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Abstract

Entity recognition is a fundamental task in un-
derstanding document images. Traditional se-
quence labeling framework requires extensive
datasets and high-quality annotations, which
are typically expensive in practice. In this pa-
per, we aim to build an entity recognition model
based on only a few shots of annotated doc-
ument images. To overcome the data limita-
tion, we propose to leverage the label surface
names to better inform the model of the tar-
get entity semantics. Specifically, we go be-
yond sequence labeling and develop a novel
label-aware seq2seq framework, LASER. We
design a new labeling scheme that generates
the label surface names word-by-word explic-
itly after generating the entities. Moreover, we
design special layout identifiers to capture the
spatial correspondence between regions and
labels. During training, LASER refines the
label semantics by updating the label surface
name representations and also strengthens the
label-region correlation. In this way, LASER
recognizes the entities from document images
through both semantic and layout correspon-
dence. Extensive experiments on two bench-
mark datasets demonstrate the superiority of
LASER under the few-shot setting.

1 Introduction

Entity recognition lies in the foundation of docu-
ment image understandings, which aims at extract-
ing word spans that perform certain roles from the
document images, such as header, question. Dis-
tinct from the text-only named entity recognition
task, the document images, such as forms, tables,
receipts, and multi-columns, provide a perfect sce-
nario to apply multi-modal techniques into practice
where the rich layout formats in such document
images serve as the new, complementary signals
for entity recognition performance in addition to
the existing textual data.

Recent methods (Xu et al., 2020; Hong et al.,
2020; Garncarek et al., 2021) follow the tradi-

tional sequence labeling framework to extract the
word spans using the standard IOBES tagging
schemes (Marquez et al., 2005; Ratinov and Roth,
2009) in named entity recognition tasks. These
methods largely extend the label space by includ-
ing combinations of the boundary identifiers (B, I,
E, S) and entity types. For instance, when there
are 3 target entity types, the extended label space
would have 13 (i.e., 4 X 3 4+ 1) dimensions. As
a result, they require extensive datasets and high-
quality annotations to inform the model of the label
semantics. Document images typically include var-
ious formats and have a high density of entities
within each page. Given the complexity of the doc-
ument images, it is expensive or almost impossible
to acquire enough annotated data in certain appli-
cation scenarios. Moreover, when it comes to the
receipts or consent forms, ethical concerns would
arise, making it hard to collect enough data.

To overcome the data limitation and better save
human labors, we resort to build entity recognition
models for document images under the few-shot
setting, which means the models can only learn
from a limited number of training pages and are
generalized on new pages. In our method, we go
beyond the sequence labeling framework and re-
formulate the entity recognition as a sequence-to-
sequence task. Specifically, we propose a new gen-
erative labeling scheme for entity recognition —
the label surface name is generated right after each
entity as a part of the target sequence. In this way,
different entity types are no longer independent
dimensions in the label space. Instead, one can
benefit from pre-trained language models to ex-
plicitly understand the semantic meanings of entity
types from the label surfaces.

To this end, we propose a label-aware sequence-
to-sequence framework for entity recognition,
LASER. As shown in Figure 1, it follows our pro-
posed generative labeling scheme to better solve the
few-shot entity recognition task for document im-



ages. We implement LASER based on pre-trained
language model LayoutReader (Wang et al., 2021),
which is a layout-aware pre-trained sequence-to-
sequence model. The semantic correlation is latent
within the pre-trained models and we explicitly use
it in sequence-to-sequence training to infer the cor-
respondence between the entities and the label sur-
face names. Specifically, after generating certain
word spans, the model can choose to generate ei-
ther the following words in the source sequence or
label surface names. Generation probability of la-
bels conditioned on entities can be learned through
maximizing the log likelihood.

