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Abstract

The unauthorized generation of privacy-related and copyright-infringing
content using generative-AI is becoming a significant concern for society,
raising ethical, legal, and privacy issues that demand urgent attention.
Recently, machine unlearning techniques have arisen that attempt to elim-
inate the influence of sensitive content used during model training, but
they often require extensive updates in the model, reduce the utility of
the models for unrelated content, and/or incur substantial computational
costs. In this work, we propose a novel and efficient method called Single
Layer Unlearning Gradient (SLUG), that can unlearn targeted information
by updating a single targeted layer of a model using a one-time gradient
computation. We introduce two metrics: layer importance and gradient
alignment, to identify the appropriate layers for unlearning targeted infor-
mation. Our method is highly modular and enables selective removal of
multiple concepts from the generated outputs of widely used foundation
models (e.g., CLIP), generative models (e.g., Stable Diffusion) and Vision-
Language models. Our method shows effectiveness on a broad spectrum of
concepts ranging from concrete (e.g., celebrity name, intellectual property
figure, and object) to abstract (e.g., novel concept and artistic style). Our
code is available at https://github.com/CSIPlab/SLUG.

1 Introduction

Modern generative models, including large language models (LLMs) [2, 22], Stable Dif-
fusion (SD) [32, 39], and vision language mdoels (VLMs) [43, 25] leverage vast amounts
of data for training. While these large unsupervised datasets enhance performance under
scaling law [17], they also raise serious data privacy and legal compliance [1, 34] concerns.
Completely abandoning trained model weights and re-training large models from scratch
using scrutinized dataset is prohibitively expensive, highlighting the need for efficient
unlearning methods.

Machine unlearning (MU) [5, 29] refers to a set of techniques designed to reverse the learning
process, which aims to efficiently remove targeted information from a trained model without
re-training the model from scratch. MU has three main objectives: (1) Low computational
cost, as the naïve approach of re-training models usually achieves the best result (exact
unlearning) at the expense of large computational cost. (2) Effective unlearning, to ensure
that the model forgets the intended data completely. (3) Utility retention, maintaining
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Figure 1: Overview of our proposed Single Layer Unlearning Gradient (SLUG) framework. Given
an unlearning query, we curate a forget set and retain set, then compute corresponding gradients.
The gradient alignment guide identifying single layer updates for unlearning. A binary search helps
determine the step size λ, effectively erasing specified concepts while preserving the model’s utility.

the original model performance, in terms of accuracy and utility on data/tasks unrelated
to the intended forgotten data. Current MU methods often fall short of meeting all these
objectives simultaneously. Traditional methods like fine-tuning (FT) [36] and gradient
ascent (GA) [35] struggle to balance effective forgetting with utility preservation. More
recent techniques such as saliency unlearning (SalUn) [8] and selective synaptic dampening
(SSD) [9] attempt to address this by identifying and updating only salient parameters.
While these methods improve overall unlearning performance, they still face the following
challenges: (1) they usually involve iterative updates over the model parameters, resulting
in high computational costs [8]. (2) The significant weights targeted for updates are often
spread throughout the model, offering limited insight into the model’s structure. (3) They
require careful hyperparameter tuning, including learning rate, number of iterations, and
parameters for selecting suitable masks in saliency approaches.

In this work, we propose a novel and efficient method for unlearning targeted information,
namely Single Layer Unlearning Gradient (SLUG). Figure 1 provides an overview of our
proposed framework. SLUG performs three main steps using given unlearning query with
retain and forget sets: (1) calculate one-time gradients for the forget and retain losses; (2)
identify a single layer with high importance to the forget set and low relevance to the retain
set; (3) update the targeted layer along a linear path using one-time calculated gradient. In
addition to its efficiency and effectiveness, our methods offers higher modularity and better
interpretability compared to [8, 9]. SLUG precisely identifies layers associated with distinct
concepts, which provides insights into the features learned by different layers and their
functionalities, offering generalized guidance for new tasks and model architectures design.

2 Background

2.1 Machine unlearning preliminaries

The goal of MU is to remove the influence of a specific subset of training data, Df ⊂ D,
on a pre-trained model Fθ(D) with parameters θ. The challenge is to make this process
more efficient than re-training the model on the retain set Dr = D \ Df. The unlearning
algorithm U should produce an unlearned model Fθf = U(Fθ(D), D, Df) that is functionally
equivalent to a model retrained only on Dr (i.e., Fθr(Dr)), which can be formalized as:

min
θ

1
Nr

∑
(xr,yr)∈Dr

ℓ(Fθ(xr), yr)︸ ︷︷ ︸
Lretain

− α

Nf
∑

(xf,yf)∈Df

ℓ(Fθ(xf), yf)︸ ︷︷ ︸
Lforget

(1)
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where N is the number of elements in D, α is a balancing factor, and ℓ is the loss function.

2.1.1 Vision language alignment

Traditional MU approaches struggle with high computational costs and limited scalability,
which restricts their application to small-scale image classification models [16, 9]. In contrast,
our method breaks away from these constraints by offering superior scalability and flexibility
that is suitable for large multi-modal foundation models such as CLIP, SD, and VLMs.

