
Bangkok, Thailand and virtual meeting, August 11- 778
16, 2024, pages 2318–2335. Association for Compu- 779
tational Linguistics. 780

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 781
Maarten Bosma, Gaurav Mishra, Adam Roberts, 782

9

https://arxiv.org/abs/2401.14489
https://arxiv.org/abs/2401.14489
https://arxiv.org/abs/2401.14489
https://arxiv.org/abs/1910.08475
https://arxiv.org/abs/1910.08475
https://arxiv.org/abs/1910.08475
https://arxiv.org/abs/2004.05150
https://blog.vespa.ai/announcing-long-context-colbert-in-vespa/
https://blog.vespa.ai/announcing-long-context-colbert-in-vespa/
https://blog.vespa.ai/announcing-long-context-colbert-in-vespa/
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://github.com/lightonai/pylate
https://github.com/lightonai/pylate
https://github.com/lightonai/pylate
https://github.com/lightonai/pylate
https://github.com/lightonai/pylate
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.137
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.137
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.137
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.137
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.137
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.137
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.137

Paul Barham, Hyung Won Chung, Charles Sutton,783
Sebastian Gehrmann, Parker Schuh, Kensen Shi,784
Sasha Tsvyashchenko, Joshua Maynez, Abhishek785
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-786
odkumar Prabhakaran, Emily Reif, Nan Du, Ben787
Hutchinson, Reiner Pope, James Bradbury, Jacob788
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,789
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,790
Sunipa Dev, Henryk Michalewski, Xavier Garcia,791
Vedant Misra, Kevin Robinson, Liam Fedus, Denny792
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,793
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,794
David Dohan, Shivani Agrawal, Mark Omernick, An-795
drew M. Dai, Thanumalayan Sankaranarayana Pil-796
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,797
Rewon Child, Oleksandr Polozov, Katherine Lee,798
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark799
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy800
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,801
and Noah Fiedel. 2023. Palm: Scaling language mod-802
eling with pathways. J. Mach. Learn. Res., 24:240:1–803
240:113.804

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and805
Christopher D. Manning. 2020. ELECTRA: pre-806
training text encoders as discriminators rather than807
generators. In 8th International Conference on808
Learning Representations, ICLR 2020, Addis Ababa,809
Ethiopia, April 26-30, 2020. OpenReview.net.810

Benjamin Clavié. 2024. Jacolbertv2.5: Optimis-811
ing multi-vector retrievers to create state-of-the-812
art japanese retrievers with constrained resources.813
Preprint, arXiv:2407.20750.814

Tri Dao. 2023. Flashattention-2: Faster attention with815
better parallelism and work partitioning. In The816
Twelfth International Conference on Learning Repre-817
sentations.818

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and819
Christopher Ré. 2022. Flashattention: Fast and820
memory-efficient exact attention with io-awareness.821
Advances in Neural Information Processing Systems,822
35:16344–16359.823

Yann N. Dauphin, Angela Fan, Michael Auli, and David824
Grangier. 2017. Language modeling with gated con-825
volutional networks. In Proceedings of the 34th In-826
ternational Conference on Machine Learning, vol-827
ume 70 of Proceedings of Machine Learning Re-828
search, pages 933–941. PMLR.829

Boris Dayma, Suraj Patil, Pedro Cuenca, Khalid Saiful-830
lah, Tanishq Abraham, Phúc Lê Khăc, Luke Melas,831
and Ritobrata Ghosh. 2021. Dall·e mini.832

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and833
Kristina Toutanova. 2019. BERT: pre-training of834
deep bidirectional transformers for language under-835
standing. In Proceedings of the 2019 Conference of836
the North American Chapter of the Association for837
Computational Linguistics: Human Language Tech-838
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,839
June 2-7, 2019, Volume 1 (Long and Short Papers),840

pages 4171–4186. Association for Computational 841
Linguistics. 842

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 843
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 844
Akhil Mathur, Alan Schelten, Amy Yang, Angela 845
Fan, et al. 2024. The llama 3 herd of models. arXiv 846
preprint arXiv:2407.21783. 847

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Han- 848
naneh Hajishirzi, Yoon Kim, and Hao Peng. 2024. 849
Data engineering for scaling language models to 128k 850
context. Preprint, arXiv:2402.10171. 851

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie- 852
Yan Liu. 2019. Representation degeneration prob- 853
lem in training natural language generation models. 854
ArXiv, abs/1907.12009. 855

Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi 856
Chen. 2024. How to train long-context language 857
models (effectively). Preprint, arXiv:2410.02660. 858

Jonas Geiping and Tom Goldstein. 2023. Cramming: 859
Training a language model on a single GPU in one 860
day. In International Conference on Machine Learn- 861
ing, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, 862
USA, volume 202 of Proceedings of Machine Learn- 863
ing Research, pages 11117–11143. PMLR. 864

Team Gemma, Morgane Riviere, Shreya Pathak, 865
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati- 866
raju, Léonard Hussenot, Thomas Mesnard, Bobak 867
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2: 868
Improving open language models at a practical size. 869
arXiv preprint arXiv:2408.00118. 870

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bha- 871
gia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh 872
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, 873
et al. 2024. Olmo: Accelerating the science of lan- 874
guage models. arXiv preprint arXiv:2402.00838. 875

Alexander Hägele, Elie Bakouch, Atli Kosson, 876
Loubna Ben Allal, Leandro von Werra, and Mar- 877
tin Jaggi. 2024. Scaling laws and compute-optimal 878
training beyond fixed training durations. CoRR, 879
abs/2405.18392. 880

Oskar Hallström, Said Taghadouini, Clément Thiriet, 881
and Antoine Chaffin. 2024. Passing the torch: Train- 882
ing a mamba model for smooth handover. 883

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023. 884
Debertav3: Improving deberta using electra-style 885
pre-training with gradient-disentangled embedding 886
sharing. In The Eleventh International Conference 887
on Learning Representations, ICLR 2023, Kigali, 888
Rwanda, May 1-5, 2023. OpenReview.net. 889

Dan Hendrycks and Kevin Gimpel. 2016. Gaus- 890
sian error linear units (gelus). arXiv preprint 891
arXiv:1606.08415. 892