LASER also explicitly learns the spatial corre-
spondence between label surface names and the
entities. Given the document images, inputs from
both text and layout formats are available. Com-
pared with textual data, layout formats are easy to
learn and can provide stronger signals in relation
extraction and reading order detection (Wang et al.,
2021, 2020). We design special embeddings as
layout identifiers for the label surface names, so
the generation probability of the next token is also
aware of the correlation between the layout identi-
fiers and the spatial embeddings of the entities. We
intend to learn which areas the entities of certain
labels are more likely to appear.

Considering both semantic and spatial correspon-
dence between labels and entities, LASER is able
to effectively recognize entities in document im-
ages with only a limited number of training sam-
ples. In contrast, the existing sequence labeling
models fail to leverage the semantics or layout for-
mats in an explicit way, thus requiring more data
to learn the correlation between labels and entities.

We validate LASER using two benchmarks,
FUNSD (Guillaume Jaume, 2019) and CORD-
Lvl (Park et al., 2019). Both datasets are from
real scenarios and fully-annotated with textual con-
tents and bounding boxes. We compare our model
with strong baselines and study the label-entity se-
mantic and spatial correlations. We summarize our
contribution as follows.

* We reformulate the entity recognition task and
propose a new generative labeling scheme that
embeds the label surface names into the target
sequence to explicitly inform the model of the
label semantics.

* We propose a novel label-aware sequence-to-
sequence framework LASER to better handle
few-shot entity recognition tasks for document

images than the traditional sequence labeling
framework using both label semantics and layout
format learning.

» Extensive experiments on two benchmark
datasets demonstrate the effectiveness of LASER
under few-shot settings.

Reproducibility. We will release the code and

datasets on Github'.

2 Problem Formulation

The few-shot entity recognition in the document
images is to take the text and layout inputs from
a limited number of training samples to predict
the boundary of each entity and classify the en-
tity into categories. Given a document image page
‘P, the words within the page are annotated with
their textual contents w and the bounding boxes
B = (x0, Yo, x1,y1) (top-left and bottom-right cor-
ners) serving as the inputs from textual and layout
modalities. All the words and bounding boxes cor-
respond to each other and are listed in a sequence
so the entities are spans of these words referring to
precise concepts. We randomly select a small set of
training samples and evaluate the performance un-
der the k-shot training, where k£ denotes the number
of the training sample.

3 Our Generative Labeling Scheme

We propose our labeling scheme of entity recog-
nition in the generative manner which generates
the entity boundaries and the label surface names
explicitly.  Specifically, given an entity e =
[w;, Wiy1...,w;], we use the [B] and [E] to de-
note the boundary of the entity and append the label
surface name afterwards. Overall, the generative
formulation is to generate:

w;—1, [B], ws, ..., w5, [E],T1,..., Tk, [T], wj1

where [B] and [E] denote the start and end of
the entity; 7...7% are the words in the label surface
name; [T] denotes the end of the label surface
name. For example, “Sender” and “Charles Dug-
gan” are a pair of question and answer from a doc-
ument image. According to the generative labeling
scheme, the corresponding generated sequence is
that: [B] Sender [E] question [T] [B] Charles
Duggan [E] answer [T].
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Figure 1: The Framework of LASER: [B], [E], [T] denote the boundaries; 7, 7/, 7"/ are the label surface names;
(a) is the process of generative labeling scheme; (b) shows the alignment of the spatial identifiers and embeddings.

4 Our LASER Framework

In this section, we introduce our label-aware
sequence-to-sequence framework for entity recog-
nition in document images. First, we introduce our
method in a bird’s eye view. Then we dive into
the details of each part including the multi-modal
prefix language model, the label-aware generation.

4.1 Overview

Our proposed LASER is a label-aware sequence-
to-sequence model for entity recognition in docu-
ment images. The framework is shown in Figure
1. The model follows the prefix language model
paradigm (Raffel et al., 2019; Dong et al., 2019;
Bao et al., 2020) and is built upon the pre-trained
language model, LayoutReader (Wang et al., 2021).
With extensive knowledge learned in pre-training
stage, the model leverages the semantic meaning
of label surface names during generation.

