Under review as a conference paper at ICLR 2023

PROGRESSIVE PROMPTS: CONTINUAL LEARNING FOR
LLANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Progressive Prompts — a simple and efficient approach for contin-
ual learning in language models. Our method allows forward transfer and re-
sists catastrophic forgetting, without relying on data replay or a large number
of task-specific parameters. Progressive Prompts learns a new soft prompt for
each task and sequentially concatenates it with the previously learned prompts,
while keeping the base model frozen. Experiments on standard continual learning
benchmarks show that our approach outperforms state-of-the-art methods, with an
improvement >20% in average test accuracy over the previous best-preforming
method on T5 model. We also explore a more challenging continual learning
setup with longer sequences of tasks and show that Progressive Prompts signifi-
cantly outperforms prior methods.

1 INTRODUCTION

Learning a long sequence of tasks while gaining experience and avoiding forgetting remains a key
feature of human-level intelligence. Although pretrained language models have largely succeeded
in learning on a single task, their performance degrades in scenarios where multiple tasks are en-
countered sequentially, also known as continual learning (CL) (de Masson D’ Autume et al., 2019;
Huang et al 2021). Two major challenges arise in CL: (1) avoiding catastrophic forgetting, i.e.,
loss of the knowledge acquired from previous tasks after learning new ones (McCloskey & Cohen),
1989; Ratcliff] |1990), and (2) allowing forward transfer, i.e., leveraging the knowledge from past
tasks for efficient learning of new tasks.

Typical CL approaches for language models train a model on all tasks, which ensures forward trans-
fer but also leads to forgetting. These methods use data replay or add regularization constraints
(Huang et al., 2021} |de Masson D’ Autume et al., [2019; [Sun et al [2019), but they still suffer from
forgetting due to inevitable changes in parameters shared between tasks. Other approaches, such
as progressive networks (Rusu et al. [2016), can alleviate catastrophic forgetting completely while
supporting forward transfer, but are computationally expensive because they add a new copy of the
model for each task. This can be especially intractable for large-scale language models with billions
of parameters, which have become a standard in the NLP field (Raffel et al., 2020).

In this paper, we introduce Progressive Prompts — a novel CL approach for language models that
supports forward transfer without forgetting. Our method is inspired by progressive networks, but
is significantly more memory-efficient because it only learns a fixed number of tokens, or prompt,
for each new task. Learning a prompt to adapt language models on a single downstream task was
introduced in prompt tuning (Lester et al., 2021), and was shown to match the performance of
full model finetuning while training <0.01% of the parameters. In Progressive Prompts, we learn
a separate prompt for each incoming task and sequentially concatenate it with previously learned
prompts. Importantly, we share input tokens across all tasks and progressively prepend new prompts
while keeping previous prompts frozen (see Figure [I). Our method can: 1) alleviate catastrophic
forgetting by preserving the knowledge acquired in previous prompts, and 2) transfer knowledge to
future tasks by sequentially learning new prompts given previous ones. We also introduce a new
technique for prompt embedding reparameterization (Li & Liang, [2021). We show that by passing
the prompt embeddings through a residual MLP we can stabilize prompt tuning and improve its
performance.

Under review as a conference paper at ICLR 2023

Progressive Network Progressive Prompts
Task-specific input representations Input representations shared across all tasks
—) —) — D

. J J J - S/ O S —
z ? X1, X2 - input embeddings m
s N\ N N (P1- prompt for task 1

P2 - prompt for task 2

- J O J O J \ J \ J L . \ J \ J
bidirectional
attention block
(N N\ 1\

— causal masking

\ J \ J \ J - J O J J . J J O J O J
0 g R 4 % frozen parameters 4 4 13 1
v P2

! P X% X2 P2 ! X1 X2 P} X1h S xe
Frozen m‘pﬂt embeddings - . Frozen input embeddings
H H Frozen 1st task prompt
Frozen 1st task prompt Trainable 2nd task prompt Trainable 2nd task prompt

Figure 1: Illustrating our proposed method Progressive Prompts and contrasting it with a simple
adaptation of progressive networks using prompt tuning. In the simple adaptation of progressive
networks we learn a separate prompt and repeat the frozen input embeddings for each new task.
This setup requires repeating input tokens for each task. In Progressive Prompts we use the same
input and progressively append new prompt for each new task. Prior task prompts are not modified
by the addition of new prompts.

We run extensive experiments on standard CL benchmarks for text classification, and show that
Progressive Prompts outperforms state-of-the-art approaches on both BERT and T35 architectures
(Devlin et al., 2018; |Raffel et al., [2020). We show over 20% improvement over the current SOTA
for TS5 model (Qin & Joty,|2021). Furthermore, we run experiments on a more challenging CL setup
with longer task sequences, and show that our method outperforms prior approaches for T5 and
BERT architectures.

Our main contributions in this paper are as follows:

* We propose a novel CL approach, Progressive Prompts, that alleviates catastrophic forget-
ting and supports knowledge transfer to future tasks — all while learning < 0.1% of the
total parameters.

* Progressive Prompts is suitable for any transformer-based architecture. We show that it
significantly outperforms prior SOTA methods on standard CL benchmarks for both BERT
and TS5 models.

* We propose a more challenging CL setup encompassing 15 text classification tasks and
show that our method significantly outperforms prior methods.

2 BACKGROUND

2.1 FINETUNING

The predominant technique for adapting the language model to a downstream task 71" is finetuning,
when all parameters © of the model (initialized from some pre-trained weights) are updated during
task adaptation (Devlin et al., 2018} Zhang et al., [2020).

Consider a classification task 7" with input text x, and output scalar label y. Here pg is a probability
distribution of output classes parameterized by the weights, ©, of the language model. In finetuning,
we perform gradient updates according to the following log-likelihood objective:

max Z log pe (y|x)
z,yeT

Despite its simplicity and effectiveness, finetuning updates all model parameters, and when there
are multiple downstream tasks it requires storing a separate finetuned model for each of them.

Under review as a conference paper at ICLR 2023

2.2 PROMPT TUNING

Recent works explored prompt tuning (Lester et al.|[2021)) as a lightweight alternative for finetuning,
when instead of training the whole model, a series of virtual tokens — or soft prompt — is trained.
In prompt tuning, a soft prompt P is prepended to the input text x, while keeping other parameters
frozen. In this case, the model parameters © are composed of two sets: 1) the pretrained language
model parameters 6 which are fixed on downstream tuning, and 2) prompt parameters ¢, which
are fine-tuned on the given task. Since prompt P has its own dedicated parameters ¢, we are not
restricted by the original model parametrization #, and can perform gradient updates on the prompt
parameters independently.

Given a task 7" and a probability distribution py g, of output classes parameterized by 6 and 6,,, the
learning objective here is to maximize the log-likelihood of y given the input text x concatenated
with the soft prompt P, or

max Z log pe .0, (y|[P; 7))
z,yeT

2.3 CONTINUAL LEARNING

In this work, we focus on a continual learning setup, where the language model is presented with
a sequence of m text classification tasks (71, ..., Ty,). In each task we have a set if i.i.d. training
examples (z;,y;) iV:P where z; is an input text and y; is a label from a set of predefined labels Y}
associated with the task T%. We assume that the model is parameterized by © and has access to the
task identity in both training and inference. Hence, the learning objective across all tasks becomes:

max Z Z log pe (y|z)

k=1x,yeTy

The most straightforward approach for continual learning is finetuning, which sequentially optimizes
loss for task k, k € 1..m by updating all model parameters: Ly(©) = —3_, 7 logp(y|z,).
Continual finetuning will support forward knowledge to future tasks, but will result in catastrophic
forgetting, where performance on the earlier tasks decreases after learning new tasks, and eventually
leads to a higher generalization loss (Kirkpatrick et al., 2017; de Masson D’ Autume et al., 2019;
McCloskey & Cohen, |1989).

