
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRIDDED TRANSFORMER NEURAL PROCESSES FOR
LARGE UNSTRUCTURED SPATIO-TEMPORAL DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Many important problems require modelling large-scale spatio-temporal datasets,
with one prevalent example being weather forecasting. Recently, transformer-
based approaches have shown great promise in a range of weather forecasting
problems. However, these have mostly focused on gridded data sources, neglect-
ing the wealth of unstructured, off-the-grid data from observational measurements
such as those at weather stations. A promising family of models suitable for such
tasks are neural processes (NPs), notably the family of transformer neural pro-
cesses (TNPs). Although TNPs have shown promise on small spatio-temporal
datasets, they are unable to scale to the quantities of data used by state-of-the-art
weather and climate models. This limitation stems from their lack of efficient at-
tention mechanisms. We address this shortcoming through the introduction of
gridded pseudo-token TNPs which employ specialised encoders and decoders
to handle unstructured observations and utilise a processor containing gridded
pseudo-tokens that leverage efficient attention mechanisms. Our method consis-
tently outperforms a range of strong baselines on various synthetic and real-world
regression tasks involving large-scale data, while maintaining competitive com-
putational efficiency. The real-life experiments are performed on weather data,
demonstrating the potential of our approach to bring performance and computa-
tional benefits when applied at scale in a weather modelling pipeline.

1 INTRODUCTION

Many spatio-temporal modelling problems are being transformed by the proliferation of data from
in situ sensors, remote observations, and scientific computing models. The opportunities presented
have led to a surge of interest from the machine learning community to develop new tools and models
to support these efforts. One prominent example of this transformation is in medium-range weather
and environmental forecasting where a new generation of machine learning models have improved
performance and reduced computational costs, including: Aurora (Bodnar et al., 2024); GraphCast
(Lam et al., 2022); GenCast (Price et al., 2023); PanguWeather (Bi et al., 2022); ClimaX (Nguyen
et al., 2023), FuXi (Chen et al., 2023b); and FengWu (Chen et al., 2023a). All of these models
operate on sets of environmental variables which are regularly structured in space and time, allowing
them to leverage architectures developed in the vision and language community such as the Vision
Transformer (ViT; Dosovitskiy et al. 2020), Swin Transformer (Liu et al., 2021), and Perceiver
(Jaegle et al., 2021). These models are trained and deployed on data arising from computationally
intensive scientific simulation and analysis techniques, which integrate observational data (e.g. from
weather stations, ships, buoys, radiosondes, etc.) with simulation data to provide the best estimate
of the atmosphere’s state. They are not currently trained on observational measurements directly.

We are now on the cusp of a second generation of these models which will also ingest unstructured
observational, alongside analysis data, or which will replace the need for analysis data entirely. This
second generation of forecasting systems will further improve accuracy and reduce computational
costs. Thus far, there have only been a handful of early attempts to tackle this problem (Vaughan
et al., 2024; McNally et al., 2024; Xu et al., 2024; Xiao et al., 2023) and it is unclear what architec-
tures would best support this setting. We therefore consider it fertile ground for impactful research.

Many problems considered can be formulated as repeatedly performing predictive inference condi-
tioned on an ever-changing, large set of observations. Posed with the question of what framework

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

is suitable for handling spatio-temporal prediction problems containing both structured and unstruc-
tured data, we turn towards neural processes (NPs; Garnelo et al. 2018a;b): a family of meta-learning
models that are able to map from datasets of arbitrary size and structure to predictions over outputs
at arbitrary input locations. NPs support a probabilistic treatment of observations, making them
capable of outputting uncertainty estimates that are crucial in, for example, forecasting systems.
Moreover, NPs are a flexible framework—unlike other models that only perform forecasting, they
are able to solve more general state estimation problems, including forecasting, data fusion, data in-
terpolation and data assimilation. Although early versions of NPs were severely limited, a string of
recent developments (Kim et al., 2019; Gordon et al., 2019; Nguyen & Grover, 2022; Ashman et al.,
2024a; Feng et al., 2023; Bruinsma et al., 2021; Ashman et al., 2024b) have significantly improved
their effectiveness, particularly for small-scale spatio-temporal regression problems. Their broad
applicability has been demonstrated throughout literature, from a wide variety of spatio-temporal
tasks such as climate downscaling, data assimilation and sensor placement (Vaughan et al., 2022;
Andersson et al., 2023; Chen et al., 2024; Niu et al., 2024), to tasks as diverse as molecular property
prediction (Garcı́a-Ortegón et al., 2024). Notably, the family of transformer NPs (TNPs; Nguyen
& Grover 2022; Feng et al. 2023; Ashman et al. 2024a), which use transformer-based architectures
as the computational backbone, have demonstrated impressive performance on a range of tasks.
However, unlike the aforementioned large-scale environmental prediction models, TNPs are yet to
fully take advantage of efficient attention mechanisms. As a result of the quadratic computational
complexity associated with full attention, they have been unable to scale to complex spatio-temporal
datasets. This is because such techniques require structured—more specifically, gridded—datasets,
and are thus not immediately applicable.

We pursue a straightforward solution: to encode the dataset onto a structured grid before passing
it through a transformer-based architecture. We refer to this family of models as gridded TNPs,
serving as a general-purpose tool for spatio-temporal state estimation. Our core contributions are:

1. We develop a novel attention-based grid encoder, based on the ideas of ‘pseudo-tokens’ (Jaegle
et al., 2021; Feng et al., 2023; Lee et al., 2019), which we show improves upon the performance
of traditional kernel-based interpolation methods.

2. Equipped with the pseudo-token grid encoder, we are able to use efficient attention mechanisms
within the transformer backbone of the TNP, utilising advancements such as the ViT (Dosovitskiy
et al., 2020) and Swin Transformer (Liu et al., 2021).

3. We develop an efficient k-nearest-neighbour attention-based grid decoder, facilitating the evalu-
ation of predictive distributions at arbitrary spatio-temporal locations. Remarkably, we find that
this improves performance over full attention.

4. We empirically evaluate our model on a range of synthetic and real-world spatio-temporal re-
gression tasks, demonstrating both the ability to 1) maintain strong performance on large spatio-
temporal datasets and 2) handle multiple sources of unstructured data effectively, all while main-
taining a low computational complexity.

2 BACKGROUND

We consider the supervised learning setting, where X , Y denote the input and output spaces, and
(x,y) ∈ X × Y denotes an input-output pair. We restrict our attention to X = RDx and Y = RDy .
Let S =

⋃∞
N=0(X × Y)N be a collection of all finite datasets, which includes the empty set ∅. We

denote a context and target set with Dc, Dt ∈ S , where |Dc| = Nc, |Dt| = Nt. Let Xc ∈ (X)Nc ,
Yc ∈ (Y)Nc be the inputs and corresponding outputs of Dc, and let Xt ∈ (X)Nt , Yt ∈ (Y)Nt be
defined analogously. We denote a single task as ξ = (Dc,Dt) = ((Xc,Yc), (Xt,Yt)).

2.1 NEURAL PROCESSES

Neural processes (NPs; Garnelo et al. 2018a;b) can be viewed as neural-network-based map-
pings from context sets Dc to predictive distributions at target locations Xt, p(· | Xt,Dc).
In this work, we restrict our attention to conditional NPs (CNPs; Garnelo et al. 2018a), which
only target marginal predictive distributions by assuming that the predictive densities factorise:
p(Yt|Xt,Dc) =

∏Nt

n=1 p(yt,n|xt,n,Dc). We denote all parameters of a CNP by θ. CNPs are

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

trained in a meta-learning fashion, in which the expected predictive log-probability is maximised:

θML = argmaxθ LML(θ) where LML(θ) = Ep(ξ)

[∑Nt

n=1 log pθ(yt,n|xt,n,Dc)
]
. (1)

For real-world datasets, we only have access to a finite number of tasks for training and so approxi-
mate this expectation with an average over tasks. The global maximum is achieved if and only if the
model recovers the ground-truth predictive distributions (Proposition 3.26 by Bruinsma, 2022). In
Appendix A we present a unifying construction for CNPs involving three components: the encoder
e : X × Y → Z , which encodes each (xc,n,yc,n) ∈ Dc into some token representation zc,n ∈ Z ,
the processor ρ :

(⋃∞
n=0Zn

)
× X → Z , which processes the set of context tokens together with

the target input xt to obtain a target dependent token zt ∈ Z , and the decoder d : Z → PY , which
maps from the target token to the predictive distribution over the output at that target location. Here,
PY denotes the space of distributions over the output space Y .

2.2 TRANSFORMERS AND TRANSFORMER NEURAL PROCESSES

A useful perspective of transformers is that of set functions (Lee et al., 2019), making them suitable
in the construction of the processor of a CNP, resulting in the family of TNPs. In this section, we
provide a brief overview of transformers and their use in TNPs.

2.2.1 SELF-ATTENTION AND CROSS-ATTENTION

Broadly speaking, transformer-based architectures consist of two operations: multi-head self-
attention (MHSA) and multi-head cross-attention (MHCA). Informally, the MHSA operation can
be understood as updating a set of tokens using the same set, whereas the MHCA operation can
be understood as updating one set of tokens using a different set. More formally, let Z ∈ RN×Dz

denote a set of N Dz-dimensional input tokens. The MHSA operation updates this set of tokens as

zn ← cat
({∑N

m=1 αh(zn, zm)zm
TWV,h

}H

h=1

)
WO ∀ n = 1, . . . , N. (2)

Here, WV,h ∈ RDz×DV and WO ∈ RHDV ×Dz are the value and projection weight matri-
ces, where H denotes the number of ‘heads’, and αh is the attention mechanism. This is most
often a softmax-normalised transformed inner-product between pairs of tokens: αh(zn, zm) =
softmax({zTnWQ,hW

T
K,hzm}Nm=1)m, where WQ,h ∈ RDz×DQK and WK,h ∈ RDz×DQK are

the query and key matrices. The MHCA operation updates one set of tokens, Z1 ∈ RN1×Dz , using
another set of tokens, Z2 ∈ RN2×Dz , in a similar manner:

z1,n ← cat
({∑N2

m=1 αh(z1,n, z2,m)z2,m
TWV,h

}H

h=1

)
WO ∀ n = 1, . . . , N1. (3)

MHSA and MHCA operations are used in combination with layer-normalisation operations and
point-wise MLPs to obtain MHSA and MHCA blocks. Unless stated otherwise, we shall adopt the
order used by Vaswani et al. (2017) which we detail in Appendix E.

2.2.2 PSEUDO-TOKEN-BASED TRANSFORMERS

Pseudo-token-based transformers, first introduced by Jaegle et al. (2021) with the Perceiver, remedy
the quadratic computational complexity induced by the standard transformer by condensing the
set of N tokens, Z ∈ RN×Dz , into a smaller set of M ≪ N ‘pseudo-tokens’, U ∈ RM×Dz ,
using MHCA operations.1 These pseudo-tokens are then processed instead of operating on the
original set directly, reducing the computational complexity from O(N2)—the cost of performing
MHSA operations on the original set—toO(NM+M2)—the cost of performing MHCA operations
between the original set and pseudo-tokens, followed by MHSA operations on the pseudo-tokens.

2.2.3 TRANSFORMER NEURAL PROCESSES

Transformer neural processes (TNPs) use transformer-based architectures as the processor in the
CNP construction described in Section 2.1. First, each context point (xc,n,yc,n) ∈ Dc and target

1There are strong similarities between the use of pseudo-tokens in transformers and the use of inducing
points in sparse Gaussian processes: both can be interpreted as condensing the original dataset into a smaller,
‘summary dataset’.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

input xt,n ∈ Xt is encoded to obtain an initial set of context and target tokens, Z0
c ∈ RNc×Dz and

Z0
t ∈ RNt×Dz . Transformers are then used to process the union Z0 = Z0

c ∪ Z0
t using a series of

MHSA and MHCA operations, keeping only the output tokens corresponding to the target inputs.
These processed target tokens are then mapped to predictive distributions using the decoder. The
specific transformer-based architecture is unique to each TNP variant, with each generally consisting
of MHSA operations acting on the context tokens—or pseudo-token representation of the context—
and MHCA operations acting to update the target tokens given the context tokens. We provide
an illustrative diagram of two popular TNP variants in Appendix A: the regular TNP (Nguyen &
Grover, 2022) and the induced set transformer NP (ISTNP; Lee et al. 2019).