CLIP [31], in particular, is pivotal in advancing multi-modal models by aligning visual and
textual representations through contrastive loss [7]:

ℓ =
1

2N

N

∑
i=1

(ℓi2t(i) + ℓt2i(i)) , (2)

ℓi2t(i) = − log
exp(cos(vi, ti)/τ)

∑N
j=1 exp(cos(vi, tj)/τ)

, ℓt2i(i) = − log
exp(cos(ti, vi)/τ)

∑N
j=1 exp(cos(ti, vj)/τ)

. (3)

Here, vi is the normalized image embedding from the vision model fv, and ti is the normal-
ized text embedding from the text model ft. The temperature τ controls the sharpness of
the softmax probability distribution, while cosine similarity is defined as cos(vi, tj) = vi · tj.
Minimizing this contrastive loss aligns the vision and language representations in the
embedding space. In unlearning, our goal is to break these learned alignments.

2.1.2 Loss functions for gradient calculation

Selection of an appropriate loss functions to perform unlearning is critical. In the scenario
for contrastive learning we focus on contrastive loss. The loss for retain and forget sets are
defined as follows:

Lretain =
1

2N

N

∑
i=1

(ℓi2t(i) + ℓt2i(i)) , Lforget(vi, tj) = 1− cos(vi, tj) (4)

Retain loss is the original contrastive loss as in equation 2. For the forget loss, we employ
the cosine embedding loss that directly pushes the embeddings of positive pairs away while
not tampering with the embeddings of negative pairs. Using the original contrastive loss as
forget loss will result in ineffective unlearning.

3 Single layer unlearning gradient (SLUG)

Our approach improves the state-of-the-art along three axes: (1) low computational cost, (2)
effective unlearning, and (3) high retention of general utility. The framework is illustrated
in Figure 1.

3.1 Layer identification

SLUG is inspired by the nature of different layers in deep networks learn distinct features [41,
30, 12]. To efficiently unlearn, our goal is to identify the layers most critical to unlearn
targeted concepts while preserving the model’s functionality. To achieve this, we perform
unlearning within the “nullspace” of the retain set, focusing on layers that minimally impact
retained data performance while effectively removing the targeted features.

To measure the influence of each parameter, similar to [3, 9], we use the Fisher information
matrix[18, 14, 19], approximated by its diagonal for computational feasibility:

ID(θ) = −E

[
∂2

∂θ2 log L(θ; D)

]
= E

[(
∂

∂θ
log L(θ; D)

)(
∂

∂θ
log L(θ; D)

)T
]

(5)

The diagonal elements reflect the sensitivity of the log-likelihood to parameter changes,
and we extend this to layers by aggregating sensitivities. The importance of a layer is
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determined by the ratio of the ℓ2 norm of the forget loss gradients to the ℓ2 norm of the
layer’s parameters:

Importance of layer l: Importance(l) =
√
IDf(θl)

∥θl∥2
=
∥∇θlLforget(θ, Df)∥2

∥θl∥2
(6)

Importance of layer alone is insufficient. We also ensure that forget gradients are nearly
orthogonal to retain gradients by minimizing the gradient alignment:

Gradient alignment: Alignment(l) = cos
(
∇θlLforget(θ, Df),∇θlLretain(θ, Dr)

)
(7)

Small alignment would prevent unlearning updates from negatively affecting the retain set.
To balance both objectives, we use the concept of a Pareto optimal set [28], optimizing both
importance and gradient orthogonality. Figure 2 illustrates the Pareto front for unlearning
a person identity from CLIP ViT-B-32, showing layers that unlearn the forget set without
harming retain data.
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Figure 2: Layer identification (a,d) and unlearning with a single gradient (b,e). The first column shows
gradient alignment and importance metrics for vision and language models from CLIP ViT-B-32,
highlighting layers on the Pareto front for unlearning an identity. The second column demonstrates ef-
fective unlearning by updating identified layers along a single gradient direction without significantly
impacting retain set performance. The third column shows that iterative methods (GA and GAFT)
offer no advantage over a single gradient and require early stopping to prevent over-unlearning.

3.2 Linearizing unlearning trajectory

Existing unlearning methods calculate gradients at each iteration to update model parame-
ters, which significantly increases computational complexity. However, inspired by task
arithmetic [15] and the linear nature of many optimization problems [21], we observe that
repeated gradient calculations may be redundant. Instead, we propose calculating the
gradient only once for the initialized model and updating the parameters θl of any layer l in
a weight-arithmetic fashion. Specifically, the weights are updated along a fixed gradient
direction in every iteration:

θ
(t)
l ← θ

(0)
l − λ(t)∇θlLforget(θ, Df)

∣∣∣
θ=θ(0)

(8)
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Here, θ
(t)
l represents the parameters of layer l at iteration t, with θ

(0)
l being the initial

parameters. The gradient∇θlLforget(θ, Df)
∣∣∣
θ=θ(0)

is calculated once, based on the forget loss

Lforget evaluated on the forget set Df. The step size λ(t) controls the update magnitude.

Instead of recalculating gradients, we use the initial gradient direction for updates, effec-
tively linearizing the unlearning trajectory. This approach reduces computational complexity
yet ensuring effective unlearning. To search a proper step size λ(t), we perform binary search
along the linearized path, halting when the evaluation metric indicates satisfactory unlearn-
ing without harming performance on the retain set. This method strikes a balance between
efficiency and precision, maintaining model utility while achieving unlearning goals.

3.3 Generalization to Stable Diffusion and VLMs

By harnessing effective unlearning in CLIP models, SLUG can be extended to larger gen-
erative models built on CLIP, such as Stable Diffusion (SD) and Vision-Language Models
(VLMs) .

