
Published in Transactions on Machine Learning Research (09/2025)

Curvature Diversity-Driven Deformation and Domain Align-
ment for Point Cloud

Mengxi Wu mengxiwu@usc.edu
Department of Computer Science
University of Southern California

Hao Huang hh1811@nyu.edu
Department of Computer Science
New York University

Yi Fang yfang@nyu.edu
Department of Computer Science
New York University

Mohammad Rostami mrostami@isi.edu
Department of Computer Science
University of Southern California

Reviewed on OpenReview: https: // openreview. net/ forum? id= ePXWnH7rGk& referrer

Abstract

Unsupervised Domain Adaptation is crucial for point cloud learning due to geometric vari-
ations across different generation methods and sensors. To tackle this challenge, we pro-
pose Curvature Diversity-Driven Nuclear-Norm Wasserstein Domain Alignment
(CDND). We first introduce a Curvature Diversity-driven Deformation Reconstruction
(CurvRec) task, enabling the model to extract salient features from semantically rich re-
gions of a given point cloud. We then propose a theoretical framework for Deformation-based
Nuclear-norm Wasserstein Discrepancy (D-NWD), extending the Nuclear-norm Wasserstein
Discrepancy to original and deformed samples. Our theoretical analysis demonstrates that
D-NWD is effective for any deformation method. Empirical experiment results show that
our CDND achieves state-of-the-art performance by a noticeable margin over existing ap-
proaches. Our codes are available at: https://github.com/WMX567/CurvRec_DNWD.

1 Introduction

Adopting deep neural networks (DNNs) for point cloud representation learning has led to significant success
across applications such as robotics Maturana & Scherer (2015); Duan et al. (2021), autonomous vehi-
cles Mahjourian et al. (2018); Cui et al. (2021), and scene understanding Zheng et al. (2013); Zhu et al.
(2017). However, point clouds captured under different conditions often exhibit substantial variations, lead-
ing to performance degradation when DNNs are tested on data from domains different from those used
during training. This discrepancy, known as the domain gap, is especially problematic in real-world settings.
A straightforward solution—retraining the model on newly labeled data—is typically impractical due to the
high cost of manual annotation. Unsupervised domain adaptation (UDA) addresses this issue by transferring
knowledge from labeled source domains to unlabeled target domains. While UDA has been well studied in
2D planar domains (e.g., images), its extension to 3D point clouds remains underexplored due to challenges
from the irregular, unstructured, and unordered nature of 3D data. These properties amplify geometric
discrepancies between source and target domains, making direct adaptation methods less effective.
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To overcome these challenges, we propose Curvature Diversity-Driven Nuclear-Norm Wasserstein Domain
Alignment (CDND). Our approach is motivated by the observation that not all regions in a point cloud
equally contribute to semantic understanding and geometric variation can reflect semantic richness. Key
semantic features—such as object part boundaries and edges—often occur in regions with complex geometry.
As a result, areas with greater geometric variation tend to carry more meaningful semantic information.
Curvature diversity can capture geometric variation by measuring how much curvature changes within a
local region. Regions with high curvature diversity—reflecting substantial variation in surface orientation
and structure—often correspond to semantically rich components such as edges or jointed structures. In
contrast, low-diversity regions are typically flatter and less informative, like planar surfaces or object bases.

Our first contribution is the Curvature Diversity-driven Deformation Reconstruction (CurvRec). We intro-
duce a principled region selection strategy guided by curvature diversity, which we quantify using entropy—a
standard statistical measure of uncertainty. Entropy captures how spread out the curvature values are within
a region: high entropy indicates diverse curvature and complex geometry, while low entropy suggests geo-
metric uniformity. Leveraging this, CurvRec selectively deforms low-entropy (less informative) regions and
preserves high-entropy (semantically rich) ones. This contrasts with prior methods such as Achituve et al.
(2021), which apply random deformation, and Zou et al. (2021), which classify fixed high-curvature regions.
Our method instead focuses deformation on low-diversity areas, allowing the feature extractor to prioritize
learning from semantically rich regions.

Our second contribution is a theoretical framework for the Deformation-based Nuclear-norm Wasserstein
Discrepancy (D-NWD). Unlike the conventional NWD, D-NWD incorporates features from both original
and deformed samples to align source and target domains. This integration creates a more diverse and
robust feature space, improving model generalization under domain shifts. Notably, prior work has not
provided a theoretical analysis demonstrating that using the NWD to align features from both original and
deformed (or augmented) samples can improve performance on the target domain dataset. Our analysis is
the first to demonstrate the effectiveness of this strategy. Our theoretical framework shows that D-NWD
effectively reduces the domain gap between source and target domains. Furthermore, our analysis illustrates
that D-NWD is generic and adaptable to any deformation method, not just the one presented in this paper.
Our theoretical analysis is non-trivial since incorporating features from deformed samples requires us to
establish entirely new bounds and prove that the NWD remains effective in this expanded feature space
spanning both original and deformed samples.

Extensive experiments on standard classification and segmentation benchmarks demonstrate that CDND
achieves state-of-the-art performance compared to existing approaches.

2 Related Works

UDA for Point Clouds While Unsupervised Domain Adaptation (UDA) has been widely explored for
2D planar image data Ganin & Lempitsky (2015); Mansour et al. (2008); Stan & Rostami (2024a); Du et al.
(2024); Kumari & Singh (2024), fewer works address UDA for 3D point clouds and non-planar data, where
direct adaptation of 2D techniques proves non-trivial Qin et al. (2019); Achituve et al. (2021); Shen et al.
(2022); Zou et al. (2021); Liang et al. (2022); Chen et al. (2023); Katageri et al. (2024); Wei et al. (2024); Wu
& Rostami; Fan et al. (2022); Cardace et al. (2023). Qin et al. Qin et al. (2019) propose PointDAN, combining
local and global domain alignment and introducing the PointDA benchmark for classification. Achituve et
al. Achituve et al. (2021) present a reconstruction-from-deformation method using PointMixup Chen et al.
(2020), and introduce the PointSegDA benchmark for segmentation. Zou et al. Zou et al. (2021) design
two geometry-based self-supervised tasks for learning domain-invariant features. Fan et al. Fan et al. (2022)
introduce a reliable pseudo-label voting mechanism along with global-local structure modeling. Shen et
al. Shen et al. (2022) employ geometry-aware implicit functions for modeling domain-specific variations.
Liang et al. Liang et al. (2022) introduce a masked local 3D structure prediction task to promote feature
invariance via spatial context recovery. Cardace et al. Cardace et al. (2023) leverage self-distillation to
iteratively refine pseudo labels. Katageri et al. Katageri et al. (2024) integrate contrastive learning with
optimal transport to improve both alignment and discrimination. Chen et al. Chen et al. (2023) develop a
boundary point prediction task to enhance robustness via geometric boundary cues. Wei et al. Wei et al.
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(2024) propose a multi-scale part-based representation capturing both local and global part-level information
for better adaptation and generalization. These works reflect a growing trend toward integrating geometric
priors with adaptation objectives. Our work differs by proposing a principled deformation strategy rooted in
curvature diversity, a sophisticated self-supervised task, and a generalized theoretical framework (D-NWD)
applicable to any deformation method, achieving state-of-the-art results.