The application of TNPs to large datasets is impeded by the use of MHSA and MHCA operations
acting on the entire set of context and target tokens. Even when pseudo-tokens are used in pseudo-
token-based TNPs (PT-TNPs), the number of pseudo-tokens M required for accurate predictive
inference generally scales with the complexity of the dataset, and the MHCA operations between
the pseudo-tokens and the context and target tokens quickly becomes prohibitive as the size of the
dataset increases. This motivates the use of efficient attention mechanisms, as used in the ViT
(Dosovitskiy et al., 2020) and Swin Transformer (Liu et al., 2021).

3 RELATED WORK

Transformers for Point Cloud Data A closely related research area is point cloud data modelling
(Tychola et al., 2024), with transformer-based architectures employed for a variety of tasks (Lu et al.,
2022). Given the large amount of data used in some works, the use of efficient attention mechanisms
has been considered. A number of notable approaches use voxelisation, whereby unstructured point
clouds are encoded onto a structured grid (Mao et al., 2021; Zhang et al., 2022), prior to employing
efficient architectures that operate on grids. Both aforementioned works voxelise the unstructured
inputs through rasterisation, but implement efficient self-attention mechanisms such as Swin Trans-
former. Our pseudo-token grid encoder is heavily inspired by the voxel-based set attention (VSA)
introduced by He et al. (2022). Similar to our approach, VSA cross-attends local neighbourhoods
of unstructured tokens onto a structured grid of pseudo-tokens. However, VSA uses the same initial
pseudo-token values for all grid locations, as the ‘cloud’ in which points exist are not equipped with
unobserved information. Their use of a fixed set of initial values manifests a specific implementation
in which all tokens attend to the same set of pseudo-tokens. In contrast, for many spatio-temporal
problems there may exist potentially unobserved, fixed topographical information such as elevation,
land use and soil type, hence we employ different initial pseudo-token values for each grid location
which are capable of capturing this.

Models for Structured Weather Data The motivation behind our method is to develop mod-
els that are able to scale to massive spatio-temporal datasets. In recent years, doing so has gar-
nered a significant amount of interest from the research community, and several models have been
developed—some of the most successful of which target weather data. However, the majority of
these methods operate on structured, gridded data, and focus solely on forecasting.2 Models such as
Aurora (Bodnar et al., 2024), GraphCast (Lam et al., 2022), GenCast (Price et al., 2023), Pangu (Bi
et al., 2022), FuXi (Chen et al., 2023b) and FengWu (Chen et al., 2023a) share a similar encoder-
processor-decoder to our construction of CNPs presented in Section 2.1, in which the input grid
is projected onto some latent space which is then transformed using an efficient form of informa-
tion propagation (e.g. sparse attention with Swin Transformer (Bodnar et al., 2024; Bi et al., 2022),
message passing with GNNs (Price et al., 2023)) before being projected back onto the grid at the
output.3

Although yielding impressive performance, these methods are inherently constrained in their
application—forecasting with structured data—with predictions sharing the same locations as the
inputs at each time point. The distinct advantage of NPs is their ability to model stochastic pro-
cesses, which can be evaluated at any target location, and their ability to flexibly condition on un-

2That is, to predict the entire gridded state at time t+ 1 given a history of previous gridded state(s).
3It is worth noting that despite transformers being associated with fully-connected graphs, sparse attention

mechanisms such as Swin Transformer can also be interpreted as a form of sparsely connected GNN with
staggered updates.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

structured data. Together, these enable NPs to tackle a strictly larger class of tasks. Indeed, our
work reflects a more general trend towards more flexible methods for spatio-temporal data, particu-
larly those that are able to deal with unstructured data. Perhaps the most relevant works to ours are
Aardvark (Vaughan et al., 2024) and FuXi-DA (Xu et al., 2024), both end-to-end weather prediction
models that handle both unstructured and structured data. Aardvark employs kernel interpolation,
also known as a SetConv (Gordon et al., 2019), to move unstructured data onto a grid, followed by
a ViT which processes this grid and outputs gridded predictions, whereas FuXi-DA simply averages
observations within each grid cell. We provide an extensive comparison between the kernel interpo-
lation approach to structuring data and our pseudo-token grid encoder in Section 5, demonstrating
significantly better performance. Another relevant example is Lessig et al. (2023), a task-agnostic
stochastic model of atmospheric dynamics, trained to predict randomly masked or distorted tokens.
While the task agnosticism of this approach shares similarities with that of NPs, it is unclear how
this approach extends to settings in which data can exist at arbitrary spatio-temporal locations, and
they are more limited in their approach to model multiple sources of the input data.

4 GRIDDED TRANSFORMER NEURAL PROCESSES

While TNPs have demonstrated promising performance on small to medium-sized datasets, they are
unable to scale to the size characteristic of large spatio-temporal datasets. To address this short-
coming, we consider the use of efficient attention mechanisms that have proved effective for gridded
spatio-temporal data (Bodnar et al., 2024; Lam et al., 2022; Price et al., 2023; Nguyen et al., 2023; Bi
et al., 2022). Such methods are not immediately applicable without first structuring the unstructured
data. We achieve this by drawing upon methods developed in the point cloud modelling literature—
notably the voxel-based set attention (VSA) (He et al., 2022)—and develop the pseudo-token grid
encoder: an effective attention-based method for encoding unstructured data onto a grid.

Figure 1: An illustrative demonstration of the complete gridded TNP pipeline. Following the CNP
constrution in Section 2.1, we highlight the encoder (blue), processor (red) and decoder (green).

We provide an illustrative diagram of our proposed approach in Figure 1, which decomposes the
processor ρ :

(⋃∞
n=0Zn

)
× X → Z into three parts: 1. the grid encoder, ρge :

⋃∞
n=0Zn → ZM ,

which embeds the set {(xc,n, zc,n}Nc
n=1 into tokens {um}Mm=1 at gridded locations {vm}Mm=1; 2. the

grid processor, ρgp : ZM → ZM , which transforms the token values; and 3. the grid decoder,
ρgd : ZM × X → Z , which maps the tokens onto the location xt. Here, the latent space Z =
Ztoken ×X . We discuss our choices for each of these components in the remainder of this section.

4.1 GRID ENCODER: THE PSEUDO-TOKEN GRID ENCODER

Let zn ∈ RDz denote the token representation of input-output pair (xn,yn) after point-wise em-
bedding. We introduce a set of

∏Dx

d=1Md pseudo-tokens U0 ∈ RM1×···×MDx×Dz at corresponding
locations on the grid V ∈ RM1×···MDx×Dx . That is, pseudo-token um1,...,mDx

∈ RDz is associ-
ated with location vm1,...,mDx

∈ RDx . For ease of reading, we shall replace the product
∏Dx

d=1Md

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

with M and the indexing notation m1, . . . ,mDx
with m. The pseudo-token grid encoder obtains a

pseudo-token representation U ∈ RM×Dz of Dc on the grid V by cross-attending from each set of
tokens {zc,n}n∈N(vm;k) to each initial pseudo-token u0

m:

um ← MHCA
(
u0
m, {zc,n}n∈N(vm;k)

)
∀m ∈M. (4)

Here, N(vm; k) denotes the index set of input locations for which vm is amongst the k nearest grid
locations. In practice, we found that k = 1 suffices. While this operation seems computationally
intensive, there are two tricks we can apply to make it computationally efficient. First, note that pro-
vided the pseudo-token grid is regularly spaced, the set of nearest neighbours for all grid locations
can be found in O(Nc). Second, the operation described in Equation 4 can be performed in par-
allel for all m ∈ M by ‘padding’ each set {zc,n}n∈N(vm;k) with maxi |N(vi; k)| − |N(vm; k)|
‘dummy tokens’ and applying appropriate masking, resulting in a computational complexity of
O (M maxi |N(vi; k)|). Restrictions can be placed on the size of each neighbourhood set to re-
duce this further. We illustrate the pseudo-token grid encoding in Figure 2.

Figure 2: An illustrative demonstration of the pseudo-token grid encoder in the 2-D case. To achieve
an efficient implementation of cross-attention to the pseudo-token grid, we pad sets of neighbour-
hood tokens with ‘dummy’ tokens, so that each neighbourhood has the same cardinality.

In our experiments, we compare the performance of the pseudo-token grid encoder with simple
kernel-interpolation onto a grid, a popular method used by the ConvCNP. We provide a detailed
description of this approach in Appendix B.

4.2 GRID PROCESSOR: EFFICIENT ATTENTION MECHANISM-BASED TRANSFORMERS

While we are free to choose any architecture for processing the pseudo-token grid, including CNNs,
we focus on transformer-based architectures employing efficient attention mechanisms. Specifically,
we consider the use of ViT (Dosovitskiy et al., 2020) and Swin Transformer (Liu et al., 2021).
Typically, ViT employs patch encoding to coarsen a grid of tokens to a coarser grid of tokens,
upon which regular MHSA operations are applied. We consider both patch encoding and encoding
directly to a smaller grid using the grid encoder, which we collectively refer to when used in gridded
TNPs as ViTNPs. The use of Swin Transformer has the advantage of being able to operate with a
finer grid of pseudo-tokens, as only local neighbourhoods of tokens attend to each other at any one
time. We refer to the use of Swin Transformer in gridded TNPs as Swin-TNP.

4.3 GRID DECODER: THE CROSS-ATTENTION GRID DECODER

In the PT-TNP, all pseudo-tokens U cross-attend to all target tokens Zt. This has a computational
complexity of O(MNt) which is prohibitive for large Nt and M . We propose nearest-neighbour
cross-attention, in which the set of pseudo-tokens {um}m∈Ñ(xt,n;k)

attend to the target token zt,n:

zt,n ← MHCA
(
z0t,n, {um}m∈Ñ(xt,n;k)

)
. (5)

Here, Ñ(xt,n; k) denotes the index set of the k grid locations that are closest to xt,n.4 Assuming
equally spaced grid locations, this set can be computed for all target tokens in O(Nt), and the op-
eration in Equation 5 can be performed in parallel with a computational complexity of O(kNt).

4More specifically, if the dimension of the target inputs is d = dim(xt,n) for ∀t, n, we choose the neigh-
bours within the hypercube defined by the nearest k1/d neighbours in each dimension. When k1/d is not an
integer, we take the smallest integer bigger than it (i.e. ceil(k1/d)). For more details, please refer to Appendix C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

For k ≪ M , this represents a significant improvement in computational complexity. Further, we
found that the use of nearest-neighbour cross-attention improved upon full cross-attention in prac-
tice, which we attribute to the inductive biases it introduces being useful for spatio-temporal data.

4.4 HANDLING MULTIPLE DATA MODALITIES

Spatio-temporal datasets often have multiple sources of data, and multi-modal data fusion is an
active area of research. It is possible to extend our method to such scenarios when the sources
share a common input domain X , the most straightforward of which is to use a different encoder for
each modality and apply the pseudo-token grid encoder to the union of tokens. Formally, let Dc =⋃S

s=1Dc,s denote the context dataset partitioned into S smaller datasets, one for each source. For
each source, we obtain zc,n,s = es(xc,n,s,yc,n,s) ∀ (xc,n,s,yc,n,s) ∈ Ds, s ∈ S, where es : X ×
Ys → Z denotes the source-specific point-wise encoder and Ys denotes the output space for source
s. We obtain the set of context tokens as Zc = {{zc,n,s}

Nc,s

n=1}Ss=1. We refer to this approach as the
single pseudo-token grid encoder. We also consider a second, more involved approach in which a
pseudo-token grid is formed independently for each data modality, with these pseudo-token grids
then being merged into a single pseudo-token grid. That is, for each set of source-specific context
tokens Zc,s = {es(xc,n,s,yc,n,s)}

Nc,s

n=1 , we obtain a gridded pseudo-token representation Us ∈
RM×Dz . A unified gridded pseudo-token representation is obtained by passing their concatenation
point-wise through some function. We refer to this approach as the multi pseudo-token grid encoder.
Note that both methods can be applied analogously to the kernel-interpolation grid encoder.