3 METHOD

Progressive Prompts We propose Progressive Prompts, a continual learning approach which pro-
gressively learns a prompt Py, for each new task 7}, (Figure[I). With Progressive Prompts we learn
a separate prompt Pj, for task 7T}, and concatenate it with all previously learned prompts P;, 7 < k,
before prepending to the input embeddings. During training, parameters 6 of the language model are
always frozen, and parameters 6p, corresponding to prompt P are only trainable during learning
T}, and frozen afterwards.

The training objective for task Ty (k € {1...m}) is to find prompt parameters fp, that minimize
the negative log probability of training examples under our progressive prompt and the frozen base

model:
L(Op,)=— Z log p(y|[Pys ---, P1,2],0,0p,,...,0p,)

z,y€T)

Such a progressive setup allows to achieve two goals for efficient CL: (1) it successfully eliminates
catastrophic forgetting, and (2) allows forward transfer for subsequent tasks. Since Progressive
Prompts trains a separate prompt for each encountered task without modifying its parameters when
new tasks are learned, old tasks do not suffer from forgetting. In addition to that, prompts learned
on previous tasks allow information re-use for future tasks. A similar phenomenon has been shown
by Vu et al.| (202 1)) — prompts learned on informative source tasks served as a good initialization for
other downstream tasks.

Embedding reparameterization|Li & Liang|(2021)) have shown that directly optimizing prompt pa-
rameters can lead to training instability, while reparameterizing prompt embeddings matrix through

Under review as a conference paper at ICLR 2023

a multi-layer perceptron (MLP) can improve performance. At the same time, [Liu et al.| (202 1)) report
that prompt embedding reparameterization can hinder performance on certain tasks and is highly
sensitive to its initialization. To solve this issue, we propose adding a residual connection to the
MLP reparameterization. This residual connection improves optimization, because it avoids learn-
ing an identity mapping by the MLP. More specifically, we reparameterize prompt Py for task 7}, as
follows:

P, = MLP(P,) + P,

After training on task & is complete, the reparameterization parameters MLP can be discarded, and
prompt embeddings P}, can be replaced by their corresponding projection P,;.

4 EXPERIMENTAL SETUP

4.1 DATASETS

Continual Learning Benchmark We first evaluate our approach on the widely adopted CL bench-
mark for language models, which includes five text classification datasets by |[Zhang et al.|(2015):
AG News (4 classes, news classification), Amazon reviews (5 classes, sentiment analysis), Yelp
reviews (5 classes, sentiment analysis), DBpedia (14 classes, Wikipedia text classification) and Ya-
hoo Answers (10 classes, Q&A classification). We provide the task details in Appendix and
sequences of tasks used in our experiments in Appendix[A.2]

Following previous works on CL for BERT model, including IDBR (Huang et al., |2021) and
MBPA++ (de Masson D’ Autume et al., 2019), for BERT-based experiments we use four differ-
ent orders of these five tasks. We use the same train and test sets as IDBR (Huang et al.| 2021)) and
MbPA++ (de Masson D’ Autume et al., |2019), consisting of 115,000 training and 7,600 test exam-
ples for each task. Following|Huang et al. (2021)), for every task we randomly hold out 500 samples
per class from the training set for validation, and use early stopping according to the validation
accuracy on all seen tasks.

Following CL setup for TS model as in LFPTS5 (Qin & Joty, |2021)), we use three different orders of
the AG News, Amazon, Yahoo and DBpedia datasets. We replicate (Qin & Joty| (2021) few-shot CL
setting and sample 16 examples per task for the training set and keep the test sets unchanged.

Large number of tasks While previous CL approaches mostly focused on relatively short task
sequences of 3-5 tasks (Huang et al.||2021;de Masson D’ Autume et al., 2019} |Qin & Jotyl 2021]), a
more realistic CL scenario would be long sequences encompassing more tasks. Hence, we create a
benchmark of 15 text classification tasks to evaluate the performance of Progressive Prompts along
with widely adopted CL approaches. Our benchmark consist of the aforementioned five datasets
from CL benchmark, combined with four tasks from GLUE benchmark (MNLI, QQP, RTE, SST2)
(Wang et al.| 2018)), five tasks from SuperGLUE benchmark (Wang et al.,[2019) (WiC, CB, COPA,
MultiRC, BoolQ), and IMDB movie reviews dataset (Maas et al.,[2011). To evaluate performance
under different dataset sizes, we create three different versions of each dataset, with 20, 200 and
1000 training samples sampled per class, and report test set performance for each of these settings.
Again, we follow |[Huang et al.|(2021) practice and for every task we randomly hold out 500 samples
per class from the training set for validation, and use early stopping according to the validation
accuracy on all seen tasks. We provide the task details in Appendix [A.T]and sequences of 15 tasks
used in our experiments in Appendix [A.7]

Transfer learning experiments We also run ablation experiments to understand the effect of for-
ward transfer with Progressive Prompts. Firstly, we perform experiments on six pairs of transfer
learning tasks from similar domains (IMDb & SST2, Amazon & Yelp, QQP & MRPC) following
Hendrycks et al.|(2020). Secondly, we perform experiments on SuperGLUE benchmark (Wang et al.,
2019) with Progressive Prompts and compare the performance against original per-task prompt tun-
ing by |[Lester et al.|(2021). Following [Lester et al.[(2021} setup, we use full training sets of eight
SuperGLUE tasks and report best validation performance.

4.2 BASELINES

We consider nine baseline methods for comparison with ProgressivePrompts:

Under review as a conference paper at ICLR 2023

* Finetune (Wang et al., |2020; de Masson D’ Autume et al.l 2019; Huang et al., [2021): train all
model parameters on a sequence of tasks (without adding any regularization constraints or replay-
ing samples from the previous tasks).

* EWC (Kirkpatrick et al., 2017): finetune the whole model with a regularization loss that prevents
updating parameters that could interfere with previously learned tasks.

* A-GEM (Chaudhry et al.,|2018)): save examples from the past tasks and restrict the gradients used
to update the model on new tasks based on the retrieved examples.

* Experience replay: finetune the whole model with a memory buffer, and replay samples from old
tasks when learning new tasks to avoid forgetting.

* MBPA++ (de Masson D’ Autume et al.l [2019): augment BERT with an episodic memory that
saves all seen examples. Perform replay during training, and local adaptation during test time.

* IDBR (Huang et al.| 2021): BERT-specific approach which continuously trains the whole model
using data replay and a regularization loss, which applies sentence representation disentanglement
into task-specific and task-generic spaces. Current SOTA on CL benchmark with BERT.

* Per-task prompts (Lester et al., 2021): train a separate soft prompt for each task, while keep-
ing the original model frozen. This setup will eliminate catastrophic forgetting, since per-task
parameters do not change when new tasks are learned, but will not result in forward transfer.

* PromptTuning (Lester et al.,2021;|Qin & Jotyl 2021): train a shared soft prompt sequentially on
all tasks, while keeping the original model parameters frozen.