10

https://jmlr.org/papers/v24/22-1144.html
https://jmlr.org/papers/v24/22-1144.html
https://jmlr.org/papers/v24/22-1144.html
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://arxiv.org/abs/2407.20750
https://arxiv.org/abs/2407.20750
https://arxiv.org/abs/2407.20750
https://arxiv.org/abs/2407.20750
https://arxiv.org/abs/2407.20750
https://proceedings.mlr.press/v70/dauphin17a.html
https://proceedings.mlr.press/v70/dauphin17a.html
https://proceedings.mlr.press/v70/dauphin17a.html
https://doi.org/10.5281/zenodo.5146400
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://arxiv.org/abs/2402.10171
https://arxiv.org/abs/2402.10171
https://arxiv.org/abs/2402.10171
https://api.semanticscholar.org/CorpusID:59317065
https://api.semanticscholar.org/CorpusID:59317065
https://api.semanticscholar.org/CorpusID:59317065
https://arxiv.org/abs/2410.02660
https://arxiv.org/abs/2410.02660
https://arxiv.org/abs/2410.02660
https://proceedings.mlr.press/v202/geiping23a.html
https://proceedings.mlr.press/v202/geiping23a.html
https://proceedings.mlr.press/v202/geiping23a.html
https://proceedings.mlr.press/v202/geiping23a.html
https://proceedings.mlr.press/v202/geiping23a.html
https://doi.org/10.48550/ARXIV.2405.18392
https://doi.org/10.48550/ARXIV.2405.18392
https://doi.org/10.48550/ARXIV.2405.18392
https://www.lighton.ai/blog/lighton-s-blog-4/passing-the-torch-training-a-mamba-model-for-smooth-handover-54
https://www.lighton.ai/blog/lighton-s-blog-4/passing-the-torch-training-a-mamba-model-for-smooth-handover-54
https://www.lighton.ai/blog/lighton-s-blog-4/passing-the-torch-training-a-mamba-model-for-smooth-handover-54
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-893
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,894
and Boris Ginsburg. 2024. Ruler: What’s the real895
context size of your long-context language models?896
arXiv preprint arXiv:2404.06654.897

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He,898
Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,899
Yuxiang Huang, Weilin Zhao, Xinrong Zhang,900
Zhen Leng Thai, Kai Zhang, Chongyi Wang, Yuan901
Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu902
Zhai, Ning Ding, Chao Jia, Guoyang Zeng, Dahai Li,903
Zhiyuan Liu, and Maosong Sun. 2024. Minicpm: Un-904
veiling the potential of small language models with905
scalable training strategies. CoRR, abs/2404.06395.906

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis907
Allamanis, and Marc Brockschmidt. 2019. Code-908
searchnet challenge: Evaluating the state of semantic909
code search. arXiv preprint arXiv:1909.09436.910

Alexander Hägele, Elie Bakouch, Atli Kosson,911
Loubna Ben Allal, Leandro Von Werra, and Mar-912
tin Jaggi. 2024. Scaling laws and compute-optimal913
training beyond fixed training durations. Preprint,914
arXiv:2405.18392.915

Peter Izsak, Moshe Berchansky, and Omer Levy. 2021.916
How to train BERT with an academic budget. In Pro-917
ceedings of the 2021 Conference on Empirical Meth-918
ods in Natural Language Processing, pages 10644–919
10652, Online and Punta Cana, Dominican Republic.920
Association for Computational Linguistics.921

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jy-922
oti Aneja, Sebastien Bubeck, Caio César Teodoro923
Mendes, Weizhu Chen, Allie Del Giorno, Ronen924
Eldan, Sivakanth Gopi, et al. 2023. Phi-2: The sur-925
prising power of small language models. Microsoft926
Research Blog, 1(3):3.927

Jiaming Ji, Mickel Liu, Juntao Dai, Xuehai Pan, Chi928
Zhang, Ce Bian, Chi Zhang, Ruiyang Sun, Yizhou929
Wang, and Yaodong Yang. 2023. Beavertails: To-930
wards improved safety alignment of llm via a human-931
preference dataset. arXiv preprint arXiv:2307.04657.932

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,933
and Sunghun Kim. 2024a. A survey on large lan-934
guage models for code generation. arXiv preprint935
arXiv:2406.00515.936

Liwei Jiang, Kavel Rao, Seungju Han, Allyson Ettinger,937
Faeze Brahman, Sachin Kumar, Niloofar Mireshghal-938
lah, Ximing Lu, Maarten Sap, Yejin Choi, and Nouha939
Dziri. 2024b. Wildteaming at scale: From in-the-940
wild jailbreaks to (adversarially) safer language mod-941
els. Preprint, arXiv:2406.18510.942

Gregory Kamradt. 2023. Needle In A Haystack - pres-943
sure testing LLMs. Github.944

Andrej Karpathy. 2023. The most dramatic optimization945
to nanogpt so far (25% speedup) is to simply increase946
vocab size from 50257 to 50304 (nearest multiple of947
64).948

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick 949
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, 950
and Wen-tau Yih. 2020. Dense passage retrieval for 951
open-domain question answering. In Proceedings of 952
the 2020 Conference on Empirical Methods in Nat- 953
ural Language Processing, EMNLP 2020, Online, 954
November 16-20, 2020, pages 6769–6781. Associa- 955
tion for Computational Linguistics. 956

Omar Khattab and Matei Zaharia. 2020. Colbert: Ef- 957
ficient and effective passage search via contextual- 958
ized late interaction over BERT. In Proceedings of 959
the 43rd International ACM SIGIR conference on 960
research and development in Information Retrieval, 961
SIGIR 2020, Virtual Event, China, July 25-30, 2020, 962
pages 39–48. ACM. 963

Mario Michael Krell, Matej Kosec, Sergio P. Perez, and 964
Andrew Fitzgibbon. 2022. Efficient sequence pack- 965
ing without cross-contamination: Accelerating large 966
language models without impacting performance. 967
Preprint, arXiv:2107.02027. 968

Benjamin Lefaudeux, Francisco Massa, Diana 969
Liskovich, Wenhan Xiong, Vittorio Caggiano, 970
Sean Naren, Min Xu, Jieru Hu, Marta Tintore, 971
Susan Zhang, Patrick Labatut, Daniel Haziza, 972
Luca Wehrstedt, Jeremy Reizenstein, and Grig- 973
ory Sizov. 2022. xformers: A modular and 974
hackable transformer modelling library. https: 975
//github.com/facebookresearch/xformers. 976

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin- 977
ton. 2016. Layer normalization. ArXiv e-prints, 978
pages arXiv–1607. 979

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 980
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 981
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 982
täschel, et al. 2020. Retrieval-augmented genera- 983
tion for knowledge-intensive nlp tasks. Advances in 984
Neural Information Processing Systems (NeurIPS), 985
33:9459–9474. 986

Xiangyang Li, Kuicai Dong, Yi Quan Lee, Wei Xia, 987
Yichun Yin, Hao Zhang, Yong Liu, Yasheng Wang, 988
and Ruiming Tang. 2024. Coir: A comprehensive 989
benchmark for code information retrieval models. 990
arXiv preprint arXiv:2407.02883. 991

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del 992
Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023. 993
Textbooks are all you need ii: phi-1.5 technical report. 994
Preprint, arXiv:2309.05463. 995

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 996
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 997
Luke Zettlemoyer, and Veselin Stoyanov. 2019a. 998
Roberta: A robustly optimized BERT pretraining 999
approach. CoRR, abs/1907.11692. 1000

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 1001
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 1002
Luke Zettlemoyer, and Veselin Stoyanov. 2019b. 1003
Roberta: A robustly optimized BERT pretraining 1004
approach. CoRR, abs/1907.11692. 1005

