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ABSTRACT

We introduce Progressive Prompts – a simple and efficient approach for contin-
ual learning in language models. Our method allows forward transfer and re-
sists catastrophic forgetting, without relying on data replay or a large number
of task-specific parameters. Progressive Prompts learns a new soft prompt for
each task and sequentially concatenates it with the previously learned prompts,
while keeping the base model frozen. Experiments on standard continual learning
benchmarks show that our approach outperforms state-of-the-art methods, with an
improvement >20% in average test accuracy over the previous best-preforming
method on T5 model. We also explore a more challenging continual learning
setup with longer sequences of tasks and show that Progressive Prompts signifi-
cantly outperforms prior methods.

1 INTRODUCTION

Learning a long sequence of tasks while gaining experience and avoiding forgetting remains a key
feature of human-level intelligence. Although pretrained language models have largely succeeded
in learning on a single task, their performance degrades in scenarios where multiple tasks are en-
countered sequentially, also known as continual learning (CL) (de Masson D’Autume et al., 2019;
Huang et al., 2021). Two major challenges arise in CL: (1) avoiding catastrophic forgetting, i.e.,
loss of the knowledge acquired from previous tasks after learning new ones (McCloskey & Cohen,
1989; Ratcliff, 1990), and (2) allowing forward transfer, i.e., leveraging the knowledge from past
tasks for efficient learning of new tasks.

Typical CL approaches for language models train a model on all tasks, which ensures forward trans-
fer but also leads to forgetting. These methods use data replay or add regularization constraints
(Huang et al., 2021; de Masson D’Autume et al., 2019; Sun et al., 2019), but they still suffer from
forgetting due to inevitable changes in parameters shared between tasks. Other approaches, such
as progressive networks (Rusu et al., 2016), can alleviate catastrophic forgetting completely while
supporting forward transfer, but are computationally expensive because they add a new copy of the
model for each task. This can be especially intractable for large-scale language models with billions
of parameters, which have become a standard in the NLP field (Raffel et al., 2020).

In this paper, we introduce Progressive Prompts – a novel CL approach for language models that
supports forward transfer without forgetting. Our method is inspired by progressive networks, but
is significantly more memory-efficient because it only learns a fixed number of tokens, or prompt,
for each new task. Learning a prompt to adapt language models on a single downstream task was
introduced in prompt tuning (Lester et al., 2021), and was shown to match the performance of
full model finetuning while training <0.01% of the parameters. In Progressive Prompts, we learn
a separate prompt for each incoming task and sequentially concatenate it with previously learned
prompts. Importantly, we share input tokens across all tasks and progressively prepend new prompts
while keeping previous prompts frozen (see Figure 1). Our method can: 1) alleviate catastrophic
forgetting by preserving the knowledge acquired in previous prompts, and 2) transfer knowledge to
future tasks by sequentially learning new prompts given previous ones. We also introduce a new
technique for prompt embedding reparameterization (Li & Liang, 2021). We show that by passing
the prompt embeddings through a residual MLP we can stabilize prompt tuning and improve its
performance.
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Figure 1: Illustrating our proposed method Progressive Prompts and contrasting it with a simple
adaptation of progressive networks using prompt tuning. In the simple adaptation of progressive
networks we learn a separate prompt and repeat the frozen input embeddings for each new task.
This setup requires repeating input tokens for each task. In Progressive Prompts we use the same
input and progressively append new prompt for each new task. Prior task prompts are not modified
by the addition of new prompts.

We run extensive experiments on standard CL benchmarks for text classification, and show that
Progressive Prompts outperforms state-of-the-art approaches on both BERT and T5 architectures
(Devlin et al., 2018; Raffel et al., 2020). We show over 20% improvement over the current SOTA
for T5 model (Qin & Joty, 2021). Furthermore, we run experiments on a more challenging CL setup
with longer task sequences, and show that our method outperforms prior approaches for T5 and
BERT architectures.

Our main contributions in this paper are as follows:

• We propose a novel CL approach, Progressive Prompts, that alleviates catastrophic forget-
ting and supports knowledge transfer to future tasks – all while learning < 0.1% of the
total parameters.

• Progressive Prompts is suitable for any transformer-based architecture. We show that it
significantly outperforms prior SOTA methods on standard CL benchmarks for both BERT
and T5 models.

• We propose a more challenging CL setup encompassing 15 text classification tasks and
show that our method significantly outperforms prior methods.

2 BACKGROUND

2.1 FINETUNING

The predominant technique for adapting the language model to a downstream task T is finetuning,
when all parameters Θ of the model (initialized from some pre-trained weights) are updated during
task adaptation (Devlin et al., 2018; Zhang et al., 2020).

Consider a classification task T with input text x, and output scalar label y. Here pΘ is a probability
distribution of output classes parameterized by the weights, Θ, of the language model. In finetuning,
we perform gradient updates according to the following log-likelihood objective:

max
Θ

∑
x,y∈T

log pΘ(y|x)

Despite its simplicity and effectiveness, finetuning updates all model parameters, and when there
are multiple downstream tasks it requires storing a separate finetuned model for each of them.
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2.2 PROMPT TUNING

Recent works explored prompt tuning (Lester et al., 2021) as a lightweight alternative for finetuning,
when instead of training the whole model, a series of virtual tokens – or soft prompt – is trained.
In prompt tuning, a soft prompt P is prepended to the input text x, while keeping other parameters
frozen. In this case, the model parameters Θ are composed of two sets: 1) the pretrained language
model parameters θ which are fixed on downstream tuning, and 2) prompt parameters θp which
are fine-tuned on the given task. Since prompt P has its own dedicated parameters θp, we are not
restricted by the original model parametrization θ, and can perform gradient updates on the prompt
parameters independently.

