
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONTINUOUS ENSEMBLE WEATHER FORECASTING
WITH DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Weather forecasting has seen a shift in methods from numerical simulations to
data-driven systems. While initial research in the area focused on deterministic
forecasting, recent works have used diffusion models to produce skillful ensemble
forecasts. These models are trained on a single forecasting step and rolled out au-
toregressively. However, they are computationally expensive and accumulate er-
rors for high temporal resolution due to the many rollout steps. We address these
limitations with Continuous Ensemble Forecasting, a novel and flexible method
for sampling ensemble forecasts in diffusion models. The method can generate
temporally consistent ensemble trajectories completely in parallel, with no au-
toregressive steps. Continuous Ensemble Forecasting can also be combined with
autoregressive rollouts to yield forecasts at an arbitrary fine temporal resolution
without sacrificing accuracy. We demonstrate that the method achieves competi-
tive results for global weather forecasting with good probabilistic properties.

1 INTRODUCTION

Forecasting of physical systems over both space and time is a crucial problem with plenty of real-
world applications, including in the earth sciences, transportation, and energy systems. A prime
example of this is weather forecasting, which billions of people depend on daily to plan their activi-
ties. Weather forecasting is also crucial for making informed decisions in areas such as agriculture,
renewable energy production, and safeguarding communities against extreme weather events. Cur-
rent Numerical weather prediction (NWP) systems predict the weather using complex physical mod-
els and large supercomputers (Bauer et al., 2015). Recently Machine learning weather prediction
(MLWP) models have emerged, rivaling the performance of existing NWP systems. These models
are not physics-based but data-driven and have been made possible thanks to advancements in deep
learning. By analyzing patterns from vast amounts of meteorological data (Hersbach et al., 2020),
MLWP models now predict the weather with the same accuracy as global operational NWP models
in a fraction of the time (Kurth et al., 2023; Lam et al., 2023; Bi et al., 2023).

Following the success of deterministic MLWP models, the focus of the field has increasingly
shifted towards probabilistic modeling. The probabilistic models generate samples of possible future
weather trajectories. By drawing many such samples, referred to as ensemble members, it is possible
to generate a set of possible forecasts, referred to as an ensemble forecast, for quantifying forecast
uncertainty and detecting extreme events (Leutbecher & Palmer, 2008). Sampling forecasts from
deep generative models also address the blurriness often observed in predictions from deterministic
MLWP, yielding forecasts that better preserve the variability of the modeled entities. A popular
class of deep generative models used for probabilistic MLWP are diffusion models (Ho et al., 2020;
Price et al., 2024; Lang et al., 2024; Shi et al., 2024). While these models generate accurate and
realistic looking forecasts, they are computationally expensive due to requiring multiple sequential
forward passes through the neural network to generate a sample. Moreover, they are often applied
iteratively to roll out longer forecasts (Price et al., 2024), which exacerbates the computational is-
sue. Naively switching out this iterative rollout to directly forecasting each future time step does
not result in trajectories that are consistent over time. The auto-regressive rollout additionally puts
some limitations on the temporal resolution of the forecast. Taking too small timesteps results in
large accumulation of error over time (Bi et al., 2023), which forces existing models to resort to
a temporal resolution of 12 h Price et al. (2024); Lang et al. (2024). However, in many situations
it is crucial to obtain probabilistic forecasts at a much higher temporal resolution. This is true not

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Time t

Initial condition 24 hours6 hours1 hour

...
...

...

D
iff

us
io

n

s

Stochastic noise process

Figure 1: Our proposed framework, Continuous Ensemble Forecasting, generates ensemble weather
forecasts using a conditional diffusion model. The model takes lead time as input and forecasts the
future weather state in a single step, e.g. the forecast at 24 hours is generated directly from the initial
condition, without seeing the intermediate predictions. To ensure temporal consistency, we correlate
the driving noises for the different lead times. This can be done by fixing the noise, or by defining
a stochastic noise process. Repeating the procedure for different starting noise gives an ensemble
of forecasts. Using this framework we can generate 10 day forecasts with 1 hour resolution without
sacrificing performance.

least when the forecasts are used as decision support in extreme weather situations and for capturing
rapidly changing weather events.

We propose a continuous forecasting diffusion model that takes lead time as input and forecasts the
future weather state in a single step, while maintaining a temporally consistent trajectory for each
ensemble member.1 This enables both autoregressive and direct forecasting within a single model,
improves the accuracy compared to purely autoregressive models at high temporal resolutions, and
enables forecasting at arbitrary (non-equidistant) lead times throughout the forecast trajectory. To
generate ensemble forecasts, the model uses a deterministic ODE-solver to solve the lead-time-de-
pendent probability flow ODE starting in different pure noise samples. To ensure temporal consis-
tency, we correlate the driving noises for the different lead times, e.g., by using a single noise sample
for all timesteps, as illustrated in fig. 1, which enables generating a continuous trajectory for each
member. This enables parallel sampling of individual ensemble members, bypassing the need for
multi-step loss functions, and thus accelerating ensemble forecasting.

Contributions. We propose a novel method for ensemble weather forecasting built on diffusion
that: 1) can generate ensemble member trajectories without iteration, 2) can forecast arbitrary lead-
times, 3) can be used together with iteration to improve performance on long rollouts, 4) achieves
competitive performance in global weather forecasting.

2 RELATED WORK

Ensembles from perturbations. In NWP, ensemble forecasts are created by perturbing initial
conditions or model parameterizations. The same idea has been applied in MLWP using initial state
perturbations (Bi et al., 2023; Kurth et al., 2023; Chen et al., 2023b; Li et al., 2024), model parameter
perturbations (Hu et al., 2023; Weyn et al., 2021) and Monte Carlo dropout (Scher & Messori, 2021;
Hu et al., 2023). In all these cases the underlying model is still deterministic, trained with a mean
squared error loss function to predict the average future weather. These ensembles can thus be
viewed as a mixture of means, inheriting the spatial oversmoothing characteristic of deterministic
forecasts.

1Our code will be made openly available at publication.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Generative models. Another way of getting ensembles is by modeling the distribution directly
through generative models. Price et al. (2024) train a graph-based diffusion model to produce 15-
day global forecasts, at 12-hour steps and 0.25◦resolution. Their GenCast model generates realistic
forecasts but is slow to sample from, requiring sequential forward passes through the network both
for sampling each time step and to roll out the forecast over time. Latent-variable-based MLWP
models (Hu et al., 2023; Oskarsson et al., 2024; Zhong et al., 2024) can perform inference in a single
forward pass, but have been shown to suffer from more blurriness compared to diffusion models and
require delicate hyperparameter tuning (Oskarsson et al., 2024). Apart from forecasting, diffusion
models have also been successfully applied to other weather-related tasks, including downscaling
(Chen et al., 2023a; Mardani et al., 2024; Pathak et al., 2024), enlarging physics-based ensembles (Li
et al., 2024) and generating realistic weather from climate scenarios (Bassetti et al., 2023). However,
it is important to note that since the output from these generative models does not directly influence
the forecasting process, there are no guarantees that the resulting dynamics will remain continuous
over time. Hua et al. (2024) explore the possibility to incorporate prior information in MLWP
diffusion forecasting, by guidance from existing NWP forecasts or climatology, but they do not
consider ensemble forecasting.

Temporal resolution. Unlike in NWP, where stability conditions dictate the time step, MLWP
models are free to predict at any temporal resolution. Still, the most common approach is to learn
to forecast a single short time-step (6h) and iterate this process until the desired lead time (Lam
et al., 2023; Chen et al., 2023b). Although intuitive, this process can lead to error accumulation
and is impossible to parallelize due to its sequential nature (Bi et al., 2023). Multi-step losses have
been shown to reduce the error accumulation for deterministic (Lam et al., 2023) and latent-variable
based models (Oskarsson et al., 2024), but are not trivially implemented in diffusion models. Taking
longer timesteps (24h) has been shown to give better results (Couairon et al., 2024; Bi et al., 2023),
but comes at the loss of temporal resolution. Bi et al. (2023) resolves this by training multiple models
to forecast different lead times, which are then combined in different ways to reach the lead times of
interest. Nguyen et al. (2023a;b) use a similar setup, but train a single model taking the forecast lead
time as an input. This continuous forecasting parallelizes the prediction of the fine temporal scales,
but has so far only been applied to deterministic models. Other approaches have tried to learn fully
time-continuous dynamics by using an ODE to generate forecasts (Verma et al., 2024; Saleem et al.,
2024; Rühling Cachay et al., 2023; Kochkov et al., 2024).

Spatio-temporal forecasting with diffusion models. Outside of MLWP, diffusion models have
also been applied to forecasting other spatio-temporal processes (Yang et al., 2024). Notable ex-
amples include turbulent flow simulation (Kohl et al., 2024; Rühling Cachay et al., 2023) and PDE
solving (Lippe et al., 2023). Yang & Sommer (2023) apply diffusion models conditioned on the pre-
diction lead time to a specific floating-smoke fluid field, but do not consider ensemble forecasting.
Another alternative to autoregressive rollouts is the DYffusion framework (Rühling Cachay et al.,
2023), where stochastic interpolation and deterministic forecasting is combined into a diffusion-like
model. The method allows for forecasting at arbitrary temporal resolution, but still requires sequen-
tial computations for sampling the prediction. To get a probabilistic model, they introduce a layer
dropout term in the interpolator that they keep on during inference. This makes the performance
sensitive to the dropout rate, which can not be changed without retraining both the interpolator and
forecasting networks. Further, the interpolation gives no guarantee of temporal continuity of trajecto-
ries, and since its trained with a mean squared error loss, is prone to blurring similar to deterministic
forecasting models. DYffusion has been successfully applied to climate modeling (Cachay et al.,
2024), but not weather forecasting.

