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Abstract
Entity recognition is a fundamental task in un-001
derstanding document images. Traditional se-002
quence labeling framework requires extensive003
datasets and high-quality annotations, which004
are typically expensive in practice. In this pa-005
per, we aim to build an entity recognition model006
based on only a few shots of annotated doc-007
ument images. To overcome the data limita-008
tion, we propose to leverage the label surface009
names to better inform the model of the tar-010
get entity semantics. Specifically, we go be-011
yond sequence labeling and develop a novel012
label-aware seq2seq framework, LASER. We013
design a new labeling scheme that generates014
the label surface names word-by-word explic-015
itly after generating the entities. Moreover, we016
design special layout identifiers to capture the017
spatial correspondence between regions and018
labels. During training, LASER refines the019
label semantics by updating the label surface020
name representations and also strengthens the021
label-region correlation. In this way, LASER022
recognizes the entities from document images023
through both semantic and layout correspon-024
dence. Extensive experiments on two bench-025
mark datasets demonstrate the superiority of026
LASER under the few-shot setting.027

1 Introduction028

Entity recognition lies in the foundation of docu-029

ment image understandings, which aims at extract-030

ing word spans that perform certain roles from the031

document images, such as header, question. Dis-032

tinct from the text-only named entity recognition033

task, the document images, such as forms, tables,034

receipts, and multi-columns, provide a perfect sce-035

nario to apply multi-modal techniques into practice036

where the rich layout formats in such document037

images serve as the new, complementary signals038

for entity recognition performance in addition to039

the existing textual data.040

Recent methods (Xu et al., 2020; Hong et al.,041

2020; Garncarek et al., 2021) follow the tradi-042

tional sequence labeling framework to extract the 043

word spans using the standard IOBES tagging 044

schemes (Marquez et al., 2005; Ratinov and Roth, 045

2009) in named entity recognition tasks. These 046

methods largely extend the label space by includ- 047

ing combinations of the boundary identifiers (B, I, 048

E, S) and entity types. For instance, when there 049

are 3 target entity types, the extended label space 050

would have 13 (i.e., 4 × 3 + 1) dimensions. As 051

a result, they require extensive datasets and high- 052

quality annotations to inform the model of the label 053

semantics. Document images typically include var- 054

ious formats and have a high density of entities 055

within each page. Given the complexity of the doc- 056

ument images, it is expensive or almost impossible 057

to acquire enough annotated data in certain appli- 058

cation scenarios. Moreover, when it comes to the 059

receipts or consent forms, ethical concerns would 060

arise, making it hard to collect enough data. 061

To overcome the data limitation and better save 062

human labors, we resort to build entity recognition 063

models for document images under the few-shot 064

setting, which means the models can only learn 065

from a limited number of training pages and are 066

generalized on new pages. In our method, we go 067

beyond the sequence labeling framework and re- 068

formulate the entity recognition as a sequence-to- 069

sequence task. Specifically, we propose a new gen- 070

erative labeling scheme for entity recognition — 071

the label surface name is generated right after each 072

entity as a part of the target sequence. In this way, 073

different entity types are no longer independent 074

dimensions in the label space. Instead, one can 075

benefit from pre-trained language models to ex- 076

plicitly understand the semantic meanings of entity 077

types from the label surfaces. 078

To this end, we propose a label-aware sequence- 079

to-sequence framework for entity recognition, 080

LASER. As shown in Figure 1, it follows our pro- 081

posed generative labeling scheme to better solve the 082

few-shot entity recognition task for document im- 083
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ages. We implement LASER based on pre-trained084