5 EXPERIMENTS

In this section, we evaluate the performance of our gridded TNPs on synthetic and real-world re-
gression tasks involving datasets with large numbers of datapoints. We demonstrate that gridded
TNPs consistently outperform baseline methods, particularly when the difficulty—in terms of both
dataset size and complexity—of the predictive inference task increases, while maintaining a low
computational complexity. Throughout, we compare the performance of gridded TNPs with two
different grid encoders (GEs)—the kernel-interpolation grid encoder (KI-GE) and our pseudo-token
grid encoder (PT-GE)—and two different grid processors—Swin Transformer and ViT. We also
make comparisons to the following baselines: the CNP (Garnelo et al., 2018a), the PT-TNP using
the induced set-transformer architecture (Lee et al., 2019; Ashman et al., 2024a), and the ConvCNP
(Gordon et al., 2019). We do not compare to the regular ANP or TNP (Kim et al., 2019; Nguyen &
Grover, 2022) as they are unable to scale to the context set sizes we consider. We provide complete
experimental details, including model architectures, datasets and hardware, in Appendices D and E.

5.1 META-LEARNING GAUSSIAN PROCESS REGRESSION

We begin with two synthetic 2-D regression tasks with datasets drawn from a Gaussian process
(GP) with a squared-exponential (SE) kernel approximated using structure kernel interpolation (SKI)
(Wilson & Nickisch, 2015). Each dataset is a sample of 1.1 × 104 datapoints, with input values
sampled uniformly from U[−6,6]. For each dataset, we set Nc = 1 × 104 context and Nt = 1 ×
103 target points. We consider two different setups: one for which the SE kernel lengthscale is
fixed to ℓ = 0.1, implying roughly 1.44 × 104 ‘wiggles’ in each sampled dataset, and one for
which the lengthscale is fixed to ℓ = 0.5, implying roughly 576 ‘wiggles’. While both setups
are non-trivial by the standard of typical NP synthetic experiments, we anticipate the former to be
intractable for almost all NP variants—it requires the model to be able to both assimilate finely
grained information and modulate its predictions accordingly. In Figure 3, we plot the test log-
likelihoods against the time taken to complete a single forward pass (FPT) for a number of gridded
TNPs using different grid sizes. We compare the performance to four strong baselines: the PT-
TNP with M = 128 and M = 256 pseudo-tokens, and the ConvCNP with the same grid sizes
as the Swin-TNP.5 A table of results is provided in Appendix E.1. Our results demonstrate that
gridded TNPs are able to outperform all baselines—particularly for the more complex datasets, for
which all gridded TNP models perform significantly better than the strongest ConvCNP baseline—

5Training and inference for all models is performed on a single NVIDIA GeForce RTX 2080 Ti.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Plots comparing the test log-likelihood vs. forward pass time (FPT) for the two synthetic
GP datasets. For each model, we show the results for a large and small (transparent) version. The
baselines have hatched markers. The grid sizes we consider are 64 × 64 and 32 × 32, shown as
64 and 32. For the ViTNP models, we include results with and without patch encoding, the former
indicated by the→ symbol in-between the pre- and post-patch-encoded grid sizes. We make use of
the following acronyms. KI: kernel-interpolation grid encoding. PT: pseudo-token grid encoding.

while maintaining competitive computational complexity. Further, they suggest that the PT-GE
demonstrates superiors performance compared to the KI-GE. In Appendix E.1, we visualise the
predictive means of a selection of models for an example dataset with ℓ = 0.1, which demonstrate
the superior ability of the gridded TNPs to capture the complexity of the ground-truth dataset.

5.2 COMBINING WEATHER STATION OBSERVATIONS WITH STRUCTURED REANALYSIS

In this experiment, we explore the utility of our model in combining unstructured and sparsely sam-
pled observations with structured, on-the-grid data. We use ERA5 reanalysis data from the European
Centre for Medium-Range Weather Forecasts [ECMWF; Hersbach et al. 2020]. We consider two
variables: skin temperature (skt) and 2m temperature (t2m).6 We construct each context dataset
by combining the t2m at a random subset of 9, 957 weather station locations (proportion sampled
from U[0,0.3]) with a coarsened 180 × 360 grid—corresponding to a grid spacing of 1◦—of skt
values. The target dataset contains the t2m values at all 9, 957 weather station locations. We train
on hourly data between 2009-2017, validate on 2018 and provide test metrics on 2019. Training and
inference for all models is performed using a single NVIDIA A100 80GB with 32 CPU cores.

In Table 1, we evaluate the performance of six gridded TNPs. For the Swin-TNP variants, we
provide models both with and without the nearest-neighbour cross-attention (NN-CA) mechanism
in the decoder. For the Swin-TNP with the PT-GE, we also compare to a model using either solely
t2m or skt measurements. Moreover, we provide comparisons to the following baselines: the
ConvCNP with a 64×128 grid using a U-Net (Ronneberger et al., 2015) backbone (and full decoder
attention), and the PT-TNP with M = 256 pseudo-tokens.7 Finally, to study how the models scale
with model size, we provide results for Swin-TNP (with PT-GE) and ConvCNP with a grid size of
192× 384. For this experiment, we find that the use of patch encoding in the ViTNP leads to better
performance than without. We also observe that the Swin-TNP benefits to a greater extent than the
ConvCNP when the grid size is increased, and that using the nearest-neighbour cross-attention (NN-
CA) mechanism in the grid decoder actually improves the performance of the Swin-TNP relative to
full cross attention (no NN-CA).

Figure 4 provides a visual comparison between the t2m predictive errors (i.e. difference between
predictive mean and ground truth) of three models: the Swin-TNP with the PT-GE, ConvCNP, and
PT-TNP. We show the results for the US, and provide results for the world in Figure 18. The most
prominent difference between the predictions is at the stations within central US, where both Con-

6Skin temperature corresponds to the temperature of the Earth’s surface, and is a direct output of standard at-
mospheric models. In contrast, 2m temperature is found by interpolating between the lowest model temperature
(10m) and the skin temperature (Owens & Hewson, 2018).

7This is the maximum number of pseudo-tokens we could use without running out of memory.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Test log-likelihood (↑) and RMSE (↓) for the t2m station prediction experiment. The
standard errors of the log-likelihood are all below 0.010, and of the RMSE below 0.013. FPT:
forward pass time for a batch size of eight in ms. Params: number of model parameters in units of M.

Model GE Grid size Log-lik. ↑ RMSE ↓ FPT Params

CNP - - 0.636 3.266 32 0.34
PT-TNP - M = 256 1.344 1.659 230 1.57

ConvCNP (no NN-CA) SetConv 64× 128 1.535 1.252 96 9.36

ViTNP KI-GE 48× 96 1.628 1.197 167 1.14
ViTNP PT-GE 48× 96 1.704 1.118 181 1.83
ViTNP KI-GE 144× 288 → 48× 96 1.734 1.073 171 1.29
ViTNP PT-GE 144× 288 → 48× 96 1.808 1.021 215 6.69

Swin-TNP KI-GE 64× 128 1.683 1.157 121 1.14
Swin-TNP PT-GE 64× 128 1.819 1.006 127 2.29

Swin-TNP (no NN-CA) KI-GE 64× 128 1.544 1.436 137 1.14
Swin-TNP (no NN-CA) PT-GE 64× 128 1.636 1.273 144 2.29

Swin-TNP (skt) PT-GE 64× 128 1.427 1.330 123 2.29
Swin-TNP (t2m) PT-GE 64× 128 1.585 1.599 107 2.24

ConvCNP SetConv 192× 384 1.689 1.166 74 9.36
Swin-TNP PT-GE 192× 384 2.053 0.873 306 10.67

(a) Swin-TNP error. (b) ConvCNP error. (c) PT-TNP error.

Figure 4: A comparison between the predictive error of the 2m temperature at the US weather
station locations at 15:00, 28-01-2019. Stations included in the context dataset are shown as black
crosses (≈ 3% of station locations). The Swin-TNP uses the PT-GE. Both the Swin-TNP and
ConvCNP use a grid size of 64 × 128. The PT-TNP uses M = 256 pseudo-tokens. The mean
log-likelihoods of this sample for the three models are 1.611, 1.351, and 1.271, respectively.

vCNP and PT-TNP tend to underestimate the temperature, whereas the Swin-TNP has relatively
small predictive errors. We perform an analysis of the predictive uncertainties in Appendix E.2.1.

5.3 COMBINING MULTIPLE SOURCES OF UNSTRUCTURED WIND SPEED OBSERVATIONS

In our final experiment, we evaluate the utility of our gridded TNPs in modelling sparsely sam-
pled eastward (u) and northward (v) components of wind at three different pressure levels: 700hPa,
850hPa and 1000hPa (surface level). Each of the six modalities are obtained from the ERA5 re-
analysis dataset (Hersbach et al., 2020). We perform spatio-temporal interpolation over a latitude /
longitude range of [25◦, 49◦] / [−125◦,−66◦], which corresponds to the contiguous US, spanning
four hours. The proportion of the 543, 744 observations used as the context dataset is sampled from
U[0.05,0.25]. The target set size is fixed at 135, 936 (i.e. 25% of observations).

We evaluate the performance of eight gridded TNPs: the ViTNP with a 4× 12× 30 grid of pseudo-
tokens using the multi grid-encoding method presented in Section 4.4, both the KI-GE and PT-GE,
and with and without patch encoding from a 4×24×60 grid; and the Swin-TNP with a 4×24×60
grid of pseudo-tokens using both multi-modal grid-encoding methods presented in Section 4.4, and
both the KI-GE and PT-GE. We provide comparisons to the following baselines: the ConvCNP8

with a 4 × 24 × 60 grid using a U-Net backbone, and the PT-TNP with M = 64 pseudo-tokens.9
We also provide results for the ConvCNP and Swin-TNP with the PT-GE with larger grid sizes. We
visualise the predictive errors for the Swin-TNP, ConvCNP and PT-TNP in Appendix E.3, which

8For the ConvCNP, each modality is treated as a different input channel as in Vaughan et al. (2024).
9We found this to be the maximum number of pseudo-tokens we could use before running out of memory.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

demonstrate the Swin-TNP also has the most accurate predictive uncertainties. These results are
consistent with the findings from the previous two experiments. In addition, we find that for the
Swin-TNP, the use of the multi PT-GE and multi KI-GE outperform the use of the single PT-GE and
single KI-GE, respectively.

Table 2: Test log-likelihood (↑) and RMSE (↓) for the the multi-modal wind speed dataset. All
grids have a grid size of 4 in the first dimension (time). The standard errors of the log-likelihoods
are all below 0.02, and of the RMSE below 0.005. FPT: forward pass time for a batch size of eight
in ms. Params: number of model parameters in units of M.

Model GE Grid size Log-lik. ↑ RMSE ↓ FPT Params

CNP - - −1.593 2.536 33 0.66
PT-TNP - M = 64 3.988 1.185 166 1.79

ConvCNP SetConv 24× 60 6.143 0.784 210 14.41

ViTNP multi KI-GE 12× 30 5.371 0.908 349 1.49
ViTNP multi PT-GE 12× 30 7.754 0.651 374 2.36
ViTNP multi KI-GE 24× 60 → 12× 30 6.906 0.718 372 1.55
ViTNP multi PT-GE 24× 60 → 12× 30 7.288 0.681 392 3.25

Swin-TNP multi KI-GE 24× 60 7.603 0.651 355 1.49
Swin-TNP multi PT-GE 24× 60 8.603 0.577 375 3.19
Swin-TNP single KI-GE 24× 60 7.794 0.642 366 1.39
Swin-TNP single PT-GE 24× 60 8.073 0.614 364 1.67

ConvCNP SetConv 48× 120 7.841 0.615 6410 14.41
Swin-TNP multi PT-GE 48× 120 9.383 0.509 369 6.51

5.4 DISCUSSION OF RESULTS

We summarise our conclusions across all three experiments as follows: 1. gridded TNPs signifi-
cantly outperform all baselines while maintaining relatively low computational complexity; 2. the
PT-GE outperforms the KI-GE in almost all gridded TNPs, particularly when the grid is coarse;
3. when modelling multiple data sources, the use of source-specific grid encoders outperforms a sin-
gle, unified grid encoder; 4. Swin-TNP achieves either comparable or better performance than the
ViTNP at a smaller computational cost; and 5. in the grid decoder, nearest-neighbour cross-attention
both reduces the computational cost and improves predictive performance relative to full cross-at-
tention. In Appendix E, we provide additional experimental results showing that these conclusions
are robust to changes in model size and dataset composition.