Given a task T and a probability distribution pθ,θp of output classes parameterized by θ and θp, the
learning objective here is to maximize the log-likelihood of y given the input text x concatenated
with the soft prompt P , or

max
θP

∑
x,y∈T

log pθ,θP (y|[P ;x])

2.3 CONTINUAL LEARNING

In this work, we focus on a continual learning setup, where the language model is presented with
a sequence of m text classification tasks (T1, ..., Tm). In each task we have a set if i.i.d. training
examples (xi, yi)

N
i=1, where xi is an input text and yi is a label from a set of predefined labels Yk

associated with the task Tk. We assume that the model is parameterized by Θ and has access to the
task identity in both training and inference. Hence, the learning objective across all tasks becomes:

max
Θ

m∑
k=1

∑
x,y∈Tk

log pΘ(y|x)

The most straightforward approach for continual learning is finetuning, which sequentially optimizes
loss for task k, k ∈ 1..m by updating all model parameters: Lk(Θ) = −

∑
x,y∈Tk

log p(y|x,Θ).
Continual finetuning will support forward knowledge to future tasks, but will result in catastrophic
forgetting, where performance on the earlier tasks decreases after learning new tasks, and eventually
leads to a higher generalization loss (Kirkpatrick et al., 2017; de Masson D’Autume et al., 2019;
McCloskey & Cohen, 1989).

3 METHOD

Progressive Prompts We propose Progressive Prompts, a continual learning approach which pro-
gressively learns a prompt Pk for each new task Tk (Figure 1). With Progressive Prompts we learn
a separate prompt Pk for task Tk, and concatenate it with all previously learned prompts Pi, i < k,
before prepending to the input embeddings. During training, parameters θ of the language model are
always frozen, and parameters θPk

corresponding to prompt Pk are only trainable during learning
Tk, and frozen afterwards.

The training objective for task Tk (k ∈ {1...m}) is to find prompt parameters θPk
that minimize

the negative log probability of training examples under our progressive prompt and the frozen base
model:

L(θPk
) = −

∑
x,y∈Tk

log p(y|[Pk, ..., P1, x], θ, θP1
, ..., θPk

)

Such a progressive setup allows to achieve two goals for efficient CL: (1) it successfully eliminates
catastrophic forgetting, and (2) allows forward transfer for subsequent tasks. Since Progressive
Prompts trains a separate prompt for each encountered task without modifying its parameters when
new tasks are learned, old tasks do not suffer from forgetting. In addition to that, prompts learned
on previous tasks allow information re-use for future tasks. A similar phenomenon has been shown
by Vu et al. (2021) – prompts learned on informative source tasks served as a good initialization for
other downstream tasks.

Embedding reparameterization Li & Liang (2021) have shown that directly optimizing prompt pa-
rameters can lead to training instability, while reparameterizing prompt embeddings matrix through

3



Under review as a conference paper at ICLR 2023

a multi-layer perceptron (MLP) can improve performance. At the same time, Liu et al. (2021) report
that prompt embedding reparameterization can hinder performance on certain tasks and is highly
sensitive to its initialization. To solve this issue, we propose adding a residual connection to the
MLP reparameterization. This residual connection improves optimization, because it avoids learn-
ing an identity mapping by the MLP. More specifically, we reparameterize prompt Pk for task Tk as
follows:

P
′

k = MLP(Pk) + Pk

After training on task k is complete, the reparameterization parameters MLP can be discarded, and
prompt embeddings Pk can be replaced by their corresponding projection P

′

k.

4 EXPERIMENTAL SETUP

4.1 DATASETS

Continual Learning Benchmark We first evaluate our approach on the widely adopted CL bench-
mark for language models, which includes five text classification datasets by Zhang et al. (2015):
AG News (4 classes, news classification), Amazon reviews (5 classes, sentiment analysis), Yelp
reviews (5 classes, sentiment analysis), DBpedia (14 classes, Wikipedia text classification) and Ya-
hoo Answers (10 classes, Q&A classification). We provide the task details in Appendix A.1 and
sequences of tasks used in our experiments in Appendix A.2.

Following previous works on CL for BERT model, including IDBR (Huang et al., 2021) and
MBPA++ (de Masson D’Autume et al., 2019), for BERT-based experiments we use four differ-
ent orders of these five tasks. We use the same train and test sets as IDBR (Huang et al., 2021) and
MbPA++ (de Masson D’Autume et al., 2019), consisting of 115,000 training and 7,600 test exam-
ples for each task. Following Huang et al. (2021), for every task we randomly hold out 500 samples
per class from the training set for validation, and use early stopping according to the validation
accuracy on all seen tasks.

Following CL setup for T5 model as in LFPT5 (Qin & Joty, 2021), we use three different orders of
the AG News, Amazon, Yahoo and DBpedia datasets. We replicate Qin & Joty (2021) few-shot CL
setting and sample 16 examples per task for the training set and keep the test sets unchanged.

