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ABSTRACT

Weather forecasting has seen a shift in methods from numerical simulations to
data-driven systems. While initial research in the area focused on deterministic
forecasting, recent works have used diffusion models to produce skillful ensemble
forecasts. These models are trained on a single forecasting step and rolled out au-
toregressively. However, they are computationally expensive and accumulate er-
rors for high temporal resolution due to the many rollout steps. We address these
limitations with Continuous Ensemble Forecasting, a novel and flexible method
for sampling ensemble forecasts in diffusion models. The method can generate
temporally consistent ensemble trajectories completely in parallel, with no au-
toregressive steps. Continuous Ensemble Forecasting can also be combined with
autoregressive rollouts to yield forecasts at an arbitrary fine temporal resolution
without sacrificing accuracy. We demonstrate that the method achieves competi-
tive results for global weather forecasting with good probabilistic properties.

1 INTRODUCTION

Forecasting of physical systems over both space and time is a crucial problem with plenty of real-
world applications, including in the earth sciences, transportation, and energy systems. A prime
example of this is weather forecasting, which billions of people depend on daily to plan their activi-
ties. Weather forecasting is also crucial for making informed decisions in areas such as agriculture,
renewable energy production, and safeguarding communities against extreme weather events. Cur-
rent Numerical weather prediction (NWP) systems predict the weather using complex physical mod-
els and large supercomputers (Bauer et al., 2015). Recently Machine learning weather prediction
(MLWP) models have emerged, rivaling the performance of existing NWP systems. These models
are not physics-based but data-driven and have been made possible thanks to advancements in deep
learning. By analyzing patterns from vast amounts of meteorological data (Hersbach et al., 2020),
MLWP models now predict the weather with the same accuracy as global operational NWP models
in a fraction of the time (Kurth et al., 2023; Lam et al., 2023; Bi et al., 2023).

Following the success of deterministic MLWP models, the focus of the field has increasingly
shifted towards probabilistic modeling. The probabilistic models generate samples of possible future
weather trajectories. By drawing many such samples, referred to as ensemble members, it is possible
to generate a set of possible forecasts, referred to as an ensemble forecast, for quantifying forecast
uncertainty and detecting extreme events (Leutbecher & Palmer, 2008). Sampling forecasts from
deep generative models also address the blurriness often observed in predictions from deterministic
MLWP, yielding forecasts that better preserve the variability of the modeled entities. A popular
class of deep generative models used for probabilistic MLWP are diffusion models (Ho et al., 2020;
Price et al., 2024; Lang et al., 2024; Shi et al., 2024). While these models generate accurate and
realistic looking forecasts, they are computationally expensive due to requiring multiple sequential
forward passes through the neural network to generate a sample. Moreover, they are often applied
iteratively to roll out longer forecasts (Price et al., 2024), which exacerbates the computational is-
sue. Naively switching out this iterative rollout to directly forecasting each future time step does
not result in trajectories that are consistent over time. The auto-regressive rollout additionally puts
some limitations on the temporal resolution of the forecast. Taking too small timesteps results in
large accumulation of error over time (Bi et al., 2023), which forces existing models to resort to
a temporal resolution of 12 h Price et al. (2024); Lang et al. (2024). However, in many situations
it is crucial to obtain probabilistic forecasts at a much higher temporal resolution. This is true not
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Figure 1: Our proposed framework, Continuous Ensemble Forecasting, generates ensemble weather
forecasts using a conditional diffusion model. The model takes lead time as input and forecasts the
future weather state in a single step, e.g. the forecast at 24 hours is generated directly from the initial
condition, without seeing the intermediate predictions. To ensure temporal consistency, we correlate
the driving noises for the different lead times. This can be done by fixing the noise, or by defining
a stochastic noise process. Repeating the procedure for different starting noise gives an ensemble
of forecasts. Using this framework we can generate 10 day forecasts with 1 hour resolution without
sacrificing performance.

least when the forecasts are used as decision support in extreme weather situations and for capturing
rapidly changing weather events.

We propose a continuous forecasting diffusion model that takes lead time as input and forecasts the
future weather state in a single step, while maintaining a temporally consistent trajectory for each
ensemble member.1 This enables both autoregressive and direct forecasting within a single model,
improves the accuracy compared to purely autoregressive models at high temporal resolutions, and
enables forecasting at arbitrary (non-equidistant) lead times throughout the forecast trajectory. To
generate ensemble forecasts, the model uses a deterministic ODE-solver to solve the lead-time-de-
pendent probability flow ODE starting in different pure noise samples. To ensure temporal consis-
tency, we correlate the driving noises for the different lead times, e.g., by using a single noise sample
for all timesteps, as illustrated in fig. 1, which enables generating a continuous trajectory for each
member. This enables parallel sampling of individual ensemble members, bypassing the need for
multi-step loss functions, and thus accelerating ensemble forecasting.

Contributions. We propose a novel method for ensemble weather forecasting built on diffusion
that: 1) can generate ensemble member trajectories without iteration, 2) can forecast arbitrary lead-
times, 3) can be used together with iteration to improve performance on long rollouts, 4) achieves
competitive performance in global weather forecasting.

2 RELATED WORK

Ensembles from perturbations. In NWP, ensemble forecasts are created by perturbing initial
conditions or model parameterizations. The same idea has been applied in MLWP using initial state
perturbations (Bi et al., 2023; Kurth et al., 2023; Chen et al., 2023b; Li et al., 2024), model parameter
perturbations (Hu et al., 2023; Weyn et al., 2021) and Monte Carlo dropout (Scher & Messori, 2021;
Hu et al., 2023). In all these cases the underlying model is still deterministic, trained with a mean
squared error loss function to predict the average future weather. These ensembles can thus be
viewed as a mixture of means, inheriting the spatial oversmoothing characteristic of deterministic
forecasts.

1Our code will be made openly available at publication.
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Generative models. Another way of getting ensembles is by modeling the distribution directly
through generative models. Price et al. (2024) train a graph-based diffusion model to produce 15-
day global forecasts, at 12-hour steps and 0.25◦resolution. Their GenCast model generates realistic
forecasts but is slow to sample from, requiring sequential forward passes through the network both
for sampling each time step and to roll out the forecast over time. Latent-variable-based MLWP
models (Hu et al., 2023; Oskarsson et al., 2024; Zhong et al., 2024) can perform inference in a single
forward pass, but have been shown to suffer from more blurriness compared to diffusion models and
require delicate hyperparameter tuning (Oskarsson et al., 2024). Apart from forecasting, diffusion
models have also been successfully applied to other weather-related tasks, including downscaling
(Chen et al., 2023a; Mardani et al., 2024; Pathak et al., 2024), enlarging physics-based ensembles (Li
et al., 2024) and generating realistic weather from climate scenarios (Bassetti et al., 2023). However,
it is important to note that since the output from these generative models does not directly influence
the forecasting process, there are no guarantees that the resulting dynamics will remain continuous
over time. Hua et al. (2024) explore the possibility to incorporate prior information in MLWP
diffusion forecasting, by guidance from existing NWP forecasts or climatology, but they do not
consider ensemble forecasting.