Optimal Transport for Domain Adaptation Although many works on UDA rely on adversarial learn-
ing Tzeng et al. (2017); Tang & Jia (2020); Long et al. (2018); Jian & Rostami (2023) to align the distributions
of two domains, many rely on direct distribution matching using metric minimization Wang et al. (2017);
Li et al. (2020); Fatras et al. (2021). The Wasserstein distance from optimal transport theory is widely
used in domain adaptation due to its ability to capture geometric relationships between distributions Courty
et al. (2016; 2017); Redko et al. (2017); Rostami & Galstyan (2023); Nananukul et al. (2024). Gautheron
et al. Gautheron et al. (2019) propose Wasserstein-guided representation learning and a feature selection
method to tackle domain shift. Sliced Wasserstein discrepancy is used in Lee et al. (2019); Stan & Rostami
(2024b) to replace the L1 distance in Maximum Classifier Discrepancy Saito et al. (2018), offering more
meaningful class-level divergence. DeepJDOT Damodaran et al. (2018) maps source-target pairs via a cou-
pling matrix, while CGDM Du et al. (2021) minimizes cross-domain gradient discrepancies. Xu et al. Xu
et al. (2020) propose a weighted transport method using spatial prototypes for better sample-level alignment.
Fatras et al. Fatras et al. (2021) introduce unbalanced optimal transport with mini-batch training for scala-
bility. Our D-NWD builds upon NWD Chen et al. (2022), extending it with deformation-based supervision
and theoretical generality.

3 Proposed Method

We begin by defining the unsupervised domain adaptation (UDA) problem, followed by an overview of our
UDA approach, called Curvature Diversity-Driven Nuclear-Norm Wasserstein Domain Alignment (CDND),
in Section 3.1. We then present the details of our main contributions: (1) a Curvature Diversity-based
Deformation Reconstruction task, described in Sections 3.2 and 3.3, and (2) a theoretical framework for
D-NWD, which extends NWD to incorporate both original and deformed samples, as detailed in Section 3.4
and 4. Note that our theoretical analysis is applicable to any deformation method used.

3.1 Problem Formulation

We consider a source domain with labeled samples and a target domain with unlabeled samples which has a
different data distribution. Our goal is to develop a UDA method to train a model that accurately predicts
labels for the target domain using both the source labeled dataset and the target unlabeled dataset. Let S
represent the source domain, where Xi

s denotes the i-th batch of samples and yi
s their corresponding labels.

Similarly, let T represent the target domain, where Xi
t is the i-th batch of samples. The feature space

induced by S and T is denoted by Ωo. In addition, we introduce deformed domains Sd and T d, with their
feature space Ωd. We assume that Ωo and Ωd are disjoint subsets of Rn, i.e., Ωo ∩Ωd = ∅, with Ωo ∪Ωd ⊆ Rn.
This assumption is generally valid in practice, as the probability of a deformed sample being exactly identical
to a original one is negligible. A point cloud from the source domain is denoted as xs ∈ Rn×3 and from the
target domain is xt ∈ Rn×3, where n is the number of points. The corresponding deformed point clouds are
denoted by xd

s and xd
t .

The pipeline of our CDND is presented in Figure 1. Our model first uses a feature extractor E to obtain shape
features from both source and target point clouds. To minimize domain gaps and ensure domain-invariant
features, we: (1) use a curvature diversity-driven deformation reconstruction task via a reconstruction de-
coder hSSL and (2) employ the D-NWD to align domains through a classifier C. The aligned features are
then used for downstream tasks, i.e., point cloud classification and segmentation. The model is trained using
source-labeled and target-unlabeled data.
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Figure 1: Pipeline of CDND. The inputs are the source batch Xs and target batch Xt. We first deform
them into X̂s and X̂t using Curvature Diversity-Based Deformation. Next, Xs, Xt, X̂s, and X̂t are sent into
a feature extractor. The features of deformed samples are fed into a reconstruction decoder to reconstruct
the deformed regions. For domain alignment, both original and deformed features are sent to D-NWD. Aside
from the two losses shown in the figure, a cross-entropy loss is computed on Xs and X̂s with labels. An
NWD loss LT

NWD on Xt and X̂t is also computed to ensure prediction consistency between the target original
and deformed pairs.

3.2 Curvature Diversity-Driven Deformation

To extract domain-invariant features from point clouds, three deformation strategies have been explored in
the literature Achituve et al. (2021): volume-based, feature-based, and sample-based, according to the way
of dividing point clouds into regions for deformation. Although these strategies use different techniques to
select regions for deformation, they all divide a point cloud into regions based on some spatial locations or
arrangements and uniformly randomly select regions to be deformed. However, uniformly random selection
may not be optimal as regions within a point cloud vary in their semantic richness, i.e., some regions contain
more semantic information that is generalizable across the domains, while some regions may be domain-
specific. These semantically rich regions are crucial for tasks such as classification, as they have more
distinguishable characteristics. For instance, to differentiate a point cloud of a plant from that of a lamp,
focusing on the leaves and flowers — which have richer semantic information — would be more effective
than focusing on the flower pot, which is similar to the base of a lamp. Thus, deforming regions with richer
semantic information causes the point cloud to lose semantic meaning, making it difficult for a classifier to
classify it. Our idea is to identify shared semantic information to improve model generalization in the target
domain. To encourage the feature extractor to prioritize regions with rich information, we propose deforming
regions that are less semantically rich. Our deformation strategy helps the model learn to extract features
from the most informative or salient regions of a point cloud.

To evaluate the richness of semantics, we propose using curvature diversity as a measurement. For the
curvature diversity-driven deformation, we adopt the following steps. First, we use Farthest Point Sampling
(FPS) Moenning & Dodgson (2003) to sample k center points as centers of k regions of a given point cloud.
Then, for each center point, we use k-Nearest Neighbor (k-NN) to select m nearest points. As a result, each
region is represented by a center point along with these m nearest points. Next, we select the N regions with
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the smallest curvature diversity to deform. To deform these selected regions, we replace all the points within
these regions with new points. These new points are generated by sampling from a Gaussian distribution,
where the mean is set to the average position of all the original points in that region, and the variance is
set to 0.001. In Figure 1, X̂s and X̂t represent the deformed samples, and the points shown in grayscale are
those drawn from the Gaussian distribution.

We compute point curvature using PCA Zou et al. (2021). Specifically, we first select a small neighborhood
around each point and apply PCA to determine the principal directions and their eigenvalues. The curvature
is then calculated as c = |λmin|/

∑K
i=1 |λi|, where λmin is the smallest eigenvalue of the matrix, and K is

the number of eigenvalues. Larger variation in curvature indicates a more intricate geometry and more
significant shape changes within a region. The fourth lamp sample in the bottom row of Figure 1 illustrates
this property: regions with warmer colors represent areas of higher curvature diversity. To measure the
diversity or variation of curvature in a region, we propose to use entropy of curvature. Entropy effectively
captures the variations in curvature values, allowing quantifying the richness of semantics within a region.
Formally, we use the following to measure the curvature diversity:

cj
min = min

cj
i
∈Rj

{cj
i }NRj

i=1 , cj
max = max

cj
i
∈Rj

{cj
i }NRj

i=1 ,

cj
i,norm = cj

i − cj
min

cj
max − cj

min + 10−10
, H(cj

norm) = −
NRj∑
i=1

cj
i,norm · log(cj

i,norm + 10−10),
(1)

where, cj
i represents the curvatures of the i-th point in the j-th region of the point cloud which contains

NRj points in total. To standardize these values, we first calculate cj
min and cj

max, which are the minimum
and maximum values of all curvatures within the j-th region, respectively. Using these values, we then
normalize the curvature values to be in [0, 1], denoted as {cj

i,norm}. Then, we calculate the curvature
diversity H(cj

norm) by applying entropy.1 The point-wise curvature values are computed only once before
training. During training, we only compute the curvature diversity (entropy) for each region, based on these
precomputed curvature values. This avoids repeated curvature estimation and keeps the runtime overhead
minimal. Since curvature diversity calculation involves simple normalization and entropy over small regions,
its cost is negligible compared to the main training process.