Since the functional tokens (e.g. [B], [E]) and
the label surface names are foreign words in the
given page, their layout features are nonexistent.
We use trainable vectors as special layout identi-
fiers for these extra tokens and these vectors are
well aligned into the spatial embedding space. In
this way, the spatial correspondence between lay-
out formats and labels can be learned.

To reinforce the model to distinguish the func-
tional tokens (e.g. [B], [E]) and ordinary words,
an extra binary classification module is added, and

the probability is used in the next token prediction.
Equipped with all the components, our proposed

model is able to conduct entity recognition effi-

ciently and effectively under the few-shot setting.

4.2 Multi-modal Prefix LM

LASER is built on the layout-aware prefix lan-
guage model, LayoutReader (Wang et al., 2021).
Prefix language model refers to a multi-layered
Transformer where the source sequence and tar-
get sequence are packed together and a “partially-
triangle” mask is used to control the attention be-
tween tokens in the two sequences. In LASER,
the source sequence has full self-attention and the
target sequence only attends to the previous tokens
so the conditional generative probability is learned.

Input Embedding The input embedding layer of
LASER includes the word embedding, spatial em-
bedding, and positional embedding. We normalize
and round the bounding box coordinates to inte-
gers ranging from 0 to 1000, and embed them as
trainable vectors as spatial embeddings (Xu et al.,
2020, 2021a,b; Wang et al., 2021). So the input
embeddings of the ordinary words are as follows:

ew; = WordEmb(w;) + SpaEmb(B;) + PosEmb(i)

where WordEmb, SpaEmb, PosEmb are the word
embedding, the spatial embedding, and the posi-
tional embedding lookup tables, respectively; ¢ is
the index of the word in the packed sequence.



The functional tokens and label surface names
are new tokens in the given page. We cannot ex-
tract the layout features from the bounding boxes of
them because their bounding boxes are nonexistent.
Instead of the actual bounding boxes, we design
unique embedding vectors for each new tokens as
their layout identifiers. These identifiers can per-
form in the same way as real bounding boxes dur-
ing training because these identifiers are the vectors
of the same dimension of the spatial embeddings
and added to the input embedding. The input em-
bedding replaces the spatial embedding with the
spatial identifiers:

ex = WordEmb(\) 4 SpalD(\) + PosEmb(7)

where SpalD is the spatial identifier lookup table;
¢ s the index of the word in the packed sequence;
A€ {I[B], [E], [T],T1,..., Tt}

Within the input embedding layer, the pre-
trained model learns the semantic and layout for-
mats from word embeddings or spatial features.
The spatial embeddings are already pre-trained and
further fine-tuned in the downstream tasks, and the
spatial identifiers are new to the model and com-
pletely trained in the downstream tasks.

Attention Mask As mentioned, LASER depends
on a “partially-triangle” mask to realize sequence-
to-sequence training within one encoder. To be
more specific, the “partially-triangle” attention
mask has two parts, the source part and the tar-
get part. In the source part, the tokens can attend to
each other, which enables the model to be aware of
the entire sequence. In the target part, to predict the
next token in a sequence-to-sequence way, we de-
sign the “triangle”” mask which prevents the tokens
from attending to the tokens after them. There-
fore, the generative probability conditioned on the
previous tokens can be computed.

Output Hidden States To learn the conditional
generative probability of the next token, we take the
output hidden states corresponding to the target se-
quence which is denoted as hy,+1, hpt2, ooy Antm,
where n + 1 is the beginning of the target sequence
in the packed sequence. According to the “partially-
triangle” attention mask, A, is produced with the
attention to the source tokens and the previous tar-
get tokens, i.e., the input embeddings whose index
ranges from 1 to n + k. Therefore, h, 4 is used to
predict the (k + 1)-th token in the target sequence.