3 BACKGROUND

Problem statement. This paper targets the global weather forecasting problem, an initial-value
problem with intrinsic uncertainty. Consider a weather state space X containing the grid of target
variables. Given information about previous weather states X(Ω) ⊂ X at times Ω ⊂ (−∞, 0], the
aim is to forecast a trajectory X(T) of future weather states X : (−∞,∞) → X at times T ⊂
(0, T] for some time horizon T . In particular, the task is to learn and sample from the conditional
distribution p(X(T)|X(Ω)).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Autoregressive forecasting. To simplify the problem, T is often chosen as a set of discrete equally
spaced times {kδ}Nk=1 for some timestep δ. By choosing Ω = {−kδ}Mk=0 and assuming M th order
Markovian dynamics, the joint distribution of X[k] := X(kδ) can be factorized over successive
states,

p(X[1:N]|X[−M :0]) =

N−1∏
k=0

p(X[k+1]|X[k−M :k]), (1)

and the forecasts can be sampled autoregressively. This way, the network only has to learn to sample
a single step p(X[k+1]|X[k−M :k]).

Conditional Diffusion Models. Similarly to Price et al. (2024), we model p(X[k+1]|X[k−M :k])
using a conditional diffusion model (Ho et al., 2020; Song et al., 2021; Karras et al., 2022). Diffusion
models generate samples by iteratively transforming noise into data. To forecast a future weather
state X[k+1] given X[k−M :k] we sample a latent noise variable from pnoise and iteratively trans-
form it until it resembles a sample from p(X[k+1]|X[k−M :k]). We consider the SDE formulation
of diffusion models presented by Karras et al. (2022), but remark that our framework generalizes to
any diffusion or flow matching framework based on stochastic differential equations. Sampling can
then be done by solving the probability flow ODE

dz(s) = −σ̇(s)σ(s)Sθ(z(s);X[k−M :k], σ(s))ds, s ∈ [0, 1] (2)

starting in pure noise z(1) ∼ pnoise and ending in our forecast z(0) ∼ p(X[k+1]|X[k−M :k]).
Here Sθ is the neural network trained to match the score function S through the denoising training
objective as presented by Karras et al. (2022). Similar to (Karras et al., 2022), we choose σ(s) = s
and feed the noise level σ to Sθ in each layer as a Fourier embedding. Repeating this process for
different noise samples z(1) gives an ensemble of forecasts. For a more detailed description of
diffusion models see appendix B.

4 CONTINUOUS ENSEMBLE FORECASTING

Autoregressive forecasting models are simple to train but can suffer from error accumulation at long
horizons. Consider again the general problem of sampling from p(X(T)|X(Ω)). In continuous
forecasting, a single-step prediction is given by conditioning on the lead time t ∈ T and training
a conditional score network Sθ(z;X(Ω), t, σ) to simulate directly from the marginal distribution
p(X(t)|X(Ω), t). This does not require setting a fixed δ, making the setup more flexible. The lead
time t is added to the conditioning arguments for clarity and can be passed to the network in the
same way as the noise level σ. While this allows sampling a distribution of states X(t) at each time
t ∈ T , combining these naively does not result in a trajectory X(T). This is because X(t) are
samples from the marginal distributions p(X(t)|X(Ω), t) and not the joint trajectory distribution
p(X(T)|X(Ω)). We propose Continuous Ensemble Forecasting, a novel method of combining
samples from p(X(t)|X(Ω), t) into forecast trajectories X(T) without resorting to autoregressive
predictions.

The core idea in our method is to control the source of randomness. To sample from
p(X(t)|X(Ω), t), we sample some noise Z ∼ pnoise and feed it to an ODE-solver that solves the
probability flow ODE, giving us a forecast X(t) for lead time t. Since the ODE-solver is determin-
istic, the randomness is limited to the noise initialization Z. If we freeze the noise, the ODE-solver
becomes a deterministic map fZ

θ : X |Ω| × T → X parameterized by the neural network Sθ. Ap-
plying this map to previous states X(Ω) and a time t ∈ T gives a forecast X(t). Repeating this for
several t1, . . . , tN ⊂ T gives a sequence of forecasts X({ti}Ni=1). Extending this to all t ∈ T , we
can construct a trajectory X(T) = fZ

θ (X(Ω), T). We treat this as a sample from p(X(T)|X(Ω))
and propose to use Algorithm 1 to sample such trajectories.

4.1 MATHEMATICAL MOTIVATION

In a deterministic system, the dynamics can be described by a forecasting function f : X |Ω| ×T →
X that maps previous states X(Ω) ∈ X |Ω|, to future states X(t). While weather is in principle
governed by deterministic equations, its chaotic nature, lack of information, and our inability to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 The Continuous Ensemble Forecasting algorithm

1: input: Initial conditions x(Ω), times {ti}Ni=1, ensemble size nens, network Sθ

2: sample {zj}nens
j=1 ∼ N (0, I)

3: for all i ∈ {1, . . . , N}, j ∈ {1, . . . , nens} do ▷ Can be done fully in parallel for all j and i

4: xj
i ← PROBABILITY-FLOW-SOLVER(zj , ti;x(Ω), Sθ)

return {xj
i}

j=1:nens
i=1:N

resolve the dynamics at sufficiently high spatio-temporal resolution gives it an intrinsic uncertainty.
This motivates the formulation of weather as a stochastic dynamical system. In such a system, no
function can describe the entire dynamics. At each instance, there might be a range of functions
f1, f2, . . . that all describe some possible evolution, some more likely than others. If we consider
the space F of all such functions, we can formalize this by defining a probability density µ over this
space, describing the likelihood of each function. To create an ensemble of possible functions, we
sample several f1, . . . , fN , from µ. Given previous states X(Ω), evaluating each function gives an
ensemble of possible trajectories Xi(T) = f i(X(Ω), T).

(X , pnoise) (F , µ)

X

Z 7→fZ
θ (X(Ω),t) f 7→f(X(Ω),t)

Figure 2: Diagram depicting
the connection between the
latent noise space and the so-
lution space.

The key insight in motivating our method is the identification of the
latent noise space (X , pnoise) with the solution space (F , µ). In our
method, the sampling algorithm can be represented by a parameter-
ized function fZ

θ , where we have frozen the noise Z ∼ pnoise. Under
the regularity conditions specifed in E, this function is uniquely de-
fined by θ and the ODE-solver for any given Z. Thus, as illustrated
in fig. 2, our setting mirrors the theoretical setting. Given suffi-
cient data and model capacity, the neural network Sθ matches the
score function S. Consequently, the distribution of the functions
fZ
θ should mirror that of the solutions f i. Since f i describes a pos-

sible evolution of weather, it has to be continuous as a function of
time. To ensure that the generated trajectories are also continuous
in t, regularity conditions need to be imposed on Sθ to ensure that it depends smoothly on the lead
time. In appendix E, we provide sufficient conditions and a proof of this property. We also show
empirically in sec. 5.1 that this is satisfied in practice.

4.2 AUTOCORRELATED NOISE

As mentioned above, under regularity conditions, we expect the solution map fZ
θ (X(Ω), t) to be

continuous in t. A shortcoming of this approach, however, is that it also constrains the trajectories
to be conditionally deterministic, conditionally on the solution fZ

θ (X(Ω), t⋆) at any fixed time point
t⋆ ∈ T . Specifically, consider the conditional distribution p(X(t) | X(t⋆), X(Ω), t) for t, t⋆ ∈ T
under the proposed model. Conditionally on X(t⋆) = fZ

θ (X(Ω), t⋆) we can, conceptually, invert
the ODE which generated X(t⋆) to recover the driving noise Z. Now, if X(t) = fZ

θ (X(Ω), t) is
generated using the exact same noise variable, we find that p(X(t) | X(t⋆), X(Ω), t) is a Dirac
point mass concentrated at fZ

θ (X(Ω), t). This violates the assumed stochasticity of the dynamical
process that we are modelling.

To address this shortcoming, a simple extension of the proposed model is to replace the fixed Z with
a stochastic process Z(T) with continuous sample trajectories. The stochastic process is chosen
to be stationary with marginal distribution Z(t) ∼ pnoise,∀t ∈ T . This ensures that the genera-
tive model at any fixed t is probabilistically equivalent with the fixed noise setting. Specifically, no
changes to the training algorithm are needed since the training is based solely on time marginals. Al-
lowing temporal stochasticity in the driving noise process results in a non-deterministic relationship
between the states at different lead times, while we can keep the temporal consistency by ensur-
ing that the driving process is sufficiently autocorrelated. A simple choice is to select Z(T) as an
Ornstein-Uhlenbeck process (Gillespie, 1996), dZ(t) = −ρZ(t)dt +

√
2ρdW (t), for some corre-

lation parameter ρ > 0 and W (t) being Brownian motion. This process can be easily simulated
from to generate a noise sequence {Z(ti)}Ni=1 for lead-times {ti}Ni=1, as done in Algorithm 2. The
initial noise sample Z(0) ∼ N (0, I) is perturbed according to the Ornstein-Uhlenbeck process by

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

sampling new noise ν ∼ N (0, I) in each time-step. The update step in line 5 comes from the choice
of stochastic process and is designed to ensure a stationary marginal distribution Z(t) ∼ N (0, I).
This is what we use in Algorithm 2. Alternatively, we can use a Gaussian process with stronger
smoothness properties, e.g., with a squared exponential kernel. This could prove useful for formally
proving time continuity of the resulting trajectories, but we leave such an analysis for future work.