6 CONCLUSION

This paper introduces gridded TNPs, an extension to the family of TNPs which facilitates the use
of efficient attention-based transformer architectures such as the ViT and Swin Transformer. Grid-
ded TNPs decompose the computational backbone of TNPs into three distinct components: 1. the
grid encoder, which moves point-wise data representations onto a structured grid of pseudo-tokens;
2. the grid processor, which processes this grid using computationally efficient operations; and 3. the
grid decoder, which evaluates the processed grid at arbitrary input locations. In achieving this, we
develop the pseudo-token grid encoder—a novel approach to moving unstructured spatio-temporal
data onto a grid of pseudo-tokens—and the pseudo-token grid decoder—a computationally efficient
approach of evaluating a grid of pseudo-tokens at arbitrary input locations. We compare the perfor-
mance of a number of gridded TNPs against several strong baselines, demonstrating significantly
better performance on large-scale synthetic and real-world regression tasks involving context sets
containing over 100, 000 datapoints. This work marks an initial step towards building architec-
tures for modelling large amounts of unstructured spatio-temporal observations. We believe that
the methods developed in this paper can be used to both improve and broaden the capabilities of
existing machine learning models for spatio-temporal data, including those targeting weather and
environmental forecasting. We look forward to pursuing this in future work.

10The FPT for the larger ConvCNP is smaller than for the smaller ConvCNP as we were forced to use k = 27
nearest-neighbour grid decoding to avoid out of memory issues.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Tom R Andersson, Wessel P Bruinsma, Stratis Markou, James Requeima, Alejandro Coca-Castro,
Anna Vaughan, Anna-Louise Ellis, Matthew A Lazzara, Dani Jones, Scott Hosking, et al. Envi-
ronmental sensor placement with convolutional Gaussian neural processes. Environmental Data
Science, 2:e32, 2023.

Matthew Ashman, Cristiana Diaconu, Junhyuck Kim, Lakee Sivaraya, Stratis Markou, James Re-
queima, Wessel P Bruinsma, and Richard E Turner. Translation Equivariant Transformer Neural
Processes. In Forty-first International Conference on Machine Learning, 2024a.

Matthew Ashman, Cristiana Diaconu, Adrian Weller, Wessel Bruinsma, and Richard E Turner. Ap-
proximately Equivariant Neural Processes. arXiv preprint arXiv:2406.13488, 2024b.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Pangu-Weather:
A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast. arXiv preprint
arXiv:2211.02556, 2022.

Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter, Patrick
Garvan, Maik Riechert, Jonathan Weyn, Haiyu Dong, Anna Vaughan, et al. Aurora: A Foundation
Model of the Atmosphere. arXiv preprint arXiv:2405.13063, 2024.

Wessel P. Bruinsma. Convolutional Conditional Neural Processes. PhD thesis, Department of
Engineering, University of Cambridge, 2022. URL https://www.repository.cam.ac.
uk/handle/1810/354383.

Wessel P. Bruinsma, James Requeima, Andrew Y. K. Foong, Jonathan Gordon, and Richard E.
Turner. The Gaussian Neural Process. In Proceedings of the 3rd Symposium on Advances in
Approximate Bayesian Inference, 2021.

Kang Chen, Tao Han, Junchao Gong, Lei Bai, Fenghua Ling, Jing-Jia Luo, Xi Chen, Leiming Ma,
Tianning Zhang, Rui Su, et al. FengWu: Pushing the Skillful Global Medium-Range Weather
Forecast Beyond 10 Days Lead. arXiv preprint arXiv:2304.02948, 2023a.

Kun Chen, Tao Chen, Peng Ye, Hao Chen, Kang Chen, Tao Han, Wanli Ouyang, and Lei Bai.
FNP: Fourier Neural Processes for Arbitrary-Resolution Data Assimilation. arXiv preprint
arXiv:2406.01645, 2024.

Lei Chen, Xiaohui Zhong, Feng Zhang, Yuan Cheng, Yinghui Xu, Yuan Qi, and Hao Li. FuXi: A
cascade machine learning forecasting system for 15-day global weather forecast. NPJ Climate
and Atmospheric Science, 6(1):190, 2023b.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In International
Conference on Learning Representations, 2020.

R. J. H. Dunn, K. M. Willett, P. W. Thorne, E. V. Woolley, I. Durre, A. Dai, D. E. Parker, and
R. S. Vose. HadISD: a quality-controlled global synoptic report database for selected variables at
long-term stations from 1973–2011. Climate of the Past, 8(5):1649–1679, 2012. doi: 10.5194/
cp-8-1649-2012. URL https://cp.copernicus.org/articles/8/1649/2012/.

Leo Feng, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed. Latent Bot-
tlenecked Attentive Neural Processes. In The Eleventh International Conference on Learning
Representations, 2023.

Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed.
Memory Efficient Neural Processes via Constant Memory Attention Block. In Forty-first Inter-
national Conference on Machine Learning, 2024.

Miguel Garcı́a-Ortegón, Srijit Seal, Carl Rasmussen, Andreas Bender, and Sergio Bacallado. Graph
neural processes for molecules: an evaluation on docking scores and strategies to improve gener-
alization. Journal of Cheminformatics, 16(1):115, 2024.

11

https://www.repository.cam.ac.uk/handle/1810/354383
https://www.repository.cam.ac.uk/handle/1810/354383
https://cp.copernicus.org/articles/8/1649/2012/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. GPyTorch:
Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration. Advances in Neural
Information Processing Systems, 31, 2018.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional Neural Processes.
In International Conference on Machine Learning, pp. 1704–1713. PMLR, 2018a.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami,
and Yee Whye Teh. Neural Processes. arXiv preprint arXiv:1807.01622, 2018b.

Jonathan Gordon, Wessel P Bruinsma, Andrew YK Foong, James Requeima, Yann Dubois, and
Richard E Turner. Convolutional conditional neural processes. arXiv preprint arXiv:1910.13556,
2019.

Chenhang He, Ruihuang Li, Shuai Li, and Lei Zhang. Voxel Set Transformer: A Set-to-Set Ap-
proach to 3D Object Detection from Point Clouds. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 8417–8427, 2022.

Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquı́n Muñoz-Sabater,
Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, Adrian Simmons, Cornel Soci,
Saleh Abdalla, Xavier Abellan, Gianpaolo Balsamo, Peter Bechtold, Gionata Biavati, Jean Bidlot,
Massimo Bonavita, Giovanna De Chiara, Per Dahlgren, Dick Dee, Michail Diamantakis, Rossana
Dragani, Johannes Flemming, Richard Forbes, Manuel Fuentes, Alan Geer, Leo Haimberger,
Sean Healy, Robin J. Hogan, Elı́as Hólm, Marta Janisková, Sarah Keeley, Patrick Laloyaux,
Philippe Lopez, Cristina Lupu, Gabor Radnoti, Patricia de Rosnay, Iryna Rozum, Freja Vamborg,
Sebastien Villaume, and Jean-Noël Thépaut. The ERA5 global reanalysis. Quarterly Journal of
the Royal Meteorological Society, 146(730):1999–2049, 2020.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General Perception with Iterative Attention. In International Conference on Machine
Learning, pp. 4651–4664. PMLR, 2021.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive Neural Processes. In International Conference on Learning
Representations, 2019.

Daniele Lagomarsino-Oneto, Giacomo Meanti, Nicolò Pagliana, Alessandro Verri, Andrea Mazz-
ino, Lorenzo Rosasco, and Agnese Seminara. Physics informed machine learning for wind speed
prediction. Energy, 268:126628, 2023.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Fer-
ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. GraphCast: Learning
skillful medium-range global weather forecasting. arXiv preprint arXiv:2212.12794, 2022.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
Transformer: A Framework for Attention-Based Permutation-Invariant Neural Networks. In In-
ternational Conference on Machine Learning, pp. 3744–3753. PMLR, 2019.

Christian Lessig, Ilaria Luise, Bing Gong, Michael Langguth, Scarlet Stadtler, and Martin Schultz.
AtmoRep: A stochastic model of atmosphere dynamics using large scale representation learning,
2023. URL https://arxiv.org/abs/2308.13280.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. arXiv preprint
arXiv:1711.05101, 2017.

Dening Lu, Qian Xie, Mingqiang Wei, Kyle Gao, Linlin Xu, and Jonathan Li. Transformers in 3D
Point Clouds: A Survey. arXiv preprint arXiv:2205.07417, 2022.

12

https://arxiv.org/abs/2308.13280

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi Feng, Xiaodan Liang, Hang Xu, and
Chunjing Xu. Voxel Transformer for 3D Object Detection. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 3144–3153. IEEE Computer Society, 2021.

Anthony McNally, Christian Lessig, Peter Lean, Eulalie Boucher, Mihai Alexe, Ewan Pinnington,
Matthew Chantry, Simon Lang, Chris Burrows, Marcin Chrust, et al. Data driven weather fore-
casts trained and initialised directly from observations. arXiv preprint arXiv:2407.15586, 2024.

Tung Nguyen and Aditya Grover. Transformer Neural Processes: Uncertainty-Aware Meta Learning
Via Sequence Modeling. In International Conference on Machine Learning, pp. 16569–16594.
PMLR, 2022.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. ClimaX:
A foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023.

Ruijia Niu, Dongxia Wu, Kai Kim, Yian Ma, Duncan Watson-Parris, and Rose Yu. Multi-Fidelity
Residual Neural Processes for Scalable Surrogate Modeling. In Forty-first International Confer-
ence on Machine Learning, 2024.

R Owens and Tim Hewson. ECMWF Forecast User Guide. Technical report, ECMWF, Reading,
05/2018 2018.

Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Timo Ewalds, Andrew El-Kadi, Jacklynn Stott,
Shakir Mohamed, Peter Battaglia, Remi Lam, and Matthew Willson. GenCast: Diffusion-based
ensemble forecasting for medium-range weather. arXiv preprint arXiv:2312.15796, 2023.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomed-
ical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part III 18, pp. 234–241. Springer, 2015.

Marc Rußwurm, Konstantin Klemmer, Esther Rolf, Robin Zbinden, and Devis Tuia. Geographic
Location Encoding with Spherical Harmonics and Sinusoidal Representation Networks. In The
Twelfth International Conference on Learning Representations, 2024.

Kyriaki A Tychola, Eleni Vrochidou, and George A Papakostas. Deep learning based computer
vision under the prism of 3D point clouds: a systematic review. The Visual Computer, pp. 1–43,
2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. Advances in Neural Information
Processing Systems, 30, 2017.

Anna Vaughan, Will Tebbutt, J Scott Hosking, and Richard E Turner. Convolutional conditional
neural processes for local climate downscaling. Geoscientific Model Development, 15(1):251–
268, 2022.

Anna Vaughan, Stratis Markou, Will Tebbutt, James Requeima, Wessel P Bruinsma, Tom R An-
dersson, Michael Herzog, Nicholas D Lane, J Scott Hosking, and Richard E Turner. Aardvark
Weather: end-to-end data-driven weather forecasting. arXiv preprint arXiv:2404.00411, 2024.

Andrew Wilson and Hannes Nickisch. Kernel Interpolation for Scalable Structured Gaussian Pro-
cesses (KISS-GP). In International Conference on Machine Learning, pp. 1775–1784. PMLR,
2015.

Yi Xiao, Lei Bai, Wei Xue, Kang Chen, Tao Han, and Wanli Ouyang. FengWu-4DVar: Coupling
the Data-Driven Weather Forecasting Model with 4D Variational Assimilation. arXiv preprint
arXiv:2312.12455, 2023.

Xiaoze Xu, Xiuyu Sun, Wei Han, Xiaohui Zhong, Lei Chen, and Hao Li. Fuxi-DA: A General-
ized Deep Learning Data Assimilation Framework for Assimilating Satellite Observations. arXiv
preprint arXiv:2404.08522, 2024.