Large number of tasks While previous CL approaches mostly focused on relatively short task
sequences of 3-5 tasks (Huang et al., 2021; de Masson D’Autume et al., 2019; Qin & Joty, 2021), a
more realistic CL scenario would be long sequences encompassing more tasks. Hence, we create a
benchmark of 15 text classification tasks to evaluate the performance of Progressive Prompts along
with widely adopted CL approaches. Our benchmark consist of the aforementioned five datasets
from CL benchmark, combined with four tasks from GLUE benchmark (MNLI, QQP, RTE, SST2)
(Wang et al., 2018), five tasks from SuperGLUE benchmark (Wang et al., 2019) (WiC, CB, COPA,
MultiRC, BoolQ), and IMDB movie reviews dataset (Maas et al., 2011). To evaluate performance
under different dataset sizes, we create three different versions of each dataset, with 20, 200 and
1000 training samples sampled per class, and report test set performance for each of these settings.
Again, we follow Huang et al. (2021) practice and for every task we randomly hold out 500 samples
per class from the training set for validation, and use early stopping according to the validation
accuracy on all seen tasks. We provide the task details in Appendix A.1 and sequences of 15 tasks
used in our experiments in Appendix A.2.

Transfer learning experiments We also run ablation experiments to understand the effect of for-
ward transfer with Progressive Prompts. Firstly, we perform experiments on six pairs of transfer
learning tasks from similar domains (IMDb & SST2, Amazon & Yelp, QQP & MRPC) following
Hendrycks et al. (2020). Secondly, we perform experiments on SuperGLUE benchmark (Wang et al.,
2019) with Progressive Prompts and compare the performance against original per-task prompt tun-
ing by Lester et al. (2021). Following Lester et al. (2021) setup, we use full training sets of eight
SuperGLUE tasks and report best validation performance.

4.2 BASELINES

We consider nine baseline methods for comparison with ProgressivePrompts:
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• Finetune (Wang et al., 2020; de Masson D’Autume et al., 2019; Huang et al., 2021): train all
model parameters on a sequence of tasks (without adding any regularization constraints or replay-
ing samples from the previous tasks).

• EWC (Kirkpatrick et al., 2017): finetune the whole model with a regularization loss that prevents
updating parameters that could interfere with previously learned tasks.

• A-GEM (Chaudhry et al., 2018): save examples from the past tasks and restrict the gradients used
to update the model on new tasks based on the retrieved examples.

• Experience replay: finetune the whole model with a memory buffer, and replay samples from old
tasks when learning new tasks to avoid forgetting.

• MBPA++ (de Masson D’Autume et al., 2019): augment BERT with an episodic memory that
saves all seen examples. Perform replay during training, and local adaptation during test time.

• IDBR (Huang et al., 2021): BERT-specific approach which continuously trains the whole model
using data replay and a regularization loss, which applies sentence representation disentanglement
into task-specific and task-generic spaces. Current SOTA on CL benchmark with BERT.

• Per-task prompts (Lester et al., 2021): train a separate soft prompt for each task, while keep-
ing the original model frozen. This setup will eliminate catastrophic forgetting, since per-task
parameters do not change when new tasks are learned, but will not result in forward transfer.

• PromptTuning (Lester et al., 2021; Qin & Joty, 2021): train a shared soft prompt sequentially on
all tasks, while keeping the original model parameters frozen.

• LFPT5 (Qin & Joty, 2021): continuously train a soft prompt that simultaneously learns to solve
the tasks and generate training samples, which are subsequently used in experience replay. Current
SOTA on CL benchmark with T5.

4.3 IMPLEMENTATION DETAILS

Progressive Prompts is a model-agnostic CL method that can be used with any transformer-based
model. In our experiments, we use two language models adopted by the previous lines of works in
CL for NLP: encoder-only BERT model (Devlin et al., 2018) and encoder-decoder T5 model (Raffel
et al., 2020). To compare Progressive Prompts to the recent CL approaches implemented specifically
with BERT, we use the pre-trained BERT-base model as in IDBR and MBPA++ methods (Huang
et al., 2021; de Masson D’Autume et al., 2019). For comparison with LFPT5 approach (Qin & Joty,
2021) we use pre-trained T5-large1 model.

BERT Following Devlin et al. (2018), to predict the class of input text x, we use the representation
of its first token h[CLS] (which is encoded by a special beginning-of-a-sentence symbol, [CLS]) as
a sentence representation. Here h is the whole-input representation matrix from BERT encoder. We
apply a linear transformation parametrized by w and a softmax function to obtain the classification
probabilities over classes c ∈ {1...C}:

p(y = c|h) =
exp(wch[CLS])∑
y∈C exp(wyh[CLS])

In BERT experiments we train a separate linear head in addition to prompt embeddings for each
task, using cross-entropy loss between the predicted classification probabilities and ground truth
class labels.

T5 Following Raffel et al. (2020) and Lester et al. (2021), we adopt text-to-text formulation for
all T5 experiments, where classification labels are mapped into words (e.g. 0/1 could be encoded
as ”True”/”False”). T5 model applies a multi-headed self-attention over the input tokens followed
by position-wise feed-forward layers to produce an output distribution over target tokens. We train
prompt embeddings for T5 model using cross-entropy loss. We report the rest of the implementation
details in Appendix A.3.

1Although the original prompt tuning approach reports better performance with T5 v1.1 compared to T5,
several subsequent works find version v1.1. less stable for prompt tuning compared to the original T5 and
report worse performance (Karimi Mahabadi et al., 2021; Asai et al., 2022). Therefore, in this work we use the
original T5 model.
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Prompt length For all Progressive Prompt experiments on BERT, we set single-task prompt length
to 20 tokens and apply prompt reparameterization with a two-layer residual MLP. For T5 experi-
ments, we use single-task prompt length to 10 tokens in case of long-sequence experiments and 50
in case of T5 experiments (so that total Progressive Prompt length more closely matches LFPT5
prompt length of 300). We report more experimental details in Appendix A.4.

5 EXPERIMENTAL RESULTS

For all CL experiments we evaluate methods after training on all tasks and report averaged test set
scores across all tasks. Metrics used for different tasks are shown in Appendix A.1. We report Pro-
gressive Prompts performance with BERT-base and T5-large models, and compare it to the existing
CL approaches used with these models.