* LFPTS5 (Qin & Joty, [2021): continuously train a soft prompt that simultaneously learns to solve
the tasks and generate training samples, which are subsequently used in experience replay. Current
SOTA on CL benchmark with T5.

4.3 IMPLEMENTATION DETAILS

Progressive Prompts is a model-agnostic CL method that can be used with any transformer-based
model. In our experiments, we use two language models adopted by the previous lines of works in
CL for NLP: encoder-only BERT model (Devlin et al.|[2018) and encoder-decoder TS model (Raffel
et al.,[2020). To compare Progressive Prompts to the recent CL approaches implemented specifically
with BERT, we use the pre-trained BERT-base model as in IDBR and MBPA++ methods (Huang
et al.,2021;|de Masson D’ Autume et al.,[2019). For comparison with LFPTS5 approach (Qin & Jotyl,
2021) we use pre-trained T5-larg model.

BERT Following Devlin et al.| (2018)), to predict the class of input text x, we use the representation
of its first token hjcrs) (Which is encoded by a special beginning-of-a-sentence symbol, [CLS]) as
a sentence representation. Here & is the whole-input representation matrix from BERT encoder. We
apply a linear transformation parametrized by w and a softmax function to obtain the classification
probabilities over classes ¢ € {1...C}:

exp(w.hicrs))
yec eXp(wyh[CLs})

p(y =clh) = 5

In BERT experiments we train a separate linear head in addition to prompt embeddings for each
task, using cross-entropy loss between the predicted classification probabilities and ground truth
class labels.

TS5 Following Raffel et al.| (2020) and Lester et al.| (2021), we adopt text-to-text formulation for
all TS experiments, where classification labels are mapped into words (e.g. 0/1 could be encoded
as "True”/’False”). TS model applies a multi-headed self-attention over the input tokens followed
by position-wise feed-forward layers to produce an output distribution over target tokens. We train
prompt embeddings for TS model using cross-entropy loss. We report the rest of the implementation

details in Appendix

! Although the original prompt tuning approach reports better performance with T5 v1.1 compared to TS5,
several subsequent works find version v1.1. less stable for prompt tuning compared to the original TS and
report worse performance (Karimi Mahabadi et al.| 2021} |Asai et al.l|2022). Therefore, in this work we use the
original T5 model.

Under review as a conference paper at ICLR 2023

Prompt length For all Progressive Prompt experiments on BERT, we set single-task prompt length
to 20 tokens and apply prompt reparameterization with a two-layer residual MLP. For TS experi-
ments, we use single-task prompt length to 10 tokens in case of long-sequence experiments and 50
in case of TS5 experiments (so that total Progressive Prompt length more closely matches LFPTS
prompt length of 300). We report more experimental details in Appendix

5 EXPERIMENTAL RESULTS

For all CL experiments we evaluate methods after training on all tasks and report averaged test set
scores across all tasks. Metrics used for different tasks are shown in Appendix[A.T] We report Pro-
gressive Prompts performance with BERT-base and T5-large models, and compare it to the existing
CL approaches used with these models.

Order Order

Method DR 1 5 3 avg Method DR 4 5 6 7 avg
Finetune 189 249 417 285 Finetune 14.8 27.8 267 45 184
Replay v 672 647 647 446 57.8

Replay v 354 371 415 380
A-GEM v 706 659 675 63.6 669

EWC 39.0 38.0 44.8 40.6
i MBPA++ v 708 709 702 70.7 70.6

LFPTS v 416 526 579 527
Prosbromng* 53 250 251 95q IDBR v 759 762 764 767 763
ghtomp = BF B Y progPrompt® 78.0 777 77.9 719 719
Per-task Finetune 700 700 700 700 p task Finetune 739 739 73.9 73.9 73.9

Results with T5-large.
(a) Results with T3-large (b) Results with BERT-base.

Table 1: Summary of the results on two standard CL benchmarks with T5 and BERT models. Av-
eraged accuracy after training on the last task is reported. All results are averaged over 3 runs. For
TS experiments we followed |Qin & Joty| (2021)) protocol and used few-shot CL setting. Methods
marked with * only train a soft prompt while keeping the model frozen, other methods train the
entire model. DR denotes whether the method requires data replay.

5.1 RESULTS ON STANDARD CONTINUAL LEARNING BENCHMARKS

T5 benchmark. Table [Ta] compares Progressive Prompts performance on the few-shot CL bench-
mark for TS model with the existing CL approaches, including previous SOTA — LFPT5 (Qin &
Joty, 2021). Notably, Progressive Prompts achieve over 20% improvement compared to LFPTS5.
This drastic increase in accuracy is explained by the fact that Progressive Prompts method does not
experience forgetting and allows forward transfer, which is especially useful in few-shot regime.
Of note, |Qin & Joty| (2021) report better performance of LFPTS5 in continual learning setting than
Adapter-Fusion (Pfeiffer et al.|[2020) — a strong parameter-efficient CL approach based on adapters.
Hence, we did not include adapter baselines in this study, but instead focused on a more parameter-
efficient and better-performing method — LFPTS5.

BERT benchmark. Table [Ib] compares performance of Progressive Prompts across four different
task orders with existing CL approaches for BERT model, including previous SOTA —IDBR (Huang
et al., 2021). We want to note that CL benchmark for BERT focuses on full dataset experiments,
contrary to few-shot CL benchmark for T5. Since Progressive Prompts are most efficient in few-shot
setting, we observe a larger performance gap with LFPT5 compared to IDBR. Overall, Progressive
Prompts further improve performance compared to IDBR, reaching 77.9 average score across all or-
ders. We also note that Progressive Prompts is a model-agnostic approach, contrary to IDBR, which
is designed specifically for BERT. Additionally, our method does not require storing data from the
previous tasks for future replay, in contrast to the previous commonly used CL approaches for BERT
— IDBR and MBPA++. In all of our experiments we use the embedding reparameterization defined
in Section 3. We find that this reparameterization helps in stabilizing and accelerating training. Due
space limitations, we explore the effect of residual reparameterization in Appendix [A.7).

Under review as a conference paper at ICLR 2023

5.2 PERFORMANCE WITH LARGE NUMBER OF TASKS

Table 2| compares common CL approaches, including SOTA methods for T5 and BERT models (Qin
& Jotyl 2021} [Huang et al., [2021)), on a sequence continual learning with 15 tasks. We report aver-
aged results across three task orders (8, 9 and 10) obtained with T5-Large and BERT-base models.
We provide the full non-averaged results for each order in Appendix[A.5] To investigate the effect of
limited data settings, we perform training on different dataset sizes with 20, 200 and 1000 samples
per class.

Method | avg Method | avg
Num. samples — 20 200 1000 | Num. samples — 20 200 1000
TS5-Large results BERT-base results

Finetune 9.7 83 7.4 | Finetune 313 424 417
Prompt tuning* 174 139 10.9 | Prompt tuning* 476 572 595
Replay 43.6 442 544 | Replay 364 47.0 49.6
Per-task Prompts* 69.8 752 77.0 | Per-task Prompts* 50.6 624 67.2
LFPT5* 543 582 69.2 | IDBR 36.8 479 522
ProgPrompt* 76.2 7877 79.5 | ProgPrompt* 53.5 669 69.3
MTL 70.7 725 763 | MTL 569 67.7 699
Per-task Finetune 68.2 73.7 78.1 | Per-task Finetune 53.2 584 63.1

Table 2: Progressive Prompts outperforms existing continual learning methods on T5-Large and
BERT-base models over long sequences of tasks (15 tasks in total). Average results across three
different task orders with 20, 200 and 1000 samples per class are shown. MTL denotes multi-task
learning. Methods marked with * only train a soft prompt while keeping the model frozen, other
methods train the entire model.

