

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 POST-TRAINING QUANTIZATION OF VISION ENCODERS NEEDS PREFIXING REGISTERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Transformer-based vision encoders—such as CLIP—are central to multimodal intelligence, powering applications from autonomous web agents to robotic control. Since these applications often demand real-time processing of massive visual data, reducing the inference cost of vision encoders is critical. Post-training quantization offers a practical path, but remains challenging even at 8-bit precision due to massive-scale activations (i.e., outliers). In this work, we propose *RegCache*, a training-free algorithm to mitigate outliers in vision encoders, enabling quantization with significantly smaller accuracy drops. The proposed RegCache introduces outlier-prone yet semantically meaningless prefix tokens to the target vision encoder, which prevents other tokens from having outliers. Notably, we observe that outliers in vision encoders behave differently from those in language models, motivating two technical innovations: middle-layer prefixing and token deletion. Experiments show that our method consistently improves the accuracy of quantized models across both text-supervised and self-supervised vision encoders.

1 INTRODUCTION

Transformer-based vision encoders, such as CLIP or DINOv2, lie at the core of modern multimodal intelligences (Radford et al., 2021; Oquab et al., 2024). Leveraging the scalability of vision transformer (ViT) backbone (Dosovitskiy et al., 2021), these models can be pretrained with massive amount of data and computation, yielding highly informative and versatile visual features. Today, vision encoders are now being adopted as plug-and-play components across diverse multimodal applications, ranging from autonomous web agents to robotic control (Palanisamy et al., 2025).

Lowering the inference cost of vision encoders is essential, as their applications often require real-time processing of visual signals on edge devices, e.g., on-device robotic control (Kim et al., 2025). Post-training quantization (PTQ) is a promising solution for this purpose, as the technique can substantially reduce the memory and computation burden of the models without any additional training (Choukroun et al., 2019). In particular, the activation quantization of vision encoders is of significant importance; the models are typically non-autoregressive and run on edge hardwares, and thus more likely to be in compute-bound scenarios than in memory-bound one.¹ Quantizing both activations and weights enables replacing high-precision matrix multiplications with low-precision operations, e.g., int8, effectively reducing the computation and energy needed.

However, quantizing the activations of vision encoders is challenging due to the *outlier* activations, i.e., few activations with extremely large magnitude. In particular, large-scale vision encoders tend to have outliers emerging in a small number of channels at the middle-to-final blocks of the models (Sun et al., 2024). Outliers force the quantization range of the activations to be much larger than usual, leading to a significant quantization error. Strategies for outlier-robust quantization have been actively studied, particularly in the context of large language models (LLMs), which also suffers from outliers similarly (Dettmers et al., 2022; Xiao et al., 2023; Lin et al., 2024). These approaches, however, typically involve applying different precision or quantization range to different tokens or channels. Such operations require much implementation and computational overhead, and are difficult to be applied for static activation quantization (Son et al., 2024; Chen et al., 2024).

¹This is in contrast with the scenarios of autoregressive large language models running on GPU servers. The inference is memory-bound and the weight-only quantization becomes effective.

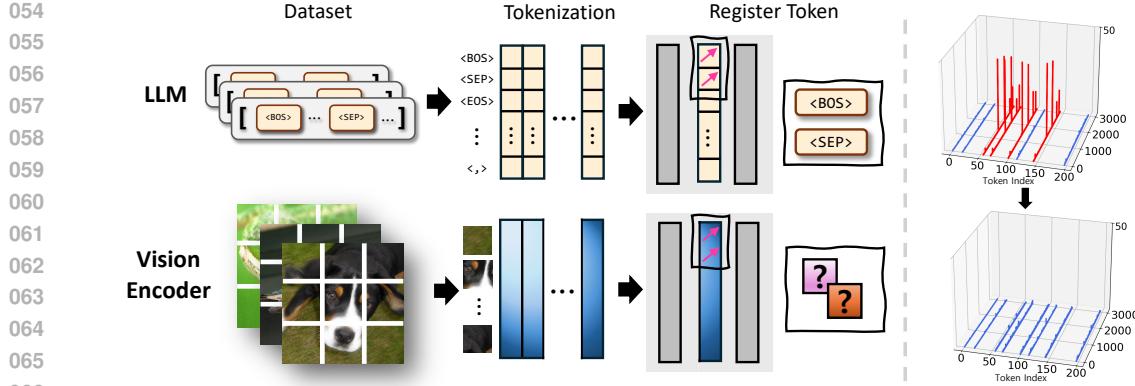


Figure 1: **(Left) Sink tokens in LLMs vs. vision encoders.** In LLMs, well-known sink tokens exist in a closed-set vocabulary. In contrast, vision encoders take image inputs composed of diverse patches that are continuously mapped into an embedding space, making the discovery of sink tokens more challenging. **(Right) Activation magnitudes in CLIP-B/16, with and without RegCache.** RegCache discovers and inserts sink to quantization-sensitive layers, not as an input. This operation mitigates outliers, thereby narrowing the dynamic range and enabling more effective activation quantization under low bitwidths.

An emerging alternative approach is to directly mitigate outliers in the model by prefixing *attention sink* tokens, i.e., semantically meaningless tokens—such as $\langle \text{BOS} \rangle$ or $\langle \text{SEP} \rangle$ —which collect large attention from other tokens (Xiao et al., 2024; Sun et al., 2024). Recent studies on LLM quantization observe that adding the activations of these sink tokens as a prefix in each attention layer can dramatically reduce the activation magnitudes of other tokens, thereby boosting the post-quantization accuracy of large language models (Yang et al., 2024a; Son et al., 2024; Chen et al., 2024).

Naturally, one may ask: Can we mitigate the outliers in vision encoders by prefixing attention sinks? Unfortunately, it remains unclear which vision encoder token can play an analogous role to attention sinks in language models. Unlike language models, most existing vision encoders are not pretrained with tokens that are designated to be semantically meaningless. A recent line of works report that adding such meaningless tokens—called “registers”—during the training provide meaningful advantages in term of the interpretability of vision transformers (Dariset et al., 2024). However, it is still a rare practice to include such registers for vision encoders (Fig. 1, left).²

Contribution. In this work, we introduce **RegCache** (Register Caching), a novel prefix-based outlier mitigation algorithm for quantizing pretrained vision encoders. The method is inspired by the following empirically observed phenomenon on the emergence of registers in vision encoders:

“While no sink token exists at the first layer of vision encoders, sink tokens emerge gradually in the middle layers, giving rise to the outliers. Moreover, such tokens are highly similar across images, and thus can work as a universal middle-layer register for any input image at test phase.”

Based on this observation, RegCache mitigates outliers by discovering and prefixing these middle-layer registers to the target vision encoder, in the form of a pre-computed key-value cache. Importantly, unlike in LLM prefixing (Son et al., 2024), the tokens are prefixed only for middle-to-final layers, and do not affect the early layers. Furthermore, RegCache additionally deletes out the tokens that have gradually became attention sink tokens, which are likely to suffer from outliers in subsequent blocks. By such adding-and-deleting of tokens, RegCache replaces internally emerging sink tokens with external pre-computed caches, so that sink tokens do not affect the activation quantization range of the model. The whole procedure does not require any further training of the vision encoder, rendering RegCache a versatile and easy-to-use method.