3.3 Deformation Reconstruction Loss

After deforming the selected regions, we obtain a deformed point cloud xd from the original x. The deformed
input xd is processed by the feature extractor E to generate E(xd), which is then passed to a reconstruction
decoder hSSL to reconstruct x. The self-supervised loss LSSL minimizes the distance between hSSL(E(xd))
and x. We use the Chamfer distance in LSSL, focusing on the original points in x within the deformed region
R and their reconstructions from xd. Formally, let I ⊂ {1, 2, . . .} represent the indices of the points in x ∩ R,
and we define LSSL as follows:

LSSL =
∑

(x,xd,I)

(
{xi}i∈I , {hSSL(E(xd))i}i∈I

)
, (2)

where xi is the i-th point in the point cloud x and D denotes the Chamfer distance which is defined as:

D(R1, R2) =
∑

a∈R1

min
b∈R2

∥a − b∥2
2 +

∑
b∈R2

min
a∈R1

∥b − a∥2
2, (3)

where D(R1, R2) measures the discrepancy between point cloud regions R1, R2 ⊂ R3. Note that when we
reconstruct only the deformed regions, we can also reduce computational burden and improve time efficiency.

1Rigorously speaking, {cj
i,norm} is an un-normalized distribution without being divided by a partition function or normal-

ization constant, but it does not affect our claim of curvature diversity.
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3.4 Domain Alignment via D-NWD

We begin with introducing the 1-Wasserstein distance.

Definition 1 (1-Wasserstein distance). Adler & Lunz (2018) The 1-Wasserstein distance
quantifies the minimal cost of transporting mass between two probability measures defined on the same
metric space. Let µ and ν be two probability measures over a metric space (Ω, d), where d(x, y) denotes the
distance between points x and y in Ω. Then the 1-Wasserstein distance is defined as:

W1(µ, ν) = inf
γ∈Γ(µ,ν)

∫
Ω×Ω

d(x, y) dγ(x, y), (4)

where Γ(µ, ν) is the set of all couplings with marginals µ and ν; that is,∫
Ω

γ(x, y) dy = µ(x),
∫

Ω
γ(x, y) dx = ν(y).

The Kantorovich–Rubinstein duality further states that the 1-Wasserstein distance can be expressed in a dual
form as:

W1(µ, ν) = sup
∥h∥L≤KL

Ex∼µ[h(x)] − Ex∼ν [h(x)], (5)

where the supremum is taken over all functions h : Ω → R with Lipschitz constant at most KL, i.e.,

∥h∥L := sup
x ̸=y

|h(x) − h(y)|
d(x, y) ≤ KL. (6)

The Nuclear-norm Wasserstein Discrepancy (NWD) Chen et al. (2022) belongs to the family of 1-Wasserstein
distances, with sophisticatedly chosen h’s. Below, we present the form of h in NWD. Consider a prediction
matrix P ∈ Rb×M predicted by the classifier C, where b is the number of samples in a batch and M is
the number of classes. The non-negative self-correlation matrix Z ∈ RM×M is computed as Z = P T P .
The intra-class correlation Ia is defined as the sum of the main diagonal elements of Z, and the inter-class
correlation Ie is the sum of all the off-diagonal elements of Z:

Ia =
M∑

i=1
Zii, Ie =

M∑
i ̸=j

Zij .

In the source domain, Ia is large, and Ie is relatively small because most samples are correctly classified.
Conversely, in the target domain, Ia is small, and Ie is relatively large due to the large error from the lack
of supervised training on the target domain. Hence, Ia − Ie can represent the discrepancy between the two
domains, as Ia − Ie is large for the source domain but small for the target domain. Note that Ia = ∥P∥2

F

can be represented as the squared Frobenius norm of P , and thus Ia − Ie = 2∥P∥2
F − b. 2 We can rewrite

Ps = C(Fs) and Pt = C(Ft), where Fs and Ft are feature representation batches from the source and target
domains, respectively. We find ∥C∥F gives high scores to the source domain and low scores to the target
domain. Thus, we can set h in Eq. 5 to be ∥C∥F and represent the domain discrepancy as:

WF (νs, νt) = sup
∥∥C∥F ∥L≤KL

EFs∼νs [∥C(Fs)∥F ] − EFt∼νt [∥C(Ft)∥F ],

where νs is the probability measure for features of samples in S and νt is the probability measure for features
of samples in T . To enhance prediction diversity, the Frobenius norm can be replaced with the nuclear norm,
which maximizes the rank of P while still being bounded by the Frobenius norm Chen et al. (2022). Thus,
the domain discrepancy can be rewritten as:

WN (νs, νt) = sup
∥∥C∥∗∥L≤KL

EFs∼νs
[∥C(Fs)∥∗] − EFt∼νt

[∥C(Ft)∥∗]. (7)

2We have
∑M

j=1 Zi,j = 1, ∀i ∈ {1, · · · , b} and j ∈ {1, · · · , M}, and thus Ia + Ie = b Chen et al. (2022).
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The Eq. 7 is the formal definition of NWD, where C denotes the classifier, and ∥ · ∥∗ represents the nuclear
norm. In the NWD paper, empirically, NWD can be approximate by LNWD:

LNWD = 1
Bs

Bs∑
i=1

∥C(F i
s)∥∗ − 1

Bt

Bt∑
i=1

∥C(F i
t )∥∗

where F i
s ∼ νs are the features for the i-th source batch and F i

t ∼ νt are the features for the i-th target
batch. Bs is the number of training batches in the source domain and Bt is the number of training batches
in the target domain.

min
E

max
C

LNWD (8)

Then, the domain alignment is achieved through a min-max game presented in Eq. 8.

Now, we introduce our second component, Deformation-based Nuclear-norm Wasserstein Discrepancy (D-
NWD). From the previous sections, the curvature diversity-driven deformation reconstruction helps reduce
the domain gap between the source and target domains. To further complete classification or segmentation
tasks in the presence of the domain gap, we propose D-NWD to align domains, as inspired by NWD Chen
et al. (2022). Our D-NWD objective is defined as:

WN (νs∪sd , νt∪td) = sup
∥∥C∥∗∥L≤KL

EF̂s∼ν
s∪sd

[∥C(F̂s)∥∗] − EF̂t∼ν
t∪td

[∥C(F̂t)∥∗], (9)

Here, νs∪sd and νt∪td are probability measures defined over Ωo ∪ Ωd, for the features from samples in the
original and deformed source and target domains. We align the probability measure of features from the
original and deformed samples in the source domain with that of the target domain. Our motivation is that
taking features from deformed samples into account would provide a richer, more robust feature space, reduce
overfitting, and increase the model’s adaptability to variations inherent in data. This technique differs from
using NWD, which aligns νs and νt defined over Ωo, the probability measures for the features from samples
in the original source and target domains. Empirically, our objective in Eq. 9 be approximated by LD-NWD:

LD-NWD = 1
Bs

Bs∑
i=1

∥C(F̂ i
s)∥∗ − 1

Bt

Bt∑
i=1

∥C(F̂ i
t )∥∗, (10)

F̂ i
s ∼ νs∪sd represents the features for the i-th source batch and F̂ i

t ∼ νt∪td represents the features for the i-th
target batch. In practice, we obtain the original and deformed samples by first sampling from the original
domain and then generating the corresponding deformed versions. The alignment is then performed through
a min-max game, described in the following:

min
E

max
C

LD-NWD. (11)

To avoid alternating updates, we employ a Gradient Reverse Layer Ganin et al. (2016), following the approach
in Chen et al. (2022), to make the learned features discriminative and domain-agnostic.