Cheng Zhang, Haocheng Wan, Xinyi Shen, and Zizhao Wu. PVT: Point-Voxel Transformer for Point
Cloud Learning. International Journal of Intelligent Systems, 37(12):11985–12008, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A A UNIFYING CONSTRUCTION OF CONDITIONAL NEURAL PROCESSES

The many variants of CNPs differ in their construction of the predictive distribution p(·|xt,Dc).
Here, we introduce a construction of CNPs that generalises all variants. CNPs are formed from
three components: the encoder, the processor, and the decoder. The encoder, e : X × Y → Z ,
first encodes each (xc,n,yc,n) ∈ Dc into some latent representation, or token, zc,n ∈ Z . The
processor, ρ :

(⋃∞
n=0Zn

)
×X → Z , processes the set of context tokens e(Dc) = {e(xc,n,yc,n)}n

together with the target input xt to obtain a target dependent token, zt ∈ Z .11 Finally, the decoder,
d : Z → PY , maps from the target token to the predictive distribution over the output at that target
location. Here, PY denotes the set of distributions over Y . We illustrate this decomposition in
Figure 5.

{xc,n,yc,n}n {zc,n}n zt p(· | Dc,xt)
Encode, e(·) Process, ρ(·,xt) Decode, d(·)

Figure 5: A unifying construction of CNPs, with Dc = {(xc,n,yc,n)}n and zc,n = e(xc,n,yc,n).

We present below several schematics showing the architectures of different members of the CNP
family, and detail how they can be constructed following this universal construction.

Original CNP The first architecture is based on Garnelo et al. (2018a) and is the least com-
plex of the CNP variants, using a summation as the permutation-invariant aggregation. The dia-
gram is shown in Figure 6. The encoder of a CNP is an MLP, which maps from each concate-
nated pair (xc,n,yc,n) ∈ Dc to some representation zc,n ∈ RDz . The processor sums together
these representations, and combines the aggregated representation with the target input using τ :
ρ({zc,n}n,xt) = τ(

∑
n zc,n,xt). τ is often just the concatenation operation. Finally, the decoder

consists of another MLP which maps from zt = τ(
∑

n zc,n,xt) to the parameter space of some
distribution over the output space (e.g. Gaussian).

Figure 6: A diagram illustrating the architecture of the plain CNP (Garnelo et al., 2018a). First, the
context set (xc,n,yc,n) and the target tokens xt,n are encoded using point-wise embeddings. These
are fed into the CNP processor, which performs a simple permutation-invariant aggregation of the
context tokens. These are then concatenated with the target tokens and fed into the decoder, which
outputs the parameters of the specified NP distribution based on the target representation (in this
case, mean and variance of a Gaussian).

11The space of target dependent tokens does not need to be the same as that of context tokens—we have used
Z in both cases for simplicity. It is also possible for Z to be the product of multiple spaces, e.g. Z = Ztoken×X
where we retain information about the input locations.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

ConvCNP Another member of the CNP family is the ConvCNP (Gordon et al., 2019), that embeds
sets into function space in order to achieve translation equivariance. This can lead to more efficient
training in applications where such an inductive bias is appropriate, such as stationary time-series or
spatio-temporal regression tasks. We show in Figure 7 a schematic of the architecture. The encoder
of a ConvCNP is simply the identity function. The processor then encodes the discrete function
represented by input-output pairs {(xc,n,yc,n)}n onto a regular grid using the kernel-interpolation
grid encoder (KI-GE). It then processes this grid using a CNN, which is afterwards combined with
the target location using a kernel-interpolation grid decoder (KI-GD). Letting U = {um}m denote
the set of M values on gridded locations V = {vm}m, we can decompose the ConvCNP processor
as

um ←
∑
n

[1, yc,n]
Tψge(vm − xc,n) (6)

U← CNN(U,V) (7)

zt ←
∑
m

umψgd(xt − vm). (8)

Here, ψge, ψgd : RDx × RDx → R denote the KI-GE kernel and KI-GD kernel. As with the CNP,
the decoder is an MLP mapping to the parameter space of some distribution over the output space.

Figure 7: A diagram illustrating the architecture of the ConvCNP (Gordon et al., 2019). First,
the context set (xc,n,yc,n) and the target tokens xt,n are encoded using point-wise embeddings.
These are fed into the ConvCNP processor, which uses a KI-GE to project the tokens into function
space. These are then evaluated at discrete locations using a pre-specified resolution, followed
by multiple layers of a CNN-based architecture acting upon the discretised signal. To decode at
arbitrary locations, a KI-GD is used, giving rise to the target token representation. This is fed into
the decoder, which outputs the parameters of the specified NP distribution (in this case, mean and
variance of a Gaussian).

TNPs There are a number of different architectures used for the different members of the TNP
family. We provide below diagrams for two members mentioned in the main paper, namely the
TNP of Nguyen & Grover (2022) and the induced set transformer (ISTNP) of Lee et al. (2019).
For the standard TNP, the encoder consists of an MLP mapping from each (xc,n,yc,n) ∈ Dc to
some representation (token) zc,n ∈ RDz . The processor begins by embedding the target location in

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

the same space as the context tokens, giving zt ∈ RDz . It then iterates between applying MHSA
operations on the set of context tokens, and MHCA operations from the set of context tokens into
the target token:

Zc ← MHSA(Zc)
zt ← MHCA(zt; Zc)

}
× L. (9)

Again, the decoder consists of an MLP mapping from zt to the parameter space of some distribution
over outputs.

Figure 8: A diagram illustrating the architecture of the TNP (Nguyen & Grover, 2022). First, the
context set (xc,n,yc,n) and the target tokens xt,n are encoded using point-wise embeddings to obtain
the context set representation Zc and target representation Zt. These are fed into the TNP processor,
which takes in the union of [Zc,Zt] and outputs the token corresponding to the target inputs Z(L)

t . At
each layer of the processor, the context set representation is first updated through an MHSA layer,
which is then used to modulate the target set representation through a MHCA layer between the
target set representation from the previous layer and the updated context representation. Finally, the
decoder outputs the parameters of the specified NP distribution based on the target representation
from the final layer (in this case, mean and variance of a Gaussian).

One of the main limitations of TNPs is the cost of the attention mechanism, which scales quadrati-
cally with the number of input tokens. Several works (Feng et al., 2023; Lee et al., 2019) addressed
this shortcoming by incorporating ideas from the Perceiver-style architecture (Jaegle et al., 2021)
into NPs. The strategy is to introduce a set of M ‘pseudo-tokens’ which act as an information bot-
tleneck between the context and target sets. Provided that M << Nc, where Nc is the number of
context points, this leads to a significant reduction in computational complexity. The architecture we
consider in this work is called the induced set transformer NP (ISTNP), and differs from the plain
TNP in the calculations performed in the processor. At each layer, the pseudo-token representation
is first updated through an MHCA operation from the context set to the pseudo-tokens. The up-
dated representation is then used to modulate the context and target sets separately, through separate
MHCA operations:

U← MHCA(U; Zc)
zt ← MHCA(zt; U)
Zc ← MHCA(Zc; U)

}
× L. (10)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Thus, as apparent in Figure 9, the context and target sets never interact directly, but only through
the ‘pseudo-tokens’. The computational cost at each layer reduces from O(N2

c + NcNt) in the
plain TNP, where Nc and Nt represent the number of context and target points, respectively, to
O(M(2Nc +Nt)). This is a significant reduction provided that M << Nc, resulting in an apparent
linear dependency on Nc. However, in practice, M is not independent of Nc, with more pseudo-
tokens needed as the size of context set increases.

Figure 9: A diagram illustrating the architecture of the ISTNP (Lee et al., 2019). As opposed to
the regular TNP of Nguyen & Grover (2022), the ISTNP uses a ‘summarised’ representation of
the context set through the use of pseudo-tokens. They are first randomly initialised (U(0)). Then,
their representation is updated through cross attention with the context set representation from the
previous layer (i.e. at layer l: U(l) = MHCA(l)(U(l−1),Z

(l)
c)). This updated set of pseudo-tokens

U(l) is then used to modulate both the context set representation at the current layer through cross-
attention (i.e. Z(l)

c = MHCA(Z
(l−1)
c ,U(l))), as well as the target set representation (i.e. Z(l)

t =

MHCA(Z
(l−1)
t ,U(l))). Thus, the context and target set representations do not interact directly, but

only through the pseudo-tokens, which act as a bottleneck of information flow between the two in
order to decrease the computational demands of the plain TNP.

B KERNEL-INTERPOLATION GRID ENCODER

Let zn ∈ RDz denote the token representation of input-output pair (xn,yn) after point-wise em-
bedding. We introduce the set of grid locations V ∈ RM1×···MDx×Dx . For ease of reading, we shall
replace the product

∏Dx

d=1Md with M and the indexing notation m1, . . . ,mDx
with m.

The kernel-interpolation grid encoder obtains a pseudo-token representation U ∈ RM×Dz of Dc

on the grid V by interpolating from all tokens {zc,n}n at corresponding locations {xc,n}n to all
pseudo-token locations:

um ←
∑
n

zc,nψ(vm,xc,n) ∀m ∈M. (11)

Here, ψ : X × X → R is the kernel used for interpolation, which we take to be the squared-
exponential (SE) kernel when X = RDx :

ψSE(vm,xc,n) = exp

(
−

Dx∑
d=1

(xc,n,d − vm,d)
2

ℓ2d

)
(12)

where ℓd denotes the ‘lengthscale’ for dimension d. Similar to the pseudo-token grid encoder, we can
restrict the kernel-interpolation grid encoder to interpolate only from sets of token {zc,n}n∈N(vm;k)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

for which vm is amongst the k nearest grid locations. The computational complexity of the kernel-
interpolation and pseudo-token grid encoders differ only by a scale factor when this approach is
used.

C NEAREST-NEIGHBOUR CROSS-ATTENTION IN THE GRID DECODER

In this section we provide more details, alongside schematics, of our nearest-neighbour cross-
attention scheme. As mentioned in the main text, in the grid decoder we only allow a subset of
the gridded pseudo-tokens to attend to the target token (those in the vicinity of it). Finding the near-
est neighbours is not done in the standard k-nearest neighbours fashion, because we use the same
number of nearest neighbours along each dimension of the original data (i.e. latitude and longitude
for spatial interpolation; latitude, longitude and time for spatio-temporal interpolation). This is to
ensure that we do not introduce specific preferences for any dimension. In the case the data lies on
a grid with the same spacing in all its dimensions, the procedure becomes equivalent to k-nearest
neighbours.

In practice, we specify the total number of nearest-neighbours we want to use k. We then com-
pute the number of nearest-neighbours in each dimension by kdim = ceil(k

1
dim(x)), where dim(x)

represents the dimensionality of the input. For efficient batching purposes, we tend to choose
k = (2n − 1)dim(x), where n ∈ N (i.e. 9 for experiments with latitude-longitude grids, 27 for
experiments with latitude-longitude-time grids). We then find the indices in each dimension of these
nearest-neighbours by performing an efficient search that leverages the gridded nature of the data,
leading to a computational complexity of O(kNt), with Nt the number of target points. When the
neighbours go off the grid (i.e. for targets very close to the edges of the grid), we only consider the
number of viable (i.e. within the bounds of the grid) neighbours.

Example in 2D This procedure is visualised in Figure 10, where we consider both grids with the
same spacing along each dimension, as well as grids with different spacings. We cover both the case
of a central target point, as well as a target point closer to the edges of the grid.

(a) Same / Central (b) Same / Edge (c) Diff / Central (d) Diff / Edge

Figure 10: Example of our nearest-neighbours procedure in 2D on a 5× 9 grid for 9 nearest neigh-
bours. We consider four different cases. Same / Diff refers to whether the grid spacing is the same
in the two dimensions or different. Central / Edge refers to the position of the target. In the case of
an edge target, we do not consider invalid neighbours (i.e. those that are outside the grid bounds).

Accounting for non-Euclidean geometry A lot of our experiments are performed on environ-
mental data, distributed across the Earth. For our purposes, we assume the Earth shows cylindrical
geometry, whereby there is no such thing as a grid edge along the longitudinal direction (i.e. a longi-
tude of -180◦ is the same as 180◦). This is not the same for latitude, where one extreme corresponds
to the North Pole, and the other one to the South Pole. Thus, we would like to allow for the grid to
‘roll’ around the longitudinal direction when computing the nearest neighbours. In this case, there
should be no edge target points along the longitudinal dimension. This procedure is graphically
depicted in Figure 11 and we use it in our experiments on environmental data.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 11: Example of nearest-neighbours procedure in 2D on a 5×9 grid for 9 nearest neighbours.
We allow rolling along the horizontal dimension (e.g. longitude), but do not allow rolling along the
vertical one (i.e. latitude). Hence, the neighbours extend on the other side of the grid horizontally,
but not vertically. This example corresponds to cylindrical symmetry.