Throughout our experiments, we apply the proposed RegCache to a wide range of text-supervised and self-supervised vision encoders, combining it with several recent PTQ techniques for vision transformers. We observe that RegCache improves the prediction accuracy of the quantized vision encoder quite consistently over all setups considered.

²In this regard, DINOv3 is a pleasant exception (Siméoni et al., 2025).

108

2 RELATED WORK

110 **Outlier in large-scale transformers.** In large-scale transformers, it has been observed that some
 111 activation magnitudes at certain layers become significantly larger than others; this phenomenon
 112 is referred to as the emergence of outliers (Kovaleva et al., 2021; Timkey & Van Schijndel, 2021;
 113 Bondarenko et al., 2021; Dettmers et al., 2022). Sun et al. (2024) conducts a systematic study of
 114 outliers, to show that they arise due to the softmax in the self-attention mechanism in LLMs and
 115 ViTs. They show that certain tokens in LLMs, e.g., $\langle \text{BOS} \rangle$ or $\langle \text{SEP} \rangle$, consistently exhibit extreme
 116 activation magnitudes. Several works in the vision domain show that outlier tokens in ViTs typically
 117 correspond to uninformative uniform background patches, and that removing them can improve
 118 internal representations (Darcel et al., 2024; Jiang et al., 2025; Lu et al., 2025). In contrast to LLMs,
 119 it remains unclear which “specific” visual tokens give rise to outliers in ViT-based vision encoders,
 120 given different characteristics between language and image data (e.g., different images have different
 121 backgrounds). In this work, we find that, across a wide range of vision encoders, outlier tokens
 122 typically emerge in intermediate blocks and exhibit similar features across images, enabling them to
 123 be pre-computed for a given use-case, such as post-training quantization.

124 **Improving vision transformers via attention sink control.** Attention sinks, first highlighted by
 125 Xiao et al. (2024), are tokens with little or no semantic information that nevertheless attract excessive
 126 attention in both LLMs (Guo et al., 2024) and ViTs (Darcel et al., 2024). In ViTs, critically, these sink
 127 tokens act as noise in the attention map, hindering the model’s ability to capture relations between
 128 different patches and thereby degrading downstream visual performance (Darcel et al., 2024; Jiang
 129 et al., 2025; Kang et al., 2025; Lu et al., 2025). Seminal work by Darcel et al. (2024) adds register
 130 tokens that absorb much attention and thus mitigate attention sinks during training. More recently,
 131 Jiang et al. (2025) suggest identifying register neurons (i.e., specific channels in the linear layers of
 132 ViT blocks) before training and “delete-and-paste” the maximum value of register neurons to zero-
 133 initialized token at test time. Taking a slightly different perspective, we ask how to leverage sink
 134 tokens to improve PTQ. From this PTQ-oriented perspective, our core strategy is to remove sink
 135 tokens that are prefixed (and also pre-computed) at test time.

136 **Post-training quantization methods for vision transformers.** There have been a lot of effort to
 137 reduce the inference cost of large-scale ViT-based models via PTQ (Yang et al., 2024b; Wu et al.,
 138 2025a;b). Early PTQ methods for ViTs address quantization errors by assigning dynamic bitwidths
 139 to self-attention-sensitive layers (Liu et al., 2021). Subsequent studies identify that low PTQ per-
 140 formance of ViTs are due to outliers, originating from operations such as LayerNorm, softmax,
 141 and GELU activation. RepQ-ViT (Li et al., 2023) and PTQ4ViT (Yuan et al., 2022) propose novel
 142 quantization schemes to isolate and minimize the impact of outliers. Methods such as NoisyQuant
 143 (Liu et al., 2023) attempt to alleviate the tail-like behavior of activations by adding noise or reshaping
 144 distributions. By contrast, our approach handles outliers via token prefixing rather than directly
 145 controlling quantizer granularity, and it can be easily integrated with existing methods easily.

146

3 A CLOSER LOOK AT OUTLIERS IN VISION ENCODERS

147 Outliers in vision encoders emerge at seemingly random background patch tokens in given images,
 148 while in LLMs they tend to appear at specific location or types of tokens (Sun et al., 2024; Darcel
 149 et al., 2024). Such lack of specificity makes it difficult to mitigate the outliers in vision encoders
 150 through prefixing (Son et al., 2024), as the strategy requires caching the tokens that induce outliers
 151 universally across any input that can be given to the model at the test time (i.e., registers).

152 In this section, we provide two observations suggesting that an alternative strategy may be effective:
 153 “Find universal sink tokens in middle layers of the model, and prefix them in these middle layers.”

- 154 • **Section 3.1:** Layerwise quantization sensitivity of vision encoders is particularly high in the middle
 155 layers where outliers emerge, and low otherwise—thus, prefixing need not be done in early layers.
- 156 • **Section 3.2:** In the middle layers where outliers begin emerging, the cosine similarity of the outlier
 157 tokens across different images become very high—thus, they can work as universal registers.

158 In Section 3.3, we report an intriguing observation which sheds light on why such late emergence of
 159 outliers happen in vision encoders. Precisely, the observation suggest that: “vision encoders require
 160 early layers to process the image, in order to understand which tokens are semantically meaningless.”

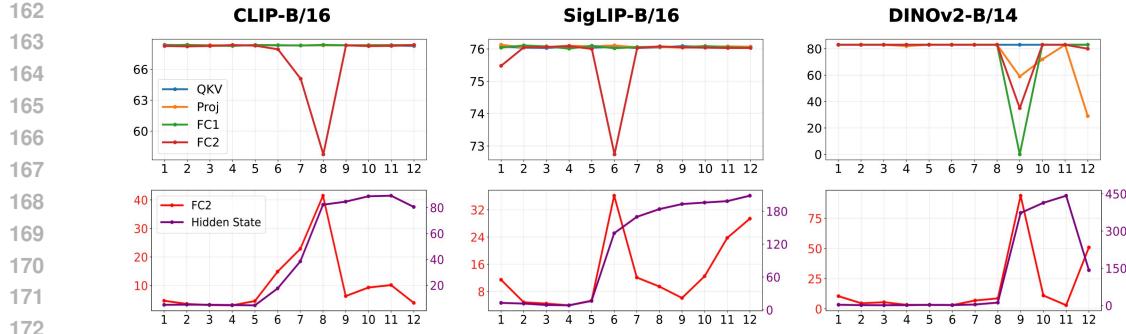


Figure 2: **(Top) Layerwise quantization sensitivity (%)**. Zero-shot ImageNet-1k accuracy when we quantize only one layer to W8A8. **(Bottom) Layerwise max token norms**. The largest ℓ_∞ -norm of all tokens in an image, averaged over the ImageNet-1k validation set.