Algorithm 2 The Extended Continuous Ensemble Forecasting algorithm

1: input: Initial conditions x(Ω), times {ti}Ni=1, ensemble size nens, network Sθ, correlation pa-
rameter ρ

2: sample {zj1}
nens
j=1 ∼ N (0, I)

3: for i = 2 to N do
4: sample {νji }

nens
j=1 ∼ N (0, I)

5: zji ← exp(−ρ(ti − ti−1))z
j
i−1 +

√
1− exp(−2ρ(ti − ti−1))ν

j
i

6: for all i ∈ {1, . . . , N}, j ∈ {1, . . . , nens} do ▷ Can be done fully in parallel for all j and i

7: xj
i ← PROBABILITY-FLOW-SOLVER(zji , ti;x(Ω), Sθ)

return {xj
i}

j=1:nens
i=1:N

4.3 AUTOREGRESSIVE ROLL-OUTS WITH CONTINUOUS INTERPOLATION

Continuous forecasting is effective for forecasting hours to days but can struggle to forecast longer
lead times where the correlation is weaker. Autoregressive forecasting excels at long lead times
when used with longer (24h) timesteps (Bi et al., 2023), but comes at the loss of temporal resolu-
tion. In our framework, it becomes possible to sample both autoregressive and continuous forecasts
with the same model. We propose to leverage this by iterating on a longer timestep and forecast-
ing the intermediate timesteps using Continuous Ensemble Forecasting, as outlined in Alg. 3. We
refer to this combined method as Autoregressive Rollouts with Continuous Interpolation (ARCI).
Our method limits the error accumulation without sacrificing temporal resolution. This allows for
producing forecasts at an arbitrary fine temporal resolution, while retaining the accuracy of the best
autoregressive methods throughout the whole forecast. By limiting the number of autoregressive
steps, more of the forecast also becomes parallelizable, allowing for rapidly generating forecasts on
large compute clusters. Furthermore, we can straightforwardly use different time resolutions during
different parts of the forecast trajectories, by for instance forecasting with 1h steps for the first few
days and then switching to longer time steps for long lead times. Note that ARCI can be used with
either fixed (with Alg. 1) or stochastic (with Alg. 2) driving noise. However, we emphasize that
these two algorithms are probabilistically equivalent for all time marginals, and only differ in the
autocorrelation of forecast trajectories.

Algorithm 3 ARCI (Autoregressive roll-outs with continuous interpolation)

1: input: Initial conditions x−L:0, interpolation times {ti}Ni=1, ensemble size nens, autoregressive
steps M , network Sθ

2: for m = 0 to M − 1 do
3: {xj

mN+i}
j=1:nens
i=1:N ← Alg. 1(xmN−L:mN , {ti}Ni=1, nens, Sθ) ▷ Also possible to use Alg. 2

return {xj
i}

j=1:nens
i=1:MN

5 EXPERIMENTS

Data. We evaluate our method on global weather forecasting up to 10 days at 1, 6, and 24
hour timesteps. We use the downsampled ERA5 reanalysis dataset (Hersbach et al., 2020) at
5.625◦resolution and 1-hour increments provided by WeatherBench (Rasp et al., 2020). The models
are trained to forecast 5 variables from the ERA5 dataset: geopotential at 500hPa (z500), tempera-
ture at 850hPa (t850), ground temperature (t2m) and the ground wind components (u10, v10).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The atmospheric fields z500 and t850 offer a comprehensive view of atmospheric dynamics and
thermodynamics, while the surface fields t2m and u10, v10 are important for day-to-day activi-
ties. We also evaluate the forecast of ground wind speed ws10, computed from the model outputs as
ws10 =

√
u102 + v102. This is useful for evaluating how well the methods model cross-variable

dependencies. All variables are standardized by subtracting their mean and dividing by their stan-
dard deviation. Together with the previous states we also feed the models with static fields. These
include the land-sea mask and orography, both rescaled to [0, 1]. All models are trained on the period
1979–2015, validated on 2016–2017 and tested on 2018. We consider every hour of each year as
forecast initialization times, except for the first 24 h and last 10 days in each subset. This guarantees
that all times forecasted or conditioned on lie within the specific years.

Metrics. We evaluate the skill of the forecasting models by computing the Root Mean Squared
Error (RMSE) of the ensemble mean. As a probabilistic metric we also consider Continuous Ranked
Probability Score (CRPS) (Gneiting & Raftery, 2007), which measures how well the the predicted
marginal distributions capture the ground truth. We also evaluate the Spread/Skill-Ratio (SSR),
which is a common measure of calibration for ensemble forecasts. For a model with well calibrated
uncertainty estimates the SSR should be close to 1 (Fortin et al., 2014). Detailed definitions of all
metrics are given in appendix A.

Models. We propose to use the ARCI model described in algorithm 3 referred to as ARCI-24/6h.
We train it to forecast t ∈ {6, 12, 18, 24} (hours) and roll it out autoregressively with 24 h steps,
hence the name. Training is done on a 40GB NVIDIA A100 GPU and takes roughly 2 days. We
emphasize again that using fixed, correlated or uncorrelated noise results in probabilistically equiv-
alent forecasts for all time marginals, and only differ in the autocorrelation of forecast trajectories.
Hence the choice of algorithm inside ARCI does not matter, and for all metrics below that are com-
puted for specific lead times we only report results for one version of the algorithm. We return to the
difference between Alg. 1 and Alg. 2 when studying the temporal difference below.

To evaluate the effectiveness of our approach, we compare it to other MLWP baselines. Determin-
istic is a deterministic model trained using MSE-loss on a single 6 hour time step, and unrolled up to
10 days. AR-6/24h is a diffusion model trained only on forecasting a single fixed δ ahead, and then
autoregressively unrolled up to 10 days. This is the exact forecasting setup of (Price et al., 2024)
and the AR- models can thus be seen as a reimplementation of GenCast with a U-Net architecture.
CI-6h is a diffusion model performing continuous forecasting conditioned on a specific lead time.
It is trained on uniformly sampled lead times from {kδ}40k=1, with δ = 6 h. This is the method
proposed in alg. 1. Sampling a 10-day forecast with 6h resolution for a single member from AR-6h
takes 32 seconds, but by parallelizing the 6h timesteps in ARCI-24/6h this reduces to 8 seconds.

To compare against another family of ensemble forecasting models from the literature we retrain
the Graph-EFM model (Oskarsson et al., 2024) on our exact data setup. Graph-EFM is a graph-
based latent-variable model that produces forecasts by 6 h iterative rollout steps. For all models,
unless otherwise specified, we condition on the two previous timesteps Ω = {0,−δ} and sample
50 ensemble members at each initialization time. All models except Graph-EFM use the same
architecture based on the U-net in Karras et al. (2022) as presented in appendix B.

5.1 RESULTS

Quantitative results. Table 1 and figure 3 show metrics for a selection of lead times and vari-
ables. Scores for the remaining variables are listed in appendix C. All probabilistic models show a
clear improvement over the deterministic model. CI-6h performs well on short-term forecasting but
struggles at longer horizons. This is likely due to the challenge of learning any useful relationships
between initial states and later lead times, which are weakly correlated. ARCI-24+6h outperforms
all models at 6h resolution, including the external baseline Graph-EFM and the GenCast setup AR-
6h, and matches the best overall model AR-24h in almost all scores. All diffusion-based models
have SSR < 1, indicating some systematic underdispersion. In tables 6,7 in appendix C we present
error bars calculated for the ARCI-24/6h model, which shows that the model is robust to network
initialization.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Selection of results for 5 and 10 day forecasting using models with 6h resolution for
geopotential at 500 hPa (z500) and temperature at 850 hPa (t850). For RMSE and CRPS, lower
values are better, and SSR should be close to 1. The best values are marked with bold and second
best underlined. The AR-24h model is included for reference, but is not considered for best model
since it operates at a coarser 24h resolution.