Unlearn SD. Diffusion models, known for generating high-quality images from text, use a
text encoder (e.g., CLIP ViT-H/14 in SDv2.1) to embed prompts into a high-dimensional
space. The text embedding guides the denoising process through cross-attention, starting
from an initial noise xT and iteratively denoising at each step:

xt−1 =
√

αt (xt − γt∇x log p(xt|e)) +
√

1− αtzt (9)

where xt is the noisy image at step t, zt is the noise added at step t, αt is a time-dependent
parameter controlling the noise balance, γt is the learning rate, e = ft(text) is the text
embedding, and ∇x log p(xt|e) is the gradient of the log-probability of the noisy image
given the text embedding, guiding the denoising process. We freeze the CLIP vision model
and only update the language model to achieve unlearning.

Unlearn VLMs. VLMs enable LLMs to process multi-modal information. LLaVA-1.5
[24] uses a pretrained CLIP vision encoder ViT-L/14-336px to extract the visual features
e = fv(img), which are projected as visual tokens Hv = W · e through an MLP W. These
tokens are then concatenated with language tokens Hq as input H = [Hv; Hq] to the
language model. Since VLMs rely on the vision encoder, unlearning specific concepts in the
CLIP vision model can directly influence the language model’s output.

4 Experiment

4.1 Experiment setup

Models. We mainly experiments on CLIP and CLIP-based generative model SD, VLMs. For
CLIP, we used architecture ViT-B-32 trained on LAION-400M dataset [33], and pre-trained
weights from the OpenCLIP [6]. For SD, we used the SDv2.1 from StabilityAI that built on
the CLIP-ViT-H-14 text encoder, pre-trained on the LAION-5B dataset.

Datasets. We used publicly-available datasets to construct the forget, retain, and evaluation
sets. For unlearning target identities, we curated the forget set by filtering the LAION-400M
dataset to isolate 1,000 to 6,000 image-text pairs per identity. The retain set consists of a
single shard from LAION-400M, containing approximately 7,900 images (due to expiring
URLs). To assess unlearning effectiveness, we used the CelebA dataset [26], sampling 100
frequently appearing celebrities from LAION-400M. Post-unlearning, model utility was
evaluated using the ImageNet dataset for zero-shot classification.

Evaluation metrics. For CLIP, we measure unlearn performance using forget accuracy, de-
fined as the zero-shot classification accuracy on unlearned content. Following the standard
zero-shot paradigm [31], predictions are based on the highest cosine similarity between
image and text embeddings. The model utility retention is assessed via zero-shot accuracy
on ImageNet and CelebA.
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Figure 3: Cosine similarity matrix of image-text pairs before & after unlearning “Elon Musk” as an
example. (a) original CLIP correctly associate images and text of distinct identities with high similarity.
(b) after unlearning, the image-text pair of “Elon Musk” is no longer matched, while other identities
are only slightly affected.

Table 1: Performance comparison of different unlearning methods on CLIP zero-shot classification.
FA@{1, 5} stands for top-{1, 5} forget accuracy (%), i.e., accuracy of unlearned identity. TA_IN@1 and
TA_CA@1 stands for the top-1 test accuracy (%) on ImageNet and CelebA dataset, respectively. K and
k denotes the number of epochs for training and iterations for unlearning, respectively (K = 32 and
k = 10 in our experiments). N is the size of whole training set, which is much larger than our sampled
forget set (Nf) and retain set (Nr).

Method FA@1 (↓) FA@5 (↓) TA_IN@1 (↑) TA_CA@1 (↑) Compute Time (O)

Original 73.05 92.22 60.12 61.38 O(K · N)

learning rate = 10−6 / 10−7

FT [36] 66.08/70.50 90.10/92.22 60.36/60.26 60.70/61.35 O(k · Nr)
GA [35] 0.00/0.00 0.00/4.91 35.88/60.03 24.92/53.86 O(k · Nf)
GAFT (equation 1) 0.00/2.67 0.00/15.89 55.52/60.13 25.71/55.22 O(k · (Nf + Nr))
SalUn [8] 0.00/3.33 0.00/15.69 55.45/60.26 26.11/55.81 O(Nf) +O(k · (Nf + Nr))

SSD [9] 0.00 0.00 51.84 35.96 O(Nf + Nr)
SLUG (ours) 0.00 0.00 59.96 58.32 O(Nf + Nr)

Comparing methods. We compare with the state-of-the-art methods along with classical
methods. For unlearning in CLIP models, we compare with classical fine tuning (FT) [36],
gradient ascent (GA) / negative gradient (NG) [35], and recent salient parameters based
saliency unlearning (SalUn) [8], and selective synaptic dampening (SSD) [9].

4.2 Unlearning for CLIP

Unlearning identities. We demonstrate that modifying a single layer suffices to unlearn an
identity or concept while preserving the model’s overall utility. Figure 3 presents an example
of unlearning targeted identity “Elon Musk” on CLIP. Each cell in matrices shows the cosine
similarity between the embeddings of an image-text pair. Before unlearning (Figure 3a),
high similarity values are obsered along the diagonal, indicating strong alignment between
images and corresponding text descriptions across all identities. After unlearning (Figure
3b), the similarity of targeted identity image-text pairs decrease, while other identities
remain largely unaffected. This demonstrates SLUG’s precision in selectively removing
specific information. Additional studies on other identities and model architectures are
presented in the Appendix Figure 6 and 8. Moreover, Figure 8 showcases SLUG’s capability
to simultaneously unlearn multiple identities, highlighting its scalability and flexibility.