3.1 LAYERWISE QUANTIZATION SENSITIVITY AND OUTLIERS

We first analyze the quantization sensitivity of each layers in vision encoders, and establish connection to the emergence of outliers in hidden states (i.e., block outputs).

In Fig. 2 (top), we report the zero-shot ImageNet-1k accuracy of various vision encoders, when we quantize different layers of a single transformer block to W8A8. We observe that quantization-sensitive layers—i.e., layers with substantial accuracy drop when quantized—are highly localized to the MLP projection layers in one or two middle layers. In DINOv2, the performance degradation is the sharpest, and takes place in other layers and blocks as well. Furthermore, as can be seen from Fig. 2 (bottom), these quantization-sensitive layers coincide with the layers where the activation outliers in the hidden states (i.e., block output + residual) begin to emerge. Together, the plots suggest that outliers are indeed the driving factor of performance drops when quantizing vision encoders.

These observations extend and refine the observations of prior works that vision encoders have high-norm tokens in middle-to-later layers (Darcet et al., 2024; Jiang et al., 2025). In particular, we establish a concrete connection between the quantized accuracy and the high-norm behaviors. Furthermore, our findings suggest that FC2 activations or measuring quantization sensitivity directly may be useful in pinpoint the block where prefixing should be conducted. We provide the results on other vision encoders (OpenCLIP and SigLIP2) in Appendix B.

3.2 UNIVERSALITY OF OUTLIER TOKENS

Next, we take a closer look at the outlier tokens in the quantization-sensitive layer. In particular, we measure the cosine similarity of the middle-layer outlier tokens (i.e., having the largest ℓ_∞ -norm) collected for two images. We have used 64 randomly sampled images from the validation split of ImageNet-1k, and computed the average pairwise similarity.

From Table 1, we observe that the outlier tokens are highly similar across different images, having the mean cosine similarity of 0.89. On the other hand, the non-outlier tokens are much more dissimilar from each other, with 0.26 mean cosine similarity. This indicates that outliers share components that are largely independent of input image, and thus may represent universal features that persist across samples.

3.3 WHY THE MIDDLE LAYERS?

Why do outliers in vision encoders emerge in middle layers, while the outliers in LLM emerges in the early layers? We hypothesize that this is essentially due to the fact that it is not readily clear from the raw image tokens which are *semantically meaningless*—they become clearer after being processed by first several blocks of the vision encoder. This is in contrast with the case of LLMs, where some tokens are clearly meaningless even at the first glance, e.g., $\langle \text{BOS} \rangle$, $\langle \text{SEP} \rangle$.

Table 1: Average cosine similarity between tokens in SigLIP-B/16.

Token Type	Cosine sim.
Normal tokens	0.26 (± 0.10)
Outlier tokens	0.89 (± 0.07)

216 To validate this hypothesis, we design an ex-
 217 periment where we can compare the emergence
 218 of outliers for images where some patches are
 219 clearly meaningless, against those where the
 220 distinction is less clear. Precisely, using the
 221 test set of ImageNet-9 (Xiao et al., 2021),
 222 we compare the outliers of the foreground-
 223 only images—where the background pixels are
 224 zero-ed out—to the vanilla images. In princi-
 225 ples, in foreground-only images, the semanti-
 226 cally meaningless patches should be identifi-
 227 ably more easily, i.e., with a smaller number of
 228 blocks for processing.

229 In Figure 3, we observe that the outliers in foreground-only images indeed emerge earlier and larger
 230 than in original, supporting our hypothesis. In contrast, if we remove the foreground and keep the
 231 background only, the outlier behaviors did not change noticeably. In Appendix G, we provide ad-
 232 ditional analysis on the case for the vision encoders trained with registers. There, we observe that
 233 models trained with registers behave similarly to LLMs, with outliers emerging from early layers.

234 4 METHOD

235 Before describing our outlier mitigation method, recall two observations from the Section 3:

- 236 • Outliers in vision encoders tend to emerge in the middle layers of the model (e.g., fully-connected
 237 layers in block 5–8), whereas for LLMs outliers emerge from the early layers.
- 238 • Sink tokens (i.e., outlier-prone) discovered in the middle layers tend to be similar across images.

239 Putting these together with prior observations in LLMs—prefixing additional sink tokens mitigate
 240 outliers in other tokens (Son et al., 2024)—we arrive at the following hypothesis:

241 *“Middle-layer sink tokens from another image can play a role similar to registers,
 242 and thus can help mitigating outliers in vision encoders.”*

243 Based on this hypothesis, we propose RegCache (Register Caching), an outlier mitigation algorithm
 244 which replaces internally emerging sink tokens by inserting sink tokens discovered from reference
 245 images as registers. In a nutshell, RegCache operates in three steps (see Fig. 4).

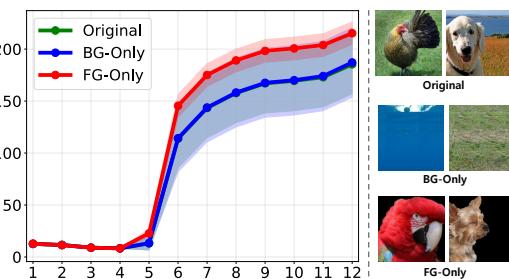
- 246 (1) **Curating** a set of register candidate tokens from a pool of reference images. ▷ Section 4.1
- 247 (2) **Caching** the keys and values of selected register candidates to the sensitive layers. ▷ Section 4.2
- 248 (3) **Deleting** internally emerging sink tokens to clean up remaining outliers. ▷ Section 4.3

249 The proposed RegCache does not involve any training or tuning of the model, and only conducts
 250 several rounds of validation on some reference task and data (will be discussed below). Thus, the
 251 algorithm does not require an excessive amount of training data or computational resource. At the
 252 inference phase, the algorithm adds and removes several tokens, which slightly affects the computa-
 253 tional cost of the model. However, as we will see in Appendix E, the change is negligible.

260 4.1 CURATING

261 Given a pretrained vision encoder, we first identify the quantization-sensitive layer of the model.
 262 Then, we construct a curated set of candidate register tokens by selecting top- k tokens with largest
 263 sensitive-block activations, among all tokens taken from a pool of reference images.

264 **Identifying the quantization-sensitive layer.** As in Section 3.1, we quantize each layer of the given
 265 vision encoder separately, and select the one that leads to the lowest accuracy on some reference
 266 task as the quantization-sensitive layer. Here, if we have a specific base quantization algorithm in
 267 mind (to be used after the outlier mitigation), we can use the algorithm; otherwise, we will use the
 268 vanilla round-to-nearest quantization. The reference task is selected as the task that is considered
 269 representative of visual understanding, e.g., classification on the ImageNet-1k training set.