11

https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://arxiv.org/abs/2405.18392
https://arxiv.org/abs/2405.18392
https://arxiv.org/abs/2405.18392
https://doi.org/10.18653/v1/2021.emnlp-main.831
https://arxiv.org/abs/2406.18510
https://arxiv.org/abs/2406.18510
https://arxiv.org/abs/2406.18510
https://arxiv.org/abs/2406.18510
https://arxiv.org/abs/2406.18510
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://x.com/karpathy/status/1621578354024677377
https://x.com/karpathy/status/1621578354024677377
https://x.com/karpathy/status/1621578354024677377
https://x.com/karpathy/status/1621578354024677377
https://x.com/karpathy/status/1621578354024677377
https://x.com/karpathy/status/1621578354024677377
https://x.com/karpathy/status/1621578354024677377
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://arxiv.org/abs/2107.02027
https://arxiv.org/abs/2107.02027
https://arxiv.org/abs/2107.02027
https://arxiv.org/abs/2107.02027
https://arxiv.org/abs/2107.02027
https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers
https://arxiv.org/abs/2309.05463
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen1006
Lai, Yuandong Tian, Igor Fedorov, Yunyang Xiong,1007
Ernie Chang, Yangyang Shi, Raghuraman Krish-1008
namoorthi, Liangzhen Lai, and Vikas Chandra. 2024.1009
Mobilellm: Optimizing sub-billion parameter lan-1010
guage models for on-device use cases. Preprint,1011
arXiv:2402.14905.1012

Ilya Loshchilov and Frank Hutter. 2019. Decoupled1013
weight decay regularization. In International Confer-1014
ence on Learning Representations.1015

Thao Nguyen, Maithra Raghu, and Simon Kornblith.1016
2021. Do wide and deep networks learn the same1017
things? uncovering how neural network representa-1018
tions vary with width and depth. In International1019
Conference on Learning Representations.1020

Zach Nussbaum, John X. Morris, Brandon Duderstadt,1021
and Andriy Mulyar. 2024. Nomic embed: Training1022
a reproducible long context text embedder. CoRR,1023
abs/2402.01613.1024

Guilherme Penedo, Hynek Kydlíček, Loubna Ben al-1025
lal, Anton Lozhkov, Margaret Mitchell, Colin Raffel,1026
Leandro Von Werra, and Thomas Wolf. 2024. The1027
fineweb datasets: Decanting the web for the finest1028
text data at scale. Preprint, arXiv:2406.17557.1029

Jacob Portes, Alexander Trott, Sam Havens, Daniel1030
King, Abhinav Venigalla, Moin Nadeem, Nikhil Sar-1031
dana, Daya Khudia, and Jonathan Frankle. 2023. Mo-1032
saicbert: A bidirectional encoder optimized for fast1033
pretraining. In Advances in Neural Information Pro-1034
cessing Systems 36: Annual Conference on Neural1035
Information Processing Systems 2023, NeurIPS 2023,1036
New Orleans, LA, USA, December 10 - 16, 2023.1037

Rushi Qiang, Ruiyi Zhang, and Pengtao Xie. 2024.1038
Bilora: A bi-level optimization framework for1039
overfitting-resilient low-rank adaptation of large pre-1040
trained models. CoRR, abs/2403.13037.1041

Alec Radford, Karthik Narasimhan, Tim Salimans, and1042
Ilya Sutskeve. 2018. Improving language understand-1043
ing by generative pre-training. In OpenAI Tech Re-1044
port.1045

Alec Radford, Jeff Wu, Rewon Child, David Luan,1046
Dario Amodei, and Ilya Sutskever. 2019. Language1047
models are unsupervised multitask learners. OpenAI1048
Blog.1049

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie1050
Millican, Jordan Hoffmann, Francis Song, John1051
Aslanides, Sarah Henderson, Roman Ring, Susan-1052
nah Young, Eliza Rutherford, Tom Hennigan, Ja-1053
cob Menick, Albin Cassirer, Richard Powell, George1054
van den Driessche, Lisa Anne Hendricks, Mari-1055
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo-1056
hannes Welbl, Sumanth Dathathri, Saffron Huang,1057
Jonathan Uesato, John Mellor, Irina Higgins, Anto-1058
nia Creswell, Nat McAleese, Amy Wu, Erich Elsen,1059
Siddhant Jayakumar, Elena Buchatskaya, David Bud-1060
den, Esme Sutherland, Karen Simonyan, Michela Pa-1061
ganini, Laurent Sifre, Lena Martens, Xiang Lorraine1062

Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena 1063
Gribovskaya, Domenic Donato, Angeliki Lazaridou, 1064
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim- 1065
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot- 1066
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, 1067
Daniel Toyama, Cyprien de Masson d’Autume, Yujia 1068
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, 1069
Aidan Clark, Diego de Las Casas, Aurelia Guy, 1070
Chris Jones, James Bradbury, Matthew Johnson, 1071
Blake Hechtman, Laura Weidinger, Iason Gabriel, 1072
William Isaac, Ed Lockhart, Simon Osindero, Laura 1073
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, 1074
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko- 1075
ray Kavukcuoglu, and Geoffrey Irving. 2022. Scaling 1076
language models: Methods, analysis & insights from 1077
training gopher. Preprint, arXiv:2112.11446. 1078

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 1079
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 1080
Wei Li, and Peter J Liu. 2020. Exploring the lim- 1081
its of transfer learning with a unified text-to-text 1082
transformer. Journal of machine learning research, 1083
21(140):1–67. 1084

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 1085
Sentence embeddings using siamese bert-networks. 1086
In Proceedings of the 2019 Conference on Empirical 1087
Methods in Natural Language Processing. Associa- 1088
tion for Computational Linguistics. 1089

David Samuel. 2024. Berts are generative in-context 1090
learners. CoRR, abs/2406.04823. 1091

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, 1092
Christopher Potts, and Matei Zaharia. 2022. Col- 1093
bertv2: Effective and efficient retrieval via 1094
lightweight late interaction. In Proceedings of the 1095
2022 Conference of the North American Chapter of 1096
the Association for Computational Linguistics: Hu- 1097
man Language Technologies, NAACL 2022, Seattle, 1098
WA, United States, July 10-15, 2022, pages 3715– 1099
3734. Association for Computational Linguistics. 1100

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 1101
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle- 1102
moyer, Nicola Cancedda, and Thomas Scialom. 2023. 1103
Toolformer: Language models can teach themselves 1104
to use tools. In Advances in Neural Information Pro- 1105
cessing Systems 36: Annual Conference on Neural 1106
Information Processing Systems 2023, NeurIPS 2023, 1107
New Orleans, LA, USA, December 10 - 16, 2023. 1108

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay 1109
Thakkar, Pradeep Ramani, and Tri Dao. 2024. 1110
Flashattention-3: Fast and accurate attention with 1111
asynchrony and low-precision. arXiv preprint 1112
arXiv:2407.08608. 1113

Noam Shazeer. 2020. Glu variants improve transformer. 1114
arXiv preprint arXiv:2002.05202. 1115

Noam Shazeer and Mitchell Stern. 2018. Adafactor: 1116
Adaptive learning rates with sublinear memory cost. 1117
In Proceedings of the 35th International Conference 1118
on Machine Learning, volume 80 of Proceedings 1119