4.3 Label-aware Generation

In the sequence-to-sequence setting, LASER esti-
mates the probability of next token conditioned
on the previous context, i.e. P(xg|z<r) and
xp € C, where C = {wy..w,} U {m...7u} U
{[B1, [E], [T]} is the set of all candidate words.
Following LayoutReader, we restrain the candi-
dates within the source words instead of the whole
dictionary, and we go beyond it and extend the can-
didate set to include the functional tokens and label
surface names. Moreover, to distinguish whether
the next word belongs to the source or not, we
design an extra binary classification module.
Specifically, we take the hidden states h;, to pre-
dict whether the next token is from the source or
not. We denote the probability P(zj41 € src) =
Pk+1. Then we use pg1 to weight the next token
prediction. The probability that the next token is
the i-th word in the source is computed as follows:

Prt1 exp (el hy, + by)
> exp (el by, + by)

P(zpy1 = wilr<y) =

where w; is the ¢-th word in the source; e, is the
input embedding of w;; by, is the bias.

Similarly, the probability that the next token is
one of the functional tokens or label surface names
is computed as follows:

(1 — pgs1)exp (efhk +b}.)

Pz = Az =
( i ’ Sk) Z)\/ exp (ez/hk + b;g)
where )\ is a functional token or label surface name,
ie. A € {[B],[E], [T],71, .0, Tt }; 1 — ppy1 is
the probability that (k£ 4 1)-th token is a functional
token or label surface name; b), is the bias.

Label Semantics Learning With the log like-
lihood loss of generative language modeling, the
model maximize the dot production between the
hidden states h and the input embeddings e. The
semantic correlation is learned considering that the
input embeddings of the labels surface names are
encoded in the word embeddings.

Spatial Identifier Learning From the layout for-
mat perspective, the input embedding of the la-
bel surface names also includes the spatial iden-
tifiers. When predicting the next token, the log
likelihood also strengthens the relation between
the spatial identifiers and the layout context. In
this way, LASER inserts the spatial identifiers into
the hyperspace of the spatial embeddings. In other



words, LASER predicts where a certain label is
more likely to be. Similar to the joint probability
of language modeling, LASER maximizes the joint
probability of a mixture of spatial identifiers and
spatial embeddings: P(..., Bx_1, Bg, 7, Bi11, -..)
where By, is the bounding boxes of the words in
the page and the 7 is the label to predict. Further
visualization is conducted in Section 5.8.

4.4 Sequential Decoding

After training, LASER follows the prefix language
modeling paradigm and generates the target se-
quence sequentially. We input the source sequence
into the model and take the last hidden states to pre-
dict the first token in the target. Then we append
the result to the end of input and repeatedly run the
generation. We cache the states of the model and
achieve generation in linear time.

5 Experiments

In this section, we conduct experiments and abla-
tion study on FUNSD (Guillaume Jaume, 2019)
and CORD-Lv1 (Park et al., 2019) under few-shot
settings. We replace the original label surface
names with other tokens to study the importance
of semantic meaning. We also plot the heatmaps
of the similarity between the layout identifiers and
the spatial embeddings to interpret the spatial cor-
respondence. Case studies are also conducted.

5.1 Experimental Setups

All the experiments are under few-shot settings us-
ing 1, 2, 4, 8 shots. We use 4 different random
seeds to select the few-shot training samples and
report the average performance and the standard de-
viation. To evaluate our model, we first convert our
results into TOBES tagging scheme and compute
the word-level precision, recall, and F-1 score using
the APIs from Nakayama (2018) so that all compar-
isons with sequence labeling methods are under the
same metrics. We believe such experiment settings
guarantee the results are representative.

5.2 Datasets

Our experiments are conducted on two real-world
data collections: FUNSD and CORD-Lv1. Both
datasets provide rich annotations for the document
image understandings includes the words and the
word-level bounding boxes. The details and statis-
tics of these two datasets are as follows.
e FUNSD: FUNSD consists of 199 fully-
annotated, noisy-scanned forms with various

Table 1: Dataset Statistics

Dataset Split  #Page # Entity/Page
Train 149 49.74

FUNSD Test 50 46.64
Train 800 13.88

CORD-Lvl  Test 100 13.36

appearance and format which makes the form
understanding task more challenging. The
word spans in this datasets are annotated with
three different labels: header, question and
answer, and the rest words are annotated as
other. We use the original label names.