3.5 Overall Loss

In addition to deformation and domain alignment loss defined in Eq. 2 and Eq. 11, we use a cross-entropy loss
LCLS on both the original and the deformed source domain samples for supervised training of the classifier:

LCLS = 1
Bs

Bs∑
i=1

LCE(C(F̂ i
s), Y i

s ), (12)

where Y i
s are labels for batch F̂ i

s . Since we have no access to the ground-truth labels for the target domain
data, it is impossible to use the supervised cross-entropy loss as in Eq. 12 on samples from T and T̃ . One
straightforward alternative is to adopt pseudo-labels as in Fan et al. (2022); Liang et al. (2022); Zou et al.
(2021); Shen et al. (2022). However, this strategy has the risk that the classifier might mistakenly predict
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target samples as the major classes of the source domain. Instead, we use NWD to ensure consistency in
predictions between T and T d. Thus, we define a target domain loss LT

NWD as:

LT
NWD = 1

Bt

Bt∑
i=1

∥C(F i
t )∥∗ − 1

Bt

Bt∑
i=1

∥C(F i
td)∥∗, (13)

where F i
td ∼ νtd denotes the deformed target domain batch and F i

t ∼ νt denotes the original target domain
batch. Combining Eq. 2, Eq. 12, Eq. 11 and Eq. 13 together, our overall objective loss is:

min
E,hSSL,C

αLCLS + γLSSL,

min
E

max
C

β1LD-NWD + β2LT
NWD,

(14)

where α, γ, β1, β2 can be tuned using the target domain validation set and setting details can be found in
Appendix A.2. Note that LD-NWD and LT

NWD serve distinct and complementary purposes in Equation 14.
LD-NWD is specifically used to minimize the domain gap between source and target features, while LT

NWD
is used to improve prediction consistency between original and deformed target distributions, functioning
similarly to a cross-entropy loss between pseudo-labels and predicted labels on target samples. We use NWD
over pseudo-labeling since the latter can reinforce incorrect predictions when the classifier is biased toward
majority source domain classes.

4 Theoretical Analysis

In this section, we present our theoretical contribution for D-NWD, demonstrating the effectiveness of
extending NWD to both original and deformed samples. We provide new bounds in Theorems 1 and 2
along with their non-trivial proofs. Following Ben-David et al. (2006) and Chen et al. (2022), we perform
our analysis in a binary classification scenario, which can be easily adapted to multi-class classification
through reduction techniques such as one-vs-all Rifkin & Klautau (2004) or one-vs-one Allwein et al. (2000)
approaches. Consider {C : Rn → [0, 1]} as a set of source classifiers within the hypothesis space H. Let νs

defined on Ωo be the probability measure of original source domain and νsd
defined on Ωd be the probability

measure of deformed source domain. We define νt and νd
t in a similar way. The risk or error of classifier C

on the original source domain is defined as εs(C) = Efs∼νs [|C(fs) − ys|], where ys is the label associated
with the feature fs. We then define εs∪sd(C) = Ef̂s∼ν

s∪sd
[|C(f̂s) − ŷs|], where ŷs is the label associated with

f̂s. Similarly, we define εt(C), εt∪td(C) as the errors on the target domain. The optimal classifier is defined
as C∗ = arg minC εs∪sd(C) + εt(C) which minimizes the combined error across νs∪sd and νt. Our Theorem
1 demonstrates that the expected target error εt(C) can be bounded by the D-NWD on νs∪sd and νt∪td ,
WN (νs∪sd , νt∪td). Building on Theorem 1, we derive Theorem 2. Theorem 2 establishes that εt(C) can be
bounded by D-NWD on empirical probability measures ν̂s∪sd and ν̂t∪td , WN (ν̂s∪sd , ν̂t∪td). All proofs can
be found in Appendix A.1.

Theorem 1. Let (Ωo, Fo, νs), (Ωd, Fd, νsd), (Ωo, Fo, νt), and (Ωd, Fd, νtd) be four probability spaces,
where Ωo and Ωd are disjoint and Ωo ∪ Ωd ⊆ Rn. With the results of Lemma 1, let (Ωo ∪ Ωd, Fu, νs∪sd) and
(Ωo ∪ Ωd, Fu, νt∪td) be two probability spaces with probability measures defined as νs∪sd = 1/2νs + 1/2νsd

and νt∪td = 1/2νt + 1/2νtd . Specifically, when sampling from νt∪td , there is an equal probability of 1/2 to
sample from νt or νtd . Similarly, sampling from νs∪sd gives an equal probability of 1/2 to draw from νs or
νsd . Consider a classifier C ∈ H1 and an ideal classifier C∗ = arg minC εs∪sd(C) + εt(C) satisfying the
KL-Lipschitz constraint, where H1 is a subspace of the hypothesis space H. For every classifier C in H1,
the following inequality holds:

εt(C) ≤ 2εs∪sd(C) + 4KL · WN (νs∪sd , νt∪td) + η∗, (15)

where η∗ = 2εs∪sd(C∗) + εt(C∗) is the ideal combined error and is a sufficiently small constant.

Theorem 2. Under the assumption of Theorem 1, Ωo and Ωd are disjoint and Ωo ∪ Ωd ⊆ Rn. Let
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(Ωo ∪ Ωd, Fu, νs∪sd) and (Ωo ∪ Ωd, Fu, νt∪td) be two probability spaces with νs∪sd = 1/2νs + 1/2νsd and
νt∪td = 1/2νt + 1/2νtd , where νs, νsd , νt, νtd each has a square-exponential moment. From Lemma 3 and
4, νs∪sd satsifies T1(ηs) for some ηs and νt∪td satsifies T1(ηt) for some ηt. Let {f̂ i

s}Ns
i=1 and {f̂ i

t }Nt
i=1 be

two sample sets of size Ns and Nt drawn i.i.d from νs∪sd and νt∪td , respectively. ν̂s∪sd = 1
Ns

∑Ns

i=1 δf̂i
s

and
ν̂t∪td = 1

Nt

∑Nt

i=1 δf̂i
t

are associated empirical probability measures. Then, for any n′ > n and η′ < min(ηs, ηt),
there exists a constant N0 depending on n′ such that for any δ > 0 and min(Ns, Nt) ≥ N0 max(δ−(n′+2), 1),
with probability at least 1 − δ, the following holds for all C:

εt(C) ≤ 2εs∪sd(C) + 4KL · WN (ν̂s∪sd , ν̂t∪td) + η∗ + 4KL ·
√

2
η′ log 1

δ

(√
1

Ns
+
√

1
Nt

)
, (16)

where η∗ = 2εs∪sd(C∗) + εt(C∗) is the ideal combined error and is a sufficiently small constant.

Equation 16 justifies why our method can be effective empirically. Specifically, η∗ are sufficiently small
constants for relevant domains with consistent labels because it is the error corresponding to the ideal
classifier C∗. The term

√
2
η′ log 1

δ

(√
1

Ns
+
√

1
Nt

)
is also a small constant when training dataset sizes, Ns

and Nt, are large. εs∪sd(C) is minimized by a supervised classification loss, since source domain samples have
labels. Therefore, the primary objective is to minimize WN (ν̂s∪sd , ν̂t∪td), our D-NWD on empirical measures
ν̂s∪sd and ν̂t∪td . Hence, minimizing WN (ν̂s∪sd , ν̂t∪td) can reduce error on the original target domain T and
improve the model’s performance on the target domain. It is important to note that our theoretical analysis
is not intended to prove that D-NWD is superior to NWD. A direct comparison between NWD and D-NWD
is not feasible, as they apply to different probability measures: ν̂s∪sd , ν̂t∪td for D-NWD and ν̂s, ν̂t for NWD.
Our theoretical contribution lies in showing that, regardless of the deformation method used, optimizing D-
NWD on ν̂s∪sd and ν̂t∪td can effectively reduce error on samples from T . In other words, D-NWD mitigates
the negative effects of domain gaps and enhances performance on the original target domain T . Note that
we use equal mixture weights—specifically, a 1:1 ratio—in the probability measure (e.g., 1

2 νs + 1
2 νd

s ) to
simplify the implementation. However, this assumption is not essential for the validity of our conclusions.
The theoretical results can be generalized to arbitrary sampling ratios by adjusting the mixture weights
in the probability measures accordingly. In such cases, the only change would be in the constant factors
reflecting the updated contribution from each component in the mixture. The core theoretical framework
and its implications remain intact. In Appendix A.3, we present the experiment results with different ratios.