Our approach, Progressive Prompts, consistently outper-
forms all other methods across different data limits, with

the strongest improvement in the few-shot setting of 20 Average attention scores across prompts
samples per class: +21.9% and +33.3% over previous Mo
SOTA approaches on T5 and BERT models respectively. & Wi
We also provide more fine-grained performance met- é, Cogg
rics defined by |[Lopez-Paz & Ranzato| (2017), including % aap
forward transfer (FWT) and backward transfer (BWT) ‘é imds
scores, as well as evolution of accuracy with learning new g dbpéffé
e ag

yelp

tasks in Appendix [A.5]
amazon
Attention between prompts To investigate which yahoo

prompts from the progressive pool are helpful for learn- Eg‘ééﬂ §§$§%§ fgse
: o : 85" g 5
ing new tasks, we visualized between-prompt attentions g= g E>

(Figure . We used Progressive Prompts trained on or- Prior tasks in Progressive Prompt
der 8 with TS5 model. For each of the 15 consecutive tasks,
we passed all test examples through T5 encoder, and ex-
tracted attention matrices from its last layer (24th layer).
We averaged attention scores across all prompt tokens and
all heads, and shown the results in Figure[2] Interestingly,
prompts learn to ignore irrelevant tasks and attend to the most similar or informative tasks. For ex-
ample, prompt learned on Amazon reviews task heavily attends to Yelp reviews prompt, and SST2
prompt attends to the prompt learned on IMDb - another sentiment analysis task.

Figure 2: Average attention scores be-
tween prompts in Progressive Prompts.

5.3 FORWARD TRANSFER EXPERIMENTS

In this section we study in more detail the forward transfer phenomenon achieved with Progressive
Prompts. In particular, can a subsequent task prompt exploit the knowledge from a previously
learned prompt in learning a new related task?

Under review as a conference paper at ICLR 2023

Transfer Learning on a pair of tasks We compare the performance of a single prompt of length
2M versus a Progressive Prompt consisting of two M -length prompts, M = 50 (see Figure[3). We
follow a similar transfer learning experimental protocol by Hendrycks et al.| (2020) and use pairs
of six tasks from similar domains: IMDb and SST?2 (2-class sentiment classification), Amazon and
Yelp reviews (5-class sentiment classification), MRPC and QQP (paraphrase detection). We use
T5-Large model, and study both settings: full-dataset and few-shot (2, 5 and 20 samples per class).
Our results are summarized in Table [3]and Figure] Overall, we observe that Progressive Prompts
achieve forward transfer and outperform the standard prompt tuning across all dataset sizes. The
strongest improvements happen in few-shot setting — +20.4% and +12.9% relative improvement

under 5-shot and 2-shot setup.

Prompt Tuning
Prompt Progressive . Lfofefalef 11]
Task N Relative Tunable Target Prompt Input Text
N-shot Source — Target Tuning Prompt Tmprov. (100 tokens)
(w/o transfer) (w/ transfer) ’
Progressive Prompt
imdb —sst2 93.6425 95.8+04 | +2.4% s EEEY
sst2 — imdb 93.1+04 93.3+0.3 +0.2% Tunable Frozen Input Text
All amazon — yelp 61.2+05 63.5+05 | +3.8% el e
yelp — amazon 58.2+09 59.0+08 +1.4% (60 tokens) (50 tokens)
mrpc — qqp 91.1+07 90.9+04 -0.2%
qqp — mrpe - 84.6+02 85.0L08 | +0.5% Figure 3: Transfer learning experimen-
Average 80.3 81.2 +1.3% tal setup. Prompt Tuning: a single
imdb —sst2 85.0+6.0 914+12 | +7.5% prompt of 100 tokens is trained on target
sst2 — imdb 93.4x0.3 932406 | -0.2% task. Progressive Prompt: two prompts
0fclass AMAZON yelp 50.2450 525121 | +4.6% of 50 tokens are trained sequentially on
yelp — amazon 37.8+s.1 54.9+21 | +452% source and target tasks.
mrpc — qqp 88.6+13 89.4+16 | +0.9% Forward Transfer effect
qqp — mrpc 84.8+00 85.2+04 | +0.5% by dataset size
Average 73.3 77.8 +9.8% 80{ —*= E:Zf;g:omng
imdb —sst2 58.2+27 84.4+81 | +45.0% 0
sst2 —imdb 6l.14s0 91.2+25 |+49.3% 370
S/class Amazon — yelp 26.2+38 273414 | +4.2% gss
yelp — amazon 24.2421 29.7+37 | +22.7% <
mrpc — qqp 88.4+25 92.0+03 | +4.1% o0
qqp — mrpc 86.9+0.6 84.3+06 -3.0% 55
Average 57.5 68.2 +20.4% 2 somplesfchs
Table 3: Transfer learning results on pairs of six tasks from Figure 4: Progressive Prompts achieve
similar domains (IMDb & SST2, Amazon & Yelp, MRPC & forward transfer and outperform Prompt
QQP). All results are averaged over 3 runs. We report average Tuning under different dataset sizes.
score between F1 and accuracy for MRPC and QQP, and ac- Average scores across six target tasks

curacy for all other tasks.

GLUE — SuperGLUE transfer We perform ad-
ditional experiments on SuperGLUE benchmark to
compare the forward transfer effect of Progressive
Prompts with standard prompt tuning. In the orig-
inal prompt tuning paper, a separate prompt Pr is
trained for each SuperGLUE task T (Lester et al.,
2021). Pr is a trainable matrix of 100 x e di-
mension, where 100 is the prompt length and e
if the embedding dimension. Pr is concatenated
with the input text = and then fed into the model
as [Pr;x]. For Progressive Prompt we perform
training in two steps. First, we learn a progres-
sive prompt on GLUE benchmark Pgrus. FPoLue
is composed of 6 per-task GLUE prompts with a

are reported.

Method SuperGLUE score
Per-task PT 74.5£2.2
ProgPrompt 77.2+1.9
Per-task FT 81.3£0.6

Table 4: SuperGLUE performance of the orig-
inal Prompt Tuning approach vs Progressive
Prompts. Averaged validation performance
across all tasks is shown.

length of 10 on random task order, and the final dimension of Pgyg is 60 X e. After that, we

Under review as a conference paper at ICLR 2023

learn a length-40 prompt [Pr,,, for every SuperGLUE task 7" and concatenate it with the GLUE
prompt before appending to the input x: [Pr,,,; PoLug;] (illustration of the experimental setup is

in Appendix [A.6).

Following |Lester et al.| (2021) we train a separate soft prompt for each SuperGLUE task on its full
train set with a fixed number of epochs, and report the validation set performance. Similarly to
Lester et al.|(2021), for each SuperGLUE task use metrics recommended by Wang et al.|(2019) and
for tasks with two metrics we compute an average of the two. Our results are shown in Table 4] —
Progressive Prompt improves the standard prompt tuning performance by 2.7 points on SuperGLUE
benchmark. This confirms that progressive prompt concatenation allows knowledge reuse from the
previous prompts that were learned on GLUE benchmark.