Temporal resolution. Unlike in NWP, where stability conditions dictate the time step, MLWP
models are free to predict at any temporal resolution. Still, the most common approach is to learn
to forecast a single short time-step (6h) and iterate this process until the desired lead time (Lam
et al., 2023; Chen et al., 2023b). Although intuitive, this process can lead to error accumulation
and is impossible to parallelize due to its sequential nature (Bi et al., 2023). Multi-step losses have
been shown to reduce the error accumulation for deterministic (Lam et al., 2023) and latent-variable
based models (Oskarsson et al., 2024), but are not trivially implemented in diffusion models. Taking
longer timesteps (24h) has been shown to give better results (Couairon et al., 2024; Bi et al., 2023),
but comes at the loss of temporal resolution. Bi et al. (2023) resolves this by training multiple models
to forecast different lead times, which are then combined in different ways to reach the lead times of
interest. Nguyen et al. (2023a;b) use a similar setup, but train a single model taking the forecast lead
time as an input. This continuous forecasting parallelizes the prediction of the fine temporal scales,
but has so far only been applied to deterministic models. Other approaches have tried to learn fully
time-continuous dynamics by using an ODE to generate forecasts (Verma et al., 2024; Saleem et al.,
2024; Rühling Cachay et al., 2023; Kochkov et al., 2024).

Spatio-temporal forecasting with diffusion models. Outside of MLWP, diffusion models have
also been applied to forecasting other spatio-temporal processes (Yang et al., 2024). Notable ex-
amples include turbulent flow simulation (Kohl et al., 2024; Rühling Cachay et al., 2023) and PDE
solving (Lippe et al., 2023). Yang & Sommer (2023) apply diffusion models conditioned on the pre-
diction lead time to a specific floating-smoke fluid field, but do not consider ensemble forecasting.
Another alternative to autoregressive rollouts is the DYffusion framework (Rühling Cachay et al.,
2023), where stochastic interpolation and deterministic forecasting is combined into a diffusion-like
model. The method allows for forecasting at arbitrary temporal resolution, but still requires sequen-
tial computations for sampling the prediction. To get a probabilistic model, they introduce a layer
dropout term in the interpolator that they keep on during inference. This makes the performance
sensitive to the dropout rate, which can not be changed without retraining both the interpolator and
forecasting networks. Further, the interpolation gives no guarantee of temporal continuity of trajecto-
ries, and since its trained with a mean squared error loss, is prone to blurring similar to deterministic
forecasting models. DYffusion has been successfully applied to climate modeling (Cachay et al.,
2024), but not weather forecasting.

3 BACKGROUND

Problem statement. This paper targets the global weather forecasting problem, an initial-value
problem with intrinsic uncertainty. Consider a weather state space X containing the grid of target
variables. Given information about previous weather states X(Ω) ⊂ X at times Ω ⊂ (−∞, 0], the
aim is to forecast a trajectory X(T ) of future weather states X : (−∞,∞) → X at times T ⊂
(0, T ] for some time horizon T . In particular, the task is to learn and sample from the conditional
distribution p(X(T )|X(Ω)).

3
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Autoregressive forecasting. To simplify the problem, T is often chosen as a set of discrete equally
spaced times {kδ}Nk=1 for some timestep δ. By choosing Ω = {−kδ}Mk=0 and assuming M th order
Markovian dynamics, the joint distribution of X[k] := X(kδ) can be factorized over successive
states,

p(X[1:N ]|X[−M :0]) =

N−1∏
k=0

p(X[k+1]|X[k−M :k]), (1)

and the forecasts can be sampled autoregressively. This way, the network only has to learn to sample
a single step p(X[k+1]|X[k−M :k]).

Conditional Diffusion Models. Similarly to Price et al. (2024), we model p(X[k+1]|X[k−M :k])
using a conditional diffusion model (Ho et al., 2020; Song et al., 2021; Karras et al., 2022). Diffusion
models generate samples by iteratively transforming noise into data. To forecast a future weather
state X[k+1] given X[k−M :k] we sample a latent noise variable from pnoise and iteratively trans-
form it until it resembles a sample from p(X[k+1]|X[k−M :k]). We consider the SDE formulation
of diffusion models presented by Karras et al. (2022), but remark that our framework generalizes to
any diffusion or flow matching framework based on stochastic differential equations. Sampling can
then be done by solving the probability flow ODE

dz(s) = −σ̇(s)σ(s)Sθ(z(s);X[k−M :k], σ(s))ds, s ∈ [0, 1] (2)

starting in pure noise z(1) ∼ pnoise and ending in our forecast z(0) ∼ p(X[k+1]|X[k−M :k]).
Here Sθ is the neural network trained to match the score function S through the denoising training
objective as presented by Karras et al. (2022). Similar to (Karras et al., 2022), we choose σ(s) = s
and feed the noise level σ to Sθ in each layer as a Fourier embedding. Repeating this process for
different noise samples z(1) gives an ensemble of forecasts. For a more detailed description of
diffusion models see appendix B.

4 CONTINUOUS ENSEMBLE FORECASTING

Autoregressive forecasting models are simple to train but can suffer from error accumulation at long
horizons. Consider again the general problem of sampling from p(X(T )|X(Ω)). In continuous
forecasting, a single-step prediction is given by conditioning on the lead time t ∈ T and training
a conditional score network Sθ(z;X(Ω), t, σ) to simulate directly from the marginal distribution
p(X(t)|X(Ω), t). This does not require setting a fixed δ, making the setup more flexible. The lead
time t is added to the conditioning arguments for clarity and can be passed to the network in the
same way as the noise level σ. While this allows sampling a distribution of states X(t) at each time
t ∈ T , combining these naively does not result in a trajectory X(T ). This is because X(t) are
samples from the marginal distributions p(X(t)|X(Ω), t) and not the joint trajectory distribution
p(X(T )|X(Ω)). We propose Continuous Ensemble Forecasting, a novel method of combining
samples from p(X(t)|X(Ω), t) into forecast trajectories X(T ) without resorting to autoregressive
predictions.

The core idea in our method is to control the source of randomness. To sample from
p(X(t)|X(Ω), t), we sample some noise Z ∼ pnoise and feed it to an ODE-solver that solves the
probability flow ODE, giving us a forecast X(t) for lead time t. Since the ODE-solver is determin-
istic, the randomness is limited to the noise initialization Z. If we freeze the noise, the ODE-solver
becomes a deterministic map fZ

θ : X |Ω| × T → X parameterized by the neural network Sθ. Ap-
plying this map to previous states X(Ω) and a time t ∈ T gives a forecast X(t). Repeating this for
several t1, . . . , tN ⊂ T gives a sequence of forecasts X({ti}Ni=1). Extending this to all t ∈ T , we
can construct a trajectory X(T ) = fZ

θ (X(Ω), T ). We treat this as a sample from p(X(T )|X(Ω))
and propose to use Algorithm 1 to sample such trajectories.