¢ CORD-Lv1: CORD consists of about 1000 re-
ceipts with annotations of bounding boxes and
textual contents. The annotated entities have
mulit-level labels. We select the first level and
denote the dataset as CORD-Lv1. The first level
labels include menu, void-menu, subtotal
and total. We simplify void-menu as void
and subtotal as sub.

5.3 Compared Methods

We evaluate LASER against several strong se-

quence labeling methods as follows.

* BERT (Devlin et al., 2018) is a text-only auto-
encoding pre-trained language model using the
large-scale mask language modeling. We fine-
tune the pre-trained BERT-base model with the
few-shot training samples on each datasets.

* RoBERTa (Liu et al., 2019) extends the capac-
ity of BERT and achieves better performance in
multiple natural language understanding tasks.
We also conduct the fine-tuning with few-shot
training samples.

e LayoutLM (Xu et al., 2020) is a multi-modal
language model which includes the layout and
text information. It is built upon BERT and
adds the extra spatial embeddings into the BERT
embedding layer. Following LayoutL.M, Lay-
outLMv2 (Xu et al., 2021a) leverages extra com-
puter vision features and improves the perfor-
mance, which are strong signals but absent in our
settings. For a fair comparison, we do not include
LayoutLMv2 in our comparative experiments.

These compared methods are in their base version

and follow the TOBES tagging scheme.

We denote our model as LASER. In order to un-
derstand how much the label surface names can tell,
we introduce an ablation version LASER (IRLVT)
by replacing the label surface names with irrele-



Table 2: Evaluation Results with Different Sizes of Few-shot Training Samples: Bold denotes the best model;

Underline denotes the second-best model.

FUNSD CORD-Lv1
|P|  Model — —
Precision Recall F-1 Precision Recall F-1
BERT 13.68+4.16 23.2446.97 15.90+2.67 27.1642.15 38.53+3.61 31.85+2.67
RoBERTa 11.15+4.11 21.96+7.51 14.00+3.90 24.70+2.31 32.67+£2.57 28.09+2.18
LayoutLM 12.19£1.29  23.26+10.45 14.31+£3.67 32.24+2.20 47.10+3.03 38.27+2.52
1 LASER 37.63+1.61  29.53+9.08 32.531+5.57 41.70+6.51 37.02+6.30 39.171+6.30
(IRLVT) 35.48+3.17 23.1448.14 27.5446.70 43.2745.06 36.3545.48 39.48+5.49
(w/o SpalD)  33.74+7.40 16.21+15.41 19.84+14.15 43.63+3.49 34.24+2.27 38.34+2.54
BERT 15.00+3.24 30.08+5.22 19.574+2.50 35.76+6.54 51.59+8.01 42.2247.23
RoBERTa 12.75+£2.08 24.874+6.29 16.58+2.50 35.4245.76 49.2949.80 41.1947.33
LayoutLM 16.11+3.71  31.64+11.71 20.9745.87 45.68+6.77 62.9115.98 52.88+6.64
2 LASER 37.16£5.59 39.85+10.18 38.35+7.75 55.39+4.94 54.2145.89 54.791+5.42
(IRLVT) 38.03+4.49 38.89+9.73 38.29+7.09 53.9145.18 51.7346.10 52.79+5.66
(w/o SpalD)  3591+7.44  30.63+14.73 32.41+£11.69  54.194+4.88 51.6446.23 52.8745.57
BERT 18.93+1.28 38.24+4.31 25224142  42.49+10.11 59.36£11.34 49.484+10.78
RoBERTa 18.304+2.80 34.15+6.63 23.56+3.11 46.624+13.39 59.23+16.53 52.15+£14.74
LayoutLM 28.1242.86 48.891+7.75 35.61+4.10 49.504+10.66  66.28+9.38  56.58+10.40
4 LASER 43.03+4.39  50.74+7.57 46.54+5.77 61.89+8.74 61.4149.72 61.641+9.22
(IRLVT) 42.9143.69 50.0247.43 46.144+5.35 62.144+8.34  60.94+10.25 61.51+9.33
(w/o SpalD)  42.6143.38 46.731+7.07 44.5145.06 62.00+9.88  60.82+11.83 61.37+£10.84
BERT 28.0945.32 45.5946.58 34.71+£5.84 54.8846.06 71.114£3.48 61.88+5.19
RoBERTa 27.79+£3.49 42.234+6.62 33.51+4.60 57.16£6.05 70.88+4.13 63.24+5.37
LayoutLM 46.95+3.48 64.4245.02 54.3144.05 62.60+5.67 77.10+3.20 69.05+4.77
8 LASER 50.661+2.48 61.3443.13 55.49+4-2.76 68.70+7.03 68.30+7.59 68.50+7.31
(IRLVT) 49.0343.09 59.624+3.83 53.8143.40 67.8446.04 66.98+6.69 67.40+6.36
(w/o SpalD)  52.03+1.81 62.5943.05 56.8242.33 67.0645.99 66.61+£7.02 66.83+6.49