6 RELATED WORK

Continual Learning Existing continual learning approaches can be broadly organized into three
main categories: (i) replay-based, (ii) regularization-based, and (iii) architecture-based (de Mas-
son D’Autume et al., 2019; [Huang et al.| [2021). Replay-based methods store a subset of data
from previous tasks for future rehearsal via experience replay, representation consolidation or con-
strained optimization. The data can be either stored directly or synthesized by generative models.
Regularization-based approaches restrict changes of model’s parameters to avoid inference with pre-
viously learned tasks (Li & Hoiem) 2017} Kirkpatrick et al.,|2017). Architecture-based approaches
learn different set of parameters dedicated for a separate task.

Recently, replay-based and regularization-based approaches have been successfully applied for con-
tinual learning in language models. While replay-based approaches have shown strong results for
classification, question answering and relation extraction tasks, they pose significant memory re-
quirements due to storing large number of samples for rehearsal. Additionally, for many applications
such storage would not be feasible due to privacy settings, when access to the past data is not avail-
able. Regularization-based approaches are more memory-efficient than replay-based approaches,
but suffer from catastrophic forgetting and are often not suitable for long task sequences. In contrast
to regularization-based and replay-based approaches, architectural CL approaches are more efficient
in resolving catastrophic forgetting problem and, hence, are suitable for sequences spanning a large
number of tasks.

Parameter-efficient Learning Recent works on parameter-efficient learning have shown that by
training a subset of parameters, we can achieve a full model performance (Houlsby et al.l 2019
Li & Liang, 2021} Karimi Mahabadi et al., 2021} [Lester et al., |2021). While this line of work has
mostly focused on learning a single task, there has been some attempts on using parameter-efficient
tuning for CL. For instance, Madotto et al.| (2020) proposes AdapterCL which learns a separate
adapter block for each task, and |Qin & Joty| (2021) proposes LFPTS5 that learns a large (Iength 300)
soft prompt that is continuously trained on all tasks. Both of these approaches have their limitations
— AdapterCL resolves catastrophic forgetting problem, but does not allow forward transfer, while
LFPTS allows forward transfer but suffers from forgetting.

7 CONCLUSION

This paper presents Progressive Prompts — a novel approach for CL that addresses catastrophic
forgetting in pre-trained language models, while allowing knowledge reuse from previous tasks.
In contrast to many existing CL methods for NLP, the proposed approach does not require saving
examples from the previous tasks for data replay. Moreover, our method does not require storing
a large number of task-specific parameters. Progressive Prompts is a model-agnostic approach and
our experiments with two commonly used language models demonstrate that Progressive Prompts
outperforms baseline methods on a standard CL benchmark for text classification and our custom
benchmark of longer CL sequences that spans 15 tasks.

REFERENCES

Akari Asai, Mohammadreza Salehi, Matthew E Peters, and Hannaneh Hajishirzi. Attentional mix-
tures of soft prompt tuning for parameter-efficient multi-task knowledge sharing. arXiv preprint

Under review as a conference paper at ICLR 2023

arXiv:2205.11961, 2022.

Arslan Chaudhry, Marc’ Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

Cyprien de Masson D’ Autume, Sebastian Ruder, Lingpeng Kong, and Dani Yogatama. Episodic
memory in lifelong language learning. Advances in Neural Information Processing Systems, 32,
2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and Dawn Song.
Pretrained transformers improve out-of-distribution robustness. arXiv preprint arXiv:2004.06100,
2020.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790-2799. PMLR, 2019.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang, and Diyi Yang. Continual learning
for text classification with information disentanglement based regularization. arXiv preprint
arXiv:2104.05489, 2021.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank

hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022—
1035, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521-3526, 2017.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935-2947, 2017.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally across scales and tasks. arXiv preprint
arXiv:2110.07602, 2021.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142—-150, 2011.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Seungwhan Moon, Paul Crook, Bing Liu, Zhou
Yu, Eunjoon Cho, and Zhiguang Wang. Continual learning in task-oriented dialogue systems.
arXiv preprint arXiv:2012.15504, 2020.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109-165.
Elsevier, 1989.

10

Under review as a conference paper at ICLR 2023

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247,
2020.

Chengwei Qin and Shafiq Joty. Lfpt5: A unified framework for lifelong few-shot language learning
based on prompt tuning of t5. arXiv preprint arXiv:2110.07298, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1-67, 2020.

Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell.
Continual unsupervised representation learning. Advances in Neural Information Processing Sys-
tems, 32, 2019.

Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychological review, 97(2):285, 1990.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. Lamol: Language modeling for lifelong language
learning. arXiv preprint arXiv:1909.03329, 2019.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. Spot: Better frozen model
adaptation through soft prompt transfer. arXiv preprint arXiv:2110.07904, 2021.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Zirui Wang, Sanket Vaibhav Mehta, Barnabas P6czos, and Jaime Carbonell. Efficient meta lifelong-
learning with limited memory. arXiv preprint arXiv:2010.02500, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Weinberger, and Yoav Artzi. Revisiting few-
sample bert fine-tuning. arXiv preprint arXiv:2006.05987, 2020.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing systems, 28, 2015.

A APPENDIX

A.1 DATASETS

Table [5] shows details of the 15 datasets we used for our CL experiments, along with
their evaluation metrics. Overall, we used datasets from CL benchmark (Zhang et al.|
2015), GLUE (Wang et al, 2018) and SuperGLUE (Wang et all [2019) benchmarks, and
added IMDB movie reviews dataset. Following common practive, for tasks that have

11

Under review as a conference paper at ICLR 2023

two evaluation metrics we use the average of the two as the final performance metric.

Dataset name \ Category Task Domain Metric

1. Yelp CL benchmark sentiment analysis Yelp reviews accuracy
2. Amazon CL benchmark sentiment analysis Amazon reviews accuracy
3. DBpedia CL benchmark topic classification Wikipedia accuracy
4. Yahoo CL benchmark QA Yahoo Q&A accuracy
5. AG News CL benchmark topic classification news accuracy
6. MNLI GLUE NLI various accuracy
7. QQP GLUE paraphrase detection Quora accuracy & F1
8. RTE GLUE NLI news, Wikipedia accuracy
9. SST2 GLUE sentiment analysis movie reviews accuracy
10. WiC SuperGLUE word sense disambiguation lexical databases accuracy
11. CB SuperGLUE NLI various accuracy
12. COPA SuperGLUE QA blogs, encyclopedia accuracy
13. BoolQ SuperGLUE boolean QA Wikipedia accuracy
14. MultiRC SuperGLUE QA various F1 & EM
15. IMDB Other sentiment analysis movie reviews accuracy

Table 5: The details of 15 datasets used in our CL experiments. NLI denotes natural language
inference, QA denotes questions and answers task, EM denotes exact match scoring. First five tasks
correspond to the standard CL benchmark, all other tasks are used in our long-sequence experiments.

A.2 TASK SEQUENCE ORDERS

We report task orders used for our CL experiments across BERT and T5 models in Table [6] below:
Order Model Task Sequence

1 TS db » amazon » yahoo » ag

2 TS db » amazon » ag » yahoo

3 TS yahoo » amazon » ag » db

4 BERT ag » yelp » amazon » yahoo » db

5 BERT yelp » yahoo > amazon » db > ag

6 BERT db » yahoo » ag » amazon » yelp

7 BERT yelp » ag > db » amazon » yahoo

3 TS, BERT mnli > cb > wic » copa » qqp > boolq » rte » imdb »
yelp > amazon > sst2 » dbpedia » ag » multirc » yahoo
multirc » boolq + wic » mnli » ¢b » copa » qqp » rte »

9 T5, BERT imdb » sst2 » dbpedia » ag » yelp » amazon » yahoo

10 TS, BERT yelp » amazon » mnli » ¢cb > copa » qqp > rte > imdb »

sst2 » dbpedia » ag > yahoo » multirc > boolq » wic

Table 6: Ten different orders of task sequences used for continual learning experiments. Orders
1-7 correspond to the standard CL becnhmark adopted by prior works. Orders 8-10 are our custom
long-sequence orders spanning 15 tasks.