4.1 MATHEMATICAL MOTIVATION

In a deterministic system, the dynamics can be described by a forecasting function f : X |Ω| ×T →
X that maps previous states X(Ω) ∈ X |Ω|, to future states X(t). While weather is in principle
governed by deterministic equations, its chaotic nature, lack of information, and our inability to
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Algorithm 1 The Continuous Ensemble Forecasting algorithm

1: input: Initial conditions x(Ω), times {ti}Ni=1, ensemble size nens, network Sθ

2: sample {zj}nens
j=1 ∼ N (0, I)

3: for all i ∈ {1, . . . , N}, j ∈ {1, . . . , nens} do ▷ Can be done fully in parallel for all j and i

4: xj
i ← PROBABILITY-FLOW-SOLVER(zj , ti;x(Ω), Sθ)

return {xj
i}

j=1:nens
i=1:N

resolve the dynamics at sufficiently high spatio-temporal resolution gives it an intrinsic uncertainty.
This motivates the formulation of weather as a stochastic dynamical system. In such a system, no
function can describe the entire dynamics. At each instance, there might be a range of functions
f1, f2, . . . that all describe some possible evolution, some more likely than others. If we consider
the space F of all such functions, we can formalize this by defining a probability density µ over this
space, describing the likelihood of each function. To create an ensemble of possible functions, we
sample several f1, . . . , fN , from µ. Given previous states X(Ω), evaluating each function gives an
ensemble of possible trajectories Xi(T ) = f i(X(Ω), T ).

(X , pnoise) (F , µ)

X

Z 7→fZ
θ (X(Ω),t) f 7→f(X(Ω),t)

Figure 2: Diagram depicting
the connection between the
latent noise space and the so-
lution space.

The key insight in motivating our method is the identification of the
latent noise space (X , pnoise) with the solution space (F , µ). In our
method, the sampling algorithm can be represented by a parameter-
ized function fZ

θ , where we have frozen the noise Z ∼ pnoise. Under
the regularity conditions specifed in E, this function is uniquely de-
fined by θ and the ODE-solver for any given Z. Thus, as illustrated
in fig. 2, our setting mirrors the theoretical setting. Given suffi-
cient data and model capacity, the neural network Sθ matches the
score function S. Consequently, the distribution of the functions
fZ
θ should mirror that of the solutions f i. Since f i describes a pos-

sible evolution of weather, it has to be continuous as a function of
time. To ensure that the generated trajectories are also continuous
in t, regularity conditions need to be imposed on Sθ to ensure that it depends smoothly on the lead
time. In appendix E, we provide sufficient conditions and a proof of this property. We also show
empirically in sec. 5.1 that this is satisfied in practice.

4.2 AUTOCORRELATED NOISE

As mentioned above, under regularity conditions, we expect the solution map fZ
θ (X(Ω), t) to be

continuous in t. A shortcoming of this approach, however, is that it also constrains the trajectories
to be conditionally deterministic, conditionally on the solution fZ

θ (X(Ω), t⋆) at any fixed time point
t⋆ ∈ T . Specifically, consider the conditional distribution p(X(t) | X(t⋆), X(Ω), t) for t, t⋆ ∈ T
under the proposed model. Conditionally on X(t⋆) = fZ

θ (X(Ω), t⋆) we can, conceptually, invert
the ODE which generated X(t⋆) to recover the driving noise Z. Now, if X(t) = fZ

θ (X(Ω), t) is
generated using the exact same noise variable, we find that p(X(t) | X(t⋆), X(Ω), t) is a Dirac
point mass concentrated at fZ

θ (X(Ω), t). This violates the assumed stochasticity of the dynamical
process that we are modelling.

To address this shortcoming, a simple extension of the proposed model is to replace the fixed Z with
a stochastic process Z(T ) with continuous sample trajectories. The stochastic process is chosen
to be stationary with marginal distribution Z(t) ∼ pnoise,∀t ∈ T . This ensures that the genera-
tive model at any fixed t is probabilistically equivalent with the fixed noise setting. Specifically, no
changes to the training algorithm are needed since the training is based solely on time marginals. Al-
lowing temporal stochasticity in the driving noise process results in a non-deterministic relationship
between the states at different lead times, while we can keep the temporal consistency by ensur-
ing that the driving process is sufficiently autocorrelated. A simple choice is to select Z(T ) as an
Ornstein-Uhlenbeck process (Gillespie, 1996), dZ(t) = −ρZ(t)dt +

√
2ρdW (t), for some corre-

lation parameter ρ > 0 and W (t) being Brownian motion. This process can be easily simulated
from to generate a noise sequence {Z(ti)}Ni=1 for lead-times {ti}Ni=1, as done in Algorithm 2. The
initial noise sample Z(0) ∼ N (0, I) is perturbed according to the Ornstein-Uhlenbeck process by
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sampling new noise ν ∼ N (0, I) in each time-step. The update step in line 5 comes from the choice
of stochastic process and is designed to ensure a stationary marginal distribution Z(t) ∼ N (0, I).
This is what we use in Algorithm 2. Alternatively, we can use a Gaussian process with stronger
smoothness properties, e.g., with a squared exponential kernel. This could prove useful for formally
proving time continuity of the resulting trajectories, but we leave such an analysis for future work.

Algorithm 2 The Extended Continuous Ensemble Forecasting algorithm

1: input: Initial conditions x(Ω), times {ti}Ni=1, ensemble size nens, network Sθ, correlation pa-
rameter ρ

2: sample {zj1}
nens
j=1 ∼ N (0, I)

3: for i = 2 to N do
4: sample {νji }

nens
j=1 ∼ N (0, I)

5: zji ← exp(−ρ(ti − ti−1))z
j
i−1 +

√
1− exp(−2ρ(ti − ti−1))ν

j
i

6: for all i ∈ {1, . . . , N}, j ∈ {1, . . . , nens} do ▷ Can be done fully in parallel for all j and i

7: xj
i ← PROBABILITY-FLOW-SOLVER(zji , ti;x(Ω), Sθ)

return {xj
i}

j=1:nens
i=1:N

4.3 AUTOREGRESSIVE ROLL-OUTS WITH CONTINUOUS INTERPOLATION

Continuous forecasting is effective for forecasting hours to days but can struggle to forecast longer
lead times where the correlation is weaker. Autoregressive forecasting excels at long lead times
when used with longer (24h) timesteps (Bi et al., 2023), but comes at the loss of temporal resolu-
tion. In our framework, it becomes possible to sample both autoregressive and continuous forecasts
with the same model. We propose to leverage this by iterating on a longer timestep and forecast-
ing the intermediate timesteps using Continuous Ensemble Forecasting, as outlined in Alg. 3. We
refer to this combined method as Autoregressive Rollouts with Continuous Interpolation (ARCI).
Our method limits the error accumulation without sacrificing temporal resolution. This allows for
producing forecasts at an arbitrary fine temporal resolution, while retaining the accuracy of the best
autoregressive methods throughout the whole forecast. By limiting the number of autoregressive
steps, more of the forecast also becomes parallelizable, allowing for rapidly generating forecasts on
large compute clusters. Furthermore, we can straightforwardly use different time resolutions during
different parts of the forecast trajectories, by for instance forecasting with 1h steps for the first few
days and then switching to longer time steps for long lead times. Note that ARCI can be used with
either fixed (with Alg. 1) or stochastic (with Alg. 2) driving noise. However, we emphasize that
these two algorithms are probabilistically equivalent for all time marginals, and only differ in the
autocorrelation of forecast trajectories.