Example for 3D data We also provide examples of the nearest-neighbours procedure on 3D
spaces. These dimensions could represent, for example, latitude, longitude and time, or latitude,
longitude and height/pressure levels. In Figure 12 we consider a case where we do not allow for
rolling along any dimension, while in Figure 13 we allow for rolling along one of the dimensions.

(a) Central (b) Edge

Figure 12: Example of our nearest-neighbours procedure in 3D on a 5 × 9 × 3 grid for 27 nearest
neighbours. We consider two different cases—whether the target is central or near the edge of the
grid. In the case of an edge target (right), we do not consider invalid neighbours (that are outside the
grid bounds).

D HARDWARE SPECIFICATIONS

For the smaller synthetic GP regression experiment, we perform training and inference for all models
on a single NVIDIA GeForce RTX 2080 Ti GPU with 20 CPU cores. For the other two, larger
experiments, we perform training and inference for all models on a single NVIDIA A100 80GB
GPU with 32 CPU cores.

E EXPERIMENT DETAILS

Common optimiser details For all experiments and all models, we use the AdamW optimiser
(Loshchilov & Hutter, 2017) with a fixed learning rate of 5 × 10−4 and apply gradient clipping to
gradients with magnitude greater than 0.5.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Central (b) Edge

Figure 13: Example of our nearest-neighbours procedure in 3D on a 5 × 9 × 3 grid for 27 nearest
neighbours. We allow for rolling along the second dimension, but not along any of the other ones.

Common likelihood details For all experiments and all models, we employ a Gaussian likelihood
parameterised by a mean and inverse-softplus variance, i.e. the decoder of each model outputs

µt, log(expσ
2
t − 1) = d(zt), p(· | Dc,xt) = N (·;µt,σ

2
t). (13)

For the experiment modelling skin and 2m temperature (skt and t2m) with a richer context, we set
a minimum noise level of σ2

min = 0.01 by parameterising

µt, log(exp (σt − σmin)
2 − 1) = d(zt), p(· | Dc,xt) = N (·;µt,σ

2
t). (14)

CNP details For the CNPs, we encode each (xc,n,yc,n) ∈ Dc in RDz using an MLP with two-
hidden layers of dimension Dz . We obtain a representation for the entire context set by summing
these representations together, zc =

∑
n zc,n, which is then concatenated with the target input xt.

The concatenation [zc, xt] is decoded using an MLP with two-hidden layers of dimension Dz . We
use Dz = 128 in all experiments.

ConvCNP details For the ConvCNP model, we use a U-Net architecture (Ronneberger et al.,
2015) for the CNN consisting of 11 layers with input size C. Between the five downward layers
we apply pooling with size two. For the five upward layers, we use 2C input channels and C
output channels, as the input channels are formed from the output of the previous layer concatenated
with the output of the corresponding downward layer. Between the upward layers we apply linear
up-sampling to match the grid size of the downward layer. In all experiments, we use C = 128,
a kernel size of five or nine, and a stride of one. We use SE kernels for the SetConv encoder
and SetConv decoder with learnable lengthscales for each input dimension. The grid encoding is
modified similarly to the pseudo-token grid encoder, whereby we only interpolate from the set of
observations for which each grid point is the closest grid point. Unless otherwise specified, we also
modify the grid decoding similarly to the pseudo-token grid decoder, whereby we only interpolate
from the k = 3Dx nearest points on a distance-normalised grid to each target location. We resize the
output of the SetConv encoder to dimension C using an MLP with two hidden layers of dimension
C. We resize the output of the SetConv decoder using an MLP with two hidden layers of dimension
C.

Common transformer details For each MHSA / MHCA operation, we construct a layer consist-
ing of two residual connections, two layer norm operations, one MLP, together with the MHSA /

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

MHCA operation as follows:

Z̃← Z+MHSA/MHCA(layer-norm1(Z))

Z← Z̃+MLP(layer-norm2(Z̃)).
(15)

All MHSA / MHCA operations use H = 8 heads, each with DV = 16 dimensions. We use a
Dz = DQK = 128 throughout.

PT-TNP details We use an induced set transformer (IST) architecture for the PT-TNPs, with each
layer consisting of the following set of operations:

U← MHCA-layer(U;Zc)

zt ← MHCA-layer(zt;U)

Zc ← MHCA-layer(Zc;U).

(16)

In all experiments we use five layers, and encoder / decoder MLPs consisting of two hidden layers
of dimension Dz .

ViT details The ViT architecture consists of optional patch encoding, followed by five MHSA
layers. The patch encoding is implemented using a single linear layer. In all experiments we use
five layers, and encoder / decoder MLPs consisting of two hidden layers of dimension Dz .

Swin Transformer details Each layer of the Swin Transformer consists of two MHSA layers
applied to each window, and a shifting operation between them. Unless otherwise specified, we use
a window size of four and shift size of two for all dimensions (except for the time dimension in the
final experiment, as the original grid only has four elements in the time dimension). For the second
experiment in which the grid covers the entire globe, we allow the Swin attention masks to ‘roll’
over the longitudinal dimension, allowing the pseudo-tokens near 180◦ longitude to attend to those
near−180◦ longitude. In all experiments, we use five Swin Transformer layers (10 MHSA layers in
total), and encoder / decoder MLPs consisting of two hidden layers of dimension Dz . We found that
the use of a hierarchical Swin Transformer—as used in the original Swin Transformer and models
such as Aurora (Bodnar et al., 2024)—did not lead to any improvement in performance.

Spherical harmonic embeddings When modelling input data on the sphere (i.e. the final two
experiments), the CNP, PT-TNP, and gridded TNP models first encode the latitude / longitude coor-
dinates using spherical harmonic embeddings following Rußwurm et al. (2024) using 10 Legendre
polynomials. We found this to improve performance in all cases.

Temporal Fourier embeddings When modelling input data through time (i.e. the final experi-
ment), the CNP, PT-TNP, and gridded TNP models first encode the temporal coordinates using a
Fourier embedding. The time value is originally provided in hours since 1st January 1970. Follow-
ing Bodnar et al. (2024), we embed this using a Fourier embedding of the following form:

Emb(t) =
[
cos

2πt

λi
, sin

2πt

λi

]
for 0 ≤ i < L/2. (17)

where the λi are log-spaced values between the minimum and maximum wavelength. We set
λmin = 1 and λmax = 8760, the number of hours in a year. We use L = 10.

Great-circle distance For methods using the kernel-interpolation grid encoder (i.e. the ConvCNP
and some gridded TNPs), we use the great-circle distance, rather than Euclidean distance, as the
input into the kernel when modelling input data on the sphere. The haversine formula determines
the great-circle distance between two points x1 = (φ1, λ2) and x2 = (φ2, λ2), where λ and φ
denote the latitude and longitude, and is given by:

d(x1,x2) = 2r arcsin

(√
1− cos(∆φ) + cosφ1 · cosφ2 · (1− cos(∆λ))

2

)
(18)

where ∆φ = φ2 − φ1, ∆λ = λ2 − λ1 and r is taken to be 1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) Ground-truth. (b) Swin-TNP, PT-GE, 64× 64 grid.

(c) ConvCNP, 64× 64 grid. (d) PT-TNP, M = 256.

Figure 14: A comparison between the predictive means of a selection of CNP models on a synthetic
GP dataset with ℓ = 0.1. The noiseless ground-truth dataset is shown in Figure 14a, and the context
set is a randomly sampled set ofNc = 1×104 noisy observations of this. The colour corresponds to
the output value, with the same scale used in each plot. Observe the complexity of the ground-truth
dataset, which the Swin-TNP’s predictive mean resembles. The ConvCNP and PT-TNP’s predictive
means are notably smoother.

E.1 META-LEARNING GAUSSIAN PROCESS REGRESSION

We utilise the GPyTorch software package (Gardner et al., 2018) for generating synthetic samples
from a GP. As the number of datapoints in each sampled dataset is very large by GP standards
(1.1 × 104), we approximate the SE kernel using structured kernel interpolation (SKI) (Wilson &
Nickisch, 2015) with 100 grid points in each dimension. We use an observation noise of σn = 0.1
for the smaller and larger lengthscale tasks. In Figure 14, we show an example dataset generated
using a lengthscale of 0.1 to demonstrate the complexity of these datasets. We were unable to
compute ground truth log-likelihood values for these datasets without running into numerical issues.

In addition, we also plot the predictive means (Figure 15) and predictive errors (Figure 16) in the
form of heatmaps for a number of CNP models on a different example dataset.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Ground-truth. (b) Swin-TNP, PT-GE, 64× 64 grid.

(c) ConvCNP, 64× 64 grid. (d) PT-TNP, M = 256.

Figure 15: A comparison between the predictive means of a selection of CNP models on a synthetic
GP dataset with ℓ = 0.1. The noiseless ground-truth dataset is shown in Figure 15a, and the context
set is a randomly sampled set of Nc = 1 × 104 noisy observations of this. The colour corresponds
to the output value, with the same scale used in each plot.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) Ground-truth. (b) Swin-TNP, PT-GE, 64× 64 grid.

(c) ConvCNP, 64× 64 grid. (d) PT-TNP, M = 256.

Figure 16: A comparison between the difference between the predictive mean and ground-truth
for a selection of CNP models on a synthetic GP dataset with ℓ = 0.1. The noiseless ground-truth
dataset is shown in Figure 16a, and the context set is a randomly sampled set of Nc = 1× 104 noisy
observations of this. The colour corresponds to the prediction error, with the same scale used in each
plot.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

We train all models for 500, 000 iterations on 160, 000 pre-generated datasets using a batch size of
eight. For all models, excluding the ConvCNP, we apply Fourier embeddings to each input dimen-
sion with L = 64 wavelengths with λmin = 0.01 and λmax = 12. We found this to significantly
improve the performance of all models. In Table 3, we provide test log-likelihood values for a num-
ber of gridded TNPs and baselines for both tasks. We observe that even when increasing the size
of the baseline models they still underperform the smaller gridded TNPs. We include results for the
Swin-TNP with full attention grid decoding (no NN-CA), which fail to model the more complex
dataset when using the PT-GE.

Table 3: Test log-likelihood (↑) for the synthetic GP regression dataset. FPT: forward pass time for
a batch size of eight in ms. Params: number of model parameters in units of M.

Model Grid encoder Grid size ℓ = 0.5 (↑) ℓ = 0.1 (↑) FPT Params

CNP - - −0.406 0.112 9 0.21
PT-TNP - M = 128 0.819 0.558 53 1.50
PT-TNP - M = 256 0.819 0.565 74 1.52

ConvCNP SetConv 32× 32 0.801 0.536 13 2.11
ConvCNP SetConv 64× 64 0.830 0.681 93 6.70

ViTNP KI-GE 32× 32 → 16× 16 0.841 0.722 30 1.16
ViTNP PT-GE 32× 32 → 16× 16 0.841 0.721 32 1.39
ViTNP KI-GE 16× 16 0.833 0.711 28 1.09
ViTNP PT-GE 16× 16 0.840 0.712 29 1.22

ViTNP KI-GE 64× 64 → 32× 32 0.842 0.728 44 1.16
ViTNP PT-GE 64× 64 → 32× 32 0.836 0.727 56 1.78
ViTNP KI-GE 32× 32 0.830 0.725 47 1.09
ViTNP PT-GE 32× 32 0.837 0.728 53 1.32

Swin-TNP KI-GE 32× 32 0.844 0.723 39 1.09
Swin-TNP PT-GE 32× 32 0.844 0.723 42 1.32
Swin-TNP Avg-GE 32× 32 0.840 0.723 34 1.22

Swin-TNP KI-GE 64× 64 0.846 0.728 62 1.09
Swin-TNP PT-GE 64× 64 0.847 0.730 69 1.72
Swin-TNP Avg-GE 64× 64 0.845 0.725 58 1.62

Swin-TNP (no NN-CA) KI-GE 32× 32 0.834 0.716 45 1.09
Swin-TNP (no NN-CA) PT-GE 32× 32 0.837 0.109 48 1.32

ConvCNP For the ConvCNP models, we use a regular CNN architecture with C = 128 channels
and five layers. We use a kernel size of five for the smaller ConvCNP (32 × 32 grid) and a kernel
size of nine for the larger ConvCNP (64× 64).