Order
Method DR 1 2 3 avg

Finetune 18.9 24.9 41.7 28.5
Replay ✓ 35.4 37.1 41.5 38.0
EWC 39.0 38.0 44.8 40.6
LFPT5∗ ✓ 47.6 52.6 57.9 52.7
ProgPrompt∗ 75.2 75.0 75.1 75.1

Per-task Finetune 70.0 70.0 70.0 70.0

(a) Results with T5-large.

Order
Method DR 4 5 6 7 avg

Finetune 14.8 27.8 26.7 4.5 18.4
Replay ✓ 67.2 64.7 64.7 44.6 57.8
A-GEM ✓ 70.6 65.9 67.5 63.6 66.9
MBPA++ ✓ 70.8 70.9 70.2 70.7 70.6
IDBR ✓ 75.9 76.2 76.4 76.7 76.3
ProgPrompt∗ 78.0 77.7 77.9 77.9 77.9

Per-task Finetune 73.9 73.9 73.9 73.9 73.9

(b) Results with BERT-base.

Table 1: Summary of the results on two standard CL benchmarks with T5 and BERT models. Av-
eraged accuracy after training on the last task is reported. All results are averaged over 3 runs. For
T5 experiments we followed Qin & Joty (2021) protocol and used few-shot CL setting. Methods
marked with ∗ only train a soft prompt while keeping the model frozen, other methods train the
entire model. DR denotes whether the method requires data replay.

5.1 RESULTS ON STANDARD CONTINUAL LEARNING BENCHMARKS

T5 benchmark. Table 1a compares Progressive Prompts performance on the few-shot CL bench-
mark for T5 model with the existing CL approaches, including previous SOTA – LFPT5 (Qin &
Joty, 2021). Notably, Progressive Prompts achieve over 20% improvement compared to LFPT5.
This drastic increase in accuracy is explained by the fact that Progressive Prompts method does not
experience forgetting and allows forward transfer, which is especially useful in few-shot regime.
Of note, Qin & Joty (2021) report better performance of LFPT5 in continual learning setting than
Adapter-Fusion (Pfeiffer et al., 2020) – a strong parameter-efficient CL approach based on adapters.
Hence, we did not include adapter baselines in this study, but instead focused on a more parameter-
efficient and better-performing method – LFPT5.

BERT benchmark. Table 1b compares performance of Progressive Prompts across four different
task orders with existing CL approaches for BERT model, including previous SOTA – IDBR (Huang
et al., 2021). We want to note that CL benchmark for BERT focuses on full dataset experiments,
contrary to few-shot CL benchmark for T5. Since Progressive Prompts are most efficient in few-shot
setting, we observe a larger performance gap with LFPT5 compared to IDBR. Overall, Progressive
Prompts further improve performance compared to IDBR, reaching 77.9 average score across all or-
ders. We also note that Progressive Prompts is a model-agnostic approach, contrary to IDBR, which
is designed specifically for BERT. Additionally, our method does not require storing data from the
previous tasks for future replay, in contrast to the previous commonly used CL approaches for BERT
– IDBR and MBPA++. In all of our experiments we use the embedding reparameterization defined
in Section 3. We find that this reparameterization helps in stabilizing and accelerating training. Due
space limitations, we explore the effect of residual reparameterization in Appendix A.7).
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5.2 PERFORMANCE WITH LARGE NUMBER OF TASKS

Table 2 compares common CL approaches, including SOTA methods for T5 and BERT models (Qin
& Joty, 2021; Huang et al., 2021), on a sequence continual learning with 15 tasks. We report aver-
aged results across three task orders (8, 9 and 10) obtained with T5-Large and BERT-base models.
We provide the full non-averaged results for each order in Appendix A.5. To investigate the effect of
limited data settings, we perform training on different dataset sizes with 20, 200 and 1000 samples
per class.

Method ↓ avg Method ↓ avg
Num. samples → 20 200 1000 Num. samples → 20 200 1000

T5-Large results BERT-base results
Finetune 9.7 8.3 7.4 Finetune 31.3 42.4 41.7
Prompt tuning∗ 17.4 13.9 10.9 Prompt tuning∗ 47.6 57.2 59.5
Replay 43.6 44.2 54.4 Replay 36.4 47.0 49.6
Per-task Prompts∗ 69.8 75.2 77.0 Per-task Prompts∗ 50.6 62.4 67.2
LFPT5∗ 54.3 58.2 69.2 IDBR 36.8 47.9 52.2
ProgPrompt∗ 76.2 78.7 79.5 ProgPrompt∗ 53.5 66.9 69.3
MTL 70.7 72.5 76.3 MTL 56.9 67.7 69.9
Per-task Finetune 68.2 73.7 78.1 Per-task Finetune 53.2 58.4 63.1

Table 2: Progressive Prompts outperforms existing continual learning methods on T5-Large and
BERT-base models over long sequences of tasks (15 tasks in total). Average results across three
different task orders with 20, 200 and 1000 samples per class are shown. MTL denotes multi-task
learning. Methods marked with ∗ only train a soft prompt while keeping the model frozen, other
methods train the entire model.

Figure 2: Average attention scores be-
tween prompts in Progressive Prompts.

Our approach, Progressive Prompts, consistently outper-
forms all other methods across different data limits, with
the strongest improvement in the few-shot setting of 20
samples per class: +21.9% and +33.3% over previous
SOTA approaches on T5 and BERT models respectively.
We also provide more fine-grained performance met-
rics defined by Lopez-Paz & Ranzato (2017), including
forward transfer (FWT) and backward transfer (BWT)
scores, as well as evolution of accuracy with learning new
tasks in Appendix A.5.