12

https://arxiv.org/abs/2402.14905
https://arxiv.org/abs/2402.14905
https://arxiv.org/abs/2402.14905
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=KJNcAkY8tY4
https://openreview.net/forum?id=KJNcAkY8tY4
https://openreview.net/forum?id=KJNcAkY8tY4
https://openreview.net/forum?id=KJNcAkY8tY4
https://openreview.net/forum?id=KJNcAkY8tY4
https://doi.org/10.48550/ARXIV.2402.01613
https://doi.org/10.48550/ARXIV.2402.01613
https://doi.org/10.48550/ARXIV.2402.01613
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
http://papers.nips.cc/paper_files/paper/2023/hash/095a6917768712b7ccc61acbeecad1d8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/095a6917768712b7ccc61acbeecad1d8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/095a6917768712b7ccc61acbeecad1d8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/095a6917768712b7ccc61acbeecad1d8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/095a6917768712b7ccc61acbeecad1d8-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2403.13037
https://doi.org/10.48550/ARXIV.2403.13037
https://doi.org/10.48550/ARXIV.2403.13037
https://doi.org/10.48550/ARXIV.2403.13037
https://doi.org/10.48550/ARXIV.2403.13037
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.48550/ARXIV.2406.04823
https://doi.org/10.48550/ARXIV.2406.04823
https://doi.org/10.48550/ARXIV.2406.04823
https://doi.org/10.18653/V1/2022.NAACL-MAIN.272
https://doi.org/10.18653/V1/2022.NAACL-MAIN.272
https://doi.org/10.18653/V1/2022.NAACL-MAIN.272
https://doi.org/10.18653/V1/2022.NAACL-MAIN.272
https://doi.org/10.18653/V1/2022.NAACL-MAIN.272
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html

of Machine Learning Research, pages 4596–4604.1120
PMLR.1121

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,1122
Patrick LeGresley, Jared Casper, and Bryan Catan-1123
zaro. 2019. Megatron-lm: Training multi-billion1124
parameter language models using model parallelism.1125
arXiv preprint arXiv:1909.08053.1126

Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng1127
Pan, Wen Bo, and Yunfeng Liu. 2024. Roformer: En-1128
hanced transformer with rotary position embedding.1129
Neurocomputing, 568:127063.1130

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus,1131
Samira Abnar, Hyung Won Chung, Sharan Narang,1132
Dani Yogatama, Ashish Vaswani, and Donald Met-1133
zler. 2022. Scale efficiently: Insights from pretrain-1134
ing and finetuning transformers. In International1135
Conference on Learning Representations (ICLR) 22.1136

The Mosaic ML Team. 2021. composer. https://1137
github.com/mosaicml/composer/.1138

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-1139
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:1140
A heterogeneous benchmark for zero-shot evaluation1141
of information retrieval models. In Proceedings of1142
the Neural Information Processing Systems Track on1143
Datasets and Benchmarks 1, NeurIPS Datasets and1144
Benchmarks 2021, December 2021, virtual.1145

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-1146
bert, Amjad Almahairi, Yasmine Babaei, Nikolay1147
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti1148
Bhosale, et al. 2023. Llama 2: Open founda-1149
tion and fine-tuned chat models. arXiv preprint1150
arXiv:2307.09288.1151

Lewis Tunstall, Nils Reimers, Unso Eun Seo Jo, Luke1152
Bates, Daniel Korat, Moshe Wasserblat, and Oren1153
Pereg. 2022. Efficient few-shot learning without1154
prompts. arXiv preprint.1155

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.1156
Representation learning with contrastive predictive1157
coding. CoRR, abs/1807.03748.1158

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob1159
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz1160
Kaiser, and Illia Polosukhin. 2017. Attention is all1161
you need. In Advances in Neural Information Pro-1162
cessing Systems 30: Annual Conference on Neural1163
Information Processing Systems 2017, December 4-9,1164
2017, Long Beach, CA, USA, pages 5998–6008.1165

Ellen Voorhees, Tasmeer Alam, Steven Bedrick, Dina1166
Demner-Fushman, William R Hersh, Kyle Lo, Kirk1167
Roberts, Ian Soboroff, and Lucy Lu Wang. 2021.1168
Trec-covid: constructing a pandemic information re-1169
trieval test collection. In ACM SIGIR Forum, vol-1170
ume 54, pages 1–12. ACM New York, NY, USA.1171

Alex Wang, Amanpreet Singh, Julian Michael, Felix1172
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:1173

A multi-task benchmark and analysis platform for nat- 1174
ural language understanding. In Proceedings of the 1175
2018 EMNLP Workshop BlackboxNLP: Analyzing 1176
and Interpreting Neural Networks for NLP, pages 1177
353–355, Brussels, Belgium. Association for Com- 1178
putational Linguistics. 1179

Liang Wang, Nan Yang, Xiaolong Huang, Binxing 1180
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, 1181
and Furu Wei. 2022. Text embeddings by weakly- 1182
supervised contrastive pre-training. arXiv preprint 1183
arXiv:2212.03533. 1184

Benjamin Warner. 2023. optimı̄: Fast, modern, memory 1185
efficient, and low precision pytorch optimizers. 1186

Charles Welch, Rada Mihalcea, and Jonathan K. Kum- 1187
merfeld. 2020. Improving low compute language 1188
modeling with in-domain embedding initialisation. 1189
Preprint, arXiv:2009.14109. 1190

Alexander Wettig, Tianyu Gao, Zexuan Zhong, and 1191
Danqi Chen. 2023. Should you mask 15% in masked 1192
language modeling? Preprint, arXiv:2202.08005. 1193

Adina Williams, Nikita Nangia, and Samuel Bowman. 1194
2018. A broad-coverage challenge corpus for sen- 1195
tence understanding through inference. In Proceed- 1196
ings of the 2018 Conference of the North American 1197
Chapter of the Association for Computational Lin- 1198
guistics: Human Language Technologies, Volume 1 1199
(Long Papers), pages 1112–1122. 1200

Mitchell Wortsman, Tim Dettmers, Luke Zettle- 1201
moyer, Ari Morcos, Ali Farhadi, and Ludwig 1202
Schmidt. 2023. Stable and low-precision training 1203
for large-scale vision-language models. Preprint, 1204
arXiv:2304.13013. 1205

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas 1206
Muennighoff. 2023. C-pack: Packaged resources 1207
to advance general chinese embedding. Preprint, 1208
arXiv:2309.07597. 1209

Chen Xing, Devansh Arpit, Christos Tsirigotis, and 1210
Yoshua Bengio. 2018. A walk with sgd. Preprint, 1211
arXiv:1802.08770. 1212

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, 1213
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan 1214
Lan, Liwei Wang, and Tie-Yan Liu. 2020. On layer 1215
normalization in the transformer architecture. In Pro- 1216
ceedings of the 37th International Conference on 1217
Machine Learning, ICML 2020, 13-18 July 2020, Vir- 1218
tual Event, volume 119 of Proceedings of Machine 1219
Learning Research, pages 10524–10533. PMLR. 1220

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, 1221
and Junyang Lin. 2019. Understanding and improv- 1222
ing layer normalization. Advances in neural informa- 1223
tion processing systems, 32. 1224