265 Figure 3: Emergence of outliers in foreground-
 266 and background-only images on SigLIP-B/16.

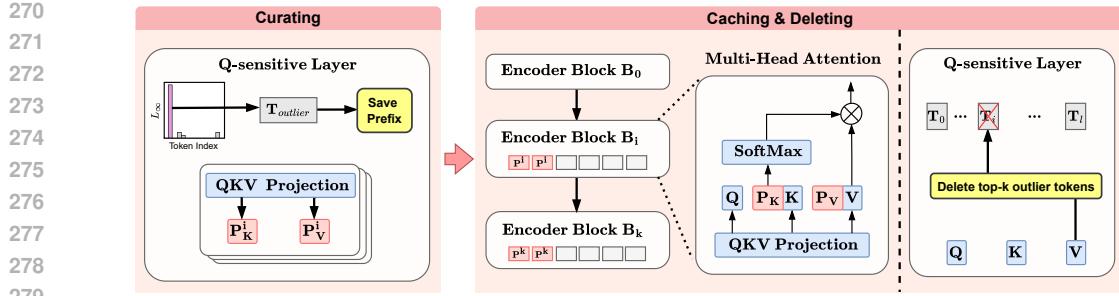


Figure 4: **Overview of the proposed method.** We first identify a universal register by analyzing the inputs of quantization-sensitive layers across blocks. During inference, the register is inserted into each block, and outlier tokens are removed from the most quantization-sensitive blocks.

Curating the set of register candidates. After identifying the quantization-sensitive layer, we construct the set of register candidate tokens, which are likely to play the role of a register when inserted to the quantization-sensitive layer. This is done by predicting on a pool of reference images with the vision encoders and selecting tokens with the largest ℓ_∞ norm at the quantization-sensitive layer.

More formally, let l_q denote the quantization-sensitive layer of the target vision encoder, and let $\Phi_l(\mathbf{x})$ denote the set of tokens at the input of the l -th layer of the vision encoder, given an image \mathbf{x} . Then, we can construct the set of register candidates as follows.

$$\mathcal{S} = \text{argtopk} \left\{ \|\mathbf{z}\|_\infty \mid \mathbf{z} \in \Phi_{l_q}(\mathbf{x}), \text{ for some } \mathbf{x} \in \mathcal{I}_{\text{ref}} \right\}, \quad (1)$$

where \mathcal{I}_{ref} denotes the pool of reference images. In this paper, we use the 50,000 randomly drawn images from the training split of the ImageNet-1k dataset as this pool of images, and let $k = 20$.

As the sink tokens often emerge a few blocks before the quantization-sensitive layer, we also conduct a similar search for several blocks preceding the quantization-sensitive layer. We search up to three additional preceding blocks to construct register candidate sets for each block.

4.2 CACHING

Having the set of register candidates \mathcal{S} constructed, we now determine the register $\mathbf{z}^* \in \mathcal{S}$ and the number of repetitions $\tau^* \in \mathbb{N}$ of the register to be inserted to the target vision encoder, in the form of a key-value cache. The determination of (\mathbf{z}^*, τ^*) is done by grid search, using the accuracy of the quantized vision on some reference task. Precisely, the search is done as follows.

- First, we compute key-value caches for each register candidate token $\mathbf{z} \in \mathcal{S}$, for the quantization-sensitive layer and all succeeding blocks using the *unquantized* vision encoder.
- Then, we insert each KV cache to the *quantized* vision encoder separately, with various number of repetitions. We vary the number of repetitions τ within the range $\{1, 2, \dots, 15\}$.
- Lastly, we evaluate the performance of each combination of (\mathbf{z}, τ) on the reference task, and select the pair with the maximum reference task accuracy. In other words, we select:

$$(\mathbf{z}^*, \tau^*) = \arg \max \left\{ \text{acc}_{\text{ref}}(\mathbf{z}, \tau) \mid \mathbf{z} \in \mathcal{S}, \tau \in \{1, \dots, 15\} \right\} \quad (2)$$

where acc_{ref} denotes the accuracy on the reference task. Here, as in Section 4.1, we consider classification on the training split of ImageNet-1k dataset as our reference task.

4.3 DELETING

Finally, we add a *token deletion layer* at the input of the quantization-sensitive block (*i.e.*, where l_q is located) of the vision encoder. At the inference phase, this layer removes the sink tokens that emerge among the image patch tokens, thus removing any remaining outliers. Precisely, given some test image \mathbf{x}_{test} , the layer selects the tokens with the top- \tilde{k} ℓ_∞ norm, *i.e.*,

$$\mathcal{D} = \text{argtopk} \left\{ \|\mathbf{z}\|_\infty \mid \mathbf{z} \in \Phi_{l_q}(\mathbf{x}_{\text{test}}) \right\} \quad (3)$$

and remove these tokens from the model. Here, similarly to the curating and caching steps, the number of tokens to be removed—*i.e.*, \tilde{k} —is tuned using the reference task.

324
 325 **Table 2: Zero-shot classification accuracy of various vision encoders on ImageNet-1k.** We have
 326 used various base quantization algorithms to quantize to 8/6bits. The best results are marked in **bold**.
 327 We do not plot the case of 6-bit naïve quantization, which results in near-zero accuracy. Best/Average
 Δ denote the gap between the best/average performances with and without RegCache.

Method	CLIP-B/16		OpenCLIP-B/16		SigLIP-B/16		SigLIP2-B/16		DINOv2-B/14	
	W8A8	W6A6	W8A8	W6A6	W8A8	W6A6	W8A8	W6A6	W8A8	W6A6
FP32	68.32		70.22		76.05		78.47		83.26	
Naïve	34.01	–	46.12	–	69.71	–	26.04	–	19.20	–
w/ RegCache	61.44	–	67.14	–	74.42	–	68.65	–	22.07	–
PTQ4ViT	67.69	51.60	69.39	59.98	75.57	68.68	76.92	41.54	82.97	78.28
w/ RegCache	67.78	58.19	69.70	64.09	75.82	70.97	77.26	66.15	82.93	79.09
RepQ-ViT	67.39	53.25	68.70	46.51	75.23	73.32	76.43	64.91	82.27	19.53
w/ RegCache	67.34	66.65	68.51	46.01	75.21	73.69	76.51	70.88	81.72	23.02
NoisyQuant	63.20	46.19	67.08	59.05	75.50	71.10	70.83	44.50	71.46	49.25
w/ RegCache	67.62	59.48	69.60	67.48	75.88	73.03	76.35	62.58	69.40	47.22
Best Δ	+0.09	+13.40	+0.21	+7.50	+0.31	+0.37	+0.34	+5.97	-0.04	+0.81
Average Δ	+7.97	+11.09	+5.92	+4.01	+1.33	+1.53	+12.14	+16.22	+0.06	+0.76

5 EXPERIMENTS

In this section, we first describe the experimental setup in Section 5.1. Next, in Section 5.2, we show that for zero-shot image classification and image–text retrieval tasks, combining RegCache with either naïve quantization or other baseline algorithms yields a significant performance gain. Furthermore, we analyze the behavior of token norm outliers, assess the generalization ability of the pre-computed prefix tokens, and validate our design choices through ablation studies.

5.1 SETUP

Vision encoders. We evaluate the proposed method on total five widely used vision encoders: (1) CLIP (Radford et al., 2021), (2) OpenCLIP (Cherti et al., 2023), (3) SigLIP (Zhai et al., 2023), (4) SigLIP2 (Tschanne et al., 2025), (5) DINOv2 (Oquab et al., 2024).