vant tokens, which by default are [w, x, y, z]. We
also remove the spatial identifiers of label surface
names and compare the performance of LASER
(w/o SpalD) to study the layout format learning.

5.4 Implementation Details

We build LASER on the base of LayoutReader. We
use the Transformers (Wolf et al., 2019) and the
s2s-ft toolkits from the repository of Dong et al.
(2019). We use one NVIDIA A6000 to finetune
with batch size of 8. We optimize the model with
AdamW optimizer and the learning rate is 5 x 107°.

5.5 Experimental Results

From Table 2, the results show that, under few-shot
settings, our proposed generative labeling models
achieves the SOTA overall performance compared
with sequence labeling models. Specifically, com-
pared with the second-best baseline, LASER im-
proves the F-1 scores by 11.53% on FUNSD and
by 1.58% on CORD-Lv1 on average across the dif-
ferent shots and LASER (IRLVT) and (w/o SpalD)
also surpasses the baselines under most settings.
Moreover, the improvement on precision is re-
markable. LASER improves the precision by
15.91% on FUNSD and by 9.42% on CORD-Lv1

on average across the different shots. Especially,
under 1-shot setting, it surpasses the best sequence
labeling model on FUNSD by 23.95% on precision,
6.27% on recall and 16.63% on F-1 score.

We can also observe a drop in the improvement
with the increasing number of training samples. We
conclude that, with enough training samples, the
sequence labeling learns the meaning of each label
and the semantics of each label surface names no
longer provides extra useful information.

5.6 Ablation Study

From Table 2, we compare the performance of
LASER and LASER (IRLVT) and conclude that
the quality of label surface names is of great impor-
tance to the performance, which means if the label
surface names are not well designed and not quite
related to the entities, then the semantic correlation
is useless to provide semantic signals and some-
times even harm the performance. This explains
why there is about 0.3% drop in the F-1 score of
CORD-Lv1 under the 1-shot setting.

Comparing the performance of LASER and
LASER (w/o SpalD), the spatial correspondence
learned through the spatial identifiers is helpful to



Table 3: Semantic Correspondence Study: IRLVT uses
the irrelevant tokens, [w, x, y, z], as labels; ORIG uses
the original label surface names; Subl uses [info, efc,
small, number] as substitutes; Sub2 uses [page, non,
part, price] as substitutes. Bold denotes the best model;

Underline denotes the second-best model.