language model LayoutReader (Wang et al., 2021),085

which is a layout-aware pre-trained sequence-to-086

sequence model. The semantic correlation is latent087

within the pre-trained models and we explicitly use088

it in sequence-to-sequence training to infer the cor-089

respondence between the entities and the label sur-090

face names. Specifically, after generating certain091

word spans, the model can choose to generate ei-092

ther the following words in the source sequence or093

label surface names. Generation probability of la-094

bels conditioned on entities can be learned through095

maximizing the log likelihood.096

LASER also explicitly learns the spatial corre-097

spondence between label surface names and the098

entities. Given the document images, inputs from099

both text and layout formats are available. Com-100

pared with textual data, layout formats are easy to101

learn and can provide stronger signals in relation102

extraction and reading order detection (Wang et al.,103

2021, 2020). We design special embeddings as104

layout identifiers for the label surface names, so105

the generation probability of the next token is also106

aware of the correlation between the layout identi-107

fiers and the spatial embeddings of the entities. We108

intend to learn which areas the entities of certain109

labels are more likely to appear.110

Considering both semantic and spatial correspon-111

dence between labels and entities, LASER is able112

to effectively recognize entities in document im-113

ages with only a limited number of training sam-114

ples. In contrast, the existing sequence labeling115

models fail to leverage the semantics or layout for-116

mats in an explicit way, thus requiring more data117

to learn the correlation between labels and entities.118

We validate LASER using two benchmarks,119

FUNSD (Guillaume Jaume, 2019) and CORD-120

Lv1 (Park et al., 2019). Both datasets are from121

real scenarios and fully-annotated with textual con-122

tents and bounding boxes. We compare our model123

with strong baselines and study the label-entity se-124

mantic and spatial correlations. We summarize our125

contribution as follows.126

• We reformulate the entity recognition task and127

propose a new generative labeling scheme that128

embeds the label surface names into the target129

sequence to explicitly inform the model of the130

label semantics.131

• We propose a novel label-aware sequence-to-132

sequence framework LASER to better handle133

few-shot entity recognition tasks for document134

images than the traditional sequence labeling 135

framework using both label semantics and layout 136

format learning. 137

• Extensive experiments on two benchmark 138

datasets demonstrate the effectiveness of LASER 139

under few-shot settings. 140

Reproducibility. We will release the code and 141

datasets on Github1. 142

2 Problem Formulation 143

The few-shot entity recognition in the document 144

images is to take the text and layout inputs from 145

a limited number of training samples to predict 146

the boundary of each entity and classify the en- 147

tity into categories. Given a document image page 148

P , the words within the page are annotated with 149

their textual contents w and the bounding boxes 150

B = (x0, y0, x1, y1) (top-left and bottom-right cor- 151

ners) serving as the inputs from textual and layout 152

modalities. All the words and bounding boxes cor- 153

respond to each other and are listed in a sequence 154

so the entities are spans of these words referring to 155

precise concepts. We randomly select a small set of 156

training samples and evaluate the performance un- 157

der the k-shot training, where k denotes the number 158

of the training sample. 159

3 Our Generative Labeling Scheme 160

We propose our labeling scheme of entity recog- 161

nition in the generative manner which generates 162

the entity boundaries and the label surface names 163

explicitly. Specifically, given an entity e = 164

[wi, wi+1..., wj ], we use the [B] and [E] to de- 165

note the boundary of the entity and append the label 166

surface name afterwards. Overall, the generative 167

formulation is to generate: 168

wi−1,[B], wi, ..., wj ,[E], τ1, ..., τk,[T], wj+1 169

where [B] and [E] denote the start and end of 170

the entity; τ1...τk are the words in the label surface 171

name; [T] denotes the end of the label surface 172

name. For example, “Sender” and “Charles Dug- 173

gan” are a pair of question and answer from a doc- 174

ument image. According to the generative labeling 175

scheme, the corresponding generated sequence is 176

that: [B] Sender [E] question [T] [B] Charles 177

Duggan [E] answer [T]. 178

1https://github.com/anonymous
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Figure 1: The Framework of LASER: [B], [E], [T] denote the boundaries; τ , τ ′, τ ′′ are the label surface names;
(a) is the process of generative labeling scheme; (b) shows the alignment of the spatial identifiers and embeddings.