These models were selected to cover diverse setups. Specifically, CLIP and SigLIP are trained on image–text pairs with contrastive objectives, whereas DINOv2 is trained on image-only datasets. Regarding input tokens, CLIP and DINOv2 use a class token to extract global features, while SigLIP and SigLIP2 use patch-wise pooling to generate a token that captures global information.

Evaluation. We evaluate the quality of the quantized vision encoders by measuring the zero-shot accuracy on two downstream tasks: (1) image classification on ImageNet-1k (Deng et al., 2009) and (2) text-image retrieval on MS-COCO (Lin et al., 2014). To further validate the generalizability of the prefix searched from zero-shot classification, evaluation is conducted on a diverse set of image classification benchmarks, including Stanford Cars (Krause et al., 2013), Flowers-102 (Nilsback & Zisserman, 2008), Food-101 (Bossard et al., 2014), and CIFAR-100.

Base quantization algorithms and details. To assess broad applicability, we evaluate two baseline strategies for activation quantization in vision transformers: (1) module-specific quantizer designs that mitigate activation-distribution bottlenecks and (2) input-side distribution shaping to reduce quantization error. Specifically, we use PTQ4ViT (Yuan et al., 2022) and RepQ-ViT (Li et al., 2023) for (1), and NoisyQuant (Liu et al., 2023) for (2). We provide further discussions in Appendix A.

Each baseline adopts per-tensor dynamic quantization with 8-bit and 6-bit precision, using 1,024 and 32 calibration samples and for NoisyQuant and RepQ-ViT, respectively, as in original papers. Additionally, for CLIPs and SigLIPs, prefixes are inserted from the searched layer to the final layer. As a self-supervised model, DINOv2 exhibits distinct characteristics compared to text-supervised counterparts. Accordingly, inserting the prefix only into the searched layer yields better results. A deeper investigation into this behavior is left as future work.

378
 379 Table 3: Zero-shot image–text retrieval performance of CLIP and SigLIP on MS-COCO. The best
 380 results, in both recall at 1 and recall at 5, are marked in **bold**. Best/Average Δ denote the gap between
 381 the best/average performances with and without RegCache.

(a) CLIP-B/16					(b) SigLIP-B/16				
	I → T		T → I			I → T		T → I	
	R@1	R@5	R@1	R@5		R@1	R@5	R@1	R@5
FP32	52.94	77.78	32.73	57.70		67.68	86.94	47.19	72.46
Naïve	22.76	41.92	14.08	30.43	Naïve	60.04	82.66	41.80	67.40
w/ RegCache	47.78	73.56	29.47	54.04	w/ RegCache	65.38	85.78	46.25	71.20
PTQ4ViT	52.78	77.94	32.00	56.65	PTQ4ViT	66.86	87.02	47.16	71.94
w/ RegCache	53.22	77.60	32.42	57.18	w/ RegCache	67.30	86.86	47.26	72.38
RepQ-ViT	44.52	68.64	23.01	45.20	RepQ-ViT	65.90	86.78	46.33	71.48
w/ RegCache	44.94	68.24	22.93	45.30	w/ RegCache	65.90	86.74	46.71	71.66
NoisyQuant	48.94	74.10	31.07	56.18	NoisyQuant	67.10	86.96	46.76	72.05
w/ RegCache	49.84	75.06	30.36	54.99	w/ RegCache	67.02	87.16	46.98	72.09
Best Δ	+0.44	-0.34	+0.42	+0.53	Best Δ	+0.20	+0.14	+0.20	+0.33
Average Δ	+6.70	+7.97	+3.76	+5.76	Average Δ	+1.43	+0.78	+1.29	+1.12

398
 399 Table 4: **Reduction in maximum token norm within quantization-sensitive layers in W8A8.**
 400 Both the maximum token norm and the average norm of other tokens are reported. We report mean
 401 across 1,000 image samples.

Model	Max token		Other tokens	
	Vanilla	w/ RegCache	Vanilla	w/ RegCache
CLIP	61.17	15.30	10.47	8.67
OpenCLIP	122.99	12.38	11.22	9.04
SigLIP	78.09	12.15	9.85	9.54
SigLIP2	244.78	30.45	8.97	8.86
DINOv2	52.34	51.68	40.85	40.40

5.2 EXPERIMENTAL RESULTS

415
 416 **Main results.** In Table 2, we report the zero-shot image classification accuracy on ImageNet-1k
 417 dataset. From the table, we observe that the baselines combined with the proposed RegCache consis-
 418 tently achieves better accuracy in most settings. Specifically, the baselines combined with RegCache
 419 outperforms in terms of both best accuracy (Best Δ) and the average accuracy (Average Δ) across
 420 the base quantization methods. Only one setup—DINOv2-B—exhibits a negligible accuracy drop.

421 For zero-shot image–text retrieval (Table 3), we similarly observe that combining RegCache with
 422 the base quantization methods yields higher performance across all setups on average. The results
 423 indicate our method’s ability to integrate well with other quantization methods across diverse tasks.

424 **Reducing token norm outliers.** Table 4 illustrates the change in the maximum token norm of the
 425 quantization-sensitive layer input when RegCache is applied. The maximum token norm decreases,
 426 while the average of the remaining tokens remains nearly consistent. This reduction effectively nar-
 427 rows the dynamic range of quantization, thereby improving quantization performance.

428 **Universality of prefixes.** Since the prefix search procedure in RegCache involves validations on
 429 the training split of the ImageNet-1K dataset, we also assess whether the learned prefix remains
 430 effective on other datasets, as the register token might have overfitted to ImageNet-1K. The results
 431 in Table 5 indicate that the prefix from ImageNet-1k remains effective on other datasets, suggesting
 that it acts as a universal register token.

432 **Table 5: Zero-shot classification accuracy (%) on other image classification datasets.** The pre-
 433 prefixes used in our method are searched using the training split of ImageNet-1K.

435	Model	Method	StanfordCars	Flowers-102	Food-101	CIFAR-100
436	CLIP-B/16	FP32	64.41	65.88	85.22	68.44
437		Naïve	29.76	26.20	33.30	35.96
438		w/ RegCache	53.14 (+23.38)	58.53 (+32.33)	77.38 (+44.08)	55.27 (+19.31)
439	OpenCLIP-B/16	FP32	88.07	69.88	83.77	76.82
440		Naïve	74.85	42.97	36.44	40.61
441		w/ RegCache	85.96 (+11.11)	67.86 (+24.89)	80.97 (+44.53)	72.26 (+31.65)
442	SigLIP-B/16	FP32	90.81	82.63	89.34	72.33
443		Naïve	87.97	75.26	78.31	54.79
444		w/ RegCache	89.75 (+1.78)	80.29 (+5.03)	88.16 (+9.85)	67.60 (+12.81)
445	SigLIP2-B/16	FP32	92.74	83.38	90.65	77.10
446		Naïve	35.12	26.38	30.55	20.92
447		w/ RegCache	82.59 (+47.47)	68.29 (+41.91)	81.83 (+51.28)	53.92 (+33.00)

449 **Ablation study.** In Table 6, we ablate the effect of our two stage methods—(1) prefix caching and
 450 (2) token deleting—with quantization performance. The results show that prefix caching suppresses
 451 the growth of outliers and improves performance, as token deletion further reduces their magnitude
 452 for additional gains. Still, outlier tokens can be safely removed only with prefix caching, as prefix
 453 tokens play a similar role to outlier tokens; without it, removing outliers in quantization-sensitive
 454 layers severely degrades performance.