Lead time 5 days Lead time 10 days

Variable Model RMSE CRPS SSR RMSE CRPS SSR

z500 Deterministic 766.7 483.9 - 1042 661.5 -
Graph-EFM 699.1 317.5 1.13 817.1 373.6 1.1
AR-6h 602.3 287.8 0.75 811.8 391.9 0.88
CI-6h 707.8 321.2 0.59 885.7 406.6 0.6
ARCI-24/6h 560.9 256.7 0.86 765.6 355.2 0.93
AR-24h 544.2 242.7 0.84 750.6 335.2 0.94

t850 Deterministic 3.48 2.36 - 4.54 3.17 -
Graph-EFM 3.12 1.56 1.11 3.51 1.77 1.12
AR-6h 2.72 1.34 0.82 3.39 1.69 0.92
CI-6h 3.06 1.5 0.74 3.68 1.85 0.71
ARCI-24/6h 2.6 1.27 0.9 3.29 1.63 0.95
AR-24h 2.55 1.24 0.89 3.25 1.6 0.96

1 3 5 7 9
Lead Time (days)

1
2
3

RMSE

1 3 5 7 9
Lead Time (days)

0.5
1.0
1.5

CRPS

1 3 5 7 9
Lead Time (days)

0.8

1.0

SSR
Graph-EFM
AR-6h
AR-24h
CI-6h
ARCI-24/6h

Figure 3: RMSE, CRPS and SSR for temperature at 850 hPa (t850) with a selection of models at
6h resolution.

Figure 4: Example forecasts for temperature at 850hPa (t850) at lead time 10 days. The forecasts
are generated using ARCI-24/6h except for Deterministic which is sampled using the deterministic
model. The bottom row shows 4 ensemble members, randomly chosen out of the 50.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Qualitative results. Figure 4 shows an example forecast from ARCI-24/6h for temperature at 850
hPa (t850) at 10 days lead time.2 The forecasts are rich in detail, resembling the true state more
than the ensemble mean. Examples of other variables are given in appendix D.

Temporal Difference. Autoregressively sampled forecast trajectories are necessarily continuous.
Since there is no standard way of measuring the continuity of a forecast, we propose using the
mean temporal difference ∆X = |X(t)−X(t− 1)| as a measure of forecast continuity. Fig-
ure 5 shows ∆X for a CI-1h continuous model trained up to 24 hours with 1-hour timesteps.

0 12 24
Lead Time (hours)

0.0

0.5

1.0
X

0 12 24
Lead Time (hours)

0.15

0.20

0.25
X

= 0 = ln10

Figure 5: Temporal difference for temperature
on 850 hPa (t850) for different values of ρ in
algorithm 2. Choosing ρ = 0 fixes the noise,
ρ = ln10 allows it to vary and ρ→∞ gives com-
pletely uncorrelated noise. The black line refers
to the temporal difference of the data.

Compared to using different noise at each step
(ρ → ∞), the temporal difference of our model
(ρ = 0) stays close to the temporal difference
of the data. This supports our claim that contin-
uous ensemble forecasting produces continuous
trajectories.

Figure 5 also shows the temporal difference of
the continuous model above. When the noise
is fixed (ρ = 0) the temporal difference de-
creases with lead time, corresponding to predic-
tions with smaller temporal variations. Letting
the noise vary with noise factor (ρ = ln10)
as in alg. 2 stops this from happening. The
bias between ∆X of the data and our model is
likely due to the model producing slightly blur-
rier forecasts, making the differences smaller.

Continuous Time Forecasting. Our ARCI method allows for producing forecasts at arbitrary fine
temporal resolution while retaining the accuracy of methods taking longer autoregressive steps. We
here demonstrate this by producing hourly forecasts. Figure 6 shows the scores of a selection of
models for z500 for 10-day forecasts at 1h resolution. The AR-1h model has the same setup as
AR-6h but on 1h resolution. ARCI-24/1h and ARCI-24/2h* are both trained with Ω = {0,−24} to
have access to the same information at each timestep. The autoregressive AR-1h model performs
much worse than on 6 or 24 hours. The continuous model, however, does not lose performance
by increasing the temporal resolution, making the 1h timestep forecasts as skillful as the 24 hour
ones. An alternative to directly producing forecasts at a fine temporal resolution would be to linearly
interpolate the forecasts sampled using an autoregressive model. In fig. 9 in appendix C we show
that linearly interpolated forecasts behave much worse than the ARCI model on both 1 and 6-hour
resolution.

The ARCI-24/2h* model is trained only on lead times 2h apart (lead times in {2k}12k=1), but used to
forecast each 1h timestep. This showcases the ability of the method to generalize to lead times not
considered during training. It performs similarly to the ARCI-24/1h model trained on all timesteps,
indicating that it can generalize beyond its training setup to even finer resolutions. For highly time-
dependent fields such as t2m, the model performs worse at the first forecast in each iteration (1h,
25h,. . .), as seen in figure 11 in appendix C. For other lead-times t not considered during training,
the model has trained on forecasting t− 1 and t+ 1, thus only having to interpolate to t. However,
since we do not train on forecasting 0h, the model instead has to extrapolate to t = 1h what was
learned for 2h forecasts. This issue could possibly be fixed by letting the network also train on 0h
forecasts.

6 CONCLUSION

We present Continuous Ensemble Forecasting, a novel framework for probabilistic MLWP that in-
creases the efficiency, accuracy, and flexibility of weather forecasts at high temporal resolution.
When combined with autoregressive prediction, our ARCI method produces 10-day forecasts with
a 1-hour resolution that matches the accuracy of a purely autoregressive model with 24-hour steps.

2Animations of forecasts from ARCI-24/6h for all variables are provided in the supplementary material.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1 3 5 7 9
Lead Time (days)

0

1000
RMSE

1 3 5 7 9
Lead Time (days)

0

500

CRPS

1 3 5 7 9
Lead Time (days)

0.5

1.0
SSR

ARCI-24/1h
ARCI-24/2h*
AR-1h
AR-24h

Figure 6: RMSE, CRPS, and SSR for geopotential at 500 hPa (z500) with a selection of models at
1h resolution.

With this work, we hope to show that the possibilities with generative modeling for spatio-temporal
predictions are still largely unexplored and a fruitful area of research.

Limitations. While our proposed framework achieves good results on 5.625◦Weatherbench (Rasp
et al., 2020) data, we have yet to show that the method scales to problems with higher spatial res-
olution. Additionally, as the lead time increases, the correlation between initial and future states
becomes weaker, limiting the application of continuous forecasting. While our method parallelizes
more of the sampling than previous autoregressive models, solving the probability flow ODE in eq.
2 still requires many sequential forward passes through the network. Sampling is thus still slower
than for latent variable models, but the predicted distribution more accurate.

Future work. One interesting direction for future work is a further investigation of autocorrelated
noise, in particular, how the choice of stochastic process can aid in producing continuous trajectories
with a stationary temporal difference. This includes correlating the noise in the autoregressive steps
with the continuous steps, which could help ease the transition between them. Another idea is to take
the direction of DYffusion (Rühling Cachay et al., 2023) and directly adjust the diffusion objective to
better suit temporal data. While we have demonstrated continuous ensemble forecasting for weather,
the idea is generally applicable and it would also be of interest to apply it to other spatio-temporal
forecasting problems.

REFERENCES

Michael S. Albergo and Eric Vanden-Eijnden. Building Normalizing Flows with Stochastic Inter-
polants, 2023. arXiv:2209.15571.

Seth Bassetti, Brian Hutchinson, Claudia Tebaldi, and Ben Kravitz. DiffESM: Conditional emula-
tion of earth system models with diffusion models. In ICLR 2023 Workshop on Tackling Climate
Change with Machine Learning, 2023.

Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather prediction.
Nature, 525(7567):47–55, 2015.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
range global weather forecasting with 3D neural networks. Nature, 619(7970):533–538, 2023.

Salva Rühling Cachay, Brian Henn, Oliver Watt-Meyer, Christopher S. Bretherton, and Rose
Yu. Probabilistic Emulation of a Global Climate Model with Spherical DYffusion, 2024.
arXiv:2406.14798.

Lei Chen, Fei Du, Yuan Hu, Zhibin Wang, and Fan Wang. SwinRDM: integrate SwinRNN with
diffusion model towards high-resolution and high-quality weather forecasting. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37, pp. 322–330, 2023a.

Lei Chen, Xiaohui Zhong, Feng Zhang, Yuan Cheng, Yinghui Xu, Yuan Qi, and Hao Li. FuXi: a
cascade machine learning forecasting system for 15-day global weather forecast. npj Climate and
Atmospheric Science, 6(1):1–11, 2023b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Guillaume Couairon, Christian Lessig, Anastase Charantonis, and Claire Monteleoni. Arch-
esWeather: An efficient AI weather forecasting model at 1.5◦ resolution, 2024. arXiv:2405.14527.

Vincent Fortin, Mabrouk Abaza, Francois Anctil, and Raphael Turcotte. Why should ensemble
spread match the RMSE of the ensemble mean? Journal of Hydrometeorology, 15(4):1708–1713,
2014.

Daniel T. Gillespie. Exact numerical simulation of the ornstein-uhlenbeck process and its integral.
Phys. Rev. E, 1996.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, 2010.

Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359–378, 2007.

Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquı́n Muñoz-Sabater,
Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, Adrian Simmons, Cornel Soci,
Saleh Abdalla, Xavier Abellan, Gianpaolo Balsamo, Peter Bechtold, Gionata Biavati, Jean Bid-
lot, Massimo Bonavita, Giovanna De Chiara, Per Dahlgren, Dick Dee, Michail Diamantakis,
Rossana Dragani, Johannes Flemming, Richard Forbes, Manuel Fuentes, Alan Geer, Leo Haim-
berger, Sean Healy, Robin J. Hogan, Elı́as Hólm, Marta Janisková, Sarah Keeley, Patrick Laloy-
aux, Philippe Lopez, Cristina Lupu, Gabor Radnoti, Patricia De Rosnay, Iryna Rozum, Freja
Vamborg, Sebastien Villaume, and Jean-Noël Thépaut. The ERA5 global reanalysis. Quarterly
Journal of the Royal Meteorological Society, 146(730):1999–2049, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. Advances in
Neural Information Processing Systems, 33, 2020.