Swin-TNP For the Swin-TNP models, we use a window size of 4 × 4 for the smaller model
(32× 32 grid) and a window size of 8× 8 for the larger model (64× 64 grid). The shift size is half
the window size in each case. We also provide results when a simple average pooling is used for the
grid encoder, which is similar to Xu et al. 2024 except that the pooling is performed in token space
rather than on raw observations.

E.1.1 SMALL-SCALE META-LEARNING GAUSSIAN PROCESS REGRESSION

We also consider a smaller GP regression task with datasets drawn from a GP with SE kernel with
lengthscale ℓ = 0.1. Each dataset in this smaller task has a randomly sized context set, Nc ∼
U{1, 1000}, and a fixed sized target set Nt = 100. The inputs are sampled uniformly in the range
[−2, 2] in each dimension. The use of a smaller dataset allows us to make comparisons with the
regular TNP. In Table 4, we compare the performance of the best performing smaller ViTNP and
Swin-TNP gridded TNPs from the paper with the regular TNP, implemented with five MHSA layers,
token dimension Dz = 128, H = 8 heads and DQ = DKV = 16. We include the standard error of
the mean test log-likelihood, which demonstrate that there is no significant difference in performance
between the regular TNP and Swin-TNP. It should be noted, however, that the regular TNP is more
computationally efficient than both gridded TNPs for this small-scale dataset. This reflects the

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 17: Station distribution within 1◦ × 1◦ patches. The colour indicates the number of stations
within each patch, clipped from a maximum value of 22 to 15. The distribution is far from uniform,
with dense station areas in continents such as North America, Europe and parts of Asia, and a sparser
distribution in Africa, South America, and in the oceans.

suitability of gridded TNPs for large-scale datasets, as there is little difference in forward pass time
for the small-scale datasets here and the large-scale datasets considered in the paper for the gridded
TNPs. In contrast, the TNP cannot be implemented on the large-scale datasets considered in the
paper due to the quadratic computational and memory complexity associated with full attention.

Table 4: Test log-likelihood (↑) for the synthetic GP regression dataset. FPT: forward pass time for
a batch size of eight in ms. Params: number of model parameters in units of M.

Model Grid encoder Grid size Test log-likelihood (↑) FPT Params

TNP - - −0.596 ± 0.02 17 0.60
ViTNP PT-GE 32× 32 → 16× 16 −0.657± 0.02 22 1.39

Swin-TNP PT-GE 32× 32 −0.616± 0.02 33 1.32

E.2 COMBINING WEATHER STATION OBSERVATIONS WITH STRUCTURED REANALYSIS

Inspired by the real-life assimilation of 2m temperature (t2m), we use the ERA5 reanalysis dataset
to extract skin temperature (skt) and 2m temperature (t2m) at a 0.25◦ resolution (corresponding
to a 721 × 1440 grid). We then coarsen the skt grid to a 180 × 360 grid, corresponding to 1◦ in
both the latitudinal and longitudinal directions. This implies that, because t2m lies on a finer grid,
it essentially becomes an off-the-grid variable with respect to the coarsened grid on which skt lies.
In order for the experimental setup to better reflect real-life assimilation conditions, we assume to
only observe off-the-grid t2m values at real weather station locations12. In total, there are 9, 957
such weather station locations, extracted from the HadISD dataset (Dunn et al., 2012). We show
their geographical location in Figure 17.

For each task, we first randomly sample a time point, and then use the entire coarsened skt grid
as the on-the-grid context data (64, 800 points), as well as Noff,c off-the-grid t2m context points
randomly sampled from the station locations. In the experiment from the main paper, Noff,c ∼
U[0,0.3], but we also consider the case of richer off-the-grid context sets with Noff,c ∼ U[0.25,0.5] in
Table 8. The target locations are all the 9, 957 station locations.

12More specifically, because the 2m temperature values come from the gridded ERA5 data, we only consider
the nearest grid points to the true station locations as valid off-the-grid locations (i.e. if a station has coordinates
at (44.19◦, 115.43◦) latitude-longitude, we consider the grid point at (44.25◦, 115.5◦))

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

We train all models for 300, 000 iterations on the hourly data between 2009 − 2017 with a batch
size of eight. Validation is performed on 2018 and testing on 2019. The test metrics are reported for
16, 000 data samples. Experiment specific architecture choices are described below.

Input embedding We use spherical harmonic embeddings for the latitude / longitude values.
These are not used in the ConvCNP model as the ConvCNP does not modify the inputs in order
to maintain translation equivariance (in this case, with respect to the great-circle distance).

Grid sizes For the main experiment (with results reported in Table 1), we chose a grid size of
64 × 128 for the ConvCNP and Swin-TNP models, corresponding to a grid spacing of 2.8125◦ in
both the latitudinal and longitudinal directions.

In Table 8 we report results for a richer context set using a grid size of 128 × 256 for the Swin-
TNP models, corresponding to a grid spacing of ≈ 1.41◦ in both the latitudinal and longitudinal
directions. The results for the ConvCNP are for a grid size of 64× 128, to maintain a smaller gap in
parameter count between models.

CNP We use a different deepset for the on- and the off-the-grid data, and the
mean as the permutation-invariant function to aggregate the context tokens, i.e. zc =

1
Noff,c

∑Noff,c
n=1 eoff(xoff,c,n,yoff,c,n) +

1
Non,c

∑Non,c
n=1 eon(xon,c,n,yon,c,n)

PT-TNP We managed to use up to M = 256 pseudo-tokens without running into memory issues.
This shows that even if we only use two variables (one on- and one off-the-grid), PT-TNPs do
not scale well to large data. We use a different encoder for the on- and off-the-grid data, before
aggregating the two sets of tokens into a single context set.

ConvCNP For the ConvCNP we use a grid of size 64×128 for all experiments. We first separately
encode both the on- and the off-the-grid to the specified grid size using the SetConv. We then
concatenate the two and project them to a dimension of C = 128 before passing through the U-
Net (Ronneberger et al., 2015). The U-Net uses a kernel size of k = 9 with a stride of one.

Swin-TNP For the Swin-TNP models in the main experiment, we use a grid size of 64 × 128, a
window size of 4 × 4 and a shift size of 2 × 2. For the experiment with richer off-the-grid context
sets (i.e. between 0.25 and 0.5 of the off-the-grid data), we use a grid size of 128 × 256, a window
size of 8× 8 and a shift size of 4× 4.

E.2.1 ADDITIONAL RESULTS FOR THE MAIN EXPERIMENT

We provide in Figure 18 a comparison for an example dataset between the predictive errors (i.e.
difference between predicted mean and ground truth) produced by three models: Swin-TNP with
PT-GE, ConvCNP, and PT-TNP. The predictions are performed at all station locations. The stations
included in the context set are indicated with a black dot. The figures show how Swin-TNP usually
produces lower errors in comparison to the baselines, indicated through paler colours. Examples of
regions where this is most prominent include central US, as well as southern Australia and southern
Europe.

Analysis of the predictive uncertainties For the example dataset considered above, Figure 19
shows histograms of the normalised predictive errors, defined as the predictive errors divided by
the predictive standard deviations. We compute the mean log-likelihoods under a standard normal
distribution, and compare it to the reference negative entropy of the standard normal distribution of
−1.419. This acts as an indicator of the accuracy of the predictive uncertainties outputted by the
three models we consider: Swin-TNP (PT-GE, grid size 64× 128), ConvCNP (grid size 64× 128),
and PT-TNP (M = 256). For the dataset considered in Figure 19, we obtain −1.439 for Swin-TNP,
−1.490 for ConvCNP, and −1.380 for PT-TNP, indicating that, out of the three models, Swin-TNP
outputs the most accurate uncertainties.

Analysis of grid size influence We study to what extent increasing the grid size of the models,
and hence their capacity, improves their predictive performance. We repeat the experiment for two

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

(a) Swin-TNP error.

(b) ConvCNP error.

(c) PT-TNP error.

Figure 18: A comparison between the predictive error—the difference between predictive mean and
ground truth—of the 2m temperature at all weather station locations at 15:00, 28-01-2019. Stations
included in the context dataset are shown as black dots (3% of all station locations). The mean
predictive log-likelihoods (averaged across the globe) for these samples are 1.611 (Swin-TNP, PT-
GE, grid size of 64×128), 1.351 (ConvCNP, grid size of 64×128), and 1.271 (PT-TNP,M = 256).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

(a) Swin-TNP histogram. (b) ConvCNP histogram. (c) PT-TNP histogram.

Figure 19: A comparison between the normalised predictive error—the predictive error divided
by the predicted standard deviation—of the 2m temperature at the US weather station locations
at 15:00, 28-01-2019. The context set contains observations at 3% of station locations. Each plot
shows a histogram of the normalised errors based on the predictions at all station locations, alongside
an overlaid standard normal distribution that perfect predictive uncertainties should follow. The
mean log-likelihoods of the normalised predictive errors under a standard normal distribution for
the Swin-TNP (PT-GE, grid size of 64 × 128), ConvCNP (grid size 64 × 128), and PT-TNP (M =
256) are −1.439, −1.490, and −1.380, respectively. For reference, a standard normal distributionn
has a negative entropy of −1.419, indicating that the Swin-TNP has the most accurate predictive
uncertainties.

models: Swin-TNP (with PT-GE) and ConvCNP with a grid size of 192 × 384, corresponding to
0.9375◦ in both latitudinal and longitudinal directions. For the Swin-TNP we use a window size of
8 × 8, and a shift size of 4 × 4. Due to time constraints, we only trained the Swin-TNP model for
280, 000 iterations instead of 300, 000. For the U-Net architecture within the ConvCNP we use a
kernel size of nine. In the decoder of the bigger ConvCNP model, attention is performed over the
nearest 9 neighbours, whereas for the smaller ConvCNP we use full attention. This makes the FPT
of the bigger model smaller that that of the 64× 128 model.

The results are shown in Table 5 (an represent a subset of the results shown in Table 1). In compari-
son to the Swin-TNP and ConvCNP models which use a grid size of 64×128, both models improve
significantly. However, the bigger ConvCNP still underperforms both the small and big variant of
Swin-TNP, with a significant gap in both log-likelihood and RMSE.

Table 5: Test log-likelihood (↑) and RMSE (↓) for the t2m station prediction experiment when
varying grid size for two models. The standard errors of the log-likelihood are all below 0.004, and
of the RMSE below 0.005. FPT: forward pass time for a batch size of eight in ms. Params: number
of model parameters in units of M. Best results for each configuration (Swin-TNP / ConvCNP) are
bolded.

Model GE Grid size Log-lik. ↑ RMSE ↓ FPT Params

ConvCNP (no NN-CA) SetConv 64× 128 1.535 1.252 96 9.36
ConvCNP SetConv 192× 384 1.689 1.166 74 9.36

Swin-TNP PT-GE 64× 128 1.819 1.006 127 2.29
Swin-TNP PT-GE 192× 384 2.053 0.873 306 10.67

Analysis of influence of nearest-neighbour encoding and decoding A final ablation we perform
in this experiment studies the influence of the number of nearest neighbours considered for the en-
coder and decoder on the performance of the model. Initially, we focus on the effect of nearest
neighbour decoding, investigating two models—with and without full attention at decoding time.
More specifically, we compare Swin-TNP with PT-GE and KI-GE with a grid size of 64× 128, and
either perform full attention in the grid decoder, or cross-attention over the 9 nearest neighbours
(NN-CA). For the variants with full attention, we evaluate the log-likelihood at 25% randomly sam-
pled station locations instead of all of them because of memory constraints. The results are shown
in Table 6 (but are also presented in Table 1), and indicate that, not only does NN-CA offer a more
scalable decoder attention mechanism, but it also leads to improved predictive performance when
applied to spatio-temporal data. We hypothesise this is due to the inductive biases it introduces,
which are appropriate for the strong spatio-temporal correlations present in the data we used.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 6: Test log-likelihood (↑) and RMSE (↓) for the t2m station prediction experiment when
varying the decoder attention mechanism—nearest-neighbour cross-attention and full attention (no
NN-CA). The standard errors of the log-likelihood and RMSE are all below 0.003. FPT: forward
pass time for a batch size of eight in ms. Params: number of model parameters in units of M. Best
results for each configuration (PT-GE / KI-GE) are bolded.