455 **Other experiments.** Besides the main experiments, we further conduct several experiments:
 456 (1) Text-Image retrieval results on other vision
 457 encoders in Appendix C, (2) Results for weight-
 458 only quantization in Appendix D, (3) Computational
 459 efficiency of RegCache via FLOPs in
 460 Appendix E, and (4) Visualization of searched
 461 register tokens in Appendix F.

464 6 CONCLUSION

466 In this paper, we have introduced a training-free outlier mitigation algorithm, *RegCache*, designed
 467 to enhance the performance of per-tensor post-training quantization (PTQ) for transformer-based
 468 vision encoders. Through extensive experiments, we have demonstrated that RegCache consistently
 469 improves quantization accuracy when applied on top of existing PTQ methods. Our analysis reveals
 470 that RegCache effectively suppresses the activation outliers in quantization-sensitive layers, thereby
 471 narrowing the dynamic range and improving quantization stability. Furthermore, this work offers a
 472 novel approach to identifying register tokens that are optimal for quantization in vision encoders—a
 473 task that is inherently more elusive than in language models.

474 **Limitations.** A major limitation of our study lies in that the proposed method requires evaluating a
 475 number of prefix candidates to identify the most effective configuration. Also, our method introduces
 476 several additional hyperparameters to be considered, e.g., the maximum number of token deletions
 477 and the number of prefix tokens.

479 **Discussions and future directions.** Our work covers a variety of vision encoders, including those
 480 trained on multimodal data (e.g., CLIP) and those trained on vision-only data (e.g., DINOv2). In our
 481 experiments, we observe that quantization-related measures (e.g., quantization sensitivity) behave
 482 differently across these cases, warranting further study. Another research direction arises from the
 483 differences between LLMs and ViT-based vision encoders: their outlier behavior differs significantly
 484 (see Appendix G for an extended discussion). Understanding this phenomenon would benefit wide
 485 range of domains, including quantization and representation learning.

486 REPRODUCIBILITY STATEMENT

487

488 To ensure reproducibility, the implementation code is included in the supplementary materials sub-
489 mitted with this paper.

490

491 REFERENCES

492

493 Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming the
494 challenges of efficient transformer quantization. In *Empirical Methods in Natural Language Pro-*
495 *cessing*, 2021.496 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
497 nents with random forests. In *European conference on computer vision*, 2014.498 Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqi Shao, and Ping Luo. Prefixquant: Elim-
499 inating outliers by prefixed tokens for large language models quantization. *arXiv preprint*
500 *arXiv:2410.05265*, 2024.502 Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
503 don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
504 contrastive language-image learning. In *Proceedings of the IEEE/CVF conference on computer*
505 *vision and pattern recognition*, 2023.

506

507 Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit quantization of neural net-
508 works for efficient inference. In *IEEE/CVF International Conference on Computer Vision Work-
509 shop*, 2019.

510

511 Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
512 registers. In *International Conference on Learning Representations*, 2024.

513

514 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
515 hierarchical image database. In *IEEE conference on computer vision and pattern recognition*,
2009.

516

517 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. GPT3.int8(): 8-bit matrix
518 multiplication for transformers at scale. In *Advances in neural information processing systems*,
2022.

519

520 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
521 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
522 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
523 scale. In *International Conference on Learning Representations*, 2021.

524

525 Abhimanyu Dubey, Abhinav Jauhri, Abhishek Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
526 Letman, Akhil Mathur, Alan Schelten, Aobo Yang, Angela Fan, et al. The llama 3 herd of models.
527 *arXiv preprint arXiv:2407.21783*, 2024.

528

529 Xiangming Gu, Tianyu Pang, Chao Du, Qian Liu, Fengzhuo Zhang, Cunxiao Du, Ye Wang, and
530 Min Lin. When attention sink emerges in language models: An empirical view. In *International*
531 *Conference on Learning Representations*, 2025.

532

533 Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. Attention score is not all you need for token
534 importance indicator in kv cache reduction: Value also matters. In *Empirical Methods in Natural*
535 *Language Processing*, 2024.

536

537 Nick Jiang, Amil David, Alexei Efros, and Yossi Gandelsman. Vision transformers don't need
538 trained registers. *arXiv preprint arXiv:2506.08010*, 2025.

539

540 Seil Kang, Jinyeong Kim, Junhyeok Kim, and Seong Jae Hwang. See what you are told: Visual
541 attention sink in large multimodal models. In *International Conference on Learning Representa-
542 tions*, 2025.

540 Moo Jin Kim, Karl Pertsch, Siddharth Karamchetti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 541 Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, Thomas Kollar, Benjamin
 542 Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. Open-
 543 vla: An open-source vision-language-action model. In *Proceedings of The 8th Conference on*
 544 *Robot Learning*, 2025.

545 Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna Rumshisky. BERT busters: Outlier
 546 dimensions that disrupt transformers. In *Findings of the ACL*, 2021.

547 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 548 categorization. In *Proceedings of the IEEE international conference on computer vision work-
 549 shops*, 2013.

550 Zhikai Li, Junrui Xiao, Lianwei Yang, and Qingyi Gu. Repq-vit: Scale reparameterization for post-
 551 training quantization of vision transformers. In *Proceedings of the IEEE/CVF International Con-
 552 ference on Computer Vision*, 2023.

553 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 554 Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: Activation-aware weight quantization
 555 for on-device LLM compression and acceleration. In *Proceedings of Machine Learning and
 556 Systems*, 2024.

557 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 558 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European
 559 conference on computer vision*, 2014.

560 Yijiang Liu, Huanrui Yang, Zhen Dong, Kurt Keutzer, Li Du, and Shanghang Zhang. Noisyquant:
 561 Noisy bias-enhanced post-training activation quantization for vision transformers. In *Proceedings
 562 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2023.

563 Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training quantiza-
 564 tion for vision transformer. *Advances in Neural Information Processing Systems*, 2021.

565 Andrew Lu, Wentinn Liao, Liuhi Wang, Huzheng Yang, and Jianbo Shi. Artifacts and at-
 566 tention sinks: Structured approximations for efficient vision transformers. *arXiv preprint
 567 arXiv:2507.16018*, 2025.

568 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 569 of classes. In *Indian conference on computer vision, graphics & image processing*, 2008.

570 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
 571 Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas
 572 Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
 573 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut,
 574 Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features without super-
 575 vision. *Transactions on Machine Learning Research*, 2024.