Yuan Hu, Lei Chen, Zhibin Wang, and Hao Li. SwinVRNN: A data-driven ensemble forecasting
model via learned distribution perturbation. Journal of Advances in Modeling Earth Systems, 15
(2), 2023.

Zhanxiang Hua, Yutong He, Chengqian Ma, and Alexandra Anderson-Frey. Weather prediction with
diffusion guided by realistic forecast processes, 2024. arXiv:2402.06666.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35, 2022.

Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie Smith, Griffin Mooers, Mi-
lan Klöwer, James Lottes, Stephan Rasp, Peter Düben, Sam Hatfield, Peter Battaglia, Alvaro
Sanchez-Gonzalez, Matthew Willson, Michael P. Brenner, and Stephan Hoyer. Neural gen-
eral circulation models for weather and climate. Nature, 632(8027):1060–1066, August 2024.
ISSN 1476-4687. doi: 10.1038/s41586-024-07744-y. URL https://www.nature.com/
articles/s41586-024-07744-y. Publisher: Nature Publishing Group.

Georg Kohl, Liwei Chen, and Nils Thuerey. Benchmarking autoregressive conditional diffusion
models for turbulent flow simulation. In ICML 2024 AI for Science Workshop, 2024.

Thorsten Kurth, Shashank Subramanian, Peter Harrington, Jaideep Pathak, Morteza Mardani, David
Hall, Andrea Miele, Karthik Kashinath, and Anima Anandkumar. FourCastNet: Accelerating
global high-resolution weather forecasting using adaptive fourier neural operators. In Proceedings
of the Platform for Advanced Scientific Computing Conference, 2023.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Fer-
ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose,
Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mo-
hamed, and Peter Battaglia. Learning skillful medium-range global weather forecasting. Science,
382(6677):1416–1421, 2023.

11

https://www.nature.com/articles/s41586-024-07744-y
https://www.nature.com/articles/s41586-024-07744-y

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Simon Lang, Matthew Chantry, Rilwan Adewoyin, Mihai Alexe, Zied Ben Bouallègue, Mari-
ana Clare, Jesper Dramsch, Christian Lessig, Linus Magnusson, Michael Maier-Gerber, Gert
Mertes, Gabriel Moldovan, Ana Prieto Nemesio, Cathal O’Brien, Florian Pinault, Meghan
Plumridge, Baudouin Raoult, Mario Santa Cruz, and Steffen Tietsche. Enter the ensembles,
2024. URL https://www.ecmwf.int/en/about/media-centre/aifs-blog/
2024/enter-ensembles.

Martin Leutbecher and Tim N Palmer. Ensemble forecasting. Journal of Computational Physics,
227(7):3515–3539, 2008.

Lizao Li, Robert Carver, Ignacio Lopez-Gomez, Fei Sha, and John Anderson. Generative emulation
of weather forecast ensembles with diffusion models. Science Advances, 10(13), 2024.

Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. PDE-
Refiner: Achieving accurate long rollouts with neural pde solvers. Advances in Neural Informa-
tion Processing Systems, 36, 2023.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in Adam, 2017a.
arXiv:1711.05101.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In Inter-
national Conference on Learning Representations, 2017b.

Morteza Mardani, Noah Brenowitz, Yair Cohen, Jaideep Pathak, Chieh-Yu Chen, Cheng-Chin Liu,
Arash Vahdat, Mohammad Amin Nabian, Tao Ge, Akshay Subramaniam, Karthik Kashinath, Jan
Kautz, and Mike Pritchard. Residual corrective diffusion modeling for km-scale atmospheric
downscaling, 2024. arXiv:2309.15214.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K. Gupta, and Aditya Grover. ClimaX:
A foundation model for weather and climate. In Proceedings of the 40th International Conference
on Machine Learning, 2023a.

Tung Nguyen, Rohan Shah, Hritik Bansal, Troy Arcomano, Sandeep Madireddy, Romit Maulik,
Veerabhadra Kotamarthi, Ian Foster, and Aditya Grover. Scaling transformer neural networks for
skillful and reliable medium-range weather forecasting, 2023b. arXiv:2312.03876.

Lecture Notes. Continuous dependence of solutions to differential equations on parameters, 2014.
URL https://users.math.msu.edu/users/hhu/848/lec_5.pdf.

Joel Oskarsson, Tomas Landelius, Marc Peter Deisenroth, and Fredrik Lindsten. Probabilistic
weather forecasting with hierarchical graph neural networks, 2024. arXiv:2406.04759.

Jaideep Pathak, Yair Cohen, Piyush Garg, Peter Harrington, Noah Brenowitz, Dale Durran,
Morteza Mardani, Arash Vahdat, Shaoming Xu, Karthik Kashinath, and Michael Pritchard.
Kilometer-scale convection allowing model emulation using generative diffusion modeling, 2024.
arXiv:2408.10958.

Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R. Andersson, Andrew El-Kadi, Do-
minic Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, Remi Lam, and
Matthew Willson. GenCast: Diffusion-based ensemble forecasting for medium-range weather,
2024. arXiv:2312.15796.

Stephan Rasp, Peter D. Dueben, Sebastian Scher, Jonathan A. Weyn, Soukayna Mouatadid, and Nils
Thuerey. WeatherBench: A benchmark dataset for data-driven weather forecasting. Journal of
Advances in Modeling Earth Systems, 12(11), 2020.

Salva Rühling Cachay, Bo Zhao, Hailey Joren, and Rose Yu. DYffusion: A dynamics-informed
diffusion model for spatiotemporal forecasting. Advances in Neural Information Processing Sys-
tems, 36, 2023.

Hira Saleem, Flora Salim, and Cormac Purcell. Stc-vit: Spatio temporal continuous vision trans-
former for weather forecasting, 2024. arXiv:2402.17966.

12

https://www.ecmwf.int/en/about/media-centre/aifs-blog/2024/enter-ensembles
https://www.ecmwf.int/en/about/media-centre/aifs-blog/2024/enter-ensembles
https://users.math.msu.edu/users/hhu/848/lec_5.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kevin Scaman and Aladin Virmaux. Lipschitz regularity of deep neural networks: analysis and
efficient estimation, 2019. arXiv:1805.10965.

Sebastian Scher and Gabriele Messori. Ensemble Methods for Neural Network-Based Weather
Forecasts. Journal of Advances in Modeling Earth Systems, 13(2), 2021.

Jimeng Shi, Bowen Jin, Jiawei Han, and Giri Narasimhan. CoDiCast: Conditional diffusion model
for weather prediction with uncertainty quantification, 2024. arXiv:2409.05975.

George F. Simmons. Differential Equations with Applications and Historical Notes. Chapman and
Hall/CRC, 3rd edition edition, 2016. ISBN 978-1-4987-0259-1.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced Score Matching: A Scalable Ap-
proach to Density and Score Estimation, 2019. arXiv:1905.07088.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

Yogesh Verma, Markus Heinonen, and Vikas Garg. ClimODE: Climate and weather forecasting
with physics-informed neural odes. In International Conference on Learning Representations,
2024.

Jonathan A. Weyn, Dale R. Durran, Rich Caruana, and Nathaniel Cresswell-Clay. Sub-seasonal fore-
casting with a large ensemble of deep-learning weather prediction models. Journal of Advances
in Modeling Earth Systems, 13(7), 2021.

Gefan Yang and Stefan Sommer. A denoising diffusion model for fluid field prediction, 2023.
arXiv:2301.11661.

Yiyuan Yang, Ming Jin, Haomin Wen, Chaoli Zhang, Yuxuan Liang, Lintao Ma, Yi Wang, Chenghao
Liu, Bin Yang, Zenglin Xu, Jiang Bian, Shirui Pan, and Qingsong Wen. A survey on diffusion
models for time series and spatio-temporal data, 2024. arXiv:2404.18886.

Xiaohui Zhong, Lei Chen, Hao Li, Jun Liu, Xu Fan, Jie Feng, Kan Dai, Jing-Jia Luo, Jie Wu, and
Bo Lu. FuXi-ENS: A machine learning model for medium-range ensemble weather forecasting,
2024. arXiv:2405.05925.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A METRICS

We consider the following evaluation metrics used to assess the probabilistic forecasts produced
by the diffusion model. Metrics from meteorology and general uncertainty quantification, such as
RMSE, Spread/Skill ratio (SSR), and Continuous Ranked Probability Score (CRPS) are employed
to measure the effectiveness and reliability of the model outputs. All of our metrics are weighted by
latitude-dependent weights. For a particular variable and lead time,

• xk
i,n represents the value of the k-th ensemble member at initialization time indexed by

n = 1 . . . N for grid cell in the latitude and longitude grid indexed by i ∈ I .

• yi,n denotes the corresponding ground truth.

• x̄i,n denotes the ensemble mean, defined by x̄i,n = 1
nens

∑nens
k=1 x

k
i,n.