Unlearning without losing utility. A key advantage of SLUG is that performance on
unrelated tasks remains intact. Table 1 presents quantitative performance comparisons
of various methods for classification on ImageNet and CelebA. For CelebA, unlearning
an identity slightly reduces accuracy due to its close relationship with the data distribu-
tion. As shown in Table 1, our method outperforms others in forget and retain accuracy
while maintaining minimal computational complexity, requiring only a one-time gradient
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Figure 4: Images generated by different SDs using column captions as prompts. First row: images
generated by the original pretrained SD. Second row: outputs of the SD after “Elon Musk” is unlearned
using SLUG. We can see that “Elon Musk” is effectively unlearned, whereas other objects are unaffected.
Bottom two rows: outputs of the SDs after “Elon Musk” is unlearned by existing methods (SalUn and
ESD). We observe images generated for other unrelated prompts are also affected to some degree.

computation (O(Nf + Nr)) for unlearning. In contrast, other methods need k iterative
gradient calculations and careful hyperparameter tuning, such as learning rate, to balance
unlearning effectiveness and utility preservation. For instance, a high learning rate (e.g.,
10−6) compromises utility, while a low rate (e.g., 10−7) reduces unlearning effectiveness.

Localizing layers. Our method efficiently identifies critical layers for unlearning, reducing
the search space from hundreds to just a few. Figures 2, 7, and 12 show which layers are
selected for unlearning different identities. This is achieved by combining two key metrics:
layer importance, which measures how sensitive the forget loss is to changes in each layer,
and gradient alignment, ensuring updates minimally affect the retain set. These metrics
help identify Pareto-optimal layers that balance effective unlearning with preserving model
utility (explained further in Section 3). The late attention layers in vision models and early
attention layers in language models are targeted for updates because they play critical roles
in refining high-level features and establishing foundational understanding, respectively.
In vision transformers, late layers focus on contextually rich features, while in language
models, early layers process key sequential and contextual dependencies.

4.3 Unlearning for Stable Diffusion

Unlearning identity. Stable Diffusion (SD) models excel in text comprehension and image
generation, producing high-fidelity results such as “a portrait of Elon Musk.” Adjusting
the prompt can create imaginative content, such as “Elon Musk on Mars.” However, their
potential misuse raises concerns about harm to data providers [40]. This study demonstrates
how to erase personal information from an image generation model, ensuring prompts
for the erased individual produce inaccurate results. Figure 4 shows examples before and
after unlearning. Our method, when applied to Elon Musk, generates electronic circuits
consistently, without reducing the model’s ability to produce diverse objects. In contrast,
other methods degrade both the portraits of others and the quality of unrelated images. We
provide additional results on unlearning more celebrity identities, and other case studies on
unlearning copyright-protected content and novel concept, in Section G.
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Figure 5: Effects of SLUG unlearning “Elon Musk” on LLaVA 1.5. The third row with yellow boxes
shows the answers of the original model, and the forth row with green boxes shows the output of the
unlearned model, where Elon Musk is effectively unlearned, whereas other concepts are unaffected.

4.4 Unlearning for VLMs

VLMs excel in visual understanding and question answering, accurately identifying individ-
uals in images. Figure 5 shows that when given an image of Elon Musk and asked, “What’s
the name of the person in this image?”, the model correctly names him.

Our experiments focused on the VLM model LLaVA-1.5, which uses a pre-trained CLIP
visual encoder to extract visual features from images. These features are transformed into a
format compatible with the language model using a neural network layer that projects them
into the word embeddings space. The resulting visual tokens are combined with language
tokens and fed into the model to generate responses. The key insight of our method is that
the vision capability of VLMs heavily relies on the visual encoder. Therefore, by unlearning
certain concepts from the CLIP vision model, we can influence the language model’s
understanding and generation of responses without directly modifying the language model
itself. Figure 5 demonstrates the effectiveness of our approach. When given an image of
Elon Musk and asked to identify the person, the original model correctly names him. After
applying our unlearning method, the model incorrectly identifies Elon Musk as Michael
Jackson, indicating that the specific identity information has been successfully removed.
This alteration does not significantly impact the model’s overall utility. Additional examples
of this phenomenon are discussed in Section H.

5 Conclusion

In this work, we introduced SLUG, an efficient machine unlearning method that requires
just a single gradient computation and updates only one layer of the model. SLUG enhances
unlearning feasibility on large models, especially with constrained hardware, while preserv-
ing overall model utility. Our experiments with CLIP, and Stable Diffusion show that SLUG
outperforms existing methods, particularly in unrelated tasks, with minimal computational
overhead. The key innovation of SLUG is its ability to identify and update only the most
relevant layers for the desired unlearning concepts, which also provides new insights into
the internal representations learned by different parts of neural networks. This contributes
to the ongoing effort to improve the interpretability and transparency of AI systems.

Acknowledgments

This work used Jetstream2 [13] at Indiana University through allocation CIS220128 from
the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS)
program [4], which is supported by NSF grants #2138259, #2138286, #2138307, #2137603,
and #2138296.

8



References

[1] Regulation (eu) 2016/679 of the european parliament and of the council of 27 april 2016
on the protection of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing directive 95/46/ec (general data
protection regulation) (text with eea relevance). Official Journal of the European Union,
vol. 119, pp. 1–88, 2016. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
uriserv%3AOJ.L_.2016.119.01.0001.01.ENG.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shya-
mal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
https://arxiv.org/abs/2303.08774.