4 Our LASER Framework179

In this section, we introduce our label-aware180

sequence-to-sequence framework for entity recog-181

nition in document images. First, we introduce our182

method in a bird’s eye view. Then we dive into183

the details of each part including the multi-modal184

prefix language model, the label-aware generation.185

4.1 Overview186

Our proposed LASER is a label-aware sequence-187

to-sequence model for entity recognition in docu-188

ment images. The framework is shown in Figure189

1. The model follows the prefix language model190

paradigm (Raffel et al., 2019; Dong et al., 2019;191

Bao et al., 2020) and is built upon the pre-trained192

language model, LayoutReader (Wang et al., 2021).193

With extensive knowledge learned in pre-training194

stage, the model leverages the semantic meaning195

of label surface names during generation.196

Since the functional tokens (e.g. [B], [E]) and197

the label surface names are foreign words in the198

given page, their layout features are nonexistent.199

We use trainable vectors as special layout identi-200

fiers for these extra tokens and these vectors are201

well aligned into the spatial embedding space. In202

this way, the spatial correspondence between lay-203

out formats and labels can be learned.204

To reinforce the model to distinguish the func-205

tional tokens (e.g. [B], [E]) and ordinary words,206

an extra binary classification module is added, and207

the probability is used in the next token prediction. 208

Equipped with all the components, our proposed 209

model is able to conduct entity recognition effi- 210

ciently and effectively under the few-shot setting. 211

4.2 Multi-modal Prefix LM 212

LASER is built on the layout-aware prefix lan- 213

guage model, LayoutReader (Wang et al., 2021). 214

Prefix language model refers to a multi-layered 215

Transformer where the source sequence and tar- 216

get sequence are packed together and a “partially- 217

triangle” mask is used to control the attention be- 218

tween tokens in the two sequences. In LASER, 219

the source sequence has full self-attention and the 220

target sequence only attends to the previous tokens 221

so the conditional generative probability is learned. 222

Input Embedding The input embedding layer of 223

LASER includes the word embedding, spatial em- 224

bedding, and positional embedding. We normalize 225

and round the bounding box coordinates to inte- 226

gers ranging from 0 to 1000, and embed them as 227

trainable vectors as spatial embeddings (Xu et al., 228

2020, 2021a,b; Wang et al., 2021). So the input 229

embeddings of the ordinary words are as follows: 230

ewi = WordEmb(wi) + SpaEmb(Bi) + PosEmb(i) 231

where WordEmb, SpaEmb, PosEmb are the word 232

embedding, the spatial embedding, and the posi- 233

tional embedding lookup tables, respectively; i is 234

the index of the word in the packed sequence. 235
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The functional tokens and label surface names236

