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Abstract

Multi-robot-arm motion planning is a key challenge in de-
ploying multiple manipulators for industrial tasks such as
manufacturing. Existing search-based and sampling-based
solvers often require significant computation time to produce
collision-free, high-quality motions suitable for safe execu-
tion. In this work, we introduce a new suite of multi-robot-
arm motion planners capable of near real-time motion gen-
eration, combining classical planning algorithms with state-
of-the-art vectorized collision-checking techniques. Based on
CPU SIMD instructions, our new planners remove motion
validation as the primary bottleneck and achieve up to two
orders of magnitude speedup in both motion planning and
execution postprocessing for multi-arm manipulation tasks.
We also release the implementation of our vector-accelerated
multi-robot planning and execution algorithms, and we be-
lieve this will lower the barrier for research and development
of multi-robot-arm planning and manipulation problems. Our
code is available at https://vamp-mr.github.io/vamp-mr/.

1 Introduction
Robotic systems have the potential to transform industries
such as construction and manufacturing by automating haz-
ardous and physically demanding tasks like welding, pol-
ishing, assembly, and handling heavy objects. In theory, de-
ploying multiple robots within a shared workcell can greatly
enhance efficiency and throughput through collaboration
and parallelization. In practice, however, this vision remains
elusive: coordinating teams of robot arms to operate safely,
efficiently, and robustly is highly challenging, and most
multi-robot setups still require extensive manual program-
ming. This approach is costly, time-consuming, and diffi-
cult to adapt when production needs change. Consequently,
there is a demand for fast and reliable multi-robot-arm mo-
tion planning (M-RAMP) algorithms for pushing forward
industrial automation.

In this work, we target a key bottleneck shared by nearly
all multi-robot-arm motion planning methods—collision
checking and motion validation. Our approach builds upon
Vector-Accelerated Motion Planning (VAMP) (Thomason,
Kingston, and Kavraki 2024), a high-performance single-
robot-arm motion planner featuring CPU-SIMD-vectorized

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Original Spherized

148x
Figure 1: Our multi-robot-arm collision checking primitive
achieves two orders of magnitude speedup for vectorized
motion validation with spherized robot geometry and CPU
SIMD instructions.

forward kinematics and collision checking, and extends it
to multi-robot settings (Fig. 1). SIMD (Single Instruction,
Multiple Data) increases the throughput of processing robot
geometry data by parallelizing vector operations over multi-
ple robot configurations. As a central contribution, we intro-
duce a generalized collision-checking module that supports
multiple robot arms with flexible input definitions for rel-
ative transformations, robot count, attachments, obstacles,
and configurations. This design allows our system to replace
existing frameworks such as FCL (Pan, Chitta, and Manocha
2012) and Bullet (Coumans and Bai 2021), achieving up to
100× speedups in both motion planning and postprocess-
ing—without requiring any other algorithmic changes. Our
experiments demonstrate that standard planning and post-
processing pipelines can efficiently generate the motion for
four robot arms in under a second on average, and that exist-
ing multi-agent pathfinding (MAPF) algorithms perform re-
markably well even without adaptation to articulated robots.
We believe this work lowers the barrier to research in multi-
robot-arm manipulation, including optimal planning, task
and motion planning, and workcell layout optimization.

2 Background
2.1 Multi-Robot-Arm Motion Planning
Multi-Robot-Arm Motion Planning (M-RAMP) is an
emerging research area focused on centrally coordinating



the motion of multiple robot arms operating in tight and
cluttered environments. We define the M-RAMP problem
as follows. Given a set of N robot arms, each with a fixed
base transform wTi ∈ SE(3) and a configuration space
Ci ⊆ RDoFi

, where DoFi denotes the number of degrees
of freedom of robot i, all robots operate in a shared envi-
ronment with obstacles wO. The objective is to find a set of
collision-free joint space trajectories τ = {τ1, τ2, . . . τN}
from a pair of start configuration [C1

start, . . . , C
N
start] to a goal

configuration [C1
goal, . . . , C

N
goal] for each robot.