Model GE Grid size Log-lik. ↑ RMSE ↓ FPT Params

Swin-TNP KI-GE 64× 128 1.683 1.157 121 1.14
Swin-TNP (no NN-CA) KI-GE 64× 128 1.544 1.436 137 1.14

Swin-TNP PT-GE 64× 128 1.819 1.006 127 2.29
Swin-TNP (no NN-CA) PT-GE 64× 128 1.636 1.273 144 2.29

Focusing on just the models using the PT-GE, we also study intermediate regimes for the nearest
neighbour decoding mechanism with kdec = 25, and kdec = 49. Moreover, we also investigate how
the models perform with an increased number of nearest neighbours considered during encoding
(kenc = 9). The full results are presented in Table 7, where for each model we specify the number
of nearest neighbours considered in the encoder (kenc) and decoder (kdec). The training for these
models is still on-going, but we present the number of training iterations (out of 300k) in Table 7,
and we will update the figures once training is finished.

Table 7: Test log-likelihood (↑) and RMSE (↓) for the t2m station prediction experiment when
varying the number of nearest neighbours considered for the encoder (kenc) and decoder (kdec). No
NN-CA signifies that full attention is applied in the decoder. For the models that have not finished
training, we indicate between brackets the number of training iterations. The standard errors of the
log-likelihood and RMSE are all below 0.003. FPT: forward pass time for a batch size of eight in
ms. Params: number of model parameters in units of M. Best results for each configuration (PT-GE
/ KI-GE) are bolded.

Model GE kenc kdec Grid size Log-lik. ↑ RMSE ↓ FPT Params

Swin-TNP PT-GE 1 9 64× 128 1.819 1.006 127 2.29
Swin-TNP (no NN-CA) PT-GE 1 - 64× 128 1.636 1.273 144 2.29

Swin-TNP (260k) PT-GE 1 25 64× 128 1.778 1.050 211 2.29
Swin-TNP (215k) PT-GE 1 49 64× 128 1.714 1.097 306 2.29
Swin-TNP (230k) PT-GE 9 9 64× 128 1.843 1.002 360 2.29

We observe that the performance of the models tends to:

• Slightly degrade with increasing kdec—we believe this is because locality represents a good
inductive bias in the task we consider. We also suspect that with sufficient training the
models with different kdec would eventually reach similar performance, but a lower value
encourages more efficient training.

• Slightly improve with increasing kenc—the gridded pseudo-tokens are, on average, mod-
ulated by more context points, hence increasing predictive performance. However, this
comes at an increased computational cost.

E.2.2 ADDITIONAL RESULTS FOR RICHER CONTEXT SET

In order to investigate whether the model manages to learn meaningful relationships between the off-
and on-the-grid data (t2m and skt) and to exploit the on-the-grid information13, we also perform
an experiment with richer context sets. More specifically, the number of off-the-grid context points
is sampled according to Noff,c ∼ U[0.25,0.5]. The results are given in Table 8.

For the ConvCNP we evaluated two models—one with full decoder attention and one with nearest-
neighbour cross-attention (NN-CA). Similarly to the previous section, we found that the latter has a

13This is achieved by comparing the performance of a model that is only given off-the-grid context informa-
tion, with a similar model that is provided with both off- as well as on-the-grid data.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

better performance with a log-likelihood of 1.705 (NN-CA) as opposed to 1.635 (full attention). As
such, Table 8 shows the results for the NN-CA ConvCNP model.

Table 8: Test log-likelihood (↑) and RMSE (↓) for the t2m station prediction experiment with richer
off-the-grid context information. The standard errors of both the log-likelihood and the RMSE are
all below 0.003. FPT: forward pass time for a batch size of eight in ms. Params: number of model
parameters in units of M.

Model GE Grid size Log-lik. (↑) RMSE (↓) FPT Params

CNP - - 0.715 3.056 27 0.34
PT-TNP - M = 256 1.593 1.403 219 1.57

ConvCNP SetConv 64× 128 1.705 1.100 21 9.36

ViTNP KI-GE 48× 96 1.754 1.112 175 1.14
ViTNP PT-GE 48× 96 1.988 0.932 188 1.83
ViTNP KI-GE 144× 288 → 48× 96 1.842 1.046 179 1.29
ViTNP PT-GE 144× 288 → 48× 96 2.242 0.798 221 6.69

Swin-TNP KI-GE 128× 256 2.362 0.758 174 1.14
Swin-TNP PT-GE 128× 256 2.446 0.697 208 5.43

Swin-TNP (skt) PT-GE 128× 256 1.501 1.266 178 5.43
Swin-TNP (t2m) PT-GE 128× 256 2.331 0.909 186 5.38

The results are consistent with the findings from the main experiment:

• The performances of the baselines (CNP, PT-TNP, and ConvCNP) are significantly worse
than the gridded TNP variants considered.

• For each gridded TNP variant, the pseudo-token grid encoder (PT-GE) performs better than
the kernel-interpolation one (KI-GE).

• The variants with a Swin-transformer backbone outperform the ones with a ViT-backbone,
even when the latter has more parameters and a higher FPT.

• Among the ViT variants, the ones that employ patch encoding before projecting to a 48×96
grid outperform the ones that directly encode to a 48× 96 grid.

• Performing nearest-neighbour cross-attention in the decoder as opposed to full attention
leads to both computational speed-ups, as well as enhanced predictive performance.

In comparison to the main experiment, the gap in performance between Swin-TNP and Swin-TNP
(t2m) is smaller—this is expected, given that the context already includes between 25% and 50%
of the off-the-grid station locations. However, the gap is still significant, implying that Swin-TNP
manages to leverage the on-the-grid data (skt) and exploits its relationship with the target t2m to
improve its predictive performance.

E.3 COMBINING MULTIPLE SOURCES OF UNSTRUCTURED WIND SPEED OBSERVATIONS

In this experiment, we consider modelling the eastward (u) and northward (v) components of wind
speed at 700hPa, 850hPa and 1000hPa (surface level). These quantities are essential for understand-
ing and simulating large-scale circulation in the atmosphere, for wind energy integration into power
plants, or for private citizens and public administrations for safety planning in the case of hazardous
situations (Lagomarsino-Oneto et al., 2023). We obtain each of the six modalities from the ERA5
reanalysis dataset (Hersbach et al., 2020), and construct datasets over a latitude / longitude range
of [25◦, 49◦] / [−125◦,−66◦], which corresponds to the contiguous US, spanning four hours. We
show plots of wind speeds at the three pressure levels for a single time step in Figure 20.

For each task, we first sample a series of four consecutive time points. From this 4 × 96 × 236
grid, we sample a proportion pc and pt of total points to form the context and target datasets, where
pc ∼ U[0.05,0.25] and pt = 0.25. All models are trained for 300, 000 iterations on hourly data
between 2009 − 2017 with a batch size of eight. Validation is performed on 2018 and testing on
2019. Experiment specific architecture choices are described below.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 20: Wind-speed and direction at each of the three pressure levels, 700hPa, 850hPa and
1000hPa, over the contiguous US at 15:00 GMT, 08-06-1997. The colours correspond to the mag-
nitude and direction of the wind speed.

(a) Swin-TNP error. (b) ConvCNP error. (c) PT-TNP error.

Figure 21: A comparison between the predictive error—the difference between predictive mean and
ground truth—of normalised wind speeds for a selection of CNP models on a small region of the US
at 04:00, 01-01-2019. Each plot consists of 2,400 arrows with length and orientation corresponding
to the direction and magnitude of the wind-speed error at the corresponding pressure level. The
colour of each arrow is given by the HSV values with hue dictated by orientation, and saturation
and value dictated by length (i.e. the brighter the colour, the larger the error). For this dataset,
the context dataset consists of 5% of the total available observations, and the corresponding mean
predictive log-likelihoods for the Swin-TNP (PT-GE, grid size 4 × 24 × 60), ConvCNP (grid size
4× 24× 60) and PT-TNP (M = 64) are 5.84, 3.23 and 2.41.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

(a) Swin-TNP normalised error. (b) ConvCNP normalised error. (c) PT-TNP normalised error.

Figure 22: A comparison between the normalised predictive error—the predictive error divided by
the predictive standard deviation—of wind speeds for a selection of CNP models on a small region
of the US at 04:00, 01-01-2019. Each plot compares a histogram of values for both the u and v
components with a standard normal distribution, which perfect predictive uncertainties follow. For
this dataset, the context dataset consists of 5% of the total available observations. The mean log-
likelihoods (averaged over pressure levels and the 4 time points) of the normalised predictive errors
under a standard normal distribution for the Swin-TNP (PT-GE, grid size 4 × 24 × 60), ConvCNP
(grid size 4 × 24 × 60) and PT-TNP (M = 64) are -1.425, -1.501 and -1.514. For reference, a
standard normal distribution has a negative entropy of -1.419. This indicates that the Swin-TNP has
the most accurate predictive uncertainties.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Input embedding As the input contains both temporal and latitude / longitude information, we use
both Fourier embeddings for time and spherical harmonic embeddings for the latitude / longitude
values. These are not used in the ConvCNP as the ConvCNP does not modify the inputs to maintain
translation equivariance (in this case, with respect to time and the great-circle distance).

Grid sizes We chose a grid size of 4 × 24 × 60 for the ConvCNP and Swin-TNP models, as this
corresponds to a grid spacing of 1◦ in the latitudinal direction and around 1◦ in the longitudinal
direction. For the ViTNP, we chose a grid size of 4×12×30, corresponding to a grid spacing of 2◦.

CNP A different deepset is used for each modality, with the aggregated context token for
each modality then summed together to form a single aggregated context token, i.e. zc =∑S

s=1
1

Nc,s

∑Nc,s

n=1 es(xc,n,s,yc,n,s).

PT-TNP For this experiment, we could only use M = 64 pseudo-tokens for the PT-TNP without
running into out-of-memory issues. This highlights a limitation in scaling PT-TNPs to large datasets.
We note that there does exist work that remedies the poor memory scaling of PT-TNPs (Feng et al.,
2024); however, this trades off against time complexity which itself is a bottleneck given the size of
datasets we consider. A different encoder is used for each modality, before aggregating the tokens
into a single context set of tokens.

ConvCNP For the ConvCNP, we use a grid size of 4×24×60. Each modality is first grid encoded
separately using the SetConv, concatenated together and then toC = 128 dimensions before passing
through the U-Net.

Swin-TNP For the Swin-TNP models, we use a grid size of 4×24×60, a window size of 4×4×4
and a shift size of 0× 2× 2.

34

	Introduction
	Background
	Neural Processes
	Transformers and Transformer Neural Processes
	Self-Attention and Cross-Attention
	Pseudo-Token-Based Transformers
	Transformer Neural Processes

	Related Work
	Gridded Transformer Neural Processes
	Grid Encoder: the Pseudo-Token Grid Encoder
	Grid Processor: Efficient Attention Mechanism-Based Transformers
	Grid Decoder: the Cross-Attention Grid Decoder
	Handling Multiple Data Modalities

	Experiments
	Meta-Learning Gaussian Process Regression
	Combining Weather Station Observations with Structured Reanalysis
	Combining Multiple Sources of Unstructured Wind Speed Observations
	Discussion of Results

	Conclusion
	A Unifying Construction of Conditional Neural Processes
	Kernel-Interpolation Grid Encoder
	Nearest-Neighbour Cross-Attention in the Grid Decoder
	Hardware specifications
	Experiment Details
	Meta-Learning Gaussian Process Regression
	Small-Scale Meta-Learning Gaussian Process Regression

	Combining Weather Station Observations with Structured Reanalysis
	Additional results for the main experiment
	Additional Results for Richer Context Set

	Combining Multiple Sources of Unstructured Wind Speed Observations