Algorithm 3 ARCI (Autoregressive roll-outs with continuous interpolation)

1: input: Initial conditions x−L:0, interpolation times {ti}Ni=1, ensemble size nens, autoregressive
steps M , network Sθ

2: for m = 0 to M − 1 do
3: {xj

mN+i}
j=1:nens
i=1:N ← Alg. 1(xmN−L:mN , {ti}Ni=1, nens, Sθ) ▷ Also possible to use Alg. 2

return {xj
i}

j=1:nens
i=1:MN

5 EXPERIMENTS

Data. We evaluate our method on global weather forecasting up to 10 days at 1, 6, and 24
hour timesteps. We use the downsampled ERA5 reanalysis dataset (Hersbach et al., 2020) at
5.625◦resolution and 1-hour increments provided by WeatherBench (Rasp et al., 2020). The models
are trained to forecast 5 variables from the ERA5 dataset: geopotential at 500hPa (z500), tempera-
ture at 850hPa (t850), ground temperature (t2m) and the ground wind components (u10, v10).
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The atmospheric fields z500 and t850 offer a comprehensive view of atmospheric dynamics and
thermodynamics, while the surface fields t2m and u10, v10 are important for day-to-day activi-
ties. We also evaluate the forecast of ground wind speed ws10, computed from the model outputs as
ws10 =

√
u102 + v102. This is useful for evaluating how well the methods model cross-variable

dependencies. All variables are standardized by subtracting their mean and dividing by their stan-
dard deviation. Together with the previous states we also feed the models with static fields. These
include the land-sea mask and orography, both rescaled to [0, 1]. All models are trained on the period
1979–2015, validated on 2016–2017 and tested on 2018. We consider every hour of each year as
forecast initialization times, except for the first 24 h and last 10 days in each subset. This guarantees
that all times forecasted or conditioned on lie within the specific years.

Metrics. We evaluate the skill of the forecasting models by computing the Root Mean Squared
Error (RMSE) of the ensemble mean. As a probabilistic metric we also consider Continuous Ranked
Probability Score (CRPS) (Gneiting & Raftery, 2007), which measures how well the the predicted
marginal distributions capture the ground truth. We also evaluate the Spread/Skill-Ratio (SSR),
which is a common measure of calibration for ensemble forecasts. For a model with well calibrated
uncertainty estimates the SSR should be close to 1 (Fortin et al., 2014). Detailed definitions of all
metrics are given in appendix A.

Models. We propose to use the ARCI model described in algorithm 3 referred to as ARCI-24/6h.
We train it to forecast t ∈ {6, 12, 18, 24} (hours) and roll it out autoregressively with 24 h steps,
hence the name. Training is done on a 40GB NVIDIA A100 GPU and takes roughly 2 days. We
emphasize again that using fixed, correlated or uncorrelated noise results in probabilistically equiv-
alent forecasts for all time marginals, and only differ in the autocorrelation of forecast trajectories.
Hence the choice of algorithm inside ARCI does not matter, and for all metrics below that are com-
puted for specific lead times we only report results for one version of the algorithm. We return to the
difference between Alg. 1 and Alg. 2 when studying the temporal difference below.

To evaluate the effectiveness of our approach, we compare it to other MLWP baselines. Determin-
istic is a deterministic model trained using MSE-loss on a single 6 hour time step, and unrolled up to
10 days. AR-6/24h is a diffusion model trained only on forecasting a single fixed δ ahead, and then
autoregressively unrolled up to 10 days. This is the exact forecasting setup of (Price et al., 2024)
and the AR- models can thus be seen as a reimplementation of GenCast with a U-Net architecture.
CI-6h is a diffusion model performing continuous forecasting conditioned on a specific lead time.
It is trained on uniformly sampled lead times from {kδ}40k=1, with δ = 6 h. This is the method
proposed in alg. 1. Sampling a 10-day forecast with 6h resolution for a single member from AR-6h
takes 32 seconds, but by parallelizing the 6h timesteps in ARCI-24/6h this reduces to 8 seconds.

To compare against another family of ensemble forecasting models from the literature we retrain
the Graph-EFM model (Oskarsson et al., 2024) on our exact data setup. Graph-EFM is a graph-
based latent-variable model that produces forecasts by 6 h iterative rollout steps. For all models,
unless otherwise specified, we condition on the two previous timesteps Ω = {0,−δ} and sample
50 ensemble members at each initialization time. All models except Graph-EFM use the same
architecture based on the U-net in Karras et al. (2022) as presented in appendix B.

5.1 RESULTS

Quantitative results. Table 1 and figure 3 show metrics for a selection of lead times and vari-
ables. Scores for the remaining variables are listed in appendix C. All probabilistic models show a
clear improvement over the deterministic model. CI-6h performs well on short-term forecasting but
struggles at longer horizons. This is likely due to the challenge of learning any useful relationships
between initial states and later lead times, which are weakly correlated. ARCI-24+6h outperforms
all models at 6h resolution, including the external baseline Graph-EFM and the GenCast setup AR-
6h, and matches the best overall model AR-24h in almost all scores. All diffusion-based models
have SSR < 1, indicating some systematic underdispersion. In tables 6,7 in appendix C we present
error bars calculated for the ARCI-24/6h model, which shows that the model is robust to network
initialization.
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Table 1: Selection of results for 5 and 10 day forecasting using models with 6h resolution for
geopotential at 500 hPa (z500) and temperature at 850 hPa (t850). For RMSE and CRPS, lower
values are better, and SSR should be close to 1. The best values are marked with bold and second
best underlined. The AR-24h model is included for reference, but is not considered for best model
since it operates at a coarser 24h resolution.

Lead time 5 days Lead time 10 days

Variable Model RMSE CRPS SSR RMSE CRPS SSR

z500 Deterministic 766.7 483.9 - 1042 661.5 -
Graph-EFM 699.1 317.5 1.13 817.1 373.6 1.1
AR-6h 602.3 287.8 0.75 811.8 391.9 0.88
CI-6h 707.8 321.2 0.59 885.7 406.6 0.6
ARCI-24/6h 560.9 256.7 0.86 765.6 355.2 0.93
AR-24h 544.2 242.7 0.84 750.6 335.2 0.94

t850 Deterministic 3.48 2.36 - 4.54 3.17 -
Graph-EFM 3.12 1.56 1.11 3.51 1.77 1.12
AR-6h 2.72 1.34 0.82 3.39 1.69 0.92
CI-6h 3.06 1.5 0.74 3.68 1.85 0.71
ARCI-24/6h 2.6 1.27 0.9 3.29 1.63 0.95
AR-24h 2.55 1.24 0.89 3.25 1.6 0.96

1 3 5 7 9
Lead Time (days)

1
2
3

RMSE

1 3 5 7 9
Lead Time (days)

0.5
1.0
1.5

CRPS

1 3 5 7 9
Lead Time (days)

0.8

1.0

SSR
Graph-EFM
AR-6h
AR-24h
CI-6h
ARCI-24/6h

Figure 3: RMSE, CRPS and SSR for temperature at 850 hPa (t850) with a selection of models at
6h resolution.

Figure 4: Example forecasts for temperature at 850hPa (t850) at lead time 10 days. The forecasts
are generated using ARCI-24/6h except for Deterministic which is sampled using the deterministic
model. The bottom row shows 4 ensemble members, randomly chosen out of the 50.
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Qualitative results. Figure 4 shows an example forecast from ARCI-24/6h for temperature at 850
hPa (t850) at 10 days lead time.2 The forecasts are rich in detail, resembling the true state more
than the ensemble mean. Examples of other variables are given in appendix D.