A straightforward approach is to model all robots as a
single composite system with the combined DoF and ap-
ply a single-agent planner such as RRT-Connect (Kuffner
and LaValle 2000), RRT* (Karaman and Frazzoli 2011), or
graph-of-convex-sets planning (Marcucci et al. 2022). How-
ever, the dimensionality of such joint configuration spaces
grows rapidly with the number of robots, making these
methods computationally prohibitive.

To address scalability, researchers have extended multi-
agent pathfinding (MAPF) techniques—originally devel-
oped for 2D discrete grid worlds—to continuous, high-
dimensional configuration spaces. For instance, Solis et al.
(2021), Shaoul et al. (2024a), and Shaoul et al. (2024b)
adapt variants of conflict-based search (CBS) (Sharon et al.
2015) to incrementally plan motions for individual robot
arms while resolving inter-robot collisions through a high-
level tree search with motion constraints. Prioritized plan-
ning methods have also been applied, generating trajecto-
ries sequentially for each robot arm (Hartmann et al. 2023;
Chen et al. 2022), although these approaches lack the the-
oretical guarantees of CBS-style solvers. For executing a
multi-robot-arm plan in the real world, uncertainties due to
controller and sensor delay must be addressed. One solution
is to use a temporal plan graph (TPG) (Huang et al. 2025),
a partially ordered graph, to identify all potential collisions
and coordinate each robot based on their precomputed ac-
tions and precedences.

Beyond traditional planning-based techniques, learning-
based approaches such as (Lai et al. 2025) train centralized
neural networks to control the synchronized motion of mul-
tiple robot arms using reinforcement learning in randomized
environments. Our proposed method is complementary to
all these works: it can accelerate motion validation in both
sampling- and search-based planners and can also speed up
feature and reward evaluations in learning-based controllers.

2.2 Accelerated Motion Planning
For most planning- and control-based motion generation
methods, forward kinematics (FK) and collision checking
(CC) are among the most computationally expensive opera-
tions (Bialkowski, Karaman, and Frazzoli 2011). Other no-
table costs include nearest-neighbor searches in sampling-
based planners and priority-queue management in search-
based methods.

Numerous strategies have been proposed to reduce the
computational burden of collision checking. Lazy eval-
uation delays collision checking until necessary (e.g.,
LazyPRM (Bohlin and Kavraki 2000)), while experience-

based methods exploit past search data to accelerate plan-
ning (Shaoul et al. 2024a). Learning-based approaches have
trained approximate collision detectors (Das and Yip 2020)
for sampling-based planning or learned signed distance
fields (Koptev, Figueroa, and Billard 2023) for gradient-
based control. Other work amortizes the cost of motion gen-
eration via neural motion planners, such as MPNet (Qureshi
et al. 2021), which produce collision-free trajectories di-
rectly from sensory input after large-scale training. In par-
allel, several efforts have explored hardware or paralleliza-
tion strategies, including multi-core CPU implementations
of RRT (Ichnowski and Alterovitz 2014).

Our work aligns with approaches that directly parallelize
collision checking itself. Bialkowski, Karaman, and Frazzoli
(2011) parallelize collision checking on GPUs, and Mur-
ray et al. (2016) implement robot-specific collision detec-
tion circuitry on FPGAs. However, these methods often in-
cur significant communication overhead, limiting their ef-
ficiency in complex settings such as task and motion plan-
ning. Alternatively, we build upon the approach introduced
by Thomason, Kingston, and Kavraki (2024), which batches
multiple configurations into a vector to evaluate forward
kinematics and collisions with SIMD instructions.