Attention between prompts To investigate which
prompts from the progressive pool are helpful for learn-
ing new tasks, we visualized between-prompt attentions
(Figure 2). We used Progressive Prompts trained on or-
der 8 with T5 model. For each of the 15 consecutive tasks,
we passed all test examples through T5 encoder, and ex-
tracted attention matrices from its last layer (24th layer).
We averaged attention scores across all prompt tokens and
all heads, and shown the results in Figure 2. Interestingly,
prompts learn to ignore irrelevant tasks and attend to the most similar or informative tasks. For ex-
ample, prompt learned on Amazon reviews task heavily attends to Yelp reviews prompt, and SST2
prompt attends to the prompt learned on IMDb - another sentiment analysis task.

5.3 FORWARD TRANSFER EXPERIMENTS

In this section we study in more detail the forward transfer phenomenon achieved with Progressive
Prompts. In particular, can a subsequent task prompt exploit the knowledge from a previously
learned prompt in learning a new related task?
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Transfer Learning on a pair of tasks We compare the performance of a single prompt of length
2M versus a Progressive Prompt consisting of two M -length prompts, M = 50 (see Figure 3). We
follow a similar transfer learning experimental protocol by Hendrycks et al. (2020) and use pairs
of six tasks from similar domains: IMDb and SST2 (2-class sentiment classification), Amazon and
Yelp reviews (5-class sentiment classification), MRPC and QQP (paraphrase detection). We use
T5-Large model, and study both settings: full-dataset and few-shot (2, 5 and 20 samples per class).
Our results are summarized in Table 3 and Figure 4. Overall, we observe that Progressive Prompts
achieve forward transfer and outperform the standard prompt tuning across all dataset sizes. The
strongest improvements happen in few-shot setting – +20.4% and +12.9% relative improvement
under 5-shot and 2-shot setup.

N-shot Task
Source → Target

Prompt
Tuning

(w/o transfer)

Progressive
Prompt

(w/ transfer)

Relative
Improv.

All

imdb →sst2 93.6±2.5 95.8±0.4 +2.4%
sst2 → imdb 93.1±0.4 93.3±0.3 +0.2%

amazon → yelp 61.2±0.5 63.5±0.5 +3.8%
yelp → amazon 58.2±0.9 59.0±0.8 +1.4%

mrpc → qqp 91.1±0.7 90.9±0.4 -0.2%
qqp → mrpc 84.6±0.2 85.0±0.8 +0.5%

Average 80.3 81.2 +1.3%

20/class

imdb →sst2 85.0±6.0 91.4±1.2 +7.5%
sst2 → imdb 93.4±0.3 93.2±0.6 -0.2%

amazon → yelp 50.2±5.0 52.5±2.1 +4.6%
yelp → amazon 37.8±5.1 54.9±2.1 +45.2%

mrpc → qqp 88.6±1.3 89.4±1.6 +0.9%
qqp → mrpc 84.8±0.0 85.2±0.4 +0.5%

Average 73.3 77.8 +9.8%

5/class

imdb →sst2 58.2±2.7 84.4±8.1 +45.0%
sst2 → imdb 61.1±5.0 91.2±2.5 +49.3%

amazon → yelp 26.2±3.8 27.3±1.4 +4.2%
yelp → amazon 24.2±2.1 29.7±3.7 +22.7%

mrpc → qqp 88.4±2.5 92.0±0.3 +4.1%
qqp → mrpc 86.9±0.6 84.3±0.6 -3.0%

Average 57.5 68.2 +20.4%

Table 3: Transfer learning results on pairs of six tasks from
similar domains (IMDb & SST2, Amazon & Yelp, MRPC &
QQP). All results are averaged over 3 runs. We report average
score between F1 and accuracy for MRPC and QQP, and ac-
curacy for all other tasks.

Figure 3: Transfer learning experimen-
tal setup. Prompt Tuning: a single
prompt of 100 tokens is trained on target
task. Progressive Prompt: two prompts
of 50 tokens are trained sequentially on
source and target tasks.

Figure 4: Progressive Prompts achieve
forward transfer and outperform Prompt
Tuning under different dataset sizes.
Average scores across six target tasks
are reported.

Method SuperGLUE score

Per-task PT 74.5±2.2
ProgPrompt 77.2±1.9

Per-task FT 81.3±0.6

Table 4: SuperGLUE performance of the orig-
inal Prompt Tuning approach vs Progressive
Prompts. Averaged validation performance
across all tasks is shown.

GLUE → SuperGLUE transfer We perform ad-
ditional experiments on SuperGLUE benchmark to
compare the forward transfer effect of Progressive
Prompts with standard prompt tuning. In the orig-
inal prompt tuning paper, a separate prompt PT is
trained for each SuperGLUE task T (Lester et al.,
2021). PT is a trainable matrix of 100 × e di-
mension, where 100 is the prompt length and e
if the embedding dimension. PT is concatenated
with the input text x and then fed into the model
as [PT ;x]. For Progressive Prompt we perform
training in two steps. First, we learn a progres-
sive prompt on GLUE benchmark PGLUE. PGLUE
is composed of 6 per-task GLUE prompts with a
length of 10 on random task order, and the final dimension of PGLUE is 60 × e. After that, we
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learn a length-40 prompt [PTProg for every SuperGLUE task T and concatenate it with the GLUE
prompt before appending to the input x: [PTProg ;PGLUE;x] (illustration of the experimental setup is
in Appendix A.6).