are new tokens in the given page. We cannot ex-237

tract the layout features from the bounding boxes of238

them because their bounding boxes are nonexistent.239

Instead of the actual bounding boxes, we design240

unique embedding vectors for each new tokens as241

their layout identifiers. These identifiers can per-242

form in the same way as real bounding boxes dur-243

ing training because these identifiers are the vectors244

of the same dimension of the spatial embeddings245

and added to the input embedding. The input em-246

bedding replaces the spatial embedding with the247

spatial identifiers:248

eλ = WordEmb(λ) + SpaID(λ) + PosEmb(i)249

where SpaID is the spatial identifier lookup table;250

i is the index of the word in the packed sequence;251

λ ∈ {[B],[E],[T], τ1, ..., τt}.252

Within the input embedding layer, the pre-253

trained model learns the semantic and layout for-254

mats from word embeddings or spatial features.255

The spatial embeddings are already pre-trained and256

further fine-tuned in the downstream tasks, and the257

spatial identifiers are new to the model and com-258

pletely trained in the downstream tasks.259

Attention Mask As mentioned, LASER depends260

on a “partially-triangle” mask to realize sequence-261

to-sequence training within one encoder. To be262

more specific, the “partially-triangle” attention263

mask has two parts, the source part and the tar-264

get part. In the source part, the tokens can attend to265

each other, which enables the model to be aware of266

the entire sequence. In the target part, to predict the267

next token in a sequence-to-sequence way, we de-268

sign the “triangle” mask which prevents the tokens269

from attending to the tokens after them. There-270

fore, the generative probability conditioned on the271

previous tokens can be computed.272

Output Hidden States To learn the conditional273

generative probability of the next token, we take the274

output hidden states corresponding to the target se-275

quence which is denoted as hn+1, hn+2, ..., hn+m,276

where n+1 is the beginning of the target sequence277

in the packed sequence. According to the “partially-278

triangle” attention mask, hn+k is produced with the279

attention to the source tokens and the previous tar-280

get tokens, i.e., the input embeddings whose index281

ranges from 1 to n+ k. Therefore, hn+k is used to282

predict the (k + 1)-th token in the target sequence.283

4.3 Label-aware Generation 284

In the sequence-to-sequence setting, LASER esti- 285

mates the probability of next token conditioned 286

on the previous context, i.e. P (xk|x<k) and 287

xk ∈ C, where C = {w1...wn} ∪ {τ1...τt} ∪ 288

{[B],[E],[T]} is the set of all candidate words. 289

Following LayoutReader, we restrain the candi- 290

dates within the source words instead of the whole 291

dictionary, and we go beyond it and extend the can- 292

didate set to include the functional tokens and label 293

surface names. Moreover, to distinguish whether 294

the next word belongs to the source or not, we 295

design an extra binary classification module. 296

Specifically, we take the hidden states hk to pre- 297

dict whether the next token is from the source or 298

not. We denote the probability P (xk+1 ∈ src) = 299

pk+1. Then we use pk+1 to weight the next token 300

prediction. The probability that the next token is 301

the i-th word in the source is computed as follows: 302

P (xk+1 = wi|x≤k) =
pk+1 exp (e

T
wi
hk + bk)∑

j exp (e
T
wj
hk + bk)

303

where wi is the i-th word in the source; ewi is the 304

input embedding of wi; bk is the bias. 305

Similarly, the probability that the next token is 306

one of the functional tokens or label surface names 307

is computed as follows: 308

P (xk+1 = λ|x≤k) =
(1− pk+1) exp (e

T
λhk + b′k)∑

λ′ exp (eTλ′hk + b′k)
309

where λ is a functional token or label surface name, 310

i.e. λ ∈ {[B],[E],[T], τ1, ..., τt}; 1 − pk+1 is 311

the probability that (k+ 1)-th token is a functional 312

token or label surface name; b′k is the bias. 313

Label Semantics Learning With the log like- 314

lihood loss of generative language modeling, the 315

model maximize the dot production between the 316

hidden states h and the input embeddings e. The 317

semantic correlation is learned considering that the 318

input embeddings of the labels surface names are 319

encoded in the word embeddings. 320

Spatial Identifier Learning From the layout for- 321

mat perspective, the input embedding of the la- 322

bel surface names also includes the spatial iden- 323

tifiers. When predicting the next token, the log 324

likelihood also strengthens the relation between 325

the spatial identifiers and the layout context. In 326

this way, LASER inserts the spatial identifiers into 327

the hyperspace of the spatial embeddings. In other 328
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words, LASER predicts where a certain label is329