Hong Xuan, Abby Stylianou, Xiaotong Liu, and Robert 1225
Pless. 2020. Hard negative examples are hard, but 1226
useful. In Computer Vision–ECCV 2020: 16th Euro- 1227
pean Conference, Glasgow, UK, August 23–28, 2020, 1228
Proceedings, Part XIV 16, pages 126–142. Springer. 1229

13

https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://github.com/mosaicml/composer/
https://github.com/mosaicml/composer/
https://github.com/mosaicml/composer/
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/65b9eea6e1cc6bb9f0cd2a47751a186f-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/65b9eea6e1cc6bb9f0cd2a47751a186f-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/65b9eea6e1cc6bb9f0cd2a47751a186f-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/65b9eea6e1cc6bb9f0cd2a47751a186f-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/65b9eea6e1cc6bb9f0cd2a47751a186f-Abstract-round2.html
https://doi.org/10.48550/ARXIV.2209.11055
https://doi.org/10.48550/ARXIV.2209.11055
https://doi.org/10.48550/ARXIV.2209.11055
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://github.com/warner-benjamin/optimi
https://github.com/warner-benjamin/optimi
https://github.com/warner-benjamin/optimi
https://arxiv.org/abs/2009.14109
https://arxiv.org/abs/2009.14109
https://arxiv.org/abs/2009.14109
https://arxiv.org/abs/2202.08005
https://arxiv.org/abs/2202.08005
https://arxiv.org/abs/2202.08005
https://arxiv.org/abs/2304.13013
https://arxiv.org/abs/2304.13013
https://arxiv.org/abs/2304.13013
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/1802.08770
http://proceedings.mlr.press/v119/xiong20b.html
http://proceedings.mlr.press/v119/xiong20b.html
http://proceedings.mlr.press/v119/xiong20b.html

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,1230
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan1231
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen21232
technical report. arXiv preprint arXiv:2407.10671.1233

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak1234
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023.1235
React: Synergizing reasoning and acting in language1236
models. In The Eleventh International Conference1237
on Learning Representations, ICLR 2023, Kigali,1238
Rwanda, May 1-5, 2023. OpenReview.net.1239

Urchade Zaratiana, Nadi Tomeh, Pierre Holat, and1240
Thierry Charnois. 2024. Gliner: Generalist model for1241
named entity recognition using bidirectional trans-1242
former. In Proceedings of the 2024 Conference of1243
the North American Chapter of the Association for1244
Computational Linguistics: Human Language Tech-1245
nologies (Volume 1: Long Papers), pages 5364–5376.1246

Jinle Zeng, Min Li, Zhihua Wu, Jiaqi Liu, Yuang Liu,1247
Dianhai Yu, and Yanjun Ma. 2022. Boosting dis-1248
tributed training performance of the unpadded bert1249
model. arXiv preprint arXiv:2208.08124.1250

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby,1251
and Lucas Beyer. 2022. Scaling vision transformers.1252
In IEEE/CVF Conference on Computer Vision and1253
Pattern Recognition, CVPR 2022, New Orleans, LA,1254
USA, June 18-24, 2022, pages 1204–1213. IEEE.1255

Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie,1256
Ziqi Dai, Jialong Tang, Huan Lin, Baosong Yang,1257
Pengjun Xie, Fei Huang, Meishan Zhang, Wenjie1258
Li, and Min Zhang. 2024. mgte: Generalized long-1259
context text representation and reranking models for1260
multilingual text retrieval. In Proceedings of the 20241261
Conference on Empirical Methods in Natural Lan-1262
guage Processing: EMNLP 2024 - Industry Track,1263
Miami, Florida, USA, November 12-16, 2024, pages1264
1393–1412. Association for Computational Linguis-1265
tics.1266

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,1267
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen1268
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A1269
survey of large language models. arXiv preprint1270
arXiv:2303.18223.1271

A Training Settings1272

Detailed training settings can be found in Table 3.1273

During training we used MNLI as a live evalu-1274

ation, along with validation loss and token accu-1275

racy metrics on a 500 million randomly sampled1276

sequences from the source datasets.1277

We use Composer (Team, 2021) as our train-1278

ing framework and optimı̄ (Warner, 2023) for our1279

optimizer implementations.1280

A.1 Batch Size Schedule1281

Batch size warmup is a common-knowledge trick1282

to speed up model training when working with1283

medium to large batch sizes. Instead of "wasting" a 1284

full batch on updating the suboptimal initial weight 1285

distribution, we update the model weights on a 1286

gradually increasing batch size. Batch size warmup 1287

is usually longer than learning rate warmup, and 1288

can be thought of as providing a higher initial learn- 1289

ing rate with a mini learning rate decay to the de- 1290

fined learning rate schedule. We warmup Mod- 1291

ernBERT’s batch size from 768 to 4,608 over 50 1292

billion tokens and from 448 to 4,928 over 10 billion 1293

tokens, for -base and -large, respectively, with an 1294

uneven token schedule so each batch size has the 1295

same number of update steps. 1296

A.2 Weight Tiling 1297

Following the Phi family of models (Li et al., 1298

2023; Javaheripi et al., 2023), we initialized 1299

ModernBERT-large directly from ModernBERT- 1300

base’s pretraining weights using center tiling and 1301

Gopher layer scaling (Rae et al., 2022). Since 1302

Base’s weight matrices are smaller than Large’s, 1303

we centered Base’ weights, accounting for each 1304

token embedding and attention head, then filled 1305

rest the of the weights using wraparound. Like Phi, 1306

we tested center initialization with random edge 1307

values and tiling from an edge, but both of these un- 1308

derperformed center tiling with wraparound. This 1309

weight initialization strategy greatly accelerates 1310

ModernBERT-large’s initial training. 1311

A.3 Weight Decay 1312

We did not apply weight decay to the bias terms 1313

or normalization layers. Instead of PyTorch-style 1314

decoupled weight decay, we applied fully decou- 1315

pled weight decay following Loshchilov and Hutter 1316

(2019). 1317

A.4 Final Checkpoints 1318

Inspired by recent work showing that checkpoint 1319

averaging yields stronger final models (Dubey 1320

et al., 2024; Clavié, 2024), we selected our final 1321

checkpoints by experimenting with various aver- 1322

aging methods and evaluating them on a subset 1323

of evaluation tasks. In no cases did Exponen- 1324

tial Moving Average during annealing, as used by 1325

Dubey et al. (2024), result in stronger performance. 1326

ModernBERT-base is the result of averaging the 3 1327

best performing annealing checkpoints with the fi- 1328

nal one. Averaging did not yield successful results 1329

on the large size, ModernBERT-Large model is the 1330

best performing annealing checkpoint. 1331

14

https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.1109/CVPR52688.2022.01179
https://aclanthology.org/2024.emnlp-industry.103
https://aclanthology.org/2024.emnlp-industry.103
https://aclanthology.org/2024.emnlp-industry.103
https://aclanthology.org/2024.emnlp-industry.103
https://aclanthology.org/2024.emnlp-industry.103

Pretraining Phase Context Extension: Phase One Context Extension: Phase Two

Base Large Base Large Base Large

Training Tokens 1.719 trillion 250 billion 50 billion
Max Sequence Length 1,024 8,192 8,192