• ai denotes the area of the latitude-longitude grid cell, which varies by latitude and is nor-
malized to unit mean over the grid (Rasp et al., 2020).

RMSE or skill measures the accuracy of the forecast. Following Rasp et al. (2020) we define the
RMSE as the mean square root of the ensemble mean:

RMSE :=
1

N

N∑
n=1

√
1

|I|
∑
i∈I

ai(yi,n − x̄i,n)2. (3)

In the case of deterministic predictions, the ensemble mean is taken as the deterministic prediction.

Spread represents the variability within the ensemble and is calculated as the root mean square of
the ensemble variance:

Spread :=
1

N

N∑
n=1

√√√√ 1

|I|
∑
i∈I

1

nens − 1

nens∑
k=1

ai(xk
i,n − x̄i,n)2. (4)

Ideally, the forecast achieves a balance where skill and spread are proportional, leading to an optimal
spread/skill ratio (SSR) close to 1, indicating effective uncertainty estimation:

SSR :=

√
nens + 1

nens

Spread
RMSE

. (5)

Continuous Ranked Probability Score (CRPS) (Gneiting & Raftery, 2007) measures the accuracy
of probabilistic forecasts by comparing the cumulative distribution functions (CDFs) of the predicted
and observed values. It integrates the squared differences between these CDFs, providing a single
score that penalizes differences in location, spread, and shape of the distributions. An estimator of
the CRPS is given by:

CRPS :=
1

N

N∑
n=1

1

|I|
∑
i∈I

ai

(
1

nens

nens∑
k=1

|xk
i,n − yi,n| −

1

2n2
ens

nens∑
k=1

nens∑
k′=1

|xk
i,n − xk′

i,n|

)
.

Temporal Difference measures the mean absolute difference between states at consecutive times.
It’s used to measure the continuity of a forecast. For forecasts xk

i,n, x̂
k
i,n at consecutive lead times, it

is given by:

∆X :=
1

N

N∑
n=1

1

nens

nens∑
k=1

1

|I|
∑
i∈I

ai|xk
i,n − x̂k

i,n|. (6)

B MODEL

Preconditioning The sampling process is based on the denoising neural network Dθ that takes a
noisy residual and tries to denoise it. To help in this, it is also given the noise level σ, the previous

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 2: Scaling functions.

Skip scaling cskip(σ) σ2
data/(σ

2 + σ2
data)

Output scaling cout(σ) σ · σdata/
√

σ2 + σ2
data

Input scaling cin(σ) 1/
√
σ2 + σ2

data
Noise scaling cnoise(σ)

1
4 ln(σ)

state X(Ω) and the lead time t. To simplify learning, Dθ is parameterized by a different network Fθ

defined by

Dθ(X
σ
t ;σ,X(Ω), t) = cskip(σ) ·Xσ

t + cout(σ) · Fθ (cin(σ) ·Xσ
t ; cnoise(σ), X(Ω), t) ,

where Xσ
t denotes a noisy version of the target time X(t) at noise level σ, and cskip, cout, cin and

cnoise are scaling functions taken from (Karras et al., 2022) defined in Tab. 2. These scaling functions
cskip, cout, cin and cnoise, are specifically chosen to handle the influence of the noise level within
the network, allowing Dθ to adapt dynamically to different noise intensities without the need for
adjusting the scale of σ externally. Consequently, for consistency with the normalization of the data
where σdata is set to 1, the lead time t is also scaled to fit within the range [0, 1]. This normalization
ensures that the network inputs are uniformly scaled, enhancing the efficiency and effectiveness of
the denoising process.

Conditioning To condition on the initial conditions X(Ω) and static fields, these are concatenated
along the channel dimension with the input to the denoiser, increasing the dimension of the input.
To condition on the noise level σ and lead time t, we use Fourier embedding as specified in (Karras
et al., 2022). Fourier embedding captures periodic patterns in noise and time, enhancing the model’s
ability to handle complex time-series dependencies effectively. They work by transforming the
time/noise into a vector of sine/cosine features at 32 frequencies with period 16. These vectors are
added and then passed through two fully connected layers with SiLU activation to obtain a 128-
dimensional encoding.

Architecture The backbone of the diffusion model is a U-Net architecture. Our model is based
on the one used in (Karras et al., 2022), reconfigured for our purposes with 32 filters as the base
multiplier. It is built up by blocks configured as in fig. 7. The blocks consist of two convolutional
layers and are constructed as in fig. 8. If the block is a down-/up-sample or if the number of input
filters is different from the number of output filters, there is an additional skip layer from the input
to the output. The time/noise embedding is fed directly into each block and not passed through
the network. Unlike the network in Karras et al. (2022), our convolutions uses zero padding at the
poles and periodic padding at the left/right edges. This periodic padding ensures periodicity over
longitudes. The model has 3.5M parameters.

Sampling To generate forecasts using our diffusion model, we solve the probability flow ODE as
defined in (Karras et al., 2022)

dz = −σ̇(s)σ(s)∇z log ps (z) ds. (7)

We employ the second-order Heun’s method, a deterministic ODE solver, as outlined in Algorithm
4. For the noise parameters, we define the noise level function as σ(s) = s. Additionally, we set a
noise level schedule to lower the noise during sampling from σmax to σmin over N steps:

si =

(
σ

1
ρ
max +

i

N − 1

(
σ

1
ρ

min − σ
1
ρ
max

))ρ

, i ∈ {0, . . . , N − 1}.

The relevant parameters for training and sampling are given in tab. 3.

Training The dataset is partitioned into three subsets: training, validation, and testing. The train-
ing subset is used for model training, the validation subset for evaluating generalization, and the
testing subset to determine final accuracy. The diffusion model is trained using the following train-
ing objective

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

16
x3

2

8x
16

Add Connections

16x32

8x16

Skip Connections
Down Connections
Up Connections
Residual Connections

Block Connections

32x64

Figure 7: Overview of the U-Net Architecture, detailing layer configurations and the flow of infor-
mation through convolutional blocks and skip connections.

input

embedding

output

Conv 1x1 + (Down/Up)

Add connection
Norm + SiLU + Conv 3x3 + Dropout

Linear layer
Norm + SiLU + Conv 3x3 + (Down/Up)

Figure 8: Construction of a Diffusion Model Block, showing the sequence of operations and the
integration of embeddings with add connections.

Algorithm 4 Deterministic sampling using Heun’s 2nd order method.

1: procedure HEUNSAMPLER(Dθ(z;σ,X(Ω), t), si∈{0,...,N}, Z)
2: z0 ← σ2(s0) · Z ▷ Generate initial sample at s0

3: for i = 0 to N − 1 do ▷ Solve ODE over N time steps

4: di ← σ̇(si)
σ(si)

(zi −Dθ(zi;σ(si), X(Ω), t)) ▷ Evaluate dz/ds at si

5: zi+1 ← zi + (si+1 − si)di ▷ Take Euler step from si to si+1

6: if si+1 ̸= 0 then ▷ Apply 2nd order correction unless σ goes to zero

7: d′
i ←

σ̇(si+1)
σ(si+1)

(zi+1 −Dθ(zi+1;σ(si+1), X(Ω), t)) ▷ Evaluate dz/ds at si+1

8: zi+1 ← zi +
1
2 (si+1 − si) (di + d′

i) ▷ Explicit trapezoidal rule at si+1

return zN ▷ Return noise-free sample at sN

Table 3: Parameters used for sampling and training.

Name Notation Value, sampling Value, training

Maximum noise level σmax 80 88
Minimum noise level σmin 0.03 0.02
Shape of noise distribution ρ 7 7
Number of noise levels N 20

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 4: Optimizer Hyperparameters.

Optimizer hyperparameters
Optimiser AdamW (Loshchilov & Hutter, 2017a)
Initialization Xavier Uniform (Glorot & Bengio, 2010)
LR decay schedule Cosine (Loshchilov & Hutter, 2017b)
Peak LR 5e-4
Weight decay 0.1
Warmup steps 1e3
Epochs 300
Batch size 256
Dropout probability 0.1

Table 5: Training schedule for Graph-EFM, using the notation from Oskarsson et al. (2024).

Epochs Learning Rate Unrolling steps λKL λCRPS

20 10−3 1 0 0
75 10−3 1 0.1 0
20 10−4 4 0.1 0

8 10−4 8 0.1 105

Et∼ptEσ∼pσE(X(Ω),X(t))∼pdataEϵ|σ∼N (0,σ2I)

 1

σ2

∑
i

∑
j

ai
sj(t)

1

|I||J |

(
X̂(t)i,j −X(t)i,j

)2 .

with X̂(t) = Dθ(X(t) + ϵ;σ,X(Ω), t) and J being the set of variables. Here, pt represents a
uniform distribution over the lead times. We have also included a scaling term sj(t)

−1 which scales
the loss by the precomputed standard deviation sj(t) based on lead time t for each variable j ∈ J .
This normalization process is designed to weigh short and longer times equally. The noise level
distribution pσ is chosen to be consistent with the sampling noise level described above. Specifically,
its inverse CDF is:

F−1(u) =

(
σ

1
ρ
max + u

(
σ

1
ρ

min − σ
1
ρ
max

))ρ

,

and we sample from it by drawing u ∼ U [0, 1]. The training process is executed in Pytorch, with
setup and parameters detailed in Tab. 4.