more likely to be. Similar to the joint probability330

of language modeling, LASER maximizes the joint331

probability of a mixture of spatial identifiers and332

spatial embeddings: P (..., Bk−1, Bk, τ, Bk+1, ...)333

where Bk is the bounding boxes of the words in334

the page and the τ is the label to predict. Further335

visualization is conducted in Section 5.8.336

4.4 Sequential Decoding337

After training, LASER follows the prefix language338

modeling paradigm and generates the target se-339

quence sequentially. We input the source sequence340

into the model and take the last hidden states to pre-341

dict the first token in the target. Then we append342

the result to the end of input and repeatedly run the343

generation. We cache the states of the model and344

achieve generation in linear time.345

5 Experiments346

In this section, we conduct experiments and abla-347

tion study on FUNSD (Guillaume Jaume, 2019)348

and CORD-Lv1 (Park et al., 2019) under few-shot349

settings. We replace the original label surface350

names with other tokens to study the importance351

of semantic meaning. We also plot the heatmaps352

of the similarity between the layout identifiers and353

the spatial embeddings to interpret the spatial cor-354

respondence. Case studies are also conducted.355

5.1 Experimental Setups356

All the experiments are under few-shot settings us-357

ing 1, 2, 4, 8 shots. We use 4 different random358

seeds to select the few-shot training samples and359

report the average performance and the standard de-360

viation. To evaluate our model, we first convert our361

results into IOBES tagging scheme and compute362

the word-level precision, recall, and F-1 score using363

the APIs from Nakayama (2018) so that all compar-364

isons with sequence labeling methods are under the365

same metrics. We believe such experiment settings366

guarantee the results are representative.367

5.2 Datasets368

Our experiments are conducted on two real-world369

data collections: FUNSD and CORD-Lv1. Both370

datasets provide rich annotations for the document371

image understandings includes the words and the372

word-level bounding boxes. The details and statis-373

tics of these two datasets are as follows.374

• FUNSD: FUNSD consists of 199 fully-375

annotated, noisy-scanned forms with various376

Table 1: Dataset Statistics

Dataset Split # Page # Entity/Page

FUNSD
Train 149 49.74
Test 50 46.64

CORD-Lv1
Train 800 13.88
Test 100 13.36

appearance and format which makes the form 377

understanding task more challenging. The 378

word spans in this datasets are annotated with 379

three different labels: header, question and 380

answer, and the rest words are annotated as 381

other. We use the original label names. 382

• CORD-Lv1: CORD consists of about 1000 re- 383

ceipts with annotations of bounding boxes and 384

textual contents. The annotated entities have 385

mulit-level labels. We select the first level and 386

denote the dataset as CORD-Lv1. The first level 387

labels include menu, void-menu, subtotal 388

and total. We simplify void-menu as void 389

and subtotal as sub. 390

5.3 Compared Methods 391

We evaluate LASER against several strong se- 392

quence labeling methods as follows. 393

• BERT (Devlin et al., 2018) is a text-only auto- 394

encoding pre-trained language model using the 395

large-scale mask language modeling. We fine- 396

tune the pre-trained BERT-base model with the 397

few-shot training samples on each datasets. 398

• RoBERTa (Liu et al., 2019) extends the capac- 399

ity of BERT and achieves better performance in 400

multiple natural language understanding tasks. 401

We also conduct the fine-tuning with few-shot 402

training samples. 403

• LayoutLM (Xu et al., 2020) is a multi-modal 404

language model which includes the layout and 405

text information. It is built upon BERT and 406

adds the extra spatial embeddings into the BERT 407

embedding layer. Following LayoutLM, Lay- 408

outLMv2 (Xu et al., 2021a) leverages extra com- 409

puter vision features and improves the perfor- 410

mance, which are strong signals but absent in our 411

settings. For a fair comparison, we do not include 412

LayoutLMv2 in our comparative experiments. 413

These compared methods are in their base version 414

and follow the IOBES tagging scheme. 415

We denote our model as LASER. In order to un- 416

derstand how much the label surface names can tell, 417

we introduce an ablation version LASER (IRLVT) 418

by replacing the label surface names with irrele- 419
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Table 2: Evaluation Results with Different Sizes of Few-shot Training Samples: Bold denotes the best model;
Underline denotes the second-best model.

|P| Model
FUNSD CORD-Lv1

Precision Recall F-1 Precision Recall F-1

1

BERT 13.68±4.16 23.24±6.97 15.90±2.67 27.16±2.15 38.53±3.61 31.85±2.67
RoBERTa 11.15±4.11 21.96±7.51 14.00±3.90 24.70±2.31 32.67±2.57 28.09±2.18
LayoutLM 12.19±1.29 23.26±10.45 14.31±3.67 32.24±2.20 47.10±3.03 38.27±2.52
LASER 37.63±1.61 29.53±9.08 32.53±5.57 41.70±6.51 37.02±6.30 39.17±6.30

(IRLVT) 35.48±3.17 23.14±8.14 27.54±6.70 43.27±5.06 36.35±5.48 39.48±5.49
(w/o SpaID) 33.74±7.40 16.21±15.41 19.84±14.15 43.63±3.49 34.24±2.27 38.34±2.54

2

BERT 15.00±3.24 30.08±5.22 19.57±2.50 35.76±6.54 51.59±8.01 42.22±7.23
RoBERTa 12.75±2.08 24.87±6.29 16.58±2.50 35.42±5.76 49.29±9.80 41.19±7.33
LayoutLM 16.11±3.71 31.64±11.71 20.97±5.87 45.68±6.77 62.91±5.98 52.88±6.64
LASER 37.16±5.59 39.85±10.18 38.35±7.75 55.39±4.94 54.21±5.89 54.79±5.42

(IRLVT) 38.03±4.49 38.89±9.73 38.29±7.09 53.91±5.18 51.73±6.10 52.79±5.66
(w/o SpaID) 35.91±7.44 30.63±14.73 32.41±11.69 54.19±4.88 51.64±6.23 52.87±5.57