576 Balamurugan Palanisamy, Vikas Hassija, Arpita Chatterjee, Arpita Mandal, Debanshi Chakraborty,
 577 Amit Pandey, G. S. S. Chalapathi, and Dhruv Kumar. Transformers for vision: A survey on
 578 innovative methods for computer vision. *IEEE Access*, 13:95496–95523, 2025.

579 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 580 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 581 models from natural language supervision. In *International conference on machine learning*,
 582 2021.

583 Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 584 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3. *arXiv
 585 preprint arXiv:2508.10104*, 2025.

586 Seungwoo Son, Wonpyo Park, Woohyun Han, Kyuyeun Kim, and Jaeho Lee. Prefixing attention
 587 sinks can mitigate activation outliers for large language model quantization. In *Empirical Methods
 588 in Natural Language Processing*, 2024.

594 Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
 595 models. In *Conference on Language Modeling*, 2024.

596

597 William Timkey and Marten Van Schijndel. All bark and no bite: Rogue dimensions in transformer
 598 language models obscure representational quality. In *Empirical Methods in Natural Language
 599 Processing*, 2021.

600 Michael Tschanne, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
 601 mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, et al. Siglip 2:
 602 Multilingual vision-language encoders with improved semantic understanding, localization, and
 603 dense features. *arXiv preprint arXiv:2502.14786*, 2025.

604

605 Zhuguanyu Wu, Shihe Wang, Jiayi Zhang, Jiaxin Chen, and Yunhong Wang. Fima-q: Post-training
 606 quantization for vision transformers by fisher information matrix approximation. In *Proceedings
 607 of the Computer Vision and Pattern Recognition Conference*, 2025a.

608 Zhuguanyu Wu, Jiayi Zhang, Jiaxin Chen, Jinyang Guo, Di Huang, and Yunhong Wang. Aphqvit:
 609 Post-training quantization with average perturbation hessian based reconstruction for vision
 610 transformers. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, 2025b.

611 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant:
 612 Accurate and efficient post-training quantization for large language models. In *International
 613 conference on Machine Learning*, 2023.

614

615 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 616 language models with attention sinks. In *International Conference on Learning Representations*,
 617 2024.

618 Kai Yuanqing Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal: The
 619 role of image backgrounds in object recognition. In *International Conference on Learning Rep-
 620 resentations*, 2021.

621

622 Jaewoo Yang, Hayun Kim, and Younghoon Kim. Mitigating quantization errors due to activation
 623 spikes in GLU-based LLMs. *arXiv preprint 2405.14428*, 2024a.

624

625 Lianwei Yang, Haisong Gong, and Qingyi Gu. Dopq-vit: Towards distribution-friendly and outlier-
 626 aware post-training quantization for vision transformers. *arXiv preprint arXiv:2408.03291*,
 627 2024b.

628

629 Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun. Ptq4vit: Post-training
 630 quantization for vision transformers with twin uniform quantization. In *European conference on
 computer vision*, 2022.

631

632 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 633 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 634 2023.

635

636

637

638

639

640

641

642

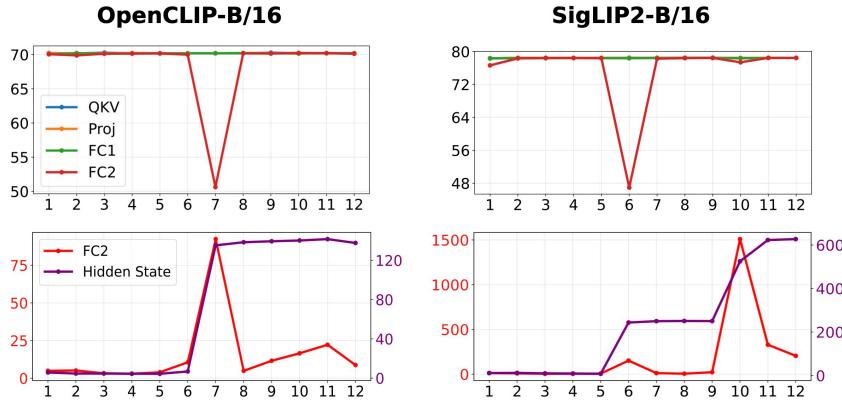
643

644

645

646

647

648
649
650
651 APPENDIX
652
653654
655
656 A BASELINES
657
658
659660 In this section, we briefly introduce baseline quantization methods for our experiments.
661662
663 • **PTQ4ViT** (Yuan et al., 2022): Proposes a twin uniform quantizer to handle the unbalanced activation distributions found in ViTs, particularly after non-linearities such as Softmax and GELU.
664
665 • **RepQ-ViT** (Li et al., 2023): Addresses quantization bottlenecks by applying specialized preprocessing to sensitive layers, such as channel-wise quantization after LayerNorm and log2 quantization after Softmax.
666
667 • **NoisyQuant** (Liu et al., 2023): Introduces a quantizer-agnostic strategy that adds fixed uniform bias to activations, thereby reducing the quantization error of heavy-tailed distributions.
668
669
670
671
672
673
674
675
676
677
678679 B ADDITIONAL RESULTS OF QUANTIZATION SENSITIVITY
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701696 Figure 5: (Top) Layerwise quantization sensitivity (%). Zero-shot ImageNet-1K accuracy when
697 we quantize only one layer to W8A8. (Bottom) Layerwise max token norms. The largest ℓ_∞ -norm
698 of all tokens in an image, averaged over the ImageNet-1K validation set.
699700 In this section, we provide additional plots for other vision encoders, analogous to those in Figure 2.
701 In Fig. 5, we plot layerwise quantization sensitivity (top row) and maximum token norm (bottom row)
702 for OpenCLIP and SigLIP2. The trends are consistent with our analysis in Section 3.1: increases in maximum token norm coincide with decreases in quantization sensitivity. However, in the
703 case of SigLIP2, the absolute scale of the maximum norm—both for $fc2$ and the hidden state—is
704 significantly larger than in the other architectures we considered. Consequently, applying RegCache
705 yields a clearer benefit, as shown in Table 2. Given SigLIP2’s distinct behavior compared to other
706 vision encoders, it would be intriguing to investigate further; we leave this for future work.
707708 C IMAGE RETRIEVAL RESULTS
709
710711 We presents supplementary plots for additional vision encoders, in a format consistent with Table 3.
712 Table 7 presents zero-shot image–text retrieval results on the MSCOCO dataset for OpenCLIP and
713 SigLIP2. In both models, RegCache consistently achieves the highest retrieval accuracy as well.
714715 D WEIGHT-ONLY QUANTIZATION
716
717718 We evaluate the performance of weight-only quantization to assess the compatibility of RegCache
719 with weight-centric methods, which are commonly employed to reduce memory and deployment
720

702
703
704
705 Table 7: Zero-shot image–text retrieval performance on MS-COCO, reported as Recall@K (%) for
706 each baseline.
707
708
709
710
711
712
713
714
715
716
717
718