A.3 IMPLEMENTATION DETAILS

We use PyTorch (Paszke et al.l 2019) and HuggingFace Transformers library (Wolf et al., [2019)
for our implementation. For the standard CL benchmark, we use official datasets provided by
Zhang et al.| (2015)) available at http://goo.gl/JyCnZqg, following [de Masson D’Autume
et al| (2019); |[Zhang et al. (2015). We use HuggingFace datasets (https://github.com/
huggingface/datasets) to download data for GLUE tasks (Wang et al., 2018)), SuperGLUE
tasks (Wang et al.|, [2019) tasks, and IMDB movie reviews dataset (Maas et al.,2011)), which we use
for long-sequence CL experiments and/or ablation studies. Following previous studies (Rao et al.,
2019;|de Masson D’ Autume et al.,[2019), for CL experiments, for each dataset we use the available
validation set as a test set (since test data is not available), and hold out 500 samples from the train
set to construct the validation set. For our ablation studies, since we compare Progressive Prompts

12

http://goo.gl/JyCnZq
https://github.com/huggingface/datasets
https://github.com/huggingface/datasets

Under review as a conference paper at ICLR 2023

with the original prompt tuning (Lester et al., [2021), we follow their set up and report maximal
validation set performance.

A.4 EXPERIMENT DETAILS

We use Adam optimizer (Kingma & Ba, [2014)) and set batch size to 8 for all the experiments, except
for MTL runs with a batch size of 2 (due to memory limitations). We train each prompt between 10
and 300 epochs, depending on the number of data points. We use the prompt checkpoints with the
best validation set score as our final prompts. Prompts are initialized from randomly sampled tokens
as in Lester et al.|(2021)), hyperparametes are shown in the Table below:

Hyperparameter | | CL benchmark | Long-sequence benchmark
Num. samples — - 1000 200 20
BERT
Epochs 40 40 150 300
Learning rate le—4 le—4 le—4 le—4
Prompt length 20 20 20 20
T5

Epochs 10 10 150 300
Learning rate 0.3 0.3 0.3 0.3
Prompt length 50 10 10 10

Table 7: Hyperparameters used for Progressive Prompts across different CL experiments.

For all CL experiments we use early stopping as in [Huang et al.| (2021), to save model checkpoint
based on the best validation performance on the current task. We report test set performance after
training on all tasks as our final metric. For SuperGLUE experiments, we report maximal validation
set performance over the course of training as in [Lester et al.| (2021). We measure the validation
performance after every epoch and use metrics described in Appendix We use 1% of samples
per class for the replay approach (but no less than 1 sample per class), following Huang et al.| (202 1}).
We use the same hyperparameter setting for all prompt-based approaches (Progressive Prompts,
prompt tuning, per-task prompts), except for prompt tuning we use a longer shared prompt of 200
tokens. For all other approaches, we use hyperparameters provided in their corresponding papers.

A.5 LONG SEQUENCE EXPERIMENTS

Here we report results for orders 8, 9 and 10 of
continual learning experiments with long task
sequences of 15 tasks. We show test set perfor-

Method Few-shot Full-shot
mance averaged across all tasks for each method.
Test scores are calculated after training has been PT + Prev. Init. 48.2 50.0
completed. Results are shown in Table[9] We also ProgPrompt 53.5 69.3

investigate improvement of Progressive Prompts
compared to per-task prompt on the corresponding Table 8: Comparison of Prompt Tuning and
task in Figure [T2] Clearly, some tasks benefit Progressive Prompts, when shared promot in
from knowledge sharing from the progressively Prompt Tuning is initialized from the previous
added prompts. ~ Additionally, we assessed if task. Average test accuracy after observing all

initializing new prompt from the previous task tasks is shown (averaged across three orders).
prompt would result in better performance of

continual prompt tuning. We observe that Pro-
gressive Prompts outperform this setup in both few-shot (20/class) and full-shot settings, see Table[S]

In addition to average performance, we compute more fine-grained performance metrics de-
fined by |Lopez-Paz & Ranzato| (2017) for different approaches under long-sequence experiments.
Specifically, we compute backward transfer and forward transfer metrics, and evolution of average
accuracy over learning new tasks. Our results on FWT for task orders 8, 9 and 10 are shown in
Figure [5] Figure [6] and Figure [7] respectively. Our results on BWT for task orders 8, 9 and 10
are shown in Figure [8] Figure 9] and Figure [I0] respectively. Evolution of accuracies is shown in
Figure

13

Under review as a conference paper at ICLR 2023

Order 8 (20 samples / class)

80 Method
= Finetune
7 Prompt Tuning
o m—Replay
£ - (FPTS
3 6
E = ProgPrompt
g, mm Per-task Prompt
H
B4 33
32
& 5
£ 2
10
4
000000 000000 o oolfooo 000000 000000
Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Average
Order 8 (200 samples / class)
0 Method
= Finetune
= Prompt Tuning
L7 = Replay
5 LFPTS.
260 = ProgPrompt
§ mmm Per-task Prompt
5 50
g
s 40
T 37 g7
£ 3:
£ 30 30
g 2 [
2p0 | 2
Z 20 “ 1
10
0 o 000000 000000 0 001000 000000 000000

Task 4 Task 5 Task 8 Task 9 Tsk 10 Task 11 Tsk 12 Task 13 Task 14 Task 15 Average

Order 8 (1000 samples / class)

80 Method
= Finetune
7 = Prompt Tuning
Replay
—LFPTS

a
8

m= ProgPrompt
m per-task Prompt

)
g

FWT (forward transfer) metric
5
8

35
30 290
20
10
0 000000 000000 0 000000 000000 000000
Tesk 2 Tosk 3 Taska Tesk 5 Task 6 Task 7 Tesk 8 Tesk 9 Tesk10 Task1l Task12 Task13 Tesk14 Task15 Average

Figure 5: Forward transfer score of different approaches on order 8. Different data limits are shown
(20, 200 and 1000 samples per class).

14

Under review as a conference paper at ICLR 2023

Order 9 (20 samples / class)

Method

= Finetune

= prompt Tuning
Replay

- LFPTS

-

L

ProgPrompt
333

29

7
15
1

5 , 4
ollo oM1fMo 000000 000000 000000 oo oolooo 000000 000000 ofiFooo oololo

Per-task Prompt
Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Average

FWT (forward transfer) metric

Order 9 (200 samples / class)

80 B’ 77 Method
= Finetune
70 = Prompt Tuning
o = = Replay
£ 60 - LFPTS
£ mm= ProgPrompt
850 . 51 < 2 mmm Per-task Prompt
2 4 44
4 4 8
5 40 38
]
g 31 b 50 3
301 —a 2 — R s
§ 26 25
Z20 : 6
10 3
o] [[0 000000 000000 000000 0 0olooo 000000 000000 ol Moo 001000 0
Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Average

Order 9 (1000 samples / class)

Method
= Finetune
e Prompt Tuning
" Replay
LFPTS
ProgPrompt
m Per-task Prompt

s
a2
34
30
21
1 L2
olﬂlno oofillo 000000 000000 000000 o 000000 000000 000000 ofiifloo oolooo

Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Tesk 13 Task 14 Task 15 Average

FWT (forward transfer) metric

g

Figure 6: Forward transfer score of different approaches on order 9. Different data limits are shown
(20, 200 and 1000 samples per class).