4

BERT 18.93±1.28 38.24±4.31 25.22±1.42 42.49±10.11 59.36±11.34 49.48±10.78
RoBERTa 18.30±2.80 34.15±6.63 23.56±3.11 46.62±13.39 59.23±16.53 52.15±14.74
LayoutLM 28.12±2.86 48.89±7.75 35.61±4.10 49.50±10.66 66.28±9.38 56.58±10.40
LASER 43.03±4.39 50.74±7.57 46.54±5.77 61.89±8.74 61.41±9.72 61.64±9.22

(IRLVT) 42.91±3.69 50.02±7.43 46.14±5.35 62.14±8.34 60.94±10.25 61.51±9.33
(w/o SpaID) 42.61±3.38 46.73±7.07 44.51±5.06 62.00±9.88 60.82±11.83 61.37±10.84

8

BERT 28.09±5.32 45.59±6.58 34.71±5.84 54.88±6.06 71.11±3.48 61.88±5.19
RoBERTa 27.79±3.49 42.23±6.62 33.51±4.60 57.16±6.05 70.88±4.13 63.24±5.37
LayoutLM 46.95±3.48 64.42±5.02 54.31±4.05 62.60±5.67 77.10±3.20 69.05±4.77
LASER 50.66±2.48 61.34±3.13 55.49±2.76 68.70±7.03 68.30±7.59 68.50±7.31

(IRLVT) 49.03±3.09 59.62±3.83 53.81±3.40 67.84±6.04 66.98±6.69 67.40±6.36
(w/o SpaID) 52.03±1.81 62.59±3.05 56.82±2.33 67.06±5.99 66.61±7.02 66.83±6.49

vant tokens, which by default are [w, x, y, z]. We420

also remove the spatial identifiers of label surface421

names and compare the performance of LASER422

(w/o SpaID) to study the layout format learning.423

5.4 Implementation Details424

We build LASER on the base of LayoutReader. We425

use the Transformers (Wolf et al., 2019) and the426

s2s-ft toolkits from the repository of Dong et al.427

(2019). We use one NVIDIA A6000 to finetune428

with batch size of 8. We optimize the model with429

AdamW optimizer and the learning rate is 5×10−5.430

5.5 Experimental Results431

From Table 2, the results show that, under few-shot432

settings, our proposed generative labeling models433

achieves the SOTA overall performance compared434

with sequence labeling models. Specifically, com-435

pared with the second-best baseline, LASER im-436

proves the F-1 scores by 11.53% on FUNSD and437

by 1.58% on CORD-Lv1 on average across the dif-438

ferent shots and LASER (IRLVT) and (w/o SpaID)439

also surpasses the baselines under most settings.440

Moreover, the improvement on precision is re-441

markable. LASER improves the precision by442

15.91% on FUNSD and by 9.42% on CORD-Lv1443

on average across the different shots. Especially, 444

under 1-shot setting, it surpasses the best sequence 445

labeling model on FUNSD by 23.95% on precision, 446

6.27% on recall and 16.63% on F-1 score. 447

We can also observe a drop in the improvement 448

with the increasing number of training samples. We 449

conclude that, with enough training samples, the 450

sequence labeling learns the meaning of each label 451

and the semantics of each label surface names no 452

longer provides extra useful information. 453

5.6 Ablation Study 454

From Table 2, we compare the performance of 455

LASER and LASER (IRLVT) and conclude that 456

the quality of label surface names is of great impor- 457

tance to the performance, which means if the label 458

surface names are not well designed and not quite 459

related to the entities, then the semantic correlation 460

is useless to provide semantic signals and some- 461

times even harm the performance. This explains 462

why there is about 0.3% drop in the F-1 score of 463

CORD-Lv1 under the 1-shot setting. 464

Comparing the performance of LASER and 465

LASER (w/o SpaID), the spatial correspondence 466

learned through the spatial identifiers is helpful to 467
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Table 3: Semantic Correspondence Study: IRLVT uses
the irrelevant tokens, [w, x, y, z], as labels; ORIG uses
the original label surface names; Sub1 uses [info, etc,
small, number] as substitutes; Sub2 uses [page, non,
part, price] as substitutes. Bold denotes the best model;
Underline denotes the second-best model.