5 Experiments

We evaluate our method on the PointDA-10 Qin et al. (2019) dataset, a domain adaptation dataset for point
cloud classification, and on PointSegDA Achituve et al. (2021), a dataset for point cloud segmentation.
For the PointDA-10 dataset, we compare our approach against the state-of-the-art methods for point cloud
domain adaptation, including DANN Ganin et al. (2016), PointDAN Qin et al. (2019), RS Sauder &
Sievers (2019), DefRec+PCM Achituve et al. (2021), GAST Zou et al. (2021), ImplicitPCDA Shen
et al. (2022), and the most recent method with publicly available codes, PCFEA Wang & el al (2025).
Note that many recent methods do not provide codes for reproducibility, which limits their inclusion. For
the PointSegDA dataset, we compare our method with RS, DefRec+PCM, GAST, ImplicitPCDA,
and Adapt-SegMap Tsai et al. (2018). Unfortunately, no suitable methods from the past 1–2 years with
available codes are applicable to this dataset. For both datasets, we also evaluate two upper bounds:
Supervised-T, which involves training exclusively on labeled target samples, and Supervised, which uses
both labeled source and target samples. Additionally, we assess a lower bound, Unsupervised, which
utilizes only labeled source samples.

Additionally, for the PointDA-10 dataset, we incorporate Self-Paced Self-Training (SPST) into GAST, Im-
plicitPCDA, and our method, as SPST is originally included in both GAST and ImplicitPCDA. We exclude
SPST for the PointSegDA dataset. SPST typically relies on ranking training samples by difficulty and
gradually incorporating harder examples into training. The training samples for point cloud segmentation
tasks are points in point clouds. However, mIoU is a global metric that evaluates performance across an
entire point cloud, making it challenging to assign difficulty scores to individual points in a point cloud. The
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mechanism of SPST mismatches the per-point cloud, rather than per-point, evaluation criterion of mIoU.
Hyperparameter settings and implementation details can be found in Appendix A.2.

5.1 Datasets

We use PointDA-10 and PointSegDA datasets in our experiments. PointDA-10 consists of three do-
mains: ShapeNet-10 Chang et al. (2015), ModelNet-10 Wu et al. (2015), and ScanNet-10 Dai et al. (2017),
each sharing ten distinct classes. PointSegDA consists of four domains: ADOBE, FAUST, MIT, and
SCAPE. These domains share eight distinct classes of human body parts but vary in point distribution,
pose, and scanned humans.

5.2 Training Scheme

We use DGCNN as the feature extractor Achituve et al. (2021) for fair comparison. We repeat our ex-
periments three times using distinct random seeds for initialization and report the average accuracy and
standard deviation. To ensure a fair comparison, we maintain the same seed for data shuffling and use the
Adam optimizer Kingma & Ba (2014) for optimization.

Models MS MS+ SM SS+ S+M S+S Avg

Supervised-T 93.9±0.2 78.4±0.6 96.2±0.1 78.4±0.6 96.2±0.4 93.9±0.2 89.5
Unsupervised 83.3±0.7 43.8±2.3 75.5±1.8 42.5±1.4 63.8±3.9 64.2±0.8 62.2

DANN Ganin et al. (2016) 75.3±0.6 41.5±0.2 62.5±1.4 46.1±2.8 53.3±1.2 63.2±1.2 57.0
PointDAN Qin et al. (2019) 82.5±0.8 47.7±1.0 77.0±0.3 48.5±2.1 55.6±0.6 67.2±2.7 63.1
RS Sauder & Sievers (2019) 81.5±1.2 35.2±5.9 71.9±1.4 39.8±0.7 61.0±3.3 63.6±3.4 58.8
DefRec+PCM Achituve et al. (2021) 81.7±0.6 51.8±0.3 78.6±0.7 54.5±0.3 73.7±1.6 71.1±1.4 68.6
PCFEA Wang & el al (2025) 84.4±1.1 47.9±2.9 71.8±1.9 47.1±0.7 71.8±7.4 68.1±2.1 65.2
GAST Zou et al. (2021) 82.3±0.6 53.0±1.1 72.6±1.9 47.6±1.5 64.6±1.5 66.8±0.6 64.5
GAST+SPST 84.5±0.5 54.1±1.8 80.1±4.6 46.7±0.6 81.5±1.7 66.7±1.1 68.9
ImplicitPCDA Shen et al. (2022) 79.5±0.4 41.7±1.3 72.9±1.0 47.5±2.9 67.6±5.2 66.4±0.9 62.6
ImplicitPCDA+SPST 81.3±2.2 33.2±13.4 73.2±3.4 38.0±4.6 66.9±7.7 75.0±2.7 61.3

CDND 84.1±0.3 58.7±0.8 76.2±0.0 55.7±1.0 75.1±1.5 72.0±1.9 70.3
CDND+SPST 85.4±1.1 57.6±1.3 85.0±2.2 54.5±1.1 82.6±0.7 74.6±4.4 73.3

Table 1: Performance results (accuracy) on PointDA-10 dataset.

Models MS MS+ SM SS+ S+M S+S Avg

NWD 83.3±0.7 46.7±1.7 75.5±1.8 48.9±2.5 63.8±3.9 66.7±1.9 64.2
DefRec 83.4±0.5 46.9±2.3 74.5±0.9 46.3±0.6 67.7±2.3 64.0±0.8 64.0
DefRec+NWD 83.4±0.5 51.2±3.0 74.5±0.9 53.7±3.8 67.7±2.3 68.5±2.4 66.5
DefRec+D-NWD 83.4±0.5 53.1±2.3 74.5±0.9 54.6±1.0 67.7±2.3 67.4±0.1 66.8
CurvRec(S)-High 83.8±0.9 52.0±1.4 78.0±1.0 45.9±3.8 72.5±1.4 66.7±1.1 66.5
CurvRec(S)-Low 83.1±0.9 53.0±1.9 74.9±0.8 44.7±1.2 74.8±0.9 65.9±0.2 66.1
CurvRec(En)-High 82.9±1.5 52.1±0.4 77.0±0.3 46.7±1.0 70.9±0.6 65.8±0.4 65.9
CurvRec 84.1±0.3 52.2±1.3 76.2±0.0 50.1±0.3 75.1±1.5 66.4±1.5 67.4
CurvRec+PCM 83.0±0.5 53.7±1.0 74.0±0.6 54.8±1.1 73.8±1.1 76.8±0.9 69.4
CurvRec+NWD 84.1±0.2 54.3±2.2 76.2±0.0 52.7±2.1 75.1±1.5 70.6±2.2 68.8

CDND, β2 = 0 84.1±0.3 57.4±1.2 76.2±0.0 55.7±0.2 75.1±1.5 69.9±1.7 69.7
CDND (CurvRec+D-NWD) 84.1±0.3 58.7±0.8 76.2±0.0 55.7±1.0 75.1±1.5 72.0±1.9 70.3

Table 2: Ablation study results (accuracy) on PointDA-10 dataset.
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Models FA FM FS MA MF MS AF AM AS SA SF SM AVG

Supervised 80.9±7.2 81.8±0.3 82.4±1.2 80.9±7.2 84.0±1.8 82.4±1.2 84.0±1.8 81.8±0.3 82.4±1.2 80.9±7.2 84.0±1.8 81.8±0.3 82.3
Unsupervised 78.5±0.4 60.9±0.6 66.5±0.6 26.6±3.5 33.6±1.3 69.9±1.2 38.5±2.2 31.2±1.4 30.0±3.6 74.1±1.0 68.4±2.4 64.5±0.5 53.6