2.3 Comparison of Traditional and Vector
Accelerated Collision Checking (VAMP)

Traditional collision checkers such as FCL (Pan, Chitta, and
Manocha 2012) and Bullet (Coumans and Bai 2021) are pri-
marily designed for single-threaded execution and typically
follow a common pipeline. Each collision object—such as a
primitive, mesh, or point cloud—is represented by a hierar-
chical data structure that encodes both its bounding volumes
(e.g., axis-aligned or oriented bounding boxes) and its un-
derlying geometric primitives (e.g., triangles or points). Dur-
ing collision checking, the system updates the world trans-
forms of all bounding volumes based on kinematics and
recursively traverses the corresponding bounding volume
hierarchies (BVHs). The process is generally divided into
two stages: a broad-phase filter that identifies potentially
overlapping bounding volumes, followed by a narrow-phase
test (e.g., GJK (Gilbert, Johnson, and Keerthi 1988)) to de-
termine exact intersections. While this approach is widely
adopted, it is inherently difficult to parallelize. The recursive
BVH traversal introduces significant conditional branching
and irregular workloads, complicating efficient task distri-
bution across multiple threads. Moreover, the high memory
bandwidth required to access BVH transforms and geome-
try data often becomes a limiting factor without careful data
layout and caching strategies.

VAMP overcomes these challenges by fusing forward
kinematics (FK) and collision checking (CC) into a single
optimized kernel implemented as a C++ header. It reorga-
nizes batches of joint-space configurations into a struct-of-
arrays memory layout, which compactly represents a batch
of robot configurations for data parallelism and reduces
memory overhead. Robot geometries are approximated by
sets of spheres (Coumar et al. 2025), while obstacles are
represented as simple primitives such as spheres, cubes,
cylinders, or capsules. Forward kinematics is unrolled via



a custom tracing compiler that computes the positions of
these spheres directly, minimizing branching and data de-
pendencies. Self-collisions are interleaved with the FK com-
putation, allowing early terminations if some link collides.
Computing forward kinematics and collision checking of
each sphere now becomes fully parallelizable for a batch of
configurations, and if any one collides, the entire batch is
rejected. With batching, VAMP discards traditional broad-
phase collision checking and instead opts for a “rake” strat-
egy. It evaluates a set of uniformly distanced configurations
along an edge within a batch, enabling faster detection of
collisions along those edges. VAMP’s vectorized FK and
CC routines can be seamlessly integrated with search- or
sampling-based planners, achieving millisecond-level mo-
tion planning.

While VAMP demonstrates the substantial impact of fast
collision checking on single-robot motion planning, the fol-
lowing sections extend these ideas to VAMP-MR, a multi-
robot-arm planning system that vectorizes multi-robot colli-
sion checking and accelerates multiple stages of the pipeline,
including motion planning, trajectory shortcutting, and safe
execution.

3 Vectorized Multi-Robot Collision Checking
3.1 Method
Generating safe and high-quality motion for real-world
multi-robot-arm systems involves several key stages—from
task assignment and motion planning to postprocessing for
execution. In many current multi-arm systems, such as those
used for assembly (Huang et al. 2025; Chen et al. 2022),
collision checking remains the dominant computational bot-
tleneck, e.g., in roadmap construction, task allocation, and
motion validation.

We overcome this bottleneck by accelerating forward
kinematics and collision checking through approximate
robot modeling and vectorized computation. This signifi-
cantly reduces runtime overhead across the entire multi-
robot planning and execution stack. Below, we describe the
design of our vectorized collision-checking framework and
its extensions for multi-robot coordination.

To adapt VAMP for multi-robot planning, we introduce
several key modifications. A naive approach would be to
merge all DoFs across robots into a single composite system
and generate a corresponding VAMP kernel. However, many
multi-robot planning algorithms require distinguishing be-
tween different types of collisions—for example, counting
inter-robot collisions in CBS-style motion planning, com-
puting pairwise collisions between selected robot pairs in
TPG construction, or separating self-, robot-environment-,
and robot-robot collisions for single-robot roadmap genera-
tion. We also aim to simplify practical multi-robot-arm ma-
nipulation tasks, such as assembly, where it is useful to eas-
ily calibrate inter-robot transformations wTi, adjust attach-
ments Ai, and specify intentional contacts between robots
and shared environment obstaclesWallow.