[3] Abhishek Aich. Elastic weight consolidation (ewc): Nuts and bolts. arXiv preprint
arXiv:2105.04093, 2021.

[4] Timothy J. Boerner, Stephen Deems, Thomas R. Furlani, Shelley L. Knuth, and John
Towns. Access: Advancing innovation: Nsf’s advanced cyberinfrastructure coordi-
nation ecosystem: Services & support. In Practice and Experience in Advanced Research
Computing 2023: Computing for the Common Good, PEARC ’23, page 173–176, New York,
NY, USA, 2023. Association for Computing Machinery.

[5] Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine un-
learning. In 2015 IEEE symposium on security and privacy, pages 463–480. IEEE, 2015.
https://ieeexplore.ieee.org/document/7163042.

[6] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco,
Cade Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible
scaling laws for contrastive language-image learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2818–2829, 2023. https:
//arxiv.org/abs/2212.07143.

[7] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discrimina-
tively, with application to face verification. In 2005 IEEE computer society conference on
computer vision and pattern recognition (CVPR’05), volume 1, pages 539–546. IEEE, 2005.
https://ieeexplore.ieee.org/document/1467314.

[8] Chongyu Fan, Jiancheng Liu, Yihua Zhang, Dennis Wei, Eric Wong, and Sijia Liu. Salun:
Empowering machine unlearning via gradient-based weight saliency in both image
classification and generation. ICLR, 2024. https://arxiv.org/abs/2310.12508.

[9] Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without
retraining through selective synaptic dampening. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 12043–12051, 2024. https://arxiv.org/abs/
2308.07707.

[10] Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing
concepts from diffusion models. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 2426–2436, 2023. https://arxiv.org/abs/2303.07345.

[11] Rohit Gandikota, Hadas Orgad, Yonatan Belinkov, Joanna Materzyńska, and
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Appendix A More examples on unlearning identities

In addition to the experiment on unlearning “Elon Mask” identity in the CLIP model,
as discussed in Sec. 4.2 of the main text, we performed similar experiment on a broader
set of identities: {Kanye West, Barack Obama, Bruce Lee, Fan Bingbing, Lady Gaga}.
These names were selected from the CelebA dataset to represent a diverse cross-section
of ethnicities and genders. Our method effectively identified the crucial layers associated
with each name. These layers can then be specifically targeted to efficiently unlearn the
corresponding identity from the CLIP model.

Figure 6 demonstrates that our approach successfully removes the desired names from
the CLIP model (i.e., image-text alignment or cosine similarity becomes extremely low) .
Figure 7 illustrates the Pareto-front plots that are used to identify important layers selected
by our method for unlearning different identities.
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(b) Cosine similarity matrix after unlearning

Figure 6: Cosine similarity matrix of image and text pairs before and after unlearning Elon Musk.
After unlearning, the image and text pair of Elon Musk are not matched, while other persons are
only slightly affected. Here the vision attention out projection layer at the 9th resblock
(associate with 9.attn.out_proj in the pareto front legend) is unlearned. CLIP model: ViT-B-16

Appendix B Joint update for unlearning multiple identities

We study the composite effect of our approach where we unlearn multiple tasks simulta-
neously. For instance, in the task of unlearning multiple identities, we use the gradients
calculated for each identity on the original model and corresponding forget sets to identify
the layers that are most significant for the respective identities, and then perform layer
updates to simultaneously unlearn all of them. For joint updating, we follow the same
updating scheme as described in Sec. 3. Firstly, different identities have different step size
initialization from their respective gradients, and later on the step size is updated separately
using binary search based on the unlearning result of the respective identity. We present
our results in Figure. 8, where we successfully unlearn (a) {Elon Musk, Mark Zuckerberg}
and (b) {Elon Musk, Taylor Swift}.
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(a) Vision layer Pareto - Mark Zuckerberg

10 3 10 2 10 1 100

Gradient Alignment

10 5

10 4

10 3

10 2

10 1

Im
po

rt
an

ce
 o

f L
ay

er
s

text_projection
0.attn.out_proj
2.mlp.c_fc

(b) Language layer Pareto - Mark Zuckerberg
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(c) Vision layer Pareto - Jeff Bezos
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(d) Language layer Pareto - Jeff Bezos

10 3 10 2 10 1 100

Gradient Alignment

10 4

10 3

10 2

10 1

Im
po

rt
an

ce
 o

f L
ay

er
s

visual.proj
11.mlp.c_fc
11.attn.in_proj
11.attn.out_proj
10.attn.out_proj

(e) Vision layer Pareto - Taylor Swift
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(f) Language layer Pareto - Taylor Swift
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(g) Vision layer Pareto - Kim Kardashian
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(h) Language layer Pareto - Kim Kardashian
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(i) Vision layer Pareto - Kanye West
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(j) Language layer Pareto - Kanye West
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(k) Vision layer Pareto - Barack Obama
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(l) Language layer Pareto - Barack Obama
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(m) Vision layer Pareto - Bruce Lee
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(n) Language layer Pareto - Bruce Lee
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(o) Vision layer Pareto - Fan Bingbing
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Figure 7: Scatter plots of layers for unlearning more identities, same setting as Figure 2. CLIP model
ViT-B-32. Figures (a) - (r) shows the importance and gradient alignment of different vision model
and language model layers as we unlearn different identities.
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(a) Cosine similarity matrix after unlearning
Elon Musk and Mark Zuckerberg
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(b) Cosine similarity matrix after unlearning Elon
Musk and Taylor Swift

Figure 8: Cosine similarity matrix of image and text pairs after unlearning multiple name identities
(see Figure. 6a for cosine similarity matrix on original model). (a) Unlearning Elon Musk and Mark
Zuckerberg. (b) Unlearning Elon Musk and Tylor Swift. In both cases, the image and text pair of
selected identities are not matched after unlearning, while other identifies are only slightly affected.
We selected and updated the vision layer 9.attn.out_proj for Elon Musk and the vision layer
11.attn.out_proj for the other identity according to the pareto fronts in Fig. 7a and Fig. 7e, in both
(a) and (b). We used CLIP model: ViT-B-32 for these experiments.