Temporal Difference. Autoregressively sampled forecast trajectories are necessarily continuous.
Since there is no standard way of measuring the continuity of a forecast, we propose using the
mean temporal difference ∆X = |X(t)−X(t− 1)| as a measure of forecast continuity. Fig-
ure 5 shows ∆X for a CI-1h continuous model trained up to 24 hours with 1-hour timesteps.

0 12 24
Lead Time (hours)

0.0

0.5

1.0
X

0 12 24
Lead Time (hours)

0.15

0.20

0.25
X

= 0 = ln10

Figure 5: Temporal difference for temperature
on 850 hPa (t850) for different values of ρ in
algorithm 2. Choosing ρ = 0 fixes the noise,
ρ = ln10 allows it to vary and ρ→∞ gives com-
pletely uncorrelated noise. The black line refers
to the temporal difference of the data.

Compared to using different noise at each step
(ρ → ∞), the temporal difference of our model
(ρ = 0) stays close to the temporal difference
of the data. This supports our claim that contin-
uous ensemble forecasting produces continuous
trajectories.

Figure 5 also shows the temporal difference of
the continuous model above. When the noise
is fixed (ρ = 0) the temporal difference de-
creases with lead time, corresponding to predic-
tions with smaller temporal variations. Letting
the noise vary with noise factor (ρ = ln10)
as in alg. 2 stops this from happening. The
bias between ∆X of the data and our model is
likely due to the model producing slightly blur-
rier forecasts, making the differences smaller.

Continuous Time Forecasting. Our ARCI method allows for producing forecasts at arbitrary fine
temporal resolution while retaining the accuracy of methods taking longer autoregressive steps. We
here demonstrate this by producing hourly forecasts. Figure 6 shows the scores of a selection of
models for z500 for 10-day forecasts at 1h resolution. The AR-1h model has the same setup as
AR-6h but on 1h resolution. ARCI-24/1h and ARCI-24/2h* are both trained with Ω = {0,−24} to
have access to the same information at each timestep. The autoregressive AR-1h model performs
much worse than on 6 or 24 hours. The continuous model, however, does not lose performance
by increasing the temporal resolution, making the 1h timestep forecasts as skillful as the 24 hour
ones. An alternative to directly producing forecasts at a fine temporal resolution would be to linearly
interpolate the forecasts sampled using an autoregressive model. In fig. 9 in appendix C we show
that linearly interpolated forecasts behave much worse than the ARCI model on both 1 and 6-hour
resolution.

The ARCI-24/2h* model is trained only on lead times 2h apart (lead times in {2k}12k=1), but used to
forecast each 1h timestep. This showcases the ability of the method to generalize to lead times not
considered during training. It performs similarly to the ARCI-24/1h model trained on all timesteps,
indicating that it can generalize beyond its training setup to even finer resolutions. For highly time-
dependent fields such as t2m, the model performs worse at the first forecast in each iteration (1h,
25h,. . . ), as seen in figure 11 in appendix C. For other lead-times t not considered during training,
the model has trained on forecasting t− 1 and t+ 1, thus only having to interpolate to t. However,
since we do not train on forecasting 0h, the model instead has to extrapolate to t = 1h what was
learned for 2h forecasts. This issue could possibly be fixed by letting the network also train on 0h
forecasts.

6 CONCLUSION

We present Continuous Ensemble Forecasting, a novel framework for probabilistic MLWP that in-
creases the efficiency, accuracy, and flexibility of weather forecasts at high temporal resolution.
When combined with autoregressive prediction, our ARCI method produces 10-day forecasts with
a 1-hour resolution that matches the accuracy of a purely autoregressive model with 24-hour steps.

2Animations of forecasts from ARCI-24/6h for all variables are provided in the supplementary material.
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1 3 5 7 9
Lead Time (days)

0

1000
RMSE

1 3 5 7 9
Lead Time (days)

0
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CRPS
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0.5

1.0
SSR

ARCI-24/1h
ARCI-24/2h*
AR-1h
AR-24h

Figure 6: RMSE, CRPS, and SSR for geopotential at 500 hPa (z500) with a selection of models at
1h resolution.

With this work, we hope to show that the possibilities with generative modeling for spatio-temporal
predictions are still largely unexplored and a fruitful area of research.

Limitations. While our proposed framework achieves good results on 5.625◦Weatherbench (Rasp
et al., 2020) data, we have yet to show that the method scales to problems with higher spatial res-
olution. Additionally, as the lead time increases, the correlation between initial and future states
becomes weaker, limiting the application of continuous forecasting. While our method parallelizes
more of the sampling than previous autoregressive models, solving the probability flow ODE in eq.
2 still requires many sequential forward passes through the network. Sampling is thus still slower
than for latent variable models, but the predicted distribution more accurate.

Future work. One interesting direction for future work is a further investigation of autocorrelated
noise, in particular, how the choice of stochastic process can aid in producing continuous trajectories
with a stationary temporal difference. This includes correlating the noise in the autoregressive steps
with the continuous steps, which could help ease the transition between them. Another idea is to take
the direction of DYffusion (Rühling Cachay et al., 2023) and directly adjust the diffusion objective to
better suit temporal data. While we have demonstrated continuous ensemble forecasting for weather,
the idea is generally applicable and it would also be of interest to apply it to other spatio-temporal
forecasting problems.
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A METRICS

We consider the following evaluation metrics used to assess the probabilistic forecasts produced
by the diffusion model. Metrics from meteorology and general uncertainty quantification, such as
RMSE, Spread/Skill ratio (SSR), and Continuous Ranked Probability Score (CRPS) are employed
to measure the effectiveness and reliability of the model outputs. All of our metrics are weighted by
latitude-dependent weights. For a particular variable and lead time,

• xk
i,n represents the value of the k-th ensemble member at initialization time indexed by

n = 1 . . . N for grid cell in the latitude and longitude grid indexed by i ∈ I .

• yi,n denotes the corresponding ground truth.

• x̄i,n denotes the ensemble mean, defined by x̄i,n = 1
nens

∑nens
k=1 x

k
i,n.

• ai denotes the area of the latitude-longitude grid cell, which varies by latitude and is nor-
malized to unit mean over the grid (Rasp et al., 2020).

RMSE or skill measures the accuracy of the forecast. Following Rasp et al. (2020) we define the
RMSE as the mean square root of the ensemble mean:

RMSE :=
1

N

N∑
n=1

√
1

|I|
∑
i∈I

ai(yi,n − x̄i,n)2. (3)

In the case of deterministic predictions, the ensemble mean is taken as the deterministic prediction.

Spread represents the variability within the ensemble and is calculated as the root mean square of
the ensemble variance:

Spread :=
1

N

N∑
n=1

√√√√ 1

|I|
∑
i∈I

1

nens − 1

nens∑
k=1

ai(xk
i,n − x̄i,n)2. (4)

Ideally, the forecast achieves a balance where skill and spread are proportional, leading to an optimal
spread/skill ratio (SSR) close to 1, indicating effective uncertainty estimation:

SSR :=

√
nens + 1

nens

Spread
RMSE

. (5)

Continuous Ranked Probability Score (CRPS) (Gneiting & Raftery, 2007) measures the accuracy
of probabilistic forecasts by comparing the cumulative distribution functions (CDFs) of the predicted
and observed values. It integrates the squared differences between these CDFs, providing a single
score that penalizes differences in location, spread, and shape of the distributions. An estimator of
the CRPS is given by:

CRPS :=
1

N

N∑
n=1

1

|I|
∑
i∈I

ai

(
1

nens

nens∑
k=1

|xk
i,n − yi,n| −

1

2n2
ens

nens∑
k=1

nens∑
k′=1

|xk
i,n − xk′

i,n|

)
.