To support these capabilities, we design a new rou-
tine: FK CC MULTI outlined in Algorithm 1. Given a
batch of v multi-robot configurations (C1

j , . . . , C
n
j ) for n

Algorithm 1 FK CC MULTI: Vectorized FK and Collision
Checking for Multiple Robots

Require: For each robot i: base transform wTi, batch of
configurations {Ci

j}vj=1, optional attachments Ai; envi-
ronment obstacles wO; allowed contactsWallow

1: for each robot i do
2: iS1:v ← FK(Ci

1:v,Ai) ▷ spheres in robot-i frame
3: if SELFCC(iS1:v) detects collision then
4: return Invalid
5: end if
6: iO ← (wTi)

−1 ◦ wO ▷ obstacles in robot-i frame
7: if ENVCC(iS1:v,

iO,Wallow) detects collision then
8: return Invalid
9: end if

10: wSi
1:v ← wTi ◦ iS1:v ▷ spheres in world frame

11: end for
12: for each robot pair (i, k), i < k do
13: if INTERCC(wSi

1:v,
wSk

1:v) detects collision then
14: return Invalid
15: end if
16: end for
17: return Valid ▷ iff all v batch lanes are collision-free

robots—represented as a v×n matrix as illustrated in Fig. 1,
FK CC MULTI computes forward kinematics, checks col-
lisions, and returns a boolean validity flag if and only if
all v sets of multi-robot configurations are collision-free.
Each robot first passes through the single-robot FK then
CC routine to perform self-collision checks. If a collision
is detected, the configuration is immediately rejected. En-
vironment obstacles wO environment obstacles transformed
to the robot’s base frame and checked against each robot
while ignoring any allowed environment collisions Wallow.
In practice, we cache transformed environment obstacles in
each robot’s base frame since base transforms and obsta-
cles often remain fixed during planning, which allows robot-
environment collisions to be detected quickly. Then, each
robot’s spheres are transformed to the world frame based on
its base transform wTi. Subsequently, the sphere represen-
tations of all robots are compared pairwise to detect robot-
robot collisions. This modular design is extremely flexible
and still enables efficient, vectorized collision evaluation for
complex multi-robot-arm setups.

3.2 Evaluation of Collision Checking and Motion
Validation

To evaluate the runtime improvement of our new collision
checking method, we test on three challenging multi-robot-
arm environments—Panda Two Rod, Panda Four, and Panda
Four Bins (see Fig. 2)—introduced in Huang, Shaoul, and
Li (2025). Each Panda arm has 7 DoF, and the 59-sphere
approximation in Fig. 1 is generated with the tool in Coumar
et al. (2025). These environments also involve attachments
in Panda Two Rod and obstacles in Panda Four Bins.

We first assess the speedup achieved by our vectorized
collision-checking primitives using randomly sampled robot
configurations. Table 1 reports results over 10000 random



Figure 2: Multi-robot motion planning environments.

samples for both (1) collision checking of single sets of
multi-robot configurations and (2) motion validation be-
tween pairs of configurations. The collision checking resolu-
tion, defined as L1 distance between two consecutive inter-
polated configurations along the motion, is set to 0.1 radian.
To ensure consistent modeling, we use the same simplified
spherized robot geometry representation in FCL. All exper-
iments are conducted on an AMD 7840HS Laptop CPU.
We use C++ compiled with GCC 9 and 256-bit AVX2 in-
structions (e.g., -march=native, -mavx2, -O3). This allows a
SIMD batch size of 8 with 32-bit single-precision floating-
point for vectorized collision checking.

Our method achieves 11-27x speedup for single-
configuration collision checking, and up to 148x speedup
for motion validation between two random configurations
due to vectorization. The compiler optimization of the robot-
specific forward kinematics and collision checking kernel
makes our FK CC MULTI routine significantly faster for
spherized robot collision checking. Empirically, we notice
that our VAMP-MR can significantly reduce the cache miss
rate by 59% to 86% compared to FCL when profiled with the
Linux tool PERF. For motion validation, the runtime speedup
sometimes even exceeds the single-check speedup by more
than 8 times (i.e., the number of SIMD lanes). We believe
this shows the combined effect of vectorization, good cache
utilization, and the “rake”-style scan when evaluating dis-
cretized configurations during motion validation. We also
observe less variance across different environments com-
pared to FCL. This is because randomly sampled motions
between a pair of configurations are very likely to collide
in the obstacle-rich Panda Four Bins environment, and FCL
can invalidate a motion much more quickly than in other en-
vironments.