Graph-EFM Baseline For the Graph-EFM baseline we use the same data setup as for the other
models. Since we are working on a coarser resolution than Oskarsson et al. (2024) some adaptation
was necessary to the exact graph structure used in the model. We construct the graph by splitting a
global icosahedron 2 times, resulting in 3 hierarchical graph levels. The training follows the same
schedule as in Oskarsson et al. (2024), with pre-training on single step 6 h prediction and fine-tuning
on rollouts. Details of the training schedule are given in tab. 5.

C ADDITIONAL RESULTS

Interpolation An alternative to directly producing forecasts at a fine temporal resolution would be
to simply interpolate the forecasts sampled using an autoregressive model. We argue that our ARCI
method produces more accurate and realistic predictions than simple linear interpolation. Figure 9
shows the RMSE and Spread/Skill for a linear interpolation of AR-24h, compared to ARCI-24/6h.
The interpolated forecasts behave much worse than the ARCI model on the same resolution, which
strengthens the role of our model as an advanced interpolator.

Table 6, 7 and show the results on 5 and 10 day forecasting for all variables. The error bars given
for ARCI-24/6h is a standard deviation calculated by retraining the model five times and evaluating

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

6 12 18
Lead Time (hours)

50

100

150

RM
SE

z500

6 12 18
Lead Time (hours)

0.5

1.0

SS
R

z500

1 3 5 7 9
Lead Time (days)

1

2

RM
SE

ws10

1 3 5 7 9
Lead Time (days)

0.5

1.0

SS
R

ws10

AR-6h Linear-1h ARCI-24/1h Linear-6h AR-24h

Figure 9: RMSE and SSR for linear interpolations of geopotential at 500 hPa (z500) and ground
wind speed (ws10). Linear-1h/Linear-6h are linear interpolations of AR-6h/AR-24h.

each model on 10 ensemble members. This shows that the model is robust to network initialization.
Figure 10 show the results on 5-10 day forecasting for all variables. Figure 11 shows the same results
on forecasting with 1h resolution. Figure 12 shows the temporal difference for different values of ρ.

1 3 5 7 9
Lead Time (days)

250
500
750

RM
SE

z500

1 3 5 7 9
Lead Time (days)

1

2

3

t850

1 3 5 7 9
Lead Time (days)

1

2

t2m

1 3 5 7 9
Lead Time (days)

2

4
u10

1 3 5 7 9
Lead Time (days)

2

4

v10

1 3 5 7 9
Lead Time (days)

1

2

ws10

Graph-EFM AR-6h AR-24h CI-6h ARCI-24/6h

1 3 5 7 9
Lead Time (days)

0.75

1.00

SS
R

z500

1 3 5 7 9
Lead Time (days)

0.8

1.0

t850

1 3 5 7 9
Lead Time (days)

0.8

1.0

t2m

1 3 5 7 9
Lead Time (days)

0.8

1.0

u10

1 3 5 7 9
Lead Time (days)

0.8

1.0

v10

1 3 5 7 9
Lead Time (days)

0.9

1.0

1.1
ws10

Graph-EFM AR-6h AR-24h CI-6h ARCI-24/6h

1 3 5 7 9
Lead Time (days)

200

400

CR
PS

z500

1 3 5 7 9
Lead Time (days)

0.5

1.0

1.5

t850

1 3 5 7 9
Lead Time (days)

0.5

1.0

t2m

1 3 5 7 9
Lead Time (days)

1

2
u10

1 3 5 7 9
Lead Time (days)

1

2

v10

1 3 5 7 9
Lead Time (days)

0.5

1.0

ws10

Graph-EFM AR-6h AR-24h CI-6h ARCI-24/6h

Figure 10: RMSE, SSR, and CRPS for a selection of models at 6h resolution.

D EXAMPLE FORECASTS

Figures 13–18 show example forecasts for the remaining variables.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 6: Results on 5 day forecasting for all variables. For RMSE and CRPS, lower values are better,
and SSR should be close to 1.

Lead time 5 days

Variable Model RMSE CRPS SSR

z500 Deterministic 766.7 483.9 -
Graph-EFM 699.1 317.5 1.13
AR-6h 602.3 287.8 0.75
AR-24h 544.2 242.7 0.84
CI-6h 707.8 321.2 0.59
ARCI-24/6h 560.9 ± 15.6 256.7 ± 20.2 0.86 ± 0.015

t850 Deterministic 3.48 2.36 -
Graph-EFM 3.12 1.56 1.11
AR-6h 2.72 1.34 0.82
AR-24h 2.55 1.24 0.89
CI-6h 3.06 1.5 0.74
ARCI-24/6h 2.6 ± 0.031 1.27 ± 0.021 0.9 ± 0.012

t2m Deterministic 2.71 1.72 -
Graph-EFM 2.51 1.1 1.09
AR-6h 2.13 0.96 0.83
AR-24h 1.98 0.87 0.9
CI-6h 2.29 1.0 0.79
ARCI-24/6h 2.02 ± 0.036 0.9 ± 0.035 0.9 ± 0.012

u10 Deterministic 4.37 2.93 -
Graph-EFM 3.81 1.93 0.97
AR-6h 3.47 1.71 0.86
AR-24h 3.32 1.62 0.92
CI-6h 3.87 1.91 0.77
ARCI-24/6h 3.35 ± 0.032 1.64 ± 0.019 0.93 ± 0.007

v10 Deterministic 4.48 3.0 -
Graph-EFM 3.88 1.96 0.94
AR-6h 3.55 1.76 0.86
AR-24h 3.42 1.68 0.93
CI-6h 4.0 1.99 0.77
ARCI-24/6h 3.45 ± 0.026 1.69 ± 0.014 0.94 ± 0.006

ws10 Deterministic 3.09 2.2 -
Graph-EFM 2.56 1.35 1.01
AR-6h 2.38 1.23 0.9
AR-24h 2.3 1.18 0.96
CI-6h 2.54 1.32 0.88
ARCI-24/6h 2.31 ± 0.016 1.19 ± 0.01 0.96 ± 0.006

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: Results on 10 day forecasting for all variables. For RMSE and CRPS, lower values are
better, and SSR should be close to 1.

Lead time 10 days

Variable Model RMSE CRPS SSR

z500 Deterministic 1042 661.5 -
Graph-EFM 817.1 373.6 1.1
AR-6h 811.8 391.9 0.88
AR-24h 750.6 335.2 0.94
CI-6h 885.7 406.6 0.6
ARCI-24/6h 765.6 ± 21.4 355.2 ± 33.0 0.93 ± 0.018

t850 Deterministic 4.54 3.17 -
Graph-EFM 3.51 1.77 1.12
AR-6h 3.39 1.69 0.92
AR-24h 3.25 1.6 0.96
CI-6h 3.68 1.85 0.71
ARCI-24/6h 3.29 ± 0.05 1.63 ± 0.041 0.95 ± 0.007

t2m Deterministic 3.56 2.28 -
Graph-EFM 2.88 1.32 1.14
AR-6h 2.62 1.18 0.89
AR-24h 2.48 1.09 0.95
CI-6h 2.75 1.21 0.75
ARCI-24/6h 2.51 ± 0.068 1.11 ± 0.076 0.94 ± 0.017

u10 Deterministic 5.14 3.53 -
Graph-EFM 4.08 2.07 0.97
AR-6h 3.95 1.97 0.94
AR-24h 3.85 1.9 0.97
CI-6h 4.27 2.14 0.78
ARCI-24/6h 3.87 ± 0.03 1.92 ± 0.018 0.97 ± 0.01

v10 Deterministic 5.23 3.58 -
Graph-EFM 4.11 2.08 0.93
AR-6h 4.02 2.0 0.96
AR-24h 3.96 1.96 0.99
CI-6h 4.39 2.2 0.8
ARCI-24/6h 3.97 ± 0.018 1.97 ± 0.011 0.99 ± 0.01

ws10 Deterministic 3.44 2.49 -
Graph-EFM 2.65 1.4 1.01
AR-6h 2.57 1.34 0.96
AR-24h 2.53 1.31 0.99
CI-6h 2.68 1.4 0.89
ARCI-24/6h 2.54 ± 0.011 1.32 ± 0.008 0.99 ± 0.008

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1 3 5 7 9
Lead Time (days)

0

500

1000

RM
SE

z500

1 3 5 7 9
Lead Time (days)

2

4

t850

1 3 5 7 9
Lead Time (days)

2

4
t2m

1 3 5 7 9
Lead Time (days)

2

4
u10

1 3 5 7 9
Lead Time (days)

2

4
v10

1 3 5 7 9
Lead Time (days)

1

2

3
ws10

ARCI-24/1h ARCI-24/2h* AR-1h AR-24h

1 3 5 7 9
Lead Time (days)

0.50

0.75

1.00

SS
R

z500

1 3 5 7 9
Lead Time (days)

0.50

0.75

1.00
t850

1 3 5 7 9
Lead Time (days)

0.6

0.8

1.0
t2m

1 3 5 7 9
Lead Time (days)

0.8

1.0

u10

1 3 5 7 9
Lead Time (days)

0.8

1.0

v10

1 3 5 7 9
Lead Time (days)

0.8

1.0

ws10

ARCI-24/1h ARCI-24/2h* AR-1h AR-24h

1 3 5 7 9
Lead Time (days)

0

250

500

CR
PS

z500

1 3 5 7 9
Lead Time (days)

0

2

t850

1 3 5 7 9
Lead Time (days)

1

2

t2m

1 3 5 7 9
Lead Time (days)

1

2

u10

1 3 5 7 9
Lead Time (days)

1

2

v10

1 3 5 7 9
Lead Time (days)

0.5

1.0

1.5
ws10

ARCI-24/1h ARCI-24/2h* AR-1h AR-24h

Figure 11: RMSE, SSR and CRPS for a selection of models at 1h resolution.