Temporal Difference measures the mean absolute difference between states at consecutive times.
It’s used to measure the continuity of a forecast. For forecasts xk

i,n, x̂
k
i,n at consecutive lead times, it

is given by:

∆X :=
1

N

N∑
n=1

1

nens

nens∑
k=1

1

|I|
∑
i∈I

ai|xk
i,n − x̂k

i,n|. (6)

B MODEL

Preconditioning The sampling process is based on the denoising neural network Dθ that takes a
noisy residual and tries to denoise it. To help in this, it is also given the noise level σ, the previous
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Table 2: Scaling functions.

Skip scaling cskip(σ) σ2
data/(σ

2 + σ2
data)

Output scaling cout(σ) σ · σdata/
√

σ2 + σ2
data

Input scaling cin(σ) 1/
√
σ2 + σ2

data
Noise scaling cnoise(σ)

1
4 ln(σ)

state X(Ω) and the lead time t. To simplify learning, Dθ is parameterized by a different network Fθ

defined by

Dθ(X
σ
t ;σ,X(Ω), t) = cskip(σ) ·Xσ

t + cout(σ) · Fθ (cin(σ) ·Xσ
t ; cnoise(σ), X(Ω), t) ,

where Xσ
t denotes a noisy version of the target time X(t) at noise level σ, and cskip, cout, cin and

cnoise are scaling functions taken from (Karras et al., 2022) defined in Tab. 2. These scaling functions
cskip, cout, cin and cnoise, are specifically chosen to handle the influence of the noise level within
the network, allowing Dθ to adapt dynamically to different noise intensities without the need for
adjusting the scale of σ externally. Consequently, for consistency with the normalization of the data
where σdata is set to 1, the lead time t is also scaled to fit within the range [0, 1]. This normalization
ensures that the network inputs are uniformly scaled, enhancing the efficiency and effectiveness of
the denoising process.

Conditioning To condition on the initial conditions X(Ω) and static fields, these are concatenated
along the channel dimension with the input to the denoiser, increasing the dimension of the input.
To condition on the noise level σ and lead time t, we use Fourier embedding as specified in (Karras
et al., 2022). Fourier embedding captures periodic patterns in noise and time, enhancing the model’s
ability to handle complex time-series dependencies effectively. They work by transforming the
time/noise into a vector of sine/cosine features at 32 frequencies with period 16. These vectors are
added and then passed through two fully connected layers with SiLU activation to obtain a 128-
dimensional encoding.

Architecture The backbone of the diffusion model is a U-Net architecture. Our model is based
on the one used in (Karras et al., 2022), reconfigured for our purposes with 32 filters as the base
multiplier. It is built up by blocks configured as in fig. 7. The blocks consist of two convolutional
layers and are constructed as in fig. 8. If the block is a down-/up-sample or if the number of input
filters is different from the number of output filters, there is an additional skip layer from the input
to the output. The time/noise embedding is fed directly into each block and not passed through
the network. Unlike the network in Karras et al. (2022), our convolutions uses zero padding at the
poles and periodic padding at the left/right edges. This periodic padding ensures periodicity over
longitudes. The model has 3.5M parameters.

Sampling To generate forecasts using our diffusion model, we solve the probability flow ODE as
defined in (Karras et al., 2022)

dz = −σ̇(s)σ(s)∇z log ps (z) ds. (7)

We employ the second-order Heun’s method, a deterministic ODE solver, as outlined in Algorithm
4. For the noise parameters, we define the noise level function as σ(s) = s. Additionally, we set a
noise level schedule to lower the noise during sampling from σmax to σmin over N steps:

si =

(
σ

1
ρ
max +

i

N − 1

(
σ

1
ρ

min − σ
1
ρ
max

))ρ

, i ∈ {0, . . . , N − 1}.

The relevant parameters for training and sampling are given in tab. 3.

Training The dataset is partitioned into three subsets: training, validation, and testing. The train-
ing subset is used for model training, the validation subset for evaluating generalization, and the
testing subset to determine final accuracy. The diffusion model is trained using the following train-
ing objective
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8x
16

Add Connections

16x32

8x16

Skip Connections
Down Connections
Up Connections
Residual Connections

Block Connections

32x64

Figure 7: Overview of the U-Net Architecture, detailing layer configurations and the flow of infor-
mation through convolutional blocks and skip connections.

input

embedding

output

Conv 1x1 + (Down/Up)

Add connection
Norm + SiLU + Conv 3x3 + Dropout

Linear layer
Norm + SiLU + Conv 3x3 + (Down/Up)

Figure 8: Construction of a Diffusion Model Block, showing the sequence of operations and the
integration of embeddings with add connections.

Algorithm 4 Deterministic sampling using Heun’s 2nd order method.

1: procedure HEUNSAMPLER(Dθ(z;σ,X(Ω), t), si∈{0,...,N}, Z)
2: z0 ← σ2(s0) · Z ▷ Generate initial sample at s0

3: for i = 0 to N − 1 do ▷ Solve ODE over N time steps

4: di ← σ̇(si)
σ(si)

(zi −Dθ(zi;σ(si), X(Ω), t)) ▷ Evaluate dz/ds at si

5: zi+1 ← zi + (si+1 − si)di ▷ Take Euler step from si to si+1

6: if si+1 ̸= 0 then ▷ Apply 2nd order correction unless σ goes to zero

7: d′
i ←

σ̇(si+1)
σ(si+1)

(zi+1 −Dθ(zi+1;σ(si+1), X(Ω), t)) ▷ Evaluate dz/ds at si+1

8: zi+1 ← zi +
1
2 (si+1 − si) (di + d′

i) ▷ Explicit trapezoidal rule at si+1

return zN ▷ Return noise-free sample at sN

Table 3: Parameters used for sampling and training.

Name Notation Value, sampling Value, training

Maximum noise level σmax 80 88
Minimum noise level σmin 0.03 0.02
Shape of noise distribution ρ 7 7
Number of noise levels N 20
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Table 4: Optimizer Hyperparameters.

Optimizer hyperparameters
Optimiser AdamW (Loshchilov & Hutter, 2017a)
Initialization Xavier Uniform (Glorot & Bengio, 2010)
LR decay schedule Cosine (Loshchilov & Hutter, 2017b)
Peak LR 5e-4
Weight decay 0.1
Warmup steps 1e3
Epochs 300
Batch size 256
Dropout probability 0.1

Table 5: Training schedule for Graph-EFM, using the notation from Oskarsson et al. (2024).