AdaptSegMap 70.5±3.4 60.1±0.6 65.3±1.3 49.1±9.7 54.0±0.5 62.8±7.6 44.2±1.735.4±0.3 35.1±1.4 70.1±2.5 67.7±1.4 63.8±1.2 56.5
RS 78.7±0.5 60.7±0.4 66.9±0.459.6±5.0 38.4±2.1 70.4±1.044.0±0.6 30.4±0.5 36.6±0.8 70.7±0.8 73.0±1.565.3±1.357.9
DefRec+PCM 78.8±0.2 60.9±0.863.6±0.1 48.1±0.4 48.6±2.4 70.1±0.8 46.9±1.0 33.2±0.3 37.6±0.1 66.3±1.7 66.5±1.0 62.6±0.2 56.9
GAST 76.7±2.3 55.0±1.0 60.3±1.0 52.1±4.4 35.2±0.4 69.6±1.2 43.3±3.7 25.9±3.6 30.8±4.0 57.4±10.666.1±1.3 64.6±0.5 53.1
ImplicitPCDA 47.5±0.6 53.2±1.0 54.2±3.4 51.1±1.6 64.0±1.356.1±4.2 44.1±0.9 42.3±1.340.5±1.249.7±2.1 70.6±1.4 55.0±2.5 52.4

CDND 81.5±2.060.7±0.5 61.4±0.5 68.6±1.447.2±1.4 67.7±1.4 43.6±0.5 35.3±2.2 40.1±1.5 77.5±0.570.4±1.1 65.1±0.3 59.9

Table 3: Performance results (mIoU) on PointSegDA dataset.

5.3 Comparative Results

Results on PointDA. The results are presented in Table 1. We use S+ to represent the ScanNet dataset,
M to represent ModelNet, and S to represent the ShapeNet dataset. MS, SM, etc. are the abbreviated
source and target domain pairs. The CDND model shows significant improvement over the other approaches
on the PointDA-10 dataset with the highest average accuracy of 70.3%, outperforming all other models.
CDND delivers state-of-the-art performance on five out of six tasks. It excels in tasks with a large domain
gap, such as MS+, S+M, SS+, and S+S. In these tasks, one domain is a synthetic dataset, and the other
domain is a real-world dataset. This shows its proficiency in handling complex transformations. Especially,
CDND scores 58.7% on MS+, outperforming the second-best method by approximately 6%. Additionally,
CDND maintains competitive accuracy in tasks with a small domain gap, such as MS and SM, with scores of
84.1% and 76.2%, respectively. With SPST, the performance is further improved, as CDND+SPST achieves
73.3%, outperforming GAST+SPST by 4.4% and ImplicitPCDA+SPST by 12%. Note that plain CDND
also outperforms both GAST+SPST and ImplicitPCDA+SPST on average. The performance of CDND
across various tasks highlights its ability to adapt to diverse domain challenges, making it a promising choice
for point cloud classification in the UDA setting.

Results on PointSegDA. The results are presented in Table 3. We use A to represent the ADOBE dataset,
F to represent the FAUST dataset, M to represent the MIT dataset, and S to represent the SCAPE dataset.
AF, FA, etc. are the abbreviated source and target domain pairs. CDND achieves the highest average score
of 59.9%, which surpasses the second-best method, RS, by a margin of 2.0%, which is significant in terms
of mIoU on the segmentation task. Its superior performance is particularly evident in MA and SA tasks; in
the MA task, CDND achieves a mIoU of 68.6%, outperforming RS by 9%. Similarly, in the SA task, CDND
secures a mIoU of 77.5%, which is around 7% higher than RS. These results showcase its adaptability and
learning capability. Additionally, in the FA task, CDND achieves a score of 81.5%, even slightly surpassing
the supervised baseline. In other tasks, i.e., FM, AS, and SM tasks, CDND either matches or comes
very close to the top-performing models, validating its status as a consistently high-performing model. In
Appendix A.3, we have visualization results to highlight the qualitative differences.

Overall, the performance improvement of our method, while consistent, is less pronounced compared to the
results on PointDA-10. This is primarily due to the nature of the segmentation task, which involves fine-
grained, per-point predictions. Our curvature diversity-driven deformation focuses on regional semantics and
is more directly beneficial for object-level classification tasks. It is worth noting that other state-of-the-art
methods also report smaller margins on PointSegDA. Nevertheless, our method still achieves the highest
average mIoU, demonstrating its effectiveness in segmentation settings.

5.4 Ablation Study

To demonstrate the effectiveness of each component of CDND, we conduct ablative studies on the PointDA-10
dataset. There are several ways to evaluate curvature diversity. While standard deviation is commonly used
to evaluate the diversity of data points, we propose using entropy. We compare our entropy-based approach
(CurvRec(En)) with a standard deviation-based method (CurvRec(S)). To validate our hypothesis that
focusing on low curvature diversity regions can improve performance, we investigate the impact of deform-
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Figure 2: UMAP visualizations depict pre-activation data representations for the MS+ task, with different
colors denoting different classes. The center plot shows the target domain test data representations generated
from a model trained on the source dataset without any adaptation. The left and right plots show the source
and target domain data representations after adaptation using CDND.

ing areas with both high (CurvRec(En)+High, CurvRec(S)+High) and low (CurvRec, CurvRec(S)+Low)
curvature diversity.

Effectiveness of CurvRec. We compare against CurvRec(En) variants with CurvRec(S) variants in
Table 2. We observe a distinct difference between CurvRec(En)-High and CurvRec. In contrast, there is
a much less distinction between CurvRec(S)-High and CurvRec(S)-Low. This observation suggests that
entropy is a superior method for evaluating curvature diversity in regions. Notably, all CurvRec measures
outperform DefRec, regardless of whether the focus is on high or low curvature diversity. However, CurvRec
outperforms CurvRec(En)-High, showing that is is more effective to deform low curvature regions. Compared
to the plain NWD, all CurvRec variants perform better than plain NWD. Specifically, CurvRec surpasses
DefRec and NWD by approximately 3%. Though CurvRec demonstrates better performance overall, it
does not outperform our proposed CDND. CDND (CurvRec +D-NWD), outperforms all CurvRec variants,
DefRec variants, and plain NWD. This highlights the effectiveness of our D-NWD loss. Compared to CurvRec
only, integrating with D-NWD improves average performance by 2.9%, with specific gains of 6.5% on MS+

and 5.6% on SS+.

Effectiveness of D-NWD. To illustrate the effectiveness of our D-NWD, we first compare CDND with
two alternatives: CurvRec+PCM, which replaces D-NWD with PCM (PointMixup), and CurvRec+NWD.
On average, CDND outperforms both methods. Specifically, compared to CurvRec+PCM, CDND achieves
improvements of approximately 5% on MS+, and 1% to 2% on SS+, MS, and SM. When compared to
CurvRec+NWD, CDND surpasses 4.4% on MS+, 3% on SS+, and 1.4% on S+S. To further demonstrate the
generalizability of D-NWD across different deformation methods, we include results for DefRec+D-NWD and
DefRec+NWD. Compared to plain DefRec, DefRec+D-NWD achieves an overall improvement of 2.8%, with
notable gains of 6.2% on MS+, 3.4% on S+S, and 8.3% on SS+. Moreover, DefRec+D-NWD consistently
outperforms DefRec+NWD on MS+ and S+S, as well as on average, although the margin is relatively
small. Note that our theoretical analysis proves that D-NWD effectively reduces domain discrepancy across
various deformation methods, but the degree to which it outperforms NWD depends on the deformation
quality. With a well-designed deformations method like our proposed CurvRec, D-NWD can outperform
NWD significantly. While D-NWD is crucial for tasks with large domain gaps (e.g., MS+, S+S, SS+), its
advantages are less significant in tasks with smaller domain gaps (e.g., MS, SM, S+M), where CurvRec
or DefRec alone already perform strongly. In these cases, plain CurvRec or DefRec performs better, so we
retain their performance for MS, SM, and S+M. Additionally, we test the use of LNWD without adding LT