CORD-Lv1
|P| Label .
Precision Recall F-1
IRLVT 43.27+5.06 36.35+5.84 39.48+5.49
ORIG 41.70+6.51 37.024+6.30 39.17+6.30
1
Subl  42.50+6.47 36.80+£6.78 39.43+6.64
Sub2  43.21£7.16 38.41+5.79 40.6316.32
IRLVT 539145.18 51.734+6.10 52.79+£5.66
ORIG 55394494 54214589 54.79+5.42
2
Subl 55.5445.83 52.714+4.97 54.07+5.35
Sub2  56.121+4.70 54.27+5.96 55.161+5.34
IRLVT 62.144+8.34 60.94+10.25 61.51£9.33
ORIG 61.89+8.74 61.414+9.72 61.64£9.22
4
Subl  62.23+£9.45 61.52+10.27 61.87+9.86
Sub2  63.141+9.59 62.21+11.62 62.64+10.60
IRLVT 67.84+6.04 66.98+6.69 67.40£6.36
ORIG 68.70+7.03 68.304+7.59 68.50+7.31
8
Subl  69.771+7.46 68.69+7.75 69.23+7.60
Sub2  68.894+6.98 67.92+8.03 68.39+7.48

the performance under most settings. However,
there is a drop in the 8-shot setting on FUNSD. We
conclude that, distinct from the simpler formats of
receipts in CORD-Lvl1, the pages in FUNSD have
various formats making it harder to well align the
spatial identifiers into the spatial embedding space.

5.7 Label Surface Name Choices

In the experiment of few-shot entity recognition,
we compare LASER with LASER (IRLVT). To
further study the role of label surface names, we
try more different sets of words as substitutes and
compare the results. The label surface names of
FUNSD already provide remarkable improvements,
so we only conduct the semantic correspondence
study on CORD-Lv1.

From Table 3, we observe that LASER with orig-
inal labels performs better than the one with ir-
relevant label tokens, and when we replace the
original labels with more relevant tokens, such as
Sub2, there is further improvements. We attribute
it to the stronger semantic correspondence that can
be learned by the generative labeling scheme of
LASER. We also conclude that the semantic mean-
ings of the label surface names are useful to bridge
the gap between the labels and entities.

RN

(a) Header (b) Question (c) Answer

Figure 2: Spatial correspondence visualization on
FUNSD for different entity types.

5.8 Spatial Correspondence Interpretation

In this section, we study the ability of LASER to
capture the spatial correspondence between certain
areas and the labels. The experiment is based on
the results of LASER on FUNSD with 4 shots. As
mentioned in Section 4.2, we design unique spa-
tial identifiers for the label surface names. The
identifiers are in the same form as the spatial em-
beddings and LASER inserts the identifiers into the
original spatial embedding space during sequence-
to-sequence training. Ideally, the model can learn
where a certain label is more likely to appear. To
visualize such patterns, we compute the cosine sim-
ilarity matrix M of identifiers and the spatial em-
beddings as M;; = cos (SpaID(7), SpaEmb((i, j)))
where (i,7) is the normalized coordinate pair;
7 € {71, ..., +}. Then we plot the heatmap of the
similarity matrix, where the highlight areas mean
the higher similarities.

From Figure 2, we observe that the label
header is more likely to be in the middle col-
umn of the page and may appear in the bottom part
as well when there are multiple paragraphs. Intu-
itively, the label question and answer should
appear in pairs and it is observed in Figure 2
that their heatmaps are almost complementary to
each other. Several examples from FUNSD are
selected to demonstrate the visualization results
in Appendix. Comparing the examples and the
visualization results, we conclude that the spatial
identifiers of labels capture the formats of pages
and LASER leverages these features to better ex-
tract the entities under few shot settings.