15

Under review as a conference paper at ICLR 2023

Order 10 (20 samples / class)

Method
= Finetune
Prompt Tuning

v m—Replay
] - LFPTS
€ = ProgPrompt
H - Per-task Prompt
H
s 43
e 40
3
H 5
s =
H 2
000000 000000 000000 o 00Z000 o
Task 2 Task 3 Tsk 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Average

Order 10 (200 samples / class)
¥ Method
= Finetune

83 84 83
80 B - == Prompt Tuning
. 2yt = Replay
] 6 - LFPTS
€ o 63 = ProgPrompt
3 60 39 W Per-task Prompt
g & [
3 43
g a0 7 38
& 3 30
s 25 ibs
“ 20 2
12
1 I i | =
0 0l DI 00 0 000‘ 00 0_0Moo 0000 000000 0 000000 000000 000000 0 00000 0
Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Average
Order 10 (1000 samples / class)
Method
= Finetune
80 == Prompt Tuning
" = Replay
:u:-r - LFPTS
£ ProgPrompt.
60 mm Per-task Prompt
g
]
2 40 =27
g 31
H G 28 y96
20 1
o 000000 000000 000000 o 00l000 o
Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15 Average

Figure 7: Forward transfer score of different approaches on order 10. Different data limits are shown
(20, 200 and 1000 samples per class).

16

Under review as a conference paper at ICLR 2023

Order 8 (20 samples / class)

BWT (backward transfer) metric
5 L% [
3 5 8 o 3 3

&
3

~100

BWT (backward transfer) metric
! L
g &

&
8

-100

! ! !
3 8 3

BWT (backward transfer) metric

&
g

% a4
00 00 00 00 00 00 00 000 00 00 00 00 00 00 000000 00
|
gy I 3%
)
g |]
3 B 2
! 4
4 ,
&
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task7 Task 8 Tsk9 Tesk10 Task1l Task12 Task13 Task14 Task15 Average
Order 8 (200 samples / class)
2]
1
7
00 oo 00 oo 00 200 00 200 00 00 00 oo 00 00 000000 00
B
24] |
=390
e ;.
2 S
o7 %
S J
4 4 . h
B k
B
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task7 Task 8 Tsk9 Tesk10 Task1l Tesk12 Tsk13 Task14 Task15 Average

Order 8 (1000 samples / class)
00 00 000 00 00

B

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6 Task 7 Task 8 Task 9 Task 10

Task 11

Task 12 Tsk14 Tesk15

Task 13

Average

m—Finetune
Prompt Tuning

= ProgPrompt
m- Per-task Prompt

= finetune
= Prompt Tuning
Replay

ProgPrompt
= per-task Prompt

Finetune
Prompt Tuning
Replay

LFPTS
ProgPrompt
Pertask Prompt

Figure 8: Backward transfer score of different approaches on order 8. Different data limits
shown (20, 200 and 1000 samples per class).

17

are

Under review as a conference paper at ICLR 2023

Order 9 (20 samples / class)

10
. 00 00 00 oo 00 00 00 00 00 00 00 000 000 00 000000 00
£ !
¥ n n | Y
5 i) \]
k) 3
5 a0 58-
g
H)
] 2]
£ -60 |
80 ! L
Tkl Task2 | Tesk3 Teskd | k5 Tak6 Task7 Tk sk Tsk10 skl Bsk12 Tsk13 Tskl4 Taskls Average
Order 9 (200 samples / class)
o 00 00 00 00 00 00 00 00 00 00 00 o 00 00 000000 00
|
I | 3
o
L. !
x5 5
]
A 5
Tkl Task2 | Task3 Teskd k5 Tak6 Task7 Task8 sk Tsk10 Tkl Bsk12 Tesk13 Tskl4 Tesk1s Average
Order 9 (1000 samples / class)
0 00 00 Loo 000 00 00 00 00 00 00 00 o 00 ml}ﬂ 0000000 00
. 4
n
" s P
£ 20
g 24 24
o !
H -)
£ -0 L] L |
H)
o n
@ -80 L
T
- 7 -86
100 58
Tkl sk | k3 | k4 k5 Bsk6 Tk k8 Bskd Bsk10 Tkl Tsk12 k13 Tskl4 Tskl5 Average

m—Finetune
= Prompt Tuning
- Replay
—(FPTS

= ProgPrompt
m—per-task Prompt

= Finetune
= Prompt Tuning
= Replay

- LFPTS

== ProgPrompt
= per-task Prompt

= Finetune
= Prompt Tuning
= Replay
—LFPTS

= ProgPrompt
= per-task Prompt

Figure 9: Backward transfer score of different approaches on order 9. Different data limits
shown (20, 200 and 1000 samples per class).

18

are

Under review as a conference paper at ICLR 2023

Order 10 (20 samples / class)

%0
0
i = Finetune
= Prompt Tuning
. = Replay
b -
g 00 00 o0 00 00 000 00 00 00 00 00 00 00 00 000000 00| progprompt
3 | = per-task Prompt
3 [
§ -20 7
5 h E 5 L
z : 3
2 -0 -
K -4 -4
3 2 iad 52
T -60 7 : 97
£ 4
-80{ L] B = L
L | :
-100
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Tsk9 Tsk10 Teskll Tsk12 Task13 Task14 Task1S Average
Order 10 (200 samples / class)
e
" = Finetune
= Prompt Tuning
. 20 . = Replay
] 10 - LTS
E o, 00 o0 o0 00 oo 00 00 00 00 00 00 00 00 00 000000 00 | mm ProgPrompt
3 m= per-task Prompt
§ -2 4 4 o)
B |]
: o 2 L
3 L B J
£ -0 3 - =
3 | : / h : 1 !
-80 4 1
6
] \ | A i
-100 2
Task 1 Task 2 Task 3 Task 4 Tosk s Task 6 Task 7 Task 8 Tk Task10 Tesk1l Task12 Tesk13 Tesk14 Task1S Average
Order 10 (1000 samples / class)
5
o 00 00 o0 00 00 200 00 00 00 00 00 00 00 000000 0o | W finetune
n = Prompt Tuning
o 3 == Replay
b J B - LTS
g 20 i 31 = ProgPrompt
] = pertask Prompt
§ -0
T
s k1 |
£ -0 E E h
3 3 ! E
s E ’ n
8 _goq - . 15
7 | -
)
-100
Task 1 Task 2 Task 3 Task 4 Task s Task 6 Task 7 Task 8 Tsk9 Task10 Teskll Tsk12 Task13 Task14 Task1S Average

Figure 10: Backward transfer score of different approaches on order 10. Different data limits are

shown (20, 200 and 1000 samples per class).