4 Applications of Vector-Accelerated
Collision Checking

4.1 Vectorized Multi-Robot-Arm Planning
Building on our vectorized multi-robot collision check-
ing framework, we integrate it into two multi-robot-arm
motion planners to enable fast and scalable multi-robot-
arm motion planning. Our first planner is composite RRT-
Connect (Kuffner and LaValle 2000), which combines the
DoFs from all robots and treats them as a single robot for the
RRT-Connect algorithm. We integrate our FK CC MULTI
routine in RRT-Connect to accelerate collision checking for
validating randomly sampled configurations and motions
during tree expansion.

Our second planner is based on CBS-MP (Solis et al.
2021), a conflict-based search (CBS) motion planner
originally designed for multi-agent systems operating on

Table 1: Average collision checking runtime and speedup
over 10000 random samples. Our method is compared
against FCL with the same approximated spherized geome-
tries to ensure consistency.

Check Environment FCL (µs) Ours (µs) Speedup

Single
Panda 2-Rod 100.99 8.60 11.7x
Panda 4 206.53 15.01 13.7x
Panda 4-Bins 382.63 13.70 27.9x

Motion
Panda 2-Rod 3936.13 36.03 109.2x
Panda 4 4836.50 32.61 148.3x
Panda 4-Bins 930.03 14.23 65.4x

roadmaps. In CBS-MP, each agent (in our case, a robot arm)
constructs its own probabilistic roadmap (PRM) (Kavraki
et al. 1996). The planner then incrementally searches for
collision-free trajectories, resolving inter-robot collisions
through a high-level CBS tree that imposes avoidance con-
straints. However, the original avoidance constraint used
CBS-MP is incomplete, as discussed in Shaoul et al.
(2024a). To ensure theoretical completeness of CBS on the
roadmaps, we adopt an asymmetric constraint scheme in-
spired by Li et al. (2019). Specifically, when a collision oc-
curs at time t between robot i and robot j, we create two
mutually exclusive constraints during high-level CBS ex-
pansion: one forbidding robot i from occupying any vol-
ume of robot j’s volume at time t, and the other forbid-
ding robot j from taking the same configuration at that time.
With our SIMD-accelerated FK CC MULTI routine, we can
significantly reduce the computational overhead in roadmap
construction, constraint evaluation, and collision checking
within CBS-MP.

Results To evaluate how VAMP-MR can improve plan-
ning time and analyze its algorithmic implications, we cre-
ate 110, 132, and 132 unique pairs of start and goal poses as
different planning instances in Panda Two Rod, Panda Four,
and Panda Four Bins, as in Huang, Shaoul, and Li (2025).

Next, we evaluate both the composite RRT-Connect and
CBS-MP motion planner. We sample 5000 nodes for each
robot’s probabilistic roadmap before planning in CBS-MP
and run both planners with a one-minute timeout, excluding
roadmap construction time.

Fig. 3 shows the planning time before and after vector
acceleration for all three environments. Our results show
that vectorization provides at least an order-of-magnitude
speedup for both planners, with even greater improvement
for CBS-MP. Before vector acceleration, the Panda Two
Rod environment is generally the easiest to solve, while the
Panda Four Bins environment proves most challenging due
to numerous environmental and in-hand obstacles.

For RRT-Connect, the runtime acceleration correlates
closely with the motion validation speedup reported in Table
1, as motion validation dominates the computational cost.
However, CBS-MP exhibits the largest performance gain in
Panda Four Bins, reaching a 100% success rate, whereas
some instances in Panda Four remain unsolved. The differ-
ence results from the coordination requirement of the tasks.
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Figure 3: Planning time comparison of our vectorized multi-robot RRT-Connect and CBS planner on three environments. The
median time of both RRT and CBS planning of solved instances in each environment is up to 150x faster with vectorization.
Reported speedups are averaged over all planning instances in each environment.