Following Lester et al. (2021) we train a separate soft prompt for each SuperGLUE task on its full
train set with a fixed number of epochs, and report the validation set performance. Similarly to
Lester et al. (2021), for each SuperGLUE task use metrics recommended by Wang et al. (2019) and
for tasks with two metrics we compute an average of the two. Our results are shown in Table 4 –
Progressive Prompt improves the standard prompt tuning performance by 2.7 points on SuperGLUE
benchmark. This confirms that progressive prompt concatenation allows knowledge reuse from the
previous prompts that were learned on GLUE benchmark.

6 RELATED WORK

Continual Learning Existing continual learning approaches can be broadly organized into three
main categories: (i) replay-based, (ii) regularization-based, and (iii) architecture-based (de Mas-
son D’Autume et al., 2019; Huang et al., 2021). Replay-based methods store a subset of data
from previous tasks for future rehearsal via experience replay, representation consolidation or con-
strained optimization. The data can be either stored directly or synthesized by generative models.
Regularization-based approaches restrict changes of model’s parameters to avoid inference with pre-
viously learned tasks (Li & Hoiem, 2017; Kirkpatrick et al., 2017). Architecture-based approaches
learn different set of parameters dedicated for a separate task.

Recently, replay-based and regularization-based approaches have been successfully applied for con-
tinual learning in language models. While replay-based approaches have shown strong results for
classification, question answering and relation extraction tasks, they pose significant memory re-
quirements due to storing large number of samples for rehearsal. Additionally, for many applications
such storage would not be feasible due to privacy settings, when access to the past data is not avail-
able. Regularization-based approaches are more memory-efficient than replay-based approaches,
but suffer from catastrophic forgetting and are often not suitable for long task sequences. In contrast
to regularization-based and replay-based approaches, architectural CL approaches are more efficient
in resolving catastrophic forgetting problem and, hence, are suitable for sequences spanning a large
number of tasks.

Parameter-efficient Learning Recent works on parameter-efficient learning have shown that by
training a subset of parameters, we can achieve a full model performance (Houlsby et al., 2019;
Li & Liang, 2021; Karimi Mahabadi et al., 2021; Lester et al., 2021). While this line of work has
mostly focused on learning a single task, there has been some attempts on using parameter-efficient
tuning for CL. For instance, Madotto et al. (2020) proposes AdapterCL which learns a separate
adapter block for each task, and Qin & Joty (2021) proposes LFPT5 that learns a large (length 300)
soft prompt that is continuously trained on all tasks. Both of these approaches have their limitations
– AdapterCL resolves catastrophic forgetting problem, but does not allow forward transfer, while
LFPT5 allows forward transfer but suffers from forgetting.

7 CONCLUSION

This paper presents Progressive Prompts – a novel approach for CL that addresses catastrophic
forgetting in pre-trained language models, while allowing knowledge reuse from previous tasks.
In contrast to many existing CL methods for NLP, the proposed approach does not require saving
examples from the previous tasks for data replay. Moreover, our method does not require storing
a large number of task-specific parameters. Progressive Prompts is a model-agnostic approach and
our experiments with two commonly used language models demonstrate that Progressive Prompts
outperforms baseline methods on a standard CL benchmark for text classification and our custom
benchmark of longer CL sequences that spans 15 tasks.
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A APPENDIX

A.1 DATASETS

Table 5 shows details of the 15 datasets we used for our CL experiments, along with
their evaluation metrics. Overall, we used datasets from CL benchmark (Zhang et al.,
2015), GLUE (Wang et al., 2018) and SuperGLUE (Wang et al., 2019) benchmarks, and
added IMDB movie reviews dataset. Following common practive, for tasks that have
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two evaluation metrics we use the average of the two as the final performance metric.
Dataset name Category Task Domain Metric
1. Yelp CL benchmark sentiment analysis Yelp reviews accuracy
2. Amazon CL benchmark sentiment analysis Amazon reviews accuracy
3. DBpedia CL benchmark topic classification Wikipedia accuracy
4. Yahoo CL benchmark QA Yahoo Q&A accuracy
5. AG News CL benchmark topic classification news accuracy
6. MNLI GLUE NLI various accuracy
7. QQP GLUE paraphrase detection Quora accuracy & F1
8. RTE GLUE NLI news, Wikipedia accuracy
9. SST2 GLUE sentiment analysis movie reviews accuracy
10. WiC SuperGLUE word sense disambiguation lexical databases accuracy
11. CB SuperGLUE NLI various accuracy
12. COPA SuperGLUE QA blogs, encyclopedia accuracy
13. BoolQ SuperGLUE boolean QA Wikipedia accuracy
14. MultiRC SuperGLUE QA various F1 & EM
15. IMDB Other sentiment analysis movie reviews accuracy

Table 5: The details of 15 datasets used in our CL experiments. NLI denotes natural language
inference, QA denotes questions and answers task, EM denotes exact match scoring. First five tasks
correspond to the standard CL benchmark, all other tasks are used in our long-sequence experiments.