Average accuracy evolution Average accuracy evolution

Average accuracy evolution

order, 20 samples / class order B, 200 samples / class order 8, 1000 samples / class
ooy T o8] = T~ ol S T~ ——
07 > 07 07
06 goo I
i ™
Fos Fou Fos
— Finetune. € 03 < 03 2 03
romot Turing
—— Replay o 2 b=
— s
01 01
—— Prog Prompt o1
Ti3i36 s hnnnns I EEREREEEEE] Ti3i36 s hnnnns
ok mumber Tosk mumber ok mumber
Average accuracy evolution Average accuracy evolution Average accuracy evolution
order9, 20 samples / class order 9, 200 samples / class order 9, 1000 samples / class
09
o8 /\/_/\ﬁ o8 08
07
tos gos gos
1 % $os
H : H
£oa §oa Loa
e £ ¢ <
03
— prompt uning
— Replay 02 02 02
— prog Promst 01
Tijii3sjisnnnnnn IEEREEEEEE Ti3ii3sjsinnnnns
Task number ek b Tosk mamber
Average accuracy evolution Average accuracy evolution Average accuracy evolution
v 50 savapies | coes vt o 550 empies e sy scourcy wohiion |
ol N~ 0] ™ —~_—— 0] e~ —— A —
o7 o7 o7
o6 06 06
H H H
Zos Sos os
— <os o3 <03
—— prompt Tuning
— Replay 02 02
= s -
01
—— Prog Prompt. o1 o
12 3 4 9 10 11 12 13 14 15 123 4 s 9 10 11 12 13 14 15 12345 “7‘(5“‘: 1011 12 113 14 18

Task number Task number

Figure 11: Evolution of average accuracy after learning new tasks.

Under review as a conference paper at ICLR 2023

Method | Order 8 Order 9 Order 10 avg
Num. samples — 20 200 1000 \ 20 200 1000 \ 20 200 1000 \ 20 200 1000
T5-Large results
Finetune 9.3 8.9 7.4 9.5 8.1 7.4 104 7.9 7.5 9.7 8.3 7.4
Replay 46.0 450 552 | 503 437 548 | 346 438 533 | 436 442 544
PromptTuning 9.7 8.4 82 | 244 168 87 122 8.0 7.9 174 139 109
Per-task Prompts 699 752 770 | 699 752 77.0 | 699 752 77.0 | 69.8 752 77.0
LFPT5 547 61.6 704 | 541 543 682 | 542 588 69.1 | 543 582 69.2
ProgPrompt 754 791 795 | 76.6 782 79.1 | 76.7 789 798 | 762 787 79.5
MTL 70.7 725 763 \ 70.7 725 763 \ 70.7 725 763 \ 70.7 725 763
BERT-base results
Finetune 29.9 434 409 | 305 420 425 | 33,6 419 418 | 313 424 417
Replay 349 463 510 | 393 481 515 | 349 465 463 | 364 470 49.6
Per-task Prompts 50.6 624 672 | 506 624 672 | 50.6 624 672 | 506 624 672
IDBR 39.7 484 523 | 379 466 541 | 329 488 50.1 | 368 479 522
ProgPrompt 553 679 689 | 533 658 70.0 | 519 669 69.0 | 53.5 669 69.3
MTL 569 67.7 699 \ 569 67.7 699 \ 569 67.7 699 \ 569 67.7 699

Table 9: Average test set performance of Progressive Prompts and common CL approaches on long-
sequence experiments with 15 text classicication tasks (orders 8, 9 and 10). We report results for
BERT and T5 models across different limits of data — 20, 200 and 1000 samples per class. MTL

denotes multi-task learning. All results are averaged over 3 runs.

Progressive Prompt vs Per-task prompts
(performance improvement on order 8)

150 20 samples
100
50
0 ——— —— . R e —o—
€
E 200 samples
o 40
2
e
£
= 20
o
o
g
c
. . L] [] m
Y
B s
1K samples
40
20
.. . =N ., 4 .
2 & £ & B 2 = &8 5 &8 =5 @
£ £ ¢ ¥ 8 & B & & § 8 w & & @
=} o - - -
£ 8 * E g ® - E ¥ § i © 8§ 2
o o
E a < S
o o E
© kS o

Figure 12: Per-task improvement of Progressive Prompts verus per-task prompts in CL experiment
with order 8 across different data limits (20, 200 and 1000 samples per class). X-axis shows the se-
quence of tasks, Y-axis shows percentage improvement of Progressive Prompts test score compared

to per-task prompt on the corresponding task.

A.6 SUPERGLUE EXPERIMENTS SETUP

Comparison of the original prompt tuning on SuperGLUE (Lester et al.,[2021)) and our Progressive

Prompt setup is shown in Figure[T3]

20

Under review as a conference paper at ICLR 2023

GLUE prefix = 10 tokens x 6 tasks

MRPC ColLA QNLI e MNLI WwiC

wiC

Figure 13: Original prompt tuning versus Progressive Prompts on SuperGLUE datasets. For illus-
tration, we show how SuperGLUE task WiC is leaned (we have similar scheme for other tasks).
Prompt tuning trains a single prompt of 100 tokens for WiC task. Progressive Prompts method
learns a prompt of 40 tokens, which is progressively appended to the six frozen prompts of 10 to-
kens learned on GLUE benchmark (with random task order). Total prompt length is equal in both
approaches.

A.7 EFFECT OF PROMPT REPARAMETERIZATION

We find that residual reparameterization allows to reach performance close to finetuning, and is
especially helpful for BERT model. Table |10 shows the results of regular prompt tuning, prompt
tuning with MLP reparameterization and prompt tuning with residual MLP reparameterization on
BERT-base model. As in all our experiments, we use a 2-layer MLP with the hidden layer dimension
of 800. We show the best performance on four different tasks with prompts of length 5 and 30.
Following [Lester et al.|(2021)), we report the maximal validation set performance for each dataset.
Our results show that residual MLP reparameterization results in performance improvement over
standard prompt tuning, reaching close to finetuning performance (Table [I0). Notably, with length-
5 prompt, residual MLP improves accuracy by approximately 6% and 4% for IMDB and QQP
datasets, matching full model tuning. Regular MLP reparameterization generally leads to either
smaller improvement than residual MLP or even worse performance than prompt tuning.

Prompt len. — length 5 length 30

Task | PT PT+MLP PT4resMLP PT PT+MLP PT4resMLP FT
IMDB 85.80.7 83.40.9 91408 89.11.0 90.215 91.21 4 92.90.4
QQP 72.90.8 73.11.1 76.61 2 72.215 73.94.1 77.30.9 78.60.9
RTE 65.02.3 64.83.2 65.03.5 67.83.2 67.63.6 66.23.1 66.22.0
MRPC 72.10.8 71.51.4 75.80.9 73.40.8 76.93.4 79.01.3 86.31.6

Table 10: Effect of prompt embeddings reparametrization on prompt tuning performance with BERT
model. Average performance across 3 runs is shown. PT: regular prompt tuning, PT+MLP: prompt
tuning with prompt passed through 2-layer MLP, PT+resMLP (our approach): prompt tuning with
prompt passed through 2-layer MLP with a skip connection (residual MLP). FT: full model finetun-
ing. Best results for each prompt length (5 and 30) are highlighted in bold.

21

	Introduction
	Background
	Finetuning
	Prompt tuning
	Continual Learning

	Method
	Experimental Setup
	Datasets
	Baselines
	Implementation details

	Experimental Results
	Results on standard Continual Learning benchmarks
	Performance with large number of tasks
	Forward Transfer experiments

	Related work
	Conclusion
	Appendix
	Datasets
	Task sequence orders
	Implementation details
	Experiment details
	Long sequence experiments
	SuperGLUE experiments setup
	Effect of prompt reparameterization