In Panda Four, several target poses (e.g., the one in Fig. 1)
require precise sequencing between robot arms, which leads
to thousands of high-level CBS expansions necessary. Con-
versely, Panda Four Bins requires less coordination, as long
as each robot can navigate around obstacles independently.
Thus, CBS outperforms RRT as it can quickly deconflict
agents and find collision-free solutions. We also noticed that
the number of expanded conflict tree (CT) nodes in CBS in-
creased significantly. For example, our vectorized CBS can
solve an instance with 5303 expanded CT nodes on Panda
Four, compared to a maximum of 53 expanded CT nodes
among solved Panda Four instances with FCL.

These results suggest that our vectorized framework ef-
fectively removes collision checking as the primary bot-
tleneck, enabling CBS-based methods to scale to more
complex setups. Moreover, this highlights the potential for
applying advanced CBS or MAPF techniques to multi-
robot-arm systems, such as symmetry reasoning (Li et al.
2021), enhanced bounded-suboptimal search (Li, Ruml, and
Koenig 2021), and even fast suboptimal planners (Li et al.
2022), to address the coordination challenge.

4.2 Vectorized Multi-Robot Shortcutting
Shortcutting is a widely used postprocessing technique
for improving the smoothness and optimality of planned
trajectories, particularly in multi-robot-arm motion plan-
ning (Shaoul et al. 2024a; Hartmann et al. 2023). This
is because motion planners for multiple robot arms are
not optimal. Sampling-based planners are only probabilis-
tically complete and asymptotically optimal, and CBS is
only resolution-complete and resolution-optimal given the
roadmap. In practice, performance can usually be improved
more with postprocessing.

Collision checking represents a major computational bot-
tleneck for shortcutting: when optimizing one robot arm’s
trajectory, it must be verified that the new trajectory after
shortcutting does not introduce collisions with other robots
or the environment. This property makes shortcutting highly
compatible with our vectorized collision-checking routine.

We adopt the Dynamic Thompson Shortcutting (DTS)
algorithm from Huang, Shaoul, and Li (2025), an any-
time shortcutting framework that adaptively combines three

complementary strategies—composite, prioritized, and path
shortcutting. On a high-level, DTS intelligently chooses one
strategy, randomly samples a shortcut using the selected
strategy, and update the trajectory if the shortcut is collision-
free. This process is then repeated until a time limit is
reached. Composite shortcutting jointly changes all robot
trajectories in the composite configuration space, provid-
ing rapid early-stage improvement. Prioritized or path short-
cutting modifies individual robot trajectories and can con-
verge to higher-quality solutions. DTS formulates the choice
among these strategies as a multi-armed bandit problem,
using Thompson sampling to balance an efficient trade-
off between early convergence speed and final trajectory
quality. For each sampled shortcut, we evaluate if it is
collision-free using our vectorized motion validation prim-
itive FK CC MULTI. This collision checking step is the
biggest bottleneck, and by accelerating this with vectoriza-
tion, we achieve over 10× faster convergence compared to
conventional shortcutting methods. Moreover, because DTS
is an anytime algorithm, trajectory quality can be improved
rapidly within a tenth of a second—making it suitable for
online applications.

Results We compare the performance improvement of the
Dynamic Thompson Sampling (DTS) algorithm for multi-
robot-arm shortcutting, as shown in Fig. 4, using both RRT
and CBS-generated initial trajectories. Without any other
modifications, integrating a vectorized collision checking
routine reduces the time required to converge to final short-
cut trajectories up to 50x.

The vector-accelerated shortcutter achieves substantial
improvement even within 0.1s, and all trajectories converge
within 1s. When combined with either an RRT or CBS mo-
tion planner, this unlocks online-capable and high-quality
motion generation for multi-robot-arm systems.