A.2 TASK SEQUENCE ORDERS

We report task orders used for our CL experiments across BERT and T5 models in Table 6 below:
Order Model Task Sequence
1 T5 db ) amazon ) yahoo ) ag
2 T5 db ) amazon ) ag ) yahoo
3 T5 yahoo ) amazon ) ag ) db

4 BERT ag ) yelp ) amazon ) yahoo ) db
5 BERT yelp ) yahoo ) amazon ) db ) ag
6 BERT db ) yahoo ) ag ) amazon ) yelp
7 BERT yelp ) ag ) db ) amazon ) yahoo

8 T5, BERT mnli ) cb ) wic ) copa ) qqp ) boolq ) rte ) imdb )

yelp ) amazon ) sst2 ) dbpedia ) ag ) multirc ) yahoo

9 T5, BERT multirc ) boolq ) wic ) mnli ) cb ) copa ) qqp ) rte )

imdb ) sst2 ) dbpedia ) ag ) yelp ) amazon ) yahoo

10 T5, BERT yelp ) amazon ) mnli ) cb ) copa ) qqp ) rte ) imdb )

sst2 ) dbpedia ) ag ) yahoo ) multirc ) boolq ) wic

Table 6: Ten different orders of task sequences used for continual learning experiments. Orders
1-7 correspond to the standard CL becnhmark adopted by prior works. Orders 8-10 are our custom
long-sequence orders spanning 15 tasks.

A.3 IMPLEMENTATION DETAILS

We use PyTorch (Paszke et al., 2019) and HuggingFace Transformers library (Wolf et al., 2019)
for our implementation. For the standard CL benchmark, we use official datasets provided by
Zhang et al. (2015) available at http://goo.gl/JyCnZq, following de Masson D’Autume
et al. (2019); Zhang et al. (2015). We use HuggingFace datasets (https://github.com/
huggingface/datasets) to download data for GLUE tasks (Wang et al., 2018), SuperGLUE
tasks (Wang et al., 2019) tasks, and IMDB movie reviews dataset (Maas et al., 2011), which we use
for long-sequence CL experiments and/or ablation studies. Following previous studies (Rao et al.,
2019; de Masson D’Autume et al., 2019), for CL experiments, for each dataset we use the available
validation set as a test set (since test data is not available), and hold out 500 samples from the train
set to construct the validation set. For our ablation studies, since we compare Progressive Prompts
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with the original prompt tuning (Lester et al., 2021), we follow their set up and report maximal
validation set performance.

A.4 EXPERIMENT DETAILS

We use Adam optimizer (Kingma & Ba, 2014) and set batch size to 8 for all the experiments, except
for MTL runs with a batch size of 2 (due to memory limitations). We train each prompt between 10
and 300 epochs, depending on the number of data points. We use the prompt checkpoints with the
best validation set score as our final prompts. Prompts are initialized from randomly sampled tokens
as in Lester et al. (2021), hyperparametes are shown in the Table 7 below:

Hyperparameter ↓ CL benchmark Long-sequence benchmark
Num. samples → - 1000 200 20

BERT
Epochs 40 40 150 300
Learning rate 1e− 4 1e− 4 1e− 4 1e− 4
Prompt length 20 20 20 20

T5
Epochs 10 10 150 300
Learning rate 0.3 0.3 0.3 0.3
Prompt length 50 10 10 10

Table 7: Hyperparameters used for Progressive Prompts across different CL experiments.

For all CL experiments we use early stopping as in Huang et al. (2021), to save model checkpoint
based on the best validation performance on the current task. We report test set performance after
training on all tasks as our final metric. For SuperGLUE experiments, we report maximal validation
set performance over the course of training as in Lester et al. (2021). We measure the validation
performance after every epoch and use metrics described in Appendix A.1. We use 1% of samples
per class for the replay approach (but no less than 1 sample per class), following Huang et al. (2021).
We use the same hyperparameter setting for all prompt-based approaches (Progressive Prompts,
prompt tuning, per-task prompts), except for prompt tuning we use a longer shared prompt of 200
tokens. For all other approaches, we use hyperparameters provided in their corresponding papers.

A.5 LONG SEQUENCE EXPERIMENTS

Method Few-shot Full-shot

PT + Prev. Init. 48.2 50.0
ProgPrompt 53.5 69.3

Table 8: Comparison of Prompt Tuning and
Progressive Prompts, when shared promot in
Prompt Tuning is initialized from the previous
task. Average test accuracy after observing all
tasks is shown (averaged across three orders).

Here we report results for orders 8, 9 and 10 of
continual learning experiments with long task
sequences of 15 tasks. We show test set perfor-
mance averaged across all tasks for each method.
Test scores are calculated after training has been
completed. Results are shown in Table 9. We also
investigate improvement of Progressive Prompts
compared to per-task prompt on the corresponding
task in Figure 12. Clearly, some tasks benefit
from knowledge sharing from the progressively
added prompts. Additionally, we assessed if
initializing new prompt from the previous task
prompt would result in better performance of
continual prompt tuning. We observe that Pro-
gressive Prompts outperform this setup in both few-shot (20/class) and full-shot settings, see Table 8.

In addition to average performance, we compute more fine-grained performance metrics de-
fined by Lopez-Paz & Ranzato (2017) for different approaches under long-sequence experiments.
Specifically, we compute backward transfer and forward transfer metrics, and evolution of average
accuracy over learning new tasks. Our results on FWT for task orders 8, 9 and 10 are shown in
Figure 5, Figure 6 and Figure 7 respectively. Our results on BWT for task orders 8, 9 and 10
are shown in Figure 8, Figure 9 and Figure 10 respectively. Evolution of accuracies is shown in
Figure 11.
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Figure 5: Forward transfer score of different approaches on order 8. Different data limits are shown
(20, 200 and 1000 samples per class).
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Figure 6: Forward transfer score of different approaches on order 9. Different data limits are shown
(20, 200 and 1000 samples per class).
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Figure 7: Forward transfer score of different approaches on order 10. Different data limits are shown
(20, 200 and 1000 samples per class).
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Figure 8: Backward transfer score of different approaches on order 8. Different data limits are
shown (20, 200 and 1000 samples per class).