NWD
to enhance consistency in the predictions of original target domain samples and deformed target domain
samples, which corresponds to CDND with β2 = 0. CDND with β2 = 0 shows only a minor performance
decrease compared to CDND, indicating that D-NWD is the primary contributor to good performance.
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5.5 Analytic Experiments

We conduct analytical experiments to gain deeper insights into the effectiveness of our approach. Specifically,
we assess how CDND impacts the distribution of the target domain in the classifier’s output space for the
challenging ModelNet to ScanNet task (MS+); ModelNet is a synthetic dataset, while ScanNet is a real-
world dataset, making the domain shift between them particularly challenging. We used UMAP to visualize
and compare data representations of validation data from the source domain and test data from the target
domain, both before and after applying CDND. Figure 2 shows each point as a data representation in the
classifier’s output space before softmax activation, with different colors denoting different classes. The middle
plot in Figure 2 illustrates that, prior to adaptation, the classifier struggles with the target domain data, as
points from different classes are heavily intermixed. However, after applying CDND, the class boundaries
become more distinct, and the distribution of target domain representations aligns well with that of the
source domain. This improvement is visible in the left and right plots of Figure 2, where the arrangement
of points shows a more distinct pattern across both domains. In other words, we see that the feature
space becomes domain-agnostic. This visualization demonstrates CDND’s efficacy in reducing domain shift-
induced performance degradation and enhancing class distinction. More UMAP visualization analysis
of other baselines can be found in Appendix A.3.

6 Conclusion

We developed a new unsupervised domain adaptation approach for point cloud data. Our method inte-
grates curvature diversity-based deformation with Deformation-based D-NWD to mitigate target domain
performance degradation. Our theoretical analysis of D-NWD shows it minimizes an upper bound for target
domain error. Additionally, we show that D-NWD can be applied to any deformation method. Experiments
indicate that our approach surpasses SOTA methods on two point cloud benchmarks. Ablation studies con-
firm that both components of CDND are necessary for optimal performance. Future works include scenarios
when source domain data is not accessible due to privacy or security concerns, or when the domains share
only a subset of their classes.
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A Appendix

A.1 Proofs for Theorems

In this section, we first prove Theorem 1, which serves as the foundation for Theorem 2. Our proofs are
structured as follows: we begin by proving Lemma 1, which supports a key assumption in Theorem 1. Next,
we present the proof of Theorem 1. After proving Theorem 1, we prove Lemma 4 and conclude with the
proof of Theorem 2.

Definition 2 (Probability Spacce). Durrett (2019) A probability space is a triple (Ω, F , ν). Ω
represents the sample space, the set of all possible outcomes. F represents the set of events and is a
σ-algebra, which is a nonempty collection of subsets of Ω. F is closed under complements and countable
unions. ν represents a probability measure on the measurable space (Ω, F). It is a function ν : F → [0, 1]
that assigns to each event A ∈ F a real value ν(A) (the probability of A). ν satisfies the following three
axioms:

• Non-negativity: For every A ∈ F , ν(A) ≥ ν(∅) = 0.

• Normalization: ν(Ω) = 1.

• σ-additivity (Countable Additivity): For any countable sequence of pairwise disjoint events
A1, A2, A3, · · · ∈ F (where Ai ∩ Aj = ∅ for i ̸= j),

ν

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

ν(Ai).

Lemma 1. Let (Ω1, F1, ν1) and (Ω2, F2, ν2) be two probability spaces, where Ω1, Ω2 are two disjoint sample
spaces. Let p1, p2 ∈ [0, 1] be constants such that p1 + p2 = 1. Let (Ω3, F3) be a measurable space, where F3
is the σ-algebra on Ω3 = Ω1 ∪ Ω2. Then, the measure ν3 defined on the measurable space (Ω3, F3) as:

ν3(A) = p1ν1(A ∩ Ω1) + p2ν2(A ∩ Ω2), ∀A ∈ F3,
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is a probability measure on (Ω3, F3).

Proof. Since ν1 and ν2 are probability measures, they satisfy ν1(B) ≥ 0 for all B ∈ F1 and ν2(C) ≥ 0 for all
C ∈ F2. For any set A ∈ F3, we have:

ν3(A) = p1ν1(A ∩ Ω1) + p2ν2(A ∩ Ω2).

Given that p1, p2 ≥ 0 and ν1(A ∩ Ω1) ≥ 0 and ν2(A ∩ Ω2) ≥ 0, it follows that ν(A) ≥ 0. Thus, ν is
non-negative. Then, we need to show that ν(Ω1 ∪ Ω2) = 1. Consider:

ν3(Ω1 ∪ Ω2) = p1ν1((Ω1 ∪ Ω2) ∩ Ω1) + p2ν2((Ω1 ∪ Ω2) ∩ Ω2).

Since (Ω1 ∪ Ω2) ∩ Ω1 = Ω1 and (Ω1 ∪ Ω2) ∩ Ω2 = Ω2, and ν1(Ω1) = 1 and ν2(Ω2) = 1, we have:

ν3(Ω1 ∪ Ω2) = p1 · 1 + p2 · 1 = p1 + p2 = 1.

Thus, ν3 is normalized. Let {Ai}∞
i=1 be a countable collection of pairwise disjoint sets in F3. By definition

of ν3,

ν3

( ∞⋃
i=1

Ai

)
= p1ν1

(( ∞⋃
i=1

Ai

)
∩ Ω1

)
+ p2ν2

(( ∞⋃
i=1

Ai

)
∩ Ω2

)
.

Since the Ai are pairwise disjoint, (
⋃∞

i=1 Ai) ∩ Ω1 =
⋃∞

i=1 (Ai ∩ Ω1), and similarly for Ω2. Using the σ-
additivity of ν1 and ν2:

p1ν1

( ∞⋃
i=1

(Ai ∩ Ω1)
)

= p1

∞∑
i=1

ν1(Ai ∩ Ω1),

p2ν2

( ∞⋃
i=1

(Ai ∩ Ω2)
)

= p2

∞∑
i=1

ν2(Ai ∩ Ω2).

Thus,

ν3

( ∞⋃
i=1

Ai

)
= p1

∞∑
i=1

ν1(Ai ∩ Ω1) + p2

∞∑
i=1

ν2(Ai ∩ Ω2) =
∞∑

i=1
(p1ν1(Ai ∩ Ω1) + p2ν2(Ai ∩ Ω2)) .

Since ν3(Ai) = p1ν1(Ai ∩ Ω1) + p2ν2(Ai ∩ Ω2), we get:

ν3

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

ν3(Ai).

Thus, ν3 satisfies σ-additivity. Since ν3 satisfies non-negativity, normalization, and σ-additivity, by definition,
ν3 is a valid probability measure.
Now, for the following Lemmas and Theorems, we define:

εs(C1, C2) = Efs∼νs
[|C1(fs) − C2(fs)|] ,

εs∪sd(C1, C2) = Ef̂s∼ν
s∪sd

[
|C1(f̂s) − C2(f̂s)|

]
.

where C1, C2 are two classifiers. We define εt(C1, C2) and εt∪td(C1, C2) in the same manner.

Lemma 2 (Lemma 1 Chen et al. (2022)). Let ν, ν′ be two probability measures on (Ω, F). Let
d(x, y) be the distance between x ∼ ν and y ∼ ν′. WN represents the NWD. Given a family of classifiers
C ∈ H1 and a ideal classifier C∗ ∈ H1 satisfying the KL-Lipschitz constraint, where H1 is a subspace of H,
the following holds for every C, C∗ ∈ H1.

|ε(C, C∗) − ε′(C, C∗)| ≤ 2KL · WN (ν1, ν2),
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where ε is the error on ν and ε′ is the error on ν′.