We also investigate how the unlearning performance varies as the number of identities to be
forgotten increases. The identified layers are then updated in parallel to achieve unlearning
of N identities. Figure 9 demonstrate the effectiveness of our approach in unlearning N
identities for different values of N. Figure 7 presents details on identifying layers associated
with different identities and updating them to achieve unlearning of multiple identities at
once.

Appendix C More CLIP models

We performed experiments using an expanded set of model architectures. The results for
{ViT-B-16 are discussed above in Figure 6. The results for ViT-L-14, EVA01-g-14} are
discussed in Figures 10,11, respectively. Figure 12 shows the metrics for different layers that
our method uses to identify significant layers. These results demonstrate our method offers
scalability and effectiveness across a range of model sizes, from 149.62 million parameters
(ViT-B-16) to 1.136 billion parameters (EVA01-g-14). This underscores the flexibility of our
approach to accommodate models of different scales.
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Figure 9: Cosine similarity matrices as we unlearn N identities, where N ∈ {1, 2, ..., 6}. (a)–(f) Unlearn
Elon Musk, Mark Zuckerberg, Jeff Bezos, Taylor Swift, Kim Kardashian, and Kanye West in a joint
manner. To unlearn N identities, our method (SLUG) identifies up to N layers in the model using the
single gradient calculated with the original network weights. The identified layers are then updated
in parallel to achieve unlearning of N identities.
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(b) Cosine similarity matrix after unlearning

Figure 10: Cosine similarity matrix of image and text pairs before and after unlearning Elon Musk.
After unlearning, the image and text pair of Elon Musk are not matched, while other persons are only
slightly affected. Here, based on the pareto front in Fig. 12c, we select and update the vision layer
23.mlp.c_fc for unlearning. CLIP model: ViT-L-14
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(b) Cosine similarity matrix after unlearning

Figure 11: Cosine similarity matrix of image and text pairs before and after unlearning Elon Musk.
After unlearning, the image and text pair of Elon Musk are not matched, while other persons are
only affected. Here, based on the pareto front in Fig. 12f, we select and update the language layer
11.attn.out_proj for unlearning. CLIP model: EVA01-g-14.
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(b) Language layer Pareto - ViT-B-16
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(c) Vision layer Pareto - ViT-L-14
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(d) Language layer Pareto - ViT-L-14
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(e) Vision layer Pareto - EVA01-g-14
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(f) Language layer Pareto - EVA01-g-14

Figure 12: More CLIP models, in addition to Sec 4.2. Unlearning name Elon Musk from different CLIP
models built in: {ViT-B-16, ViT-L-14, and EVA01-g-14}

Appendix D Unlearn different concepts

In addition to unlearning identities from CLIP, we also sample 7 classes {Basketball, Beach,
Castle, Revolver, Rifle, School bus, Sunglasses} from ImageNet to evaluate the unlearning
performance of our method on object concepts. For this experiment, we use 10k ImageNet
validation images and sample images associated with target classes to create forget sets and
compute gradients to unlearning different classes from the CLIP model. For evaluation, we
use zero-shot accuracy reduction as the metric of effective unlearning target classes from
the CLIP. The results, presented in Table. 2, show the CLIP zero-shot accuracy evaluations
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for both the forgetting of sampled classes and the retention of other ImageNet classes after
unlearning. Our findings indicate that our method effectively reduces the CLIP zero-shot
accuracy for the targeted classes to 0.0%, while the accuracy for remaining classes remains
high, experiencing only minimal degradation (ranging from 0.03% to 2.03%) compared
to the original pre-trained model, which indicates that the model’s original functions are
highly preserved after our unlearning.

Table 2: Unlearning performance of our method on common object concepts. FA@1 and FA@5
represents the top-1 and top-5 forget accuracy (%) of each forget class (i.e., zero-shot classification
accuracy of unlearned class). TA@1 and TA@5 represents the top-1 and top-5 accuracy (%) of all
classes of ImageNet except the corresponding Forget class. Each row shows the forget class accuracy
and average accuracy over all classes of ImageNet before and after unlearning a class. Our method
can reduce the forget accuracy of Forget classes to 0.0% while keeping the accuracy of the remaining
classes close to original model (within 0.06− 2.03% difference). CLIP model: ViT-B-32. TA@1 and
TA@5 for the original model remains almost the same for all rows; therefore, we list it once in the table.