Batch Size 4,608 4,928 72 77 72 78
Warmup (tokens) 50 billion 10 billion - - - -

Microbatch Size 96 56 12 7 12 6

Learning Rate 8e-4 5e-4, 5e-5 3e-4 5e-5 3e-4 5e-5
Schedule Trapezoidal - - 1-sqrt
Warmup (tokens) 3 billion 2 billion - - - -
Decay (tokens) - - - - 50 billion

Weight Decay 1e-5 1e-5, 1e-6 1e-5 1e-6 1e-5 1e-6

Total Time (hours) 194.2 425.3 39.9 80.7 11.5 21.7
Training Time (hours) 191.1 420.4 36.3 75.1 7.5 15.3

Model Initialization Megatron From Base - - - -

Dropout (attn out) 0.1
Dropout (all other layers) 0.0

Optimizer StableAdamW
Betas (0.90, 0.98)
Epsilon 1e-06

Training Hardware 8x H100
Training Strategy Distributed DataParallel
Software Libraries PyTorch 2.4.0, Cuda 12.4.0, Composer 0.24.1, Flash Attention 2.6.3, FA3 commit 32792d3

Table 3: ModernBERT training settings. Dropout and below are shared across all phases.

B Model Design1332

From Anthony et al. (2024), in addition to setting1333

attention heads as multiples of 64 and setting the1334

embedding matrix as a power of 2 or multiple of1335

64, there are three model design choices to max-1336

imize performance (assuming float16 or bfloat161337

computation):1338

• Tensor Core Requirement: Weight matrix1339

dimensions should be divisible by 641340

• Tile Quantization: Weight matrix is divisible1341

into 128 × 256 blocks.1342

• Wave Quantization: Number of blocks is1343

divisible by the number of streaming multi-1344

processors (SM).1345

Given that we wanted to target good performance1346

across multiple GPUs with a wide variety of SM1347

counts, wave quantization is an impossible ask. So1348

we selected a basket of GPUs (NVIDIA T4, A10,1349

L4, RTX 3090, RTX 4090, A100, and H100) and1350

calculated the approximate SM utilization for each1351

by dividing the modulus blocks by the number of1352

SMs. This appeared to be a decent performance1353

heuristic in our spot checking. We then designed1354

our models to maximize performance on the basket1355

of GPUs, putting more weight on inference GPUs.1356

C Training Log 1357

C.1 Sampling Issue 1358

Our first pretraining run of ModernBERT-base 1359

ended in disaster as the loss exhibited a seesaw 1360

pattern before slowly diverging. Despite using Py- 1361

Torch’s distributed random sampler, training met- 1362

rics suggested that the model was training on the 1363

dataset in a non-random order. Like the Olmo 1364

authors15, we determined that the PyTorch ran- 1365

dom sampler returns sequentially biased samples 1366

when the number of samples is somewhere between 1367

500 million and 1 billion samples16. We resolved 1368

this issue by replacing the PyTorch sampler with 1369

NumPy’s PCG64DXSM random sampler. 1370

C.2 Large Rollback 1371

We rolled back and restarted ModernBERT-large 1372

training at a lower learning rate of 5e-5 and lower 1373

weight decay of 1e-6 for the last 800 billion to- 1374

kens. Prior to restarting training, large’s training 1375

loss, validation metrics, and live evaluations on 1376

MNLI had plateaued for a few hundred billion to- 1377

kens at the higher 5e-4 learning rate. In contrast, 1378

15We found a comment and GitHub issue about this in the
Olmo codebase after resolving the issue ourselves.

16We did not conduct a rigorous statistical analysis to deter-
mine exactly when this happens.

15

Base Large

Vocabulary 50,368 50,368
Unused Tokens 83 83
Layers 22 28
Hidden Size 768 1024
Transformer Block Pre-Norm Pre-Norm
Activation Function GeLU GeLU
Linear Bias False False
Attention Multi-head Multi-head
Attention Heads 12 16
Global Attention Every three layers Every three layers
Local Attention Window 128 128
Intermediate Size 1,152 2,624
GLU Expansion 2,304 5,248
Normalization LayerNorm LayerNorm
Norm Epsilon 1e-5 1e-5
Norm Bias False False
RoPE theta 160,000 160,000
Local Attn RoPE theta 10,000 10,000