Epochs Learning Rate Unrolling steps λKL λCRPS

20 10−3 1 0 0
75 10−3 1 0.1 0
20 10−4 4 0.1 0

8 10−4 8 0.1 105

Et∼ptEσ∼pσE(X(Ω),X(t))∼pdataEϵ|σ∼N (0,σ2I)

 1

σ2

∑
i

∑
j

ai
sj(t)

1

|I||J |

(
X̂(t)i,j −X(t)i,j

)2 .

with X̂(t) = Dθ(X(t) + ϵ;σ,X(Ω), t) and J being the set of variables. Here, pt represents a
uniform distribution over the lead times. We have also included a scaling term sj(t)

−1 which scales
the loss by the precomputed standard deviation sj(t) based on lead time t for each variable j ∈ J .
This normalization process is designed to weigh short and longer times equally. The noise level
distribution pσ is chosen to be consistent with the sampling noise level described above. Specifically,
its inverse CDF is:

F−1(u) =

(
σ

1
ρ
max + u

(
σ

1
ρ

min − σ
1
ρ
max

))ρ

,

and we sample from it by drawing u ∼ U [0, 1]. The training process is executed in Pytorch, with
setup and parameters detailed in Tab. 4.

Graph-EFM Baseline For the Graph-EFM baseline we use the same data setup as for the other
models. Since we are working on a coarser resolution than Oskarsson et al. (2024) some adaptation
was necessary to the exact graph structure used in the model. We construct the graph by splitting a
global icosahedron 2 times, resulting in 3 hierarchical graph levels. The training follows the same
schedule as in Oskarsson et al. (2024), with pre-training on single step 6 h prediction and fine-tuning
on rollouts. Details of the training schedule are given in tab. 5.

C ADDITIONAL RESULTS

Interpolation An alternative to directly producing forecasts at a fine temporal resolution would be
to simply interpolate the forecasts sampled using an autoregressive model. We argue that our ARCI
method produces more accurate and realistic predictions than simple linear interpolation. Figure 9
shows the RMSE and Spread/Skill for a linear interpolation of AR-24h, compared to ARCI-24/6h.
The interpolated forecasts behave much worse than the ARCI model on the same resolution, which
strengthens the role of our model as an advanced interpolator.

Table 6, 7 and show the results on 5 and 10 day forecasting for all variables. The error bars given
for ARCI-24/6h is a standard deviation calculated by retraining the model five times and evaluating
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Figure 9: RMSE and SSR for linear interpolations of geopotential at 500 hPa (z500) and ground
wind speed (ws10). Linear-1h/Linear-6h are linear interpolations of AR-6h/AR-24h.

each model on 10 ensemble members. This shows that the model is robust to network initialization.
Figure 10 show the results on 5-10 day forecasting for all variables. Figure 11 shows the same results
on forecasting with 1h resolution. Figure 12 shows the temporal difference for different values of ρ.
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Figure 10: RMSE, SSR, and CRPS for a selection of models at 6h resolution.

D EXAMPLE FORECASTS

Figures 13–18 show example forecasts for the remaining variables.
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Table 6: Results on 5 day forecasting for all variables. For RMSE and CRPS, lower values are better,
and SSR should be close to 1.

Lead time 5 days

Variable Model RMSE CRPS SSR

z500 Deterministic 766.7 483.9 -
Graph-EFM 699.1 317.5 1.13
AR-6h 602.3 287.8 0.75
AR-24h 544.2 242.7 0.84
CI-6h 707.8 321.2 0.59
ARCI-24/6h 560.9 ± 15.6 256.7 ± 20.2 0.86 ± 0.015

t850 Deterministic 3.48 2.36 -
Graph-EFM 3.12 1.56 1.11
AR-6h 2.72 1.34 0.82
AR-24h 2.55 1.24 0.89
CI-6h 3.06 1.5 0.74
ARCI-24/6h 2.6 ± 0.031 1.27 ± 0.021 0.9 ± 0.012

t2m Deterministic 2.71 1.72 -
Graph-EFM 2.51 1.1 1.09
AR-6h 2.13 0.96 0.83
AR-24h 1.98 0.87 0.9
CI-6h 2.29 1.0 0.79
ARCI-24/6h 2.02 ± 0.036 0.9 ± 0.035 0.9 ± 0.012

u10 Deterministic 4.37 2.93 -
Graph-EFM 3.81 1.93 0.97
AR-6h 3.47 1.71 0.86
AR-24h 3.32 1.62 0.92
CI-6h 3.87 1.91 0.77
ARCI-24/6h 3.35 ± 0.032 1.64 ± 0.019 0.93 ± 0.007

v10 Deterministic 4.48 3.0 -
Graph-EFM 3.88 1.96 0.94
AR-6h 3.55 1.76 0.86
AR-24h 3.42 1.68 0.93
CI-6h 4.0 1.99 0.77
ARCI-24/6h 3.45 ± 0.026 1.69 ± 0.014 0.94 ± 0.006

ws10 Deterministic 3.09 2.2 -
Graph-EFM 2.56 1.35 1.01
AR-6h 2.38 1.23 0.9
AR-24h 2.3 1.18 0.96
CI-6h 2.54 1.32 0.88
ARCI-24/6h 2.31 ± 0.016 1.19 ± 0.01 0.96 ± 0.006
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Table 7: Results on 10 day forecasting for all variables. For RMSE and CRPS, lower values are
better, and SSR should be close to 1.

Lead time 10 days

Variable Model RMSE CRPS SSR

z500 Deterministic 1042 661.5 -
Graph-EFM 817.1 373.6 1.1
AR-6h 811.8 391.9 0.88
AR-24h 750.6 335.2 0.94
CI-6h 885.7 406.6 0.6
ARCI-24/6h 765.6 ± 21.4 355.2 ± 33.0 0.93 ± 0.018

t850 Deterministic 4.54 3.17 -
Graph-EFM 3.51 1.77 1.12
AR-6h 3.39 1.69 0.92
AR-24h 3.25 1.6 0.96
CI-6h 3.68 1.85 0.71
ARCI-24/6h 3.29 ± 0.05 1.63 ± 0.041 0.95 ± 0.007

t2m Deterministic 3.56 2.28 -
Graph-EFM 2.88 1.32 1.14
AR-6h 2.62 1.18 0.89
AR-24h 2.48 1.09 0.95
CI-6h 2.75 1.21 0.75
ARCI-24/6h 2.51 ± 0.068 1.11 ± 0.076 0.94 ± 0.017

u10 Deterministic 5.14 3.53 -
Graph-EFM 4.08 2.07 0.97
AR-6h 3.95 1.97 0.94
AR-24h 3.85 1.9 0.97
CI-6h 4.27 2.14 0.78
ARCI-24/6h 3.87 ± 0.03 1.92 ± 0.018 0.97 ± 0.01

v10 Deterministic 5.23 3.58 -
Graph-EFM 4.11 2.08 0.93
AR-6h 4.02 2.0 0.96
AR-24h 3.96 1.96 0.99
CI-6h 4.39 2.2 0.8
ARCI-24/6h 3.97 ± 0.018 1.97 ± 0.011 0.99 ± 0.01

ws10 Deterministic 3.44 2.49 -
Graph-EFM 2.65 1.4 1.01
AR-6h 2.57 1.34 0.96
AR-24h 2.53 1.31 0.99
CI-6h 2.68 1.4 0.89
ARCI-24/6h 2.54 ± 0.011 1.32 ± 0.008 0.99 ± 0.008
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Figure 11: RMSE, SSR and CRPS for a selection of models at 1h resolution.
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Figure 12: Temporal difference for different values of ϵ in algorithm 2. Choosing ρ = 0 fixes the
noise, ρ = ln(10) allows it to vary slightly and ρ → ∞ gives completely uncorrelated noise. The
black line refers to the temporal difference of the data.
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Figure 13: Example forecasts for geopotential at 500 hPa (z500) at lead time 10 days. The forecasts
are generated using ARCI-24/6h except for Deterministic which is sampled using the deterministic
model. The bottom row shows 4 ensemble members, randomly chosen out of the 50.