0 12 24
Lead Time (hours)

0

50

100

X

z500

0 12 24
Lead Time (hours)

0.0

0.5

1.0

t850

0 12 24
Lead Time (hours)

0.0

0.5

t2m

0 12 24
Lead Time (hours)

0

1

u10

0 12 24
Lead Time (hours)

0

1

v10

0 12 24
Lead Time (hours)

0

1

ws10

= 0 Data

0 12 24
Lead Time (hours)

34

36

38

X

z500

0 12 24
Lead Time (hours)

0.15

0.20

0.25
t850

0 12 24
Lead Time (hours)

0.25

0.30

t2m

0 12 24
Lead Time (hours)

0.2

0.3

u10

0 12 24
Lead Time (hours)

0.2

0.3

0.4
v10

0 12 24
Lead Time (hours)

0.2

0.3

ws10

= 0 = ln10

Figure 12: Temporal difference for different values of ϵ in algorithm 2. Choosing ρ = 0 fixes the
noise, ρ = ln(10) allows it to vary slightly and ρ → ∞ gives completely uncorrelated noise. The
black line refers to the temporal difference of the data.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 13: Example forecasts for geopotential at 500 hPa (z500) at lead time 10 days. The forecasts
are generated using ARCI-24/6h except for Deterministic which is sampled using the deterministic
model. The bottom row shows 4 ensemble members, randomly chosen out of the 50.

Figure 14: Example forecasts for temperature at 850hPa (t850) at lead time 10 days. The forecasts
are generated using ARCI-24/6h except for Deterministic which is sampled using the deterministic
model. The bottom row shows 4 ensemble members, randomly chosen out of the 50.

Figure 15: Example forecasts for ground temperature (t2m) at lead time 10 days. The forecasts
are generated using ARCI-24/6h except for Deterministic which is sampled using the deterministic
model. The bottom row shows 4 ensemble members, randomly chosen out of the 50.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 16: Example forecasts for u-component of wind at 10m (u10) at lead time 10 days. The
forecasts are generated using ARCI-24/6h except for Deterministic which is sampled using the de-
terministic model. The bottom row shows 4 ensemble members, randomly chosen out of the 50.

Figure 17: Example forecasts for v-component of wind at 10m (v10) at lead time 10 days. The
forecasts are generated using ARCI-24/6h except for Deterministic which is sampled using the de-
terministic model. The bottom row shows 4 ensemble members, randomly chosen out of the 50.

Figure 18: Example forecasts for wind speed at 10m (ws10) at lead time 10 days. The forecasts
are generated using ARCI-24/6h except for Deterministic which is sampled using the deterministic
model. The bottom row shows 4 ensemble members, randomly chosen out of the 50.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E CONTINUITY OF SOLUTIONS TO PROBABILITY FLOW ODE

This entire section is new.

In section 4.1, we conjecture that the trajectories generated by the Continuous Ensemble Forecasting
method are continuous as functions of lead time. This property is verified in practice, as seen in
figure 5, but no formal proof of this is presented. In this appendix we show that the solutions to
the Probability Flow ODE 2 are continuous functions of t. Since we are primarily interested in the
continuity of solutions, we assume access to a unique solution to 2. The existence and uniqueness
of such a solution can be proven under the same conditions as theorem 1 below. For a proof of this,
we refer the reader to theorem B in Section 70, Chapter 13 of Simmons (2016).

The continuous dependence of solutions to differential equations on parameters is a well-studied
problem and there exists several necessary and sufficient conditions for this (2014). We provide a
proof for the linear noise level σ(s) = s case used in the paper. We want to show that the solution
z(s) to the probability flow ODE

dz(s) = −sSθ(z(s);x0, s, t)ds, z(1) = z0, s ∈ [ϵ, 1] (8)

is continuous for all s ∈ [ϵ, 1] with respect to the lead time t. We consider the case where the noise
z0 is fixed for all t. Here we have chosen to stop at z(ϵ) for some ϵ ≪ 1 instead of z(0) to avoid
the singularity of the score function∇ log ps in s = 0. This is common for all diffusion models and
done in practice for numerical stability.

Let f(s, z, t) = −sSθ(z(s);x−1:0, s, t), where we have suppressed the dependence on the previous
state x−1:0 since all forecasts are conditioned on a fixed x−1:0. The following theorem covers the
sufficient conditions for continuity of solutions to 8.
Theorem 1 (Continuity of trajectories on lead time t). Suppose f(s, z, t) is continuous and locally
Lipschitz in z in an open set D × (0, T) ⊆ R× Rn × R. If ϕ(s, t) is a solution of the IVP

ż(s) = f(s, z, t), z(1) = z0,

which is defined on the closed interval [ϵ, 1] and (s, ϕ(s, t), t) ∈ D for s ∈ [ϵ, 1], then the function
ϕ(s, t) is continuous on [ϵ, 1]× (0, T).

The proof of theorem 1 is based on the proof of theorem 5.5 in (2014) with variables x = z, λ =
t, t = s which we provide here for reference.
Theorem 2 (Theorem 5.5 in (2014)). Suppose f(t, x, λ) is continuous and locally Lipschitz in x in
an open set D ⊆ R× Rn × Rk. If ϕ(t, a, x0, λ0) is a solution of the IVP

ẋ = f(t, x, λ0), x(a) = x0,

which is defined on the closed interval [a, b] and (t, ϕ(t, a, x0, λ0), λ0) ∈ D for t ∈ [a, b], then there
is a neighborhood V of (a, x0, λ0) in R× Rn × Rk such that, for (u, y, λ) ∈ V , the IVP

ẋ = f(t, x, λ), x(u) = y,

also has a solution defined on the interval [u, b]. Moreover the function ϕ(t, u, y, λ) is continuous
on [a, b]× V .

The full proof of theorem 2 is given in (2014). By closely examining this proof, we provide a
proof-sketch of theorem 1.

Proof sketch of Theorem 1. Suppose f(s, z, t) is continuous and locally Lipschitz in z in an open
set D × (0, T) ⊆ R× Rn × R. Let ϕ(s, t) be a solution of the IVP

ż(s) = f(s, z, t0), z(1) = z0,

defined on the closed interval [ϵ, 1] such that (s, ϕ(s, t), t) ∈ D for s ∈ [ϵ, 1]. Theorem 2 implies
the existence of a neighborhood V of (1, z0, t0) ∈ R× Rn × (0, T) for the IVP

ż(s) = f(s, z, t), z(u) = y,

for which the solution ϕ(s, u, y, t) is continuous on [u, b] × V . We note however that this only
guarantees that the solutions are continuous on a subset of the the entire interval (0, T). To prove
theorem 1 we need to show that the t-part of V can be chosen as (0, T)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

To see this, we begin by noting that the proof of theorem 5.5 never actually restricts the t-part of V .
This can be seen by following the proof steps and keeping track of the restrictions on V . V is first
defined in the proof of theorem 5.2 (p.2 (2014)) where it is explicitly constructed as

V = Iα(1)×B2β(z0)× Cγ(t0),

where Iα(1), B2β(z0) is some neighborhood of (1, z0). These are constructed using some unknown
Lipschitz constant and can thus not be explicitly written down.

We note however, that the only requirement on the neighborhood Cγ(t0) of t0 is that it should lie in
the domain Cγ(t0) ⊂ (0, T). Thus we can simply choose γ, t0 such that Cγ(t0) = (0, T). Finally,
we note that the remaining steps in the proof of theorem 2 never restricts or redefines Cγ(t0). Thus,
for this choice of V , the solutions to the IVP will be continuous for all t ∈ (0, T). This completes
the proof.

Theorem 1 shows that the solutions to the probability flow ODE 8 are continuous as functions of
lead-time if sSθ(z(s);x−1:0, s, t) is continuous and locally Lipschitz in z in an open set D ⊆
R × Rn × (0, T). Since the neural network Sθ is a composition of continuous functions, it is
necessarily a continuous function. The remaining assumption on Sθ being Lipschitz in z is not a
particularly strong one, and commonly assumed when proving results about neural networks (Karras
et al., 2022; Song et al., 2019; Albergo & Vanden-Eijnden, 2023). To calculate the Lipschitz constant
one could for example use the method proposed in Scaman & Virmaux (2019).

25

	Introduction
	Related Work
	Background
	Continuous Ensemble Forecasting
	Mathematical motivation
	Autocorrelated noise
	Autoregressive roll-outs with continuous interpolation

	Experiments
	Results

	Conclusion
	Metrics
	Model
	Additional Results
	Example forecasts
	Continuity of solutions to Probability Flow ODE