|P| Label
CORD-Lv1

Precision Recall F-1

1

IRLVT 43.27±5.06 36.35±5.84 39.48±5.49
ORIG 41.70±6.51 37.02±6.30 39.17±6.30

Sub1 42.50±6.47 36.80±6.78 39.43±6.64
Sub2 43.21±7.16 38.41±5.79 40.63±6.32

2

IRLVT 53.91±5.18 51.73±6.10 52.79±5.66
ORIG 55.39±4.94 54.21±5.89 54.79±5.42

Sub1 55.54±5.83 52.71±4.97 54.07±5.35
Sub2 56.12±4.70 54.27±5.96 55.16±5.34

4

IRLVT 62.14±8.34 60.94±10.25 61.51±9.33
ORIG 61.89±8.74 61.41±9.72 61.64±9.22

Sub1 62.23±9.45 61.52±10.27 61.87±9.86
Sub2 63.14±9.59 62.21±11.62 62.64±10.60

8

IRLVT 67.84±6.04 66.98±6.69 67.40±6.36
ORIG 68.70±7.03 68.30±7.59 68.50±7.31

Sub1 69.77±7.46 68.69±7.75 69.23±7.60
Sub2 68.89±6.98 67.92±8.03 68.39±7.48

the performance under most settings. However,468

there is a drop in the 8-shot setting on FUNSD. We469

conclude that, distinct from the simpler formats of470

receipts in CORD-Lv1, the pages in FUNSD have471

various formats making it harder to well align the472

spatial identifiers into the spatial embedding space.473

5.7 Label Surface Name Choices474

In the experiment of few-shot entity recognition,475

we compare LASER with LASER (IRLVT). To476

further study the role of label surface names, we477

try more different sets of words as substitutes and478

compare the results. The label surface names of479

FUNSD already provide remarkable improvements,480

so we only conduct the semantic correspondence481

study on CORD-Lv1.482

From Table 3, we observe that LASER with orig-483

inal labels performs better than the one with ir-484

relevant label tokens, and when we replace the485

original labels with more relevant tokens, such as486

Sub2, there is further improvements. We attribute487

it to the stronger semantic correspondence that can488

be learned by the generative labeling scheme of489

LASER. We also conclude that the semantic mean-490

ings of the label surface names are useful to bridge491

the gap between the labels and entities.492

(a) Header (b) Question (c) Answer

Figure 2: Spatial correspondence visualization on
FUNSD for different entity types.

5.8 Spatial Correspondence Interpretation 493

In this section, we study the ability of LASER to 494

capture the spatial correspondence between certain 495

areas and the labels. The experiment is based on 496

the results of LASER on FUNSD with 4 shots. As 497

mentioned in Section 4.2, we design unique spa- 498

tial identifiers for the label surface names. The 499

identifiers are in the same form as the spatial em- 500

beddings and LASER inserts the identifiers into the 501

original spatial embedding space during sequence- 502

to-sequence training. Ideally, the model can learn 503

where a certain label is more likely to appear. To 504

visualize such patterns, we compute the cosine sim- 505

ilarity matrix M of identifiers and the spatial em- 506

beddings as Mij = cos (SpaID(τ),SpaEmb((i, j))) 507

where (i, j) is the normalized coordinate pair; 508

τ ∈ {τ1, ..., τt}. Then we plot the heatmap of the 509

similarity matrix, where the highlight areas mean 510

the higher similarities. 511

From Figure 2, we observe that the label 512

header is more likely to be in the middle col- 513

umn of the page and may appear in the bottom part 514

as well when there are multiple paragraphs. Intu- 515

itively, the label question and answer should 516

appear in pairs and it is observed in Figure 2 517

that their heatmaps are almost complementary to 518

each other. Several examples from FUNSD are 519

selected to demonstrate the visualization results 520

in Appendix. Comparing the examples and the 521

visualization results, we conclude that the spatial 522

identifiers of labels capture the formats of pages 523

and LASER leverages these features to better ex- 524

tract the entities under few shot settings. 525

5.9 Case Study 526

We visualize cases from the 8-shot setting. From 527

Figure 3, we observe LASER can extract the enti- 528

ties correctly, and the errors of LayoutLM comes 529

from the failure to extract the entities or wrong en- 530

tity type predictions. Since the sequence labeling 531

groups the words into spans through IOBES tag- 532

ging, which creates great uncertainty. Meanwhile, 533

7



(a) Test Image and Expected Labels (b) LASER Results (c) LayoutLM Results

(d) Test Image and Expected Labels (e) LASER Results (f) LayoutLM Results

Figure 3: Case Studies. (a), (b), (c) are from FUNSD; (d), (e), (f) are from CORD-Lv1; Bl , Bl , Bl denote
question, answer, other; Bl , Bl denote menu, total; /// , /// denote the right, wrong predictions.