(a) OpenCLIP-B/16

	I → T		T → I	
	R@1	R@5	R@1	R@5
FP32	61.02	83.04	41.38	66.93
Naïve	37.32	61.12	26.30	49.38
w/ Ours	58.00	81.08	39.00	64.48
PTQ4ViT	59.60	82.16	40.66	66.40
w/ Ours	59.82	82.66	41.18	66.64
RepQ-ViT	57.62	80.80	38.88	64.33
w/ Ours	58.90	81.60	39.20	65.00
NoisyQuant	57.92	80.08	39.36	64.93
w/ Ours	60.50	82.50	40.67	66.36

(b) SigLIP2-B/16

	I → T		T → I	
	R@1	R@5	R@1	R@5
FP32	71.60	89.16	52.33	76.58
Naïve	14.26	27.76	13.86	28.63
w/ Ours	56.94	79.30	42.71	68.54
PTQ4ViT	70.10	88.66	51.35	75.56
w/ Ours	70.82	88.74	51.64	76.27
RepQ-ViT	69.24	87.92	50.22	74.44
w/ Ours	69.24	87.62	50.20	74.45
NoisyQuant	62.28	83.50	46.39	71.43
w/ Ours	62.86	84.50	46.30	71.45

721
722 Table 8: Zero-shot image classification accuracy (%) under weight-only quantization (AWQ), com-
723 paring our method with the baseline.

Model	FP32	Method	Weight-only (AWQ) Bits			
			W8A32	W6A32	W4A32	W3A32
CLIP-B/16	68.32	AWQ	68.23	68.18	67.83	65.90
		+ RegCache	68.27 (+0.04)	68.25 (+0.07)	67.95 (+0.12)	66.14 (+0.24)
OpenCLIP-B/16	70.22	AWQ	69.39	69.38	68.99	66.72
		+ RegCache	69.40 (+0.01)	69.40 (+0.02)	68.97 (-0.02)	66.80 (+0.08)
SigLIP-B/16	76.05	AWQ	75.72	75.89	75.39	72.34
		+ RegCache	75.79 (+0.07)	75.94 (+0.05)	75.43 (+0.04)	72.48 (+0.14)
SigLIP2-B/16	78.48	AWQ	77.13	77.14	76.46	71.51
		+ RegCache	77.32 (+0.19)	77.33 (+0.19)	76.65 (+0.19)	71.75 (+0.24)

735
736 cost. Specifically, we adopt AWQ (Lin et al., 2024)—a popularly adopted weight-only quantiza-
737 tion algorithm—as the base method, using a group size of 128 and varying bitwidths of 8, 6, 4,
738 and 3. Across all configurations, RegCache consistently improves performance over vanilla AWQ,
739 demonstrating its complementary benefit even in memory-constrained quantization settings.

E COMPUTATIONAL EFFICIENCY OF REGCACHE

740
741 Table 9: Comparison of GFLOPs. The best configuration selected by our method in RegCache.
742
743

Model	Vanilla	RegCache	Δ (%)
CLIP	35.26	35.33	+0.20
OpenCLIP	35.25	35.31	+0.17
SigLIP	35.53	35.26	-0.76
SigLIP2	35.53	35.47	-0.17
DINOv2	46.46	46.47	+0.02

752
753 In terms of computational efficiency, we quantitatively assess the computational overhead induced
754 by the proposed RegCache method by measuring the FLOPs³. As shown in Table 9, the increase in
755 FLOPs due to RegCache remains minimal—no more than 0.2% of the total computation.

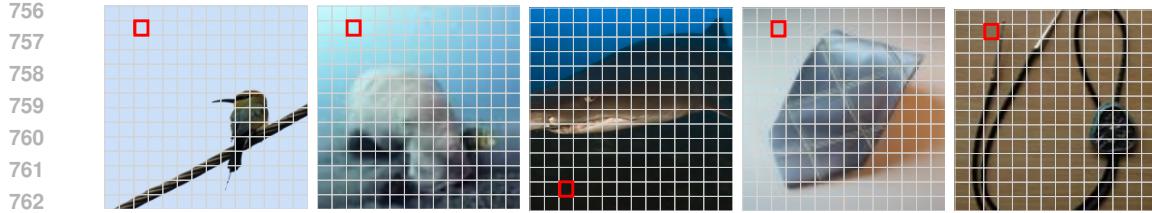


Figure 6: Visualization of register token searched from ImageNet-1K

F VISUALIZATION OF REGISTER TOKENS

In Fig. 6, we visualize the top 5 prefix tokens ranked by their effectiveness, as measured by zero-shot classification accuracy on ImageNet-1k. The results are consistent with prior findings (Darcel et al., 2024; Jiang et al., 2025), revealing that the searched register tokens are located in background regions. We find that the searched register tokens commonly correspond to low-frequency regions surrounded by semantically uninformative patches.

G OUTLIERS IN VISION ENCODER VS. LLMs: A TOKENIZATION PERSPECTIVE

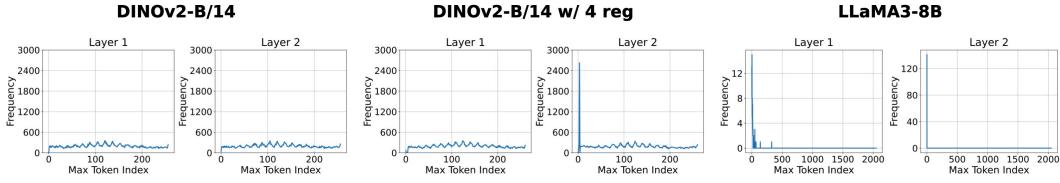


Figure 7: The frequency of top-1 max tokens in the input tensor of FC2 layers in different models. We evaluated DINOv2 on ImageNet-1K and LLaMA3-8B on WikiText-2 dataset.

As shown in Fig. 2, various vision encoders exhibit outliers in the intermediate layers. Rewinding recent studies about outlier tendency in LLMs (Sun et al., 2024; Gu et al., 2025), it is natural to ask: why do outliers consistently emerge in the intermediate layers of vision encoders, rather than in the early layers as in LLMs? In this section, we investigate this phenomenon by rethinking the difference of *tokenization strategies* between vision encoders and LLMs.

Roughly speaking, LLMs map input sequences to tokens drawn from a discrete, fixed vocabulary. In contrast, vision encoders and other ViT-based models process inputs by mapping them to continuous token embeddings using a (convolutional) neural network. We hypothesize that differences in the emergence of sink tokens can be attributed from their fundamentally distinct tokenization process.

To test this hypothesis, we compare the outlier behavior of DINOv2, pretrained both with and without learned register tokens, and LLaMA3-8B (Dubey et al., 2024). In this setup, the register tokens act as “fixed outlier sinks,” (Darcel et al., 2024) effectively forming a closed-set vocabulary for outlier attraction, analogous to the tokenization setup in LLMs. As shown in Fig. 7, when ViTs are equipped with four learned register tokens, they begin to exhibit outliers in early layers (i.e., 2nd layer), mirroring the behavior observed in LLMs. This supports our hypothesis that continuous tokenization in ViTs plays a crucial role in the emergence of outliers in the intermediate layers.

H LLM USAGE

We used a large language model to help refine the writing of this paper.

³FLOPs are estimated using a pseudo-quantization approach that simulates quantized operations.