4.3 Vectorized Safe Execution Framework
For many multi-robot-arm manipulation tasks, such as ob-
ject rearrangement or collaborative assembly, it is often nec-
essary to execute a sequence of coordinated multi-robot mo-
tions derived from a higher-level task plan. However, safe
execution in real-world environments must account for ex-
ecution uncertainties—such as kinematic inaccuracies and
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Figure 4: Average makespan improvement over time of multi-robot shortcutting on three environments, using Dynamic Thomp-
son Shortcutting. The performance-runtime curves are averaged over all instances in each environment. Our method converges
to the same level of makespan improvement up to 50 times faster, reducing the convergence time to under one second.

unpredictable physical interactions with the environment.
Beyond modeling challenges, many manipulation tasks also
use closed-loop control or learned policies that make it im-
possible to predict accurate execution time in planning.

We build upon the multi-modal Temporal Plan Graph
(TPG) framework introduced by Huang et al. (2025), which
systematically postprocesses a given multi-robot task and
motion plan to enable safe asynchronous execution under
such uncertainties. A multi-modal TPG G = (V,E) is a
partially ordered graph that captures kinematic transitions,
changes in the environments due to objects being moved,
and inter-robot task and motion dependencies. Each node
vin is either a pose node that corresponds to a target config-
uration Ci

n for robot i or a skill node that corresponds to a
manipulation skill. A manipulation skill is defined as a set
of object-centric motions executed by a feedback controller.
We assume that each skill has a reference robot path for the
purpose of TPG computation. Each edge vin → vi

′

n′ encodes
a precedence constraint between two nodes. Edges between
nodes of the same robot are added between every consec-
utive node, and inter-robot edges can be added for task de-
pendencies or motion dependencies to prevent executing two
spatially colliding nodes simultaneously.

During execution, each node can be safely executed if all
incoming nodes are completed. Each robot maintains its own
action queue and the TPG serves as a central scheduler that
sends nodes that can be safely executed to the action queues.
Each robot’s controller executes nodes in its action queue
and updates node completion status back to the TPG server,
allowing new nodes to be scheduled. The partial-order struc-
ture naturally tolerates execution delays, since each node can
take an arbitrary amount of time to complete.

Constructing a TPG involves converting a sequential
or synchronous motion plan into a temporally dependent
multi-robot schedule. This process requires finding all intra-
robot motion dependencies with extensive pairwise collision
checking across all robot trajectories, which scales quadrat-

(b) Cliff (c) Vessel

(d) RSS (e) Chair

        11                        36

        47                      258

(a) Robot Environment

Figure 5: Dual-arm LEGO assembly environment in (a) and
assembly tasks in (b)-(e). Numbers in (b)-(e) indicate the
number of assembly steps (LEGO bricks).

ically with the number of robots N and the number of dis-
crete trajectory waypoints. While Huang et al. (2025) used
CPU multithreading to parallelize this computation, our vec-
torized collision-checking routine is even better suited to
accelerate TPG construction with less communication over-
head. However, the original TPG formulation requires iden-
tifying all colliding pairs of configurations, whereas our vec-
torized collision checker FK CC MULTI terminates early if
any configuration in the batch collides. To effectively lever-
age SIMD parallelism within this framework, we propose a
modified grouping strategy.

For a group of k consecutive pose nodes [vin, . . . v
i
n+k−1]

of the TPG, we merge them to a larger transit node vi
n that

represents a short path segment [Ci
n, . . . C

i
n+k−1]. We then

perform collision checks between every pair of transit nodes
from different robots. If any part of the path segment of a
transit node vi

n collides with that of another transit node
vi′

n′ , we insert an inter-robot edge vi
n → vi′

n′ from the ear-
lier node to the later node (n < n′) that prevents collision
in execution. In this formulation, we can ignore which exact
configurations between two transit nodes vi

n and vi′

n′ col-



Table 2: Runtime and makespan of dual-arm LEGO as-
sembly plans generated following the procedure in APEX-
MR (Huang et al. 2025), with and without vector accelera-
tion. Results are averaged over 4 random seeds.