5.9 Case Study

We visualize cases from the 8-shot setting. From
Figure 3, we observe LASER can extract the enti-
ties correctly, and the errors of LayoutLM comes
from the failure to extract the entities or wrong en-
tity type predictions. Since the sequence labeling
groups the words into spans through TOBES tag-
ging, which creates great uncertainty. Meanwhile,
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(a) Test Image and Expected Labels

(b) LASER Results

(c) LayoutLM Results
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(d) Test Image and Expected Labels

(e) LASER Results

(f) LayoutLM Results

Figure 3: Case Studies. (a), (b), (c) are from FUNSD; (d), (e), (f) are from CORD-Lvl; -, , - denote

question, answer, other;

LASER also learns questionsand answexrs ap-
pear in pairs (see Figure 3(b)). It also properly
predicts a numerical string as menu even if num-
bers are likely to be total (see Figure 3(e)).

6 Related Work

Layout-aware LMs. Since the post-OCR pro-
cessing has great application prospects, existing
works propose to adapt the language pre-training to
the layout formats learning. LayoutL.M (Xu et al.,
2020) is the pioneer in this area, which successfully
uses the coordinates to represent the layout infor-
mation in the embedding layer of BERT (Devlin
et al., 2018). Following LayoutLLM, the upgraded
version, LayoutLMv2 (Xu et al., 2021a), is fur-
ther proposed to leverage the visual features and
benefits from the alignment between words and
the regions in the page. LAMBERT (Garncarek
et al., 2021) and BROS (Hong et al., 2020) con-
tinue studying the layout representation which uses
the sinusoidal function or apply the relative posi-
tional biases from T5 (Raffel et al., 2019).

Generalized Seq2Seq. Sequence-to-sequence ar-
chitecture is basic in natural language processing
and is originally designed for machine translation.
With the rise of large pre-trained models, sequence-
to-sequence models are increasingly used with new
problem formulation. Existing works exploit the
potential latent knowledge and stronger represen-
tation ability of sequence-to-sequence modeling.
GENRE (De Cao et al., 2020) creatively reformu-
lates the entity retrieval task into the sequence-
to-sequence settings. It inferences the lined en-
tities using the generation of BART. Recent works

X - denote menu, total; I:], denote the right, wrong predictions.

on prompt learning also leverage the pre-trained
sequence-to-sequence language models to conduct
few shot learning (Liu et al., 2021; Puri and Catan-
zaro, 2019; Hambardzumyan et al., 2021).

7 Conclusions and Future Work

In this paper, we present LASER, a label-aware
sequence-to-sequence framework for entity recog-
nition in document images under few-shot settings.
It benefits from the generative labeling scheme
which reformulates the entity recognition task into
the sequence-to-sequence setting. The label surface
names are embedded into the generated sequence.
Compared with the sequence labeling methods,
LASER leverages the rich semantics of the label
surface names and overcome the limitation of train-
ing data. Moreover, we design spatial identifiers
for each label and well insert them into the spatial
embedding hyperspace. In this way, LASER can
inference the entity labels from the layout formats
perspective and empirical experiments demonstrate
our method can learn the layout formats though
limited number of training samples.

For further research, we will investigate the se-
lection of label surface names and how to bet-
ter leverage the semantics from the pre-trained
sequence-to-sequence models. We also notice that
such labeling scheme can cope with unknown cate-
gories. We will focus on the generalization of our
method. Meanwhile, our method is not constrained
in the scenario of document images, and we will ap-
ply it to general text-only entity recognition tasks.



Ethical Consideration

This paper focuses on the entity recognition in doc-
ument images under few-shot setting. Our architec-
ture are built upon open-source models and all the
datasets are available online. We will release the
code and datasets on https://github.com/
anonymous. Therefore, we do not anticipate any
major ethical concerns.
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Several examples are listed in Figure 4. We ob-

serve that questions and answers are roughly
organized in columns and appear in pairs. Most
headers are located in the upper part of each page
but there are also cases where header appear in
the bottom of the page. There patterns align with
the visualization results in Section 5.8.
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(b) Labeled Entities

(d) Labeled Entities

(e) Original Image

(f) Labeled Entities
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(g) Original Image

(h) Labeled Entities

Figure 4: Layout Format Examples from FUNSD: -, , - denotes question, answer, header.