Forget class Original Unlearned
FA@1 FA@5 TA@1 TA@5 FA@1 ↓ FA@5 ↓ TA@1 ↑ TA@5 ↑

Basketball 100.0 100.0

60.16 85.52

0.0 0.0 59.18 84.48
Beach 54.55 72.73 0.0 0.0 59.54 84.78
Castle 87.50 100.0 0.0 0.0 58.13 83.87

Revolver 100.0 100.0 0.0 0.0 59.94 85.43
Rifle 42.86 57.14 0.0 0.0 60.08 85.49

School bus 76.92 100.0 0.0 0.0 59.50 89.18
Sunglasses 44.44 55.56 0.0 0.0 60.13 85.23

Appendix E Linearity of unlearning trajectory of different layers

In addition to the layers presented in Figure 2 (c) and (d), we show in Figure 13 that different
layers show similar unlearning behaviors if we update them along their respective gradient
direction (computed once for the original model). Nevertheless, the utility performance
may vary depending on the selected layer; thus, it is important to select the best layer from
the Pareto set for the overall best performance.
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(c) Vision layer 11.mlp.c_fc
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(d) Language layer 11.attn.in_proj

Figure 13: More examples of unlearning different layers. Correspond to Figure 2. The performance
changes monotonically with the step size λ.

Evaluation on UnlearnCanvas benchmark. To demonstrate the unlearning effectiveness
and efficiency of SLUG, we also evaluate its performance on UnlearnCanvas [44], a bench-
mark focused on unlearning artistic style and object concepts in Stable Diffusion. It in-
troduces a comprehensive set of metrics for both evaluating effectiveness and efficiency,
including UA (Unlearn Accuracy), IRA (In-domain Retain Accuracy), and CRA (Cross-
domain Retain Accuracy). The benchmark targets unlearning styles and objects from an
SDv1.5 model fine-tuned to generate 20 different objects in 60 distinct styles. The benchmark
utilizes target SD with the prompt: “A [object name] in [style name] style,” to generate
the unlearning dataset, comprising 20 images for each object-style pair (i.e., 400 images per
style and 1,200 images per class), resulting in 24,000 images in total. We curate forgets set
with images associated with each style/object for each unlearning objective.

In Table 3, we report the unlearning performance of SLUG in benchmark metrics, along
with other state-of-the-art unlearning methods reported in UnlearnCanvas. Our method
minimizes storage and computational time by only requiring the gradient values of a
few layers on the Pareto front to be stored, and performing a one-step update along the
gradient for unlearning. Despite being extremely efficient, our method does not suffer from
significant performance degradation in any metric or task in UnlearnCanvas. It achieves an
optimal trade-off between unlearning and retaining accuracy compared to other unlearning
methods. For qualitative evaluation, we provide visual examples in Section G.

Appendix F Experiment details on UnlearnCanvas

Models. UnlearnCanvas targets unlearning styles and objects from an SDv1.5 model
fine-tuned to generate 20 different objects in 60 distinct styles. The benchmark provides
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Table 3: Performance overview of different unlearning methods on UnlearnCanvas. The best perfor-
mance for each metric is highlighted in green, and significantly underperforming results, in benchmark
criteria, are marked in red. Our method SLUG shows no significant underperforming, and achieves
the best trade-off among unlearning, retaining, and efficiency.

Method
Effectiveness Efficiency

Style Unlearning Object Unlearning FID (↓) Time Memory Storage
UA (↑) IRA (↑) CRA (↑) UA (↑) IRA (↑) CRA (↑) (s) (↓) (GB) (↓) (GB) (↓)

ESD [10] 98.58% 80.97% 93.96% 92.15% 55.78% 44.23% 65.55 6163 17.8 4.3
FMN [42] 88.48% 56.77% 46.60% 45.64% 90.63% 73.46% 131.37 350 17.9 4.2
UCE [11] 98.40% 60.22% 47.71% 94.31% 39.35% 34.67% 182.01 434 5.1 1.7
CA [20] 60.82% 96.01% 92.70% 46.67% 90.11% 81.97% 54.21 734 10.1 4.2

SalUn [8] 86.26% 90.39% 95.08% 86.91% 96.35% 99.59% 61.05 667 30.8 4.0
SEOT [23] 56.90% 94.68% 84.31% 23.25% 95.57% 82.71% 62.38 95 7.34 0.0
SPM [27] 60.94% 92.39% 84.33% 71.25% 90.79% 81.65% 59.79 29700 6.9 0.0
EDiff [38] 92.42% 73.91% 98.93% 86.67% 94.03% 48.48% 81.42 1567 27.8 4.0
SHS [37] 95.84% 80.42% 43.27% 80.73% 81.15% 67.99% 119.34 1223 31.2 4.0

SLUG (Ours) 86.29% 84.59% 88.43% 75.43% 77.50% 81.18% 75.97 39 3.61 0.04

pre-trained SDv1.5 models for evaluation in Diffusers and CompVis implementations. In
our experiment, correspondly, we focus on the CLIP text encoder used in SDv1.5 Diffusers
implementation: openai/clip-vit-large-patch14 from HuggingFace.

Computational time, memory, and storage. The gradient computational time and memory
usage of SLUG depends on several factors: computing resource, batch size, and size of the
forget set. Note that while the details of the evaluation of efficiency metrics are not well
defined in the original UnlearnCanvas, in Table. 3, we are reporting the best performance of
SLUG can achieve on our computing resource NVIDIA A100. Specifically, the batch size is set
to 1 in order to reproduce the memory usage of SLUG, and set to 16 in order to reproduce
the computational time of SLUG, which is the same setting as other experiments.

For SLUG storage consumption, as our method only requires storing the gradient values of
a few layers on the Pareto front, the actual storage consumption is 43 MB (0.043 GB), which
by approximation is 0.0 GB in the original benchmark scale.