Table 4: ModernBERT model design

ModernBERT-base showed a continuous, but di-1379

minishing, improvement on training loss, valida-1380

tion metrics, and live evaluations through the entire1381

1.719 trillion token training phase. This highlights1382

one of the risks of training with a constant learning1383

rate, other learning rate schedules can mitigate se-1384

lecting a too high learning rate (or too small batch1385

size) by lowering the learning rate throughout train-1386

ing.1387

D Architecture ablations1388

To select the updates to add in the ModernBERT1389

architecture, we performed different ablations, ex-1390

cept where stated, most ablations where ran at the1391

8-20 billion token scale:1392

• We compared two GLU layers, GeGLU and1393

SwiGLU. We find close to no difference be-1394

tween the two and choose to use GeGLU lay-1395

ers.1396

• Using different percentage of the head dimen-1397

sion for the RoPE dimension (50, 75, 100).1398

Lower percentages gave slightly better results.1399

However, the observed difference was min-1400

imal. As the ablations were conducted at a1401

considerably smaller scale than the final train-1402

ing, we choose to err on the side of caution1403

and opt to keep the dimension at 100 % to1404

avoid potentially hindering the capabilities of1405

the fully trained models.1406

• Both LayerNorm and RMSNorm yielded very1407

similar results. While RMSNorm is theo-1408

retically faster, at the time this work was1409

conducted, PyTorch did not have a native 1410

RMSNorm implementation, leading to eager- 1411

mode RMSNorm being the default implemen- 1412

tation used for many users. To ensure Modern- 1413

BERT has the highest possible out-of-the-box 1414

efficiency, we choose to use LayerNorm in the 1415

final models. 1416

• We investigated using parallel attention to 1417

compute the MLP and attention matrices at 1418

the same time, which has been shown to in- 1419

crease processing speeds for larger model 1420

sizes (Chowdhery et al., 2023). However, for 1421

models within our targe sizes and pre-training 1422

sequence length, the speed-up we observed 1423

was minimal while we encountered signifi- 1424

cant degradation in downstream performance. 1425

As such, we do not use parallel attention. It is 1426

however possible that larger encoders and/or 1427

larger sequence lengths might see a different 1428

trade-off. 1429

• We explored the use of alternating global/local 1430

attention, with global attention every 3 layers 1431

and local attention over a 128 token sliding 1432

window otherwise. This setup yielded identi- 1433

cal downstream performance when compared 1434

to the use of global attention in every layer, 1435

even at 100 billion tokens, while resulting in 1436

major speedups. 1437

• We experimented with multiple tokenizers, be- 1438

fore selecting our final one, based on a mod- 1439

ified OLMo (Groeneveld et al., 2024) tok- 1440

enizer, which performed the best out of the 1441

16

recent tokenizers evaluated. Tokenizers from1442

the BERT and RoBERTa generation of en-1443

coder models had competitive downstream1444

performance on MNLI, but we theorized that1445

their lack of recent training data and lack of1446

code support would hinder downstream appli-1447

cations. Interestingly, we observed significant1448

downstream performance degradation when1449

using the Llama 2 (Touvron et al., 2023) tok-1450

enizer.1451

E Extended results1452

E.1 Full GLUE results1453

The results for all the models each GLUE subsets1454

are presented in Table 5. The values for prior mod-1455

els are extracted from the literature. As mentioned1456

in Section 3.1.1, we follow standard practice (Liu1457

et al., 2019a; Portes et al., 2023; He et al., 2023)1458

and conduct an hyperparameter search on each1459

subset. More specifically, we perform a sweep1460

over learning rates in [1e−5, 3e−5, 5e−5, 8e−5],1461

weight decay in [1e−6, 5e−6, 8e−6, 1e−5], and1462

number of epochs in [1, 2, 3] for tasks in SST-2,1463

MNLI, and RTE, and [2, 5, 10] for tasks in QNLI,1464

QQP, CoLA, MRPC, and STS-B. The final values1465

are detailed in Table 6. Early stopping is used for1466

all the fine-tuning runs which reduces the overall1467

fine-tuning time considerably. RTE MRPC and1468

STS-B checkpoints are trained starting from the1469

MNLI checkpoint.1470

E.2 Full BEIR results1471

In the main body, we only report the average1472

score over the 15 very diverse datasets of BEIR.1473

We report the results on every subsets for both1474

single and multi-vector retrieval in Table 7 and1475

Table 8 respectively. For both settings and for1476

every model, we perform a sweep for learning1477

rates in [1e−5, 2e−5, 3e−5, 5e−5, 8e−5, 1e−4]1478

and choose the model obtaining the best average1479

result over a subset of datasets composed of NFCor-1480

pus, SciFact, TREC-Covid and FiQA as the final1481

model. Best learning rates for every setting are1482

reported in Table 9. Although ModernBERT show-1483

case strong results across the board, it should be1484

noted that an important factor in its performance is1485

TREC-COVID (Voorhees et al., 2021), potentially1486

showcasing the benefits of ModernBERT being1487

trained with a more recent knowledge cutoff than1488

most existing encoders. However, NomicBERT1489

and GTE have also been trained on updated data,1490

so the cutoff cannot be the only factor affecting the 1491

performance. 1492

F Efficiency 1493

Full statistics of the synthetic datasets used to eval- 1494

uate the efficiency of the models in Section 4 are 1495

given in Table 10. The detailed runtimes, alongside 1496

with the maximum batch size for every model is 1497

detailed in Table 11. 1498

The high maximum batch-size achieved by Mod- 1499

ernBERT models, considerably higher than any 1500

other models, highlight the strong memory effi- 1501

ciency of the model at both sizes. Inversely, it 1502

is worth noting that while DeBERTaV3 has com- 1503

petitive GLUE performance, it stands out as par- 1504

ticularly inefficient, both in its memory use and 1505

processing speed. Indeed, on both model sizes, 1506

DeBERTaV3’s memory use is 5-to-7 times higher 1507

than ModernBERT’s, and it processes inputs, even 1508

in the most favorable scenario where all sequences 1509

are at the maximum possible length, thus negating 1510

any advantage from unpadding. 1511

G Licensing 1512

We release the ModernBERT model architectures, 1513

model weights, training codebase under the Apache 1514

2.0 license. We omit links to these resources in this 1515

submission in the name of review anonymity. 1516

17

Single Sentence Paraphrase and Similarity Natural Language Inference
Model Params Pos. Seq. Avg. CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE

Base
BERTβ 110M Abs. 512 84.7 59.0 93.1 89.5 89.4 91.4 85.4 91.6 78.2
RoBERTaα 125M Abs. 512 86.4 63.6 94.8 90.2 91.2 91.9 87.6 92.8 78.7
DeBERTav3ϵ 183M Rel. 512 88.09 69.19 95.63 89.46 91.60 92.4 90.01 94.03 83.75
MosaicBERT-128β 137M Alibi 128 85.4 58.2 93.5 89.0 90.3 92.0 85.6 91.4 83.0
NomicBERT-2048γ 137M RoPE 2048 84 50 93 88 90 92 86 92 82
GTE-en-MLMδ 137M RoPE 8192 85.61 57.02 93.35 92.14 90.21 88.78 86.69 91.85 84.84
ModernBERT 149M RoPE 8192 88.44 65.14 95.99 92.16 91.77 92.11 89.06 93.94 87.36

Large
BERTβ 330M Abs. 512 85.2 56.2 93.3 87.8 90.6 90.9 86.3 92.8 83.8
RoBERTaα 355M Abs. 512 88.9 68.0 96.4 90.9 92.4 92.2 90.2 94.7 86.6
DeBERTav3ζ 434M Rel. 512 91.37 75.3 96.9 92.2 93.0 93.3 91.8 96.0 92.7
GTE-en-MLMδ 434M RoPE 8192 87.58 60.39 95.07 93.45 91.37 89.19 89.20 93.90 88.09
ModernBERT 395M RoPE 8192 90.46 71.39 97.13 91.67 92.78 92.66 90.83 95.20 92.06

Table 5: GLUE (Wang et al., 2018) dev set scores. α taken from Table 8 of (Liu et al., 2019a), β taken from Table
S3 of (Portes et al., 2023), γ from Table 2 of (Nussbaum et al., 2024), δ from Table 21 of (Zhang et al., 2024), ϵ

from Table 2 of (Qiang et al., 2024) and ζ from Table 3 of (He et al., 2023)

Base Large

Task LR WD Ep LR WD Ep

CoLA 8e−5 1e−6 5 3e−5 8e−6 5
MNLI 5e−5 5e−6 1 3e−5 1e−5 1
MRPC 5e−5 5e−6 10 8e−5 5e−6 2
QNLI 8e−5 5e−6 2 3e−5 5e−6 2
QQP 5e−5 5e−6 10 5e−5 8e−6 2
RTE 5e−5 1e−5 3 5e−5 8e−6 3
SST-2 8e−5 1e−5 2 1e−5 1e−6 3
STSB 8e−5 5e−6 10 8e−5 1e−5 10

Table 6: Fine-tuning hyperparameters for ModernBERT on GLUE tasks. LR: Learning Rate, WD: Weight Decay,
Ep: Epochs.