17



Under review as a conference paper at ICLR 2023

Figure 9: Backward transfer score of different approaches on order 9. Different data limits are
shown (20, 200 and 1000 samples per class).
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Figure 10: Backward transfer score of different approaches on order 10. Different data limits are
shown (20, 200 and 1000 samples per class).

Figure 11: Evolution of average accuracy after learning new tasks.
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Method ↓ Order 8 Order 9 Order 10 avg
Num. samples → 20 200 1000 20 200 1000 20 200 1000 20 200 1000

T5-Large results

Finetune 9.3 8.9 7.4 9.5 8.1 7.4 10.4 7.9 7.5 9.7 8.3 7.4
Replay 46.0 45.0 55.2 50.3 43.7 54.8 34.6 43.8 53.3 43.6 44.2 54.4
PromptTuning 9.7 8.4 8.2 24.4 16.8 8.7 12.2 8.0 7.9 17.4 13.9 10.9
Per-task Prompts 69.9 75.2 77.0 69.9 75.2 77.0 69.9 75.2 77.0 69.8 75.2 77.0
LFPT5 54.7 61.6 70.4 54.1 54.3 68.2 54.2 58.8 69.1 54.3 58.2 69.2
ProgPrompt 75.4 79.1 79.5 76.6 78.2 79.1 76.7 78.9 79.8 76.2 78.7 79.5

MTL 70.7 72.5 76.3 70.7 72.5 76.3 70.7 72.5 76.3 70.7 72.5 76.3

BERT-base results

Finetune 29.9 43.4 40.9 30.5 42.0 42.5 33.6 41.9 41.8 31.3 42.4 41.7
Replay 34.9 46.3 51.0 39.3 48.1 51.5 34.9 46.5 46.3 36.4 47.0 49.6
Per-task Prompts 50.6 62.4 67.2 50.6 62.4 67.2 50.6 62.4 67.2 50.6 62.4 67.2
IDBR 39.7 48.4 52.3 37.9 46.6 54.1 32.9 48.8 50.1 36.8 47.9 52.2
ProgPrompt 55.3 67.9 68.9 53.3 65.8 70.0 51.9 66.9 69.0 53.5 66.9 69.3

MTL 56.9 67.7 69.9 56.9 67.7 69.9 56.9 67.7 69.9 56.9 67.7 69.9

Table 9: Average test set performance of Progressive Prompts and common CL approaches on long-
sequence experiments with 15 text classicication tasks (orders 8, 9 and 10). We report results for
BERT and T5 models across different limits of data – 20, 200 and 1000 samples per class. MTL
denotes multi-task learning. All results are averaged over 3 runs.

Figure 12: Per-task improvement of Progressive Prompts verus per-task prompts in CL experiment
with order 8 across different data limits (20, 200 and 1000 samples per class). X-axis shows the se-
quence of tasks, Y-axis shows percentage improvement of Progressive Prompts test score compared
to per-task prompt on the corresponding task.

A.6 SUPERGLUE EXPERIMENTS SETUP

Comparison of the original prompt tuning on SuperGLUE (Lester et al., 2021) and our Progressive
Prompt setup is shown in Figure 13.
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Figure 13: Original prompt tuning versus Progressive Prompts on SuperGLUE datasets. For illus-
tration, we show how SuperGLUE task WiC is leaned (we have similar scheme for other tasks).
Prompt tuning trains a single prompt of 100 tokens for WiC task. Progressive Prompts method
learns a prompt of 40 tokens, which is progressively appended to the six frozen prompts of 10 to-
kens learned on GLUE benchmark (with random task order). Total prompt length is equal in both
approaches.

A.7 EFFECT OF PROMPT REPARAMETERIZATION

We find that residual reparameterization allows to reach performance close to finetuning, and is
especially helpful for BERT model. Table 10 shows the results of regular prompt tuning, prompt
tuning with MLP reparameterization and prompt tuning with residual MLP reparameterization on
BERT-base model. As in all our experiments, we use a 2-layer MLP with the hidden layer dimension
of 800. We show the best performance on four different tasks with prompts of length 5 and 30.
Following Lester et al. (2021), we report the maximal validation set performance for each dataset.
Our results show that residual MLP reparameterization results in performance improvement over
standard prompt tuning, reaching close to finetuning performance (Table 10). Notably, with length-
5 prompt, residual MLP improves accuracy by approximately 6% and 4% for IMDB and QQP
datasets, matching full model tuning. Regular MLP reparameterization generally leads to either
smaller improvement than residual MLP or even worse performance than prompt tuning.

Prompt len. → length 5 length 30
Task ↓ PT PT+MLP PT+resMLP PT PT+MLP PT+resMLP FT

IMDB 85.80.7 83.40.9 91.40.8 89.11.0 90.21.5 91.21.4 92.90.4
QQP 72.90.8 73.11.1 76.61.2 72.21.5 73.94.1 77.30.9 78.60.9
RTE 65.02.3 64.83.2 65.03.5 67.83.2 67.63.6 66.23.1 66.22.0
MRPC 72.10.8 71.51.4 75.80.9 73.40.8 76.93.4 79.01.3 86.31.6

Table 10: Effect of prompt embeddings reparametrization on prompt tuning performance with BERT
model. Average performance across 3 runs is shown. PT: regular prompt tuning, PT+MLP: prompt
tuning with prompt passed through 2-layer MLP, PT+resMLP (our approach): prompt tuning with
prompt passed through 2-layer MLP with a skip connection (residual MLP). FT: full model finetun-
ing. Best results for each prompt length (5 and 30) are highlighted in bold.
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