Figure 14: Example forecasts for temperature at 850hPa (t850) at lead time 10 days. The forecasts
are generated using ARCI-24/6h except for Deterministic which is sampled using the deterministic
model. The bottom row shows 4 ensemble members, randomly chosen out of the 50.

Figure 15: Example forecasts for ground temperature (t2m) at lead time 10 days. The forecasts
are generated using ARCI-24/6h except for Deterministic which is sampled using the deterministic
model. The bottom row shows 4 ensemble members, randomly chosen out of the 50.
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Figure 16: Example forecasts for u-component of wind at 10m (u10) at lead time 10 days. The
forecasts are generated using ARCI-24/6h except for Deterministic which is sampled using the de-
terministic model. The bottom row shows 4 ensemble members, randomly chosen out of the 50.

Figure 17: Example forecasts for v-component of wind at 10m (v10) at lead time 10 days. The
forecasts are generated using ARCI-24/6h except for Deterministic which is sampled using the de-
terministic model. The bottom row shows 4 ensemble members, randomly chosen out of the 50.

Figure 18: Example forecasts for wind speed at 10m (ws10) at lead time 10 days. The forecasts
are generated using ARCI-24/6h except for Deterministic which is sampled using the deterministic
model. The bottom row shows 4 ensemble members, randomly chosen out of the 50.
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E CONTINUITY OF SOLUTIONS TO PROBABILITY FLOW ODE

This entire section is new.

In section 4.1, we conjecture that the trajectories generated by the Continuous Ensemble Forecasting
method are continuous as functions of lead time. This property is verified in practice, as seen in
figure 5, but no formal proof of this is presented. In this appendix we show that the solutions to
the Probability Flow ODE 2 are continuous functions of t. Since we are primarily interested in the
continuity of solutions, we assume access to a unique solution to 2. The existence and uniqueness
of such a solution can be proven under the same conditions as theorem 1 below. For a proof of this,
we refer the reader to theorem B in Section 70, Chapter 13 of Simmons (2016).

The continuous dependence of solutions to differential equations on parameters is a well-studied
problem and there exists several necessary and sufficient conditions for this (2014). We provide a
proof for the linear noise level σ(s) = s case used in the paper. We want to show that the solution
z(s) to the probability flow ODE

dz(s) = −sSθ(z(s);x0, s, t)ds, z(1) = z0, s ∈ [ϵ, 1] (8)

is continuous for all s ∈ [ϵ, 1] with respect to the lead time t. We consider the case where the noise
z0 is fixed for all t. Here we have chosen to stop at z(ϵ) for some ϵ ≪ 1 instead of z(0) to avoid
the singularity of the score function∇ log ps in s = 0. This is common for all diffusion models and
done in practice for numerical stability.

Let f(s, z, t) = −sSθ(z(s);x−1:0, s, t), where we have suppressed the dependence on the previous
state x−1:0 since all forecasts are conditioned on a fixed x−1:0. The following theorem covers the
sufficient conditions for continuity of solutions to 8.
Theorem 1 (Continuity of trajectories on lead time t). Suppose f(s, z, t) is continuous and locally
Lipschitz in z in an open set D × (0, T ) ⊆ R× Rn × R. If ϕ(s, t) is a solution of the IVP

ż(s) = f(s, z, t), z(1) = z0,

which is defined on the closed interval [ϵ, 1] and (s, ϕ(s, t), t) ∈ D for s ∈ [ϵ, 1], then the function
ϕ(s, t) is continuous on [ϵ, 1]× (0, T ).

The proof of theorem 1 is based on the proof of theorem 5.5 in (2014) with variables x = z, λ =
t, t = s which we provide here for reference.
Theorem 2 (Theorem 5.5 in (2014)). Suppose f(t, x, λ) is continuous and locally Lipschitz in x in
an open set D ⊆ R× Rn × Rk. If ϕ(t, a, x0, λ0) is a solution of the IVP

ẋ = f(t, x, λ0), x(a) = x0,

which is defined on the closed interval [a, b] and (t, ϕ(t, a, x0, λ0), λ0) ∈ D for t ∈ [a, b], then there
is a neighborhood V of (a, x0, λ0) in R× Rn × Rk such that, for (u, y, λ) ∈ V , the IVP

ẋ = f(t, x, λ), x(u) = y,

also has a solution defined on the interval [u, b]. Moreover the function ϕ(t, u, y, λ) is continuous
on [a, b]× V .

The full proof of theorem 2 is given in (2014). By closely examining this proof, we provide a
proof-sketch of theorem 1.

Proof sketch of Theorem 1. Suppose f(s, z, t) is continuous and locally Lipschitz in z in an open
set D × (0, T ) ⊆ R× Rn × R. Let ϕ(s, t) be a solution of the IVP

ż(s) = f(s, z, t0), z(1) = z0,

defined on the closed interval [ϵ, 1] such that (s, ϕ(s, t), t) ∈ D for s ∈ [ϵ, 1]. Theorem 2 implies
the existence of a neighborhood V of (1, z0, t0) ∈ R× Rn × (0, T ) for the IVP

ż(s) = f(s, z, t), z(u) = y,

for which the solution ϕ(s, u, y, t) is continuous on [u, b] × V . We note however that this only
guarantees that the solutions are continuous on a subset of the the entire interval (0, T ). To prove
theorem 1 we need to show that the t-part of V can be chosen as (0, T )
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To see this, we begin by noting that the proof of theorem 5.5 never actually restricts the t-part of V .
This can be seen by following the proof steps and keeping track of the restrictions on V . V is first
defined in the proof of theorem 5.2 (p.2 (2014)) where it is explicitly constructed as

V = Iα(1)×B2β(z0)× Cγ(t0),

where Iα(1), B2β(z0) is some neighborhood of (1, z0). These are constructed using some unknown
Lipschitz constant and can thus not be explicitly written down.

We note however, that the only requirement on the neighborhood Cγ(t0) of t0 is that it should lie in
the domain Cγ(t0) ⊂ (0, T ). Thus we can simply choose γ, t0 such that Cγ(t0) = (0, T ). Finally,
we note that the remaining steps in the proof of theorem 2 never restricts or redefines Cγ(t0). Thus,
for this choice of V , the solutions to the IVP will be continuous for all t ∈ (0, T ). This completes
the proof.

Theorem 1 shows that the solutions to the probability flow ODE 8 are continuous as functions of
lead-time if sSθ(z(s);x−1:0, s, t) is continuous and locally Lipschitz in z in an open set D ⊆
R × Rn × (0, T ). Since the neural network Sθ is a composition of continuous functions, it is
necessarily a continuous function. The remaining assumption on Sθ being Lipschitz in z is not a
particularly strong one, and commonly assumed when proving results about neural networks (Karras
et al., 2022; Song et al., 2019; Albergo & Vanden-Eijnden, 2023). To calculate the Lipschitz constant
one could for example use the method proposed in Scaman & Virmaux (2019).
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