Model Avg. NFCorpus SciFact TREC-Covid FiQA ArguAna Climate-FEVER DBPedia FEVER HotpotQA MSMARCO NQ Quora SciDocs Touche2020 CQADupstack
Base
BERT 38.86 24.25 51.31 49.52 22.78 31.64 21.86 28.19 64.13 47.89 58.53 37.94 83.11 12.89 20.4 28.46
RoBERTa 37.74 20.36 45.61 52.22 26.1 35.18 22.29 23.12 60.2 44.95 55.99 34.74 84.03 11.44 21.07 28.81
DeBERTav3 20.21 8.04 22.64 48.42 11.52 26.05 9.74 5.33 17.29 7.96 25.24 12.51 74.69 5.36 14.2 14.21
NomicBERT 40.95 25.65 51.98 62.97 23.54 35.5 22.86 30.33 64.95 48.03 60.6 42.55 84.49 12.63 19.04 29.15
GTE-en-MLM 41.43 26.26 54.1 49.68 30.11 35.71 24.51 28.91 66.53 49.93 63.05 41.74 85.21 14.13 19.09 32.49
ModernBERT 41.60 23.71 56.97 72.07 28.75 35.69 23.55 23.8 59.94 46.06 61.6 39.48 85.89 12.51 20.83 33.12
Large
BERT 38.88 23.33 50.67 48.86 23.98 35.23 22.08 27.18 61.73 45.91 59.8 39.47 83.64 12.98 19.47 28.91
RoBERTa 41.44 23.88 53.42 54.98 33.39 37.55 23.47 25.4 65.22 47.08 60.36 43.33 85.82 13.65 21.12 32.96
DeBERTav3 25.6 9.63 31.22 56.59 15.77 26.29 14.44 6.82 29.37 15.27 32.37 21.47 79.11 7.04 18.77 19.91
GTE-en-MLM 42.46 27.72 57.63 48.35 34.01 35.25 23.99 27 65.36 50.8 64.06 44.9 85.33 15.63 21.42 35.5
ModernBERT 43.99 26.21 60.37 74.12 33.13 38.21 20.51 25.1 62.68 49.21 64.93 45.5 86.54 13.81 23.07 36.47

Table 7: BEIR (Thakur et al., 2021) nDCG@10 scores for single-vector retrieval models.

Model Avg. NFCorpus SciFact TREC-Covid FiQA ArguAna Climate-FEVER DBPedia FEVER HotpotQA MSMARCO NQ Quora SciDocs Touche2020 CQADupstack

Base
BERT 49.04 34.18 71.48 69.88 35.01 49.91 19.18 42.36 83.10 69.76 45.42 55.38 84.08 14.66 26.97 34.24
RoBERTa 48.70 33.70 70.80 69.76 37.37 48.90 18.91 39.28 81.20 66.08 43.73 56.26 83.58 14.82 31.70 34.43
DeBERTav3 47.11 31.94 68.50 75.47 35.46 46.47 18.30 35.56 78.14 65.34 39.45 50.43 83.67 14.57 31.08 32.34
NomicBERT 49.89 35.46 72.18 73.45 35.85 44.84 19.03 43.55 83.88 71.11 46.25 58.46 84.00 15.12 31.30 33.88
GTE-en-MLM 48.21 35.07 71.51 69.42 35.97 48.48 17.41 41.15 79.85 67.01 44.37 52.82 85.19 15.01 25.35 34.59
ModernBERT 51.31 35.22 72.95 80.47 37.99 49.13 22.19 41.95 85.76 70.44 45.38 57.08 86.25 16.01 33.85 35.12

Large
BERT 49.54 34.61 72.85 68.76 35.49 48.30 19.65 42.39 83.64 70.70 45.94 57.15 84.76 15.16 28.89 34.85
RoBERTa 49.76 34.96 72.32 74.36 38.72 50.04 19.55 40.97 82.00 66.22 44.72 57.47 85.92 15.26 27.90 36.04
DeBERTav3 46.73 31.69 70.20 73.34 34.99 46.18 18.04 36.49 78.96 63.20 39.42 51.64 81.08 14.08 28.55 33.09
GTE-en-MLM 50.65 35.16 72.43 67.21 39.55 50.25 20.79 44.43 82.50 72.00 46.95 60.05 86.42 15.87 30.89 35.38
ModernBERT 52.35 36.04 73.17 81.32 40.34 50.34 22.29 44.13 85.80 72.52 45.95 59.89 86.06 16.90 34.59 35.94

Table 8: BEIR (Thakur et al., 2021) nDCG@10 scores for multi-vector retrieval models.

18

Model Single-vector (DPR) Multi-vector (ColBERT)
Base
BERT 5e−5 8e−5
RoBERTa 3e−5 8e−5
DeBERTav3 8e−5 5e−5
NomicBERT 5e−5 1e−4
GTE-en-MLM 5e−5 8e−5
ModernBERT 8e−5 1e−4

Large
BERT 3e−5 1e−4
RoBERTa 3e−5 1e−5
DeBERTav3 8e−5 1e−5
GTE-en-MLM 3e−5 3e−5
ModernBERT 1e−4 3e−5

Table 9: Learning rate used for reported results on BEIR (Thakur et al., 2021) for both single and multi vector
retrieval

Fixed Short Variable Short Fixed Long Variable Long
Total Token Count 4,194,304 2,096,510 67,108,864 33,604,913
Standard deviation 0 64 0 1024
Average Length 512 256 8192 4102
Longest sequence token count 512 476 8192 7624
Shortest sequence token count 512 32 8192 171
Number of sequences 8192 8192 8192 8192

Table 10: Token statistics for the synthetic datasets used in efficiency evaluations.

Param
Count

Short Context
(<=512 tokens)

Long Context
(<=8192 tokens)

Max
bsize

Runtime
(in seconds)

Max
bsize

Runtime
(in seconds)

Base Fixed Variable Fixed Variable
BERT 110M 1096 23.25 ± 0.02 N/A Unsupported
RoBERTa 125M 664 23.32 ± 0.19 N/A Unsupported
DeBERTaV3 183M 236 59.71 ± 0.11 N/A Unsupported
NomicBERT 137M 588 35.83 ± 0.01 36 1455.46 ± 0.31
GTE-en-MLMxformers 137M 640 34.23 ± 0.10 16.30 ± 0.04 38 1412.60 ± 3.19 499.22 ± 0.11
GTE-en-MLM 137M 640 33.91 ± 1.21 38 1434.69 ± 3.69
ModernBERT 149M 1604 28.33 ± 0.55 14.23 ± 0.01 98 542.38 ± 0.20 251.18 ± 0.32
Large
BERT 330M 792 77.10 ± 1.50 N/A Unsupported
RoBERTa 355M 460 99.79 ± 1.79 N/A Unsupported
DeBERTaV3 434M 134 170.79 ± 0.06 N/A Unsupported
GTE-en-MLMxformers 435M 472 108.98 ± 0.14 51.86 ± 0.02 28 4059.14 ± 4.55 1476.31 ± 0.94
GTE-en-MLM 435M 472 108.39 ± 0.07 28 4144.65 ± 0.05
ModernBERT 395M 770 80.14 ± 1.65 39.63 ± 0.02 48 1433.89 ± 0.99 674.88 ± 0.15

Table 11: Inference runtime for all models.

19

	Introduction
	Methods
	Architectural Improvements
	Modern Transformer
	Efficiency Improvements
	Model Design

	Training
	Data
	Training Settings

	Downstream Evaluation
	Evaluation Setting
	Natural Language Understanding
	Text Retrieval
	Long-Context Text Retrieval
	Code Retrieval

	Downstream Results and Discussion

	Efficiency
	Evaluation Setting
	Results

	Conclusion
	Limitations
	Training Settings
	Batch Size Schedule
	Weight Tiling
	Weight Decay
	Final Checkpoints

	Model Design
	Training Log
	Sampling Issue
	Large Rollback

	Architecture ablations
	Extended results
	Full GLUE results
	Full BEIR results

	Efficiency
	Licensing