LASER also learns questions and answers ap-534

pear in pairs (see Figure 3(b)). It also properly535

predicts a numerical string as menu even if num-536

bers are likely to be total (see Figure 3(e)).537

6 Related Work538

Layout-aware LMs. Since the post-OCR pro-539

cessing has great application prospects, existing540

works propose to adapt the language pre-training to541

the layout formats learning. LayoutLM (Xu et al.,542

2020) is the pioneer in this area, which successfully543

uses the coordinates to represent the layout infor-544

mation in the embedding layer of BERT (Devlin545

et al., 2018). Following LayoutLM, the upgraded546

version, LayoutLMv2 (Xu et al., 2021a), is fur-547

ther proposed to leverage the visual features and548

benefits from the alignment between words and549

the regions in the page. LAMBERT (Garncarek550

et al., 2021) and BROS (Hong et al., 2020) con-551

tinue studying the layout representation which uses552

the sinusoidal function or apply the relative posi-553

tional biases from T5 (Raffel et al., 2019).554

Generalized Seq2Seq. Sequence-to-sequence ar-555

chitecture is basic in natural language processing556

and is originally designed for machine translation.557

With the rise of large pre-trained models, sequence-558

to-sequence models are increasingly used with new559

problem formulation. Existing works exploit the560

potential latent knowledge and stronger represen-561

tation ability of sequence-to-sequence modeling.562

GENRE (De Cao et al., 2020) creatively reformu-563

lates the entity retrieval task into the sequence-564

to-sequence settings. It inferences the lined en-565

tities using the generation of BART. Recent works566

on prompt learning also leverage the pre-trained 567

sequence-to-sequence language models to conduct 568

few shot learning (Liu et al., 2021; Puri and Catan- 569

zaro, 2019; Hambardzumyan et al., 2021). 570

7 Conclusions and Future Work 571

In this paper, we present LASER, a label-aware 572

sequence-to-sequence framework for entity recog- 573

nition in document images under few-shot settings. 574

It benefits from the generative labeling scheme 575

which reformulates the entity recognition task into 576

the sequence-to-sequence setting. The label surface 577

names are embedded into the generated sequence. 578

Compared with the sequence labeling methods, 579

LASER leverages the rich semantics of the label 580

surface names and overcome the limitation of train- 581

ing data. Moreover, we design spatial identifiers 582

for each label and well insert them into the spatial 583

embedding hyperspace. In this way, LASER can 584

inference the entity labels from the layout formats 585

perspective and empirical experiments demonstrate 586

our method can learn the layout formats though 587

limited number of training samples. 588

For further research, we will investigate the se- 589

lection of label surface names and how to bet- 590

ter leverage the semantics from the pre-trained 591

sequence-to-sequence models. We also notice that 592

such labeling scheme can cope with unknown cate- 593

gories. We will focus on the generalization of our 594

method. Meanwhile, our method is not constrained 595

in the scenario of document images, and we will ap- 596

ply it to general text-only entity recognition tasks. 597
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Ethical Consideration598

This paper focuses on the entity recognition in doc-599

ument images under few-shot setting. Our architec-600

ture are built upon open-source models and all the601

datasets are available online. We will release the602

code and datasets on https://github.com/603

anonymous. Therefore, we do not anticipate any604

major ethical concerns.605
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Appendix 707

A Layout Format Examples 708

Several examples are listed in Figure 4. We ob- 709

serve that questions and answers are roughly 710

organized in columns and appear in pairs. Most 711

headers are located in the upper part of each page 712

but there are also cases where header appear in 713

the bottom of the page. There patterns align with 714

the visualization results in Section 5.8. 715
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(a) Original Image (b) Labeled Entities (c) Original Image (d) Labeled Entities

(e) Original Image (f) Labeled Entities (g) Original Image (h) Labeled Entities

Figure 4: Layout Format Examples from FUNSD: Bl , Bl , Bl denotes question, answer, header.
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