Metric Cliff Vessel RSS Chair
TPG Shortcut Time (s) 1.0 1.0 5.0 5.0

FCL-Based
Task Assignment (s) 0.60 4.90 14.5 13.0
Motion Planning (s) 0.63 0.76 8.99 9.98
TPG Construction (s) 9.88 25.6 43.0 817.2
Total Time (s) 12.1 32.2 71.5 845.2
Final Makespan (s) 185 397 741 2180

Ours
Task Assignment (s) 0.55 4.68 13.6 10.2
Motion Planning (s) 0.42 0.15 7.27 0.88
TPG Construction (s) 1.42 2.55 5.34 43.22
Total Time (s) 3.39 8.38 31.2 59.3
Final Makespan (s) 159 340 542 2146

# of Bricks 11 36 47 258

lide and use vectorized collision checking to determine if
any part of the large transit collides and insert an edge if
necessary. Although this reduces the number of edges and
is more conservative than the old TPG formulation, empiri-
cally the execution makespan difference is often negligible.
As a result, our approach achieves much more efficient TPG
construction for complex multi-robot assembly tasks.

Results We evaluate four long-horizon dual-arm LEGO
assembly tasks (see Fig. 5) from APEX-MR (Huang et al.
2025), which involve up to 258 assembled parts. These tasks
provide more realistic and complex test cases for multi-
robot-arm systems. For each task, we measure the run-
time across all stages of the pipeline, including task assign-
ment, motion planning, and TPG construction. We follow
the methodologies and experimental setup of (Huang et al.
2025). Given a sequential assembly plan, we perform task
planning and assign robot, grasping, and support poses tar-
gets for each assembly step using an integer-linear program.
The motion of each transit task and each manipulation skill
are planned sequentially with single-agent RRT-Connect.
RRT-Connect trajectories can be jerky and suboptimal, so
the resulting motion is passed to a vectorized single-agent
shortcutter for 0.1s (Choset et al. 2005). The TPG execu-
tion framework then converts the sequential task and mo-
tion plan to an asynchronous, parallelized execution order.
The makespan of TPG is further optimized with randomized
TPG shortcutting as in Huang et al. (2025).

We implement the RRT-Connect algorithm without using
MoveIt for sequential motion planning for both FCL and our
vector-accelerated planner. FCL uses the original robot mesh
for collision checking since we found it is faster than us-
ing spheres. We also found that our custom implementation
provides worse solutions, but is significantly faster than the
result reported in Huang et al. (2025).

Table 2 summarizes the runtime of each planning step and

the final makespan after shortcutting. Motion planning is ac-
celerated between 1.25x to 11.3x, and TPG construction is
accelerated between 6.9x to 18.9x. In particular, the FCL-
based TPG construction uses 16 CPU threads for paralleliza-
tion, whereas our modified TPG construction with vector ac-
celeration uses a single thread. We find that multi-core par-
allelization is largely unnecessary with vectorization due to
additional communication overhead. Our accelerated plan-
ner also produces higher-quality solutions after TPG short-
cutting at the same runtime. Shortcutting is particularly ef-
fective for the RSS assembly, reducing the makespan 1.37x
as the RRT motion planner struggles to find efficient tra-
jectories quickly. However, the task assignment component
has little improvement, as our acceleration affects only the
verification of collision-free grasp and support poses. The
integer-linear program itself can be a significant bottleneck
now in the overall task and motion planning pipeline.

5 Conclusion
We present a suite of superfast multi-robot-arm planning
algorithms that achieves state-of-the-art performance with-
out requiring major algorithmic changes. This is primarily
driven by our proposed vector-accelerated collision checker
for multiple robot arms, delivering 10 to 100x speedup
across diverse planning, shortcutting, and execution frame-
work. With collision checking no longer the dominant com-
putational bottleneck, new challenges emerge, such as the
effectiveness of the high-level search in CBS, and optimiz-
ing multi-robot task assignment. We believe this work is a
crucial step towards lowering the barrier to developing ef-
ficient multi-robot-arm planning algorithms and opens new
opportunities for integrating MAPF techniques into manip-
ulation and assembly settings.
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