Appendix G More examples on Stable Diffusion

To demonstrate the performance and practical utility of our method, we further consider
unlearning more celebrity names and more scenarios including unlearning copyright char-
acters, novel concepts and artistic styles on Stable Diffusion.

More celebrity names. Beyond unlearning “Elon Musk” from Stable Diffusion, which is pre-
sented in the Figure 4, here we also provide additional qualitative evaluations on unlearning
other celebrity names {Taylor Swift, Jeff Bezos} with our method in Figure 14.
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Figure 14: Qualitative evaluation on unlearning celebrity names Taylor Swift and Jeff Bezos from the
Stable Diffusion.

Unlearning concepts and copyright content. In addition to identity removal for privacy
protection, we address copyright concerns that increasingly challenge generative models.
For unlearning copyrighted contents from Stable Diffusion models, we generate 500 images
using unlearning targets as prompts, and use them as the forget set. The retain set is a single
shard of LAION-400M dataset, same as for CLIP unlearning.

We successfully apply our method to remove copyright-protected content, specifically
targeting well-known characters such as Marvel’s “Iron Man” and Walt Disney’s “Mickey
Mouse.” Figure 15 illustrates that our technique precisely unlearns the targeted concepts,
effectively disabling the generation of images associated with these copyrighted entities
while preserving the ability of the model to produce images of other concepts. These results
demonstrate the use of SLUG in protecting intellectual property from generative AI.

Novel concept. One of the intriguing properties of the Stable Diffusion is its ability to
generalize image generation to novel concepts that are infrequently or never observed in the
real world. In this experiment, we explore the unlearning of a unique concept, “Avocado
chair” from Stable Diffusion. We first generate 500 image using SD with the prompt “An
avocado chair” to create the forget set, and use the same retain set as other experiments,
which is is a single shard of LAION-400M dataset. In Figure 16, we show that our method
successfully unlearn the concept “Avocado chair” from SD, resulting in the model’s inability
to generate images corresponding to this specific concept.

It is noteworthy that the model’s capability to generate images related to the constituent
atomic concepts (namely “Avocado" and “Chair") is also compromised. We hypothesize
that this occurs due to the model’s treatment of novel concepts as compositions of atomic
concepts. For example, the concept "Avocado chair" is interpreted by the model as “Avocado"
plus “Chair." Consequently, when a novel concept is unlearned, the associated atomic
concepts are inadvertently affected as well. This highlights a challenge in the model’s
approach to handling the interoperability of novel and atomic concepts.
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Figure 15: Qualitative evaluation on unlearning copyright characters “Iron man” and “Mickey Mouse”
from SD, in first and second groups of figures respectively. First row shows the generated images from
the original pretrained model, the second and third rows show the output of unlearned model using
prompts captioned at the top of each column. Our method precisely unlearned copyright protected
concepts from SD, while the image generation quality on other concepts is highly preserved.

Artistic styles and object. In the experiment of evaluating SLUG performance on Unlearn-
Canvas benchmark discussed in Section. 4.3, we use 400 images that are associated with
each style, as the forget set for unlearning style, and 1200 images that are associated with
each object concept as the forget set for unlearning object, all images are from the benchmark
dataset. We use a single shard of LAION-400M dataset as the retain set.

For qualitative evaluation of this experiment, we provide visual examples of unlearning
artistic styles: {Pop Art, Crayon, Sketch, Van Gogh} and object: dog that are sampled
from UnlearnCanvas, in Figure 18, 19 and 20. These results further show the effectiveness
of SLUG in unlearning a broad spectrum of concepts ranging from concrete (e.g., celebrity
name, intellectual property figure, and object) to abstract (e.g., novel concept and artistic
style).

Appendix H More examples on VLM

In addition to results presented in the main text Figure 5, we also present additional results
on unlearning a different name “Taylor Swift” from VLM in Figure 17. We demonstrate that
our method can anonymize celebrity names from the pretrained Vision-language models,
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Figure 16: Qualitative evaluation on unlearning a novel concept “Avocado chair” from the SD.
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Figure 17: Qualitative evaluation on unlearning name “Taylor Swift” from LLaVA 1.5. While “Taylor
Swift” is mapped to “woman” after the unlearning, the other female celebrity identification remain
unaffected. Besides, model’s robustness against style distribution shift is also preserved.

and simultaneously preserve the model’s ability on image understanding, reasoning and
distribution shift robustness on art work, cartoon style images.
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Figure 18: Visual examples of SLUG performance on UnlearnCanvas. Row 1− 3: outputs from
original UnlearnCanvas Stable Diffusion (SD) using column captions as prompts. Row 4− 6: outputs
from UnlearnCanvas SD unlearned Pop Art style. Outputs corresponding to the unlearned style are
highlighted by the red bounding box .
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Figure 19: Visual examples of SLUG performance on UnlearnCanvas. Row 1− 3: outputs from
UnlearnCanvas SD unlearned Crayon style. Row 4− 6: outputs from UnlearnCanvas SD unlearned
Sketch style. Outputs corresponding to the unlearned style are highlighted by the red bounding box .
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Figure 20: Visual examples of SLUG performance on UnlearnCanvas. Row 1− 3: outputs from
UnlearnCanvas SD unlearned Van Gogh style. Row 4− 6: outputs from UnlearnCanvas SD un-
learned dog object. Outputs corresponding to the unlearned style/object are highlighted by the
red bounding box .
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