Theorem 1. Let (Ωo, Fo, νs), (Ωd, Fd, νsd), (Ωo, Fo, νt), and (Ωd, Fd, νtd) be four probability spaces,
where Ωo and Ωd are disjoint and Ωo ∪ Ωd ⊆ Rn. With the results of Lemma 1, let (Ωo ∪ Ωd, Fu, νs∪sd) and
(Ωo ∪ Ωd, Fu, νt∪td) be two probability spaces with probability measures defined as νs∪sd = 1/2νs + 1/2νsd

and νt∪td = 1/2νt + 1/2νtd . Specifically, when sampling from νt∪td , there is an equal probability of 1/2 to
sample from νt or νtd . Similarly, sampling from νs∪sd gives an equal probability of 1/2 to draw from νs or
νsd . Consider a classifier C ∈ H1 and an ideal classifier C∗ = arg minC εs∪sd(C) + εt(C) satisfying the
KL-Lipschitz constraint, where H1 is a subspace of the hypothesis space H. For every classifier C in H1,
the following inequality holds:

εt(C) ≤ 2εs∪sd(C) + 4KL · WN (νs∪sd , νt∪td) + η∗,

where η∗ = 2εs∪sd(C∗) + εt(C∗) is the ideal combined error and is a sufficiently small constant.

Proof. Let Z be an indicator random variable that indicates whether the sample f̂t is drawn from
νt or νtd :

• Z = 0 if the sample is from νtd .

• Z = 1 if the sample is from νt.

By the Law of Total Expectation, we have:

εt∪td(C, C∗) = Ef̂t∼ν
t∪td

[|C(f̂t) − C∗(f̂t)|]

= Ef̂t∼ν
t∪td

[|C(f̂t) − C∗(f̂t)| | Z = 0]P (Z = 0) + Ef̂t∼ν
t∪td

[|C(f̂t) − C∗(f̂t)| | Z = 1]P (Z = 1).

Substituting P (Z = 0) = p0 and P (Z = 1) = p1,

εt∪td(C, C∗) = p0Ef̂t∼ν
t∪td

[|C(f̂t) − C∗(f̂t)| | Z = 0] + p1Ef̂t∼ν
t∪td

[|C(f̂t) − C∗(f̂t)| | Z = 1].

Recognize that Ef̂t∼ν
t∪td

[|C(f̂t) − C∗(f̂t)| | Z = 1] is the expectation when f̂t is drawn from νt,

εt(C, C∗) = Ef̂t∼ν
t∪td

[|C(f̂t) − C∗(f̂t)| | Z = 1].

Combining these, we get:

εt∪td(C, C∗) = p0Ef̂t∼ν
t∪td

[|C(f̂t) − C∗(f̂t)| | Z = 0] + p1εt(C, C∗).

Then,

1
p1

εt∪td(C, C∗) = p0

p1
Ef̂t∼ν

t∪td
[|C(f̂t) − C∗(f̂t)| | Z = 0] + εt(C, C∗).

Since p0
p1
Ef̂t∼ν

t∪td
[|C(f̂t) − C∗(f̂t)| | Z = 0] ≥ 0,

1
p1

εt∪td(C, C∗) ≥ εt(C, C∗).

Substituting p1 = 1/2, we obtain:
2εt∪td(C, C∗) ≥ εt(C, C∗).

Based on Lemma 2, we have:

|εs∪sd(C, C∗) − εt∪td(C, C∗)| ≤ 2KL · WN (νs∪sd , νt∪td).
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By triangular inequality,
εt(C) ≤ εt(C∗) + εt(C∗, C),

εs∪sd(C, C∗) ≤ εs∪sd(C) + εs∪sd(C∗).

Then, we can derive:

εt(C) ≤ εt(C∗) + εt(C∗, C)
≤ εt(C∗) + 2εt∪td(C∗, C)
= εt(C∗) + 2εs∪sd(C, C∗) + 2εt∪td(C, C∗) − 2εs∪sd(C, C∗)
≤ εt(C∗) + 2εs∪sd(C, C∗) + 4KL · WN (νs∪sd , νt∪td)
≤ εt(C∗) + 2εs∪sd(C) + 2εs∪sd(C∗) + 4KL · WN (νs∪sd , νt∪td)
= 2εs∪sd(C) + 4KL · WN (νs∪sd , νt∪td) + η∗.

Definition 3 (L1-Transportation Cost Information Inequality). Djellout et al. (2004) Given
η > 0, a probability measure ν on a measurable space (Ω, F) satisfies T1(η) if the inequality

W1(ν′, ν) ≤
√

2
η

H(ν′|ν)

where
H(ν′|ν) =

∫
log dν′

dν
dν′

holds for any probability measure ν′ on (Ω, F), where W1 represents the 1-Wasserstein distance.

Lemma 3. (Corollary 2.6 in Bolley & Villani (2005)) For a probability measure ν on a
measurable space (Ω, F), the following statements are equivalent:

• ν satisfies T1(η) inequality for some η that can be explicitly found.

• ν has a square-exponential moment, i.e., there exists α > 0 such that∫
Ω

exp(αd(x, y)2) dν(x) is finite

for any y ∈ Ω. Here, d is a measurable distance over Ω.

Lemma 4. Let (Ω1, F1, ν1) and (Ω2, F2, ν2) be two probability spaces, where Ω1 and Ω2 are disjoint. Let
p1, p2 ∈ [0, 1] be constants such that p1 + p2 = 1. Define a new measure ν3 on a measurable space (Ω3, F3),
where Ω3 = Ω1 ∪ Ω2:

ν3(A) := p1ν1(A ∩ Ω1) + p2ν2(A ∩ Ω2), ∀A ∈ F3.

Assume that ν1 and ν2 admit square-exponential moments: for some constants α1, α2 > 0, and for all
y1 ∈ Ω1, y2 ∈ Ω2,∫

Ω1

exp
(
α1d1(x, y1)2) dν1(x) < ∞,

∫
Ω2

exp
(
α2d2(x, y2)2) dν2(x) < ∞,

where d1 : Ω1 × Ω1 → [0, ∞) and d2 : Ω2 × Ω2 → [0, ∞) are distance functions. Then, ν3 is a prob-
ability measure on (Ω3, F3), and there exists a distance function d : Ω3 × Ω3 → [0, ∞) and a constant
α ∈ (0, min{α1, α2}) such that ν3 admits a square-exponential moment: for all y ∈ Ω3,∫

Ω3

exp
(
αd(x, y)2) dν3(x) < ∞.
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Proof. First, we define d : Ω3 × Ω3 → [0, ∞):

d(x, y) =


d1(x, y) if x, y ∈ Ω1

d2(x, y) if x, y ∈ Ω2

C if x ∈ Ω1, y ∈ Ω2 (or vice versa)

where C is a finite constant chosen to ensure d is a metric on Ω3. d can be expressed as:

d(x, y) = d1(x, y)1x,y∈Ω1 + d2(x, y)1x,y∈Ω2 + C1x∈Ω1,y∈Ω2 or x∈Ω2,y∈Ω1 ,

where 1 is the indicator function. Accodring to Theorem 1.9 (d) in Rudin (1987), the indicator functions are
measurable because Ω1 × Ω1, Ω2 × Ω2, and (Ω1 × Ω2) ∪ (Ω2 × Ω1) are all measurable sets in Ω3 × Ω3. d1 and
d2 are also measurable functions by assumption. Therefore, d is a sum of products of measurable functions.
Hence, d is measurable. For any y in Ω1,∫

Ω3

exp(αd(x, y)2) dν3(x)

= p1

∫
Ω1

exp(αd1(x, y)2) dν1(x) + p2

∫
Ω2

exp(αd(x, y)2) dν2(x)

≤ p1

∫
Ω1

exp(α1d1(x, y)2) dν1(x) + p2

∫
Ω2

exp(αC2) dν2(x)

= p1

∫
Ω1

exp(α1d1(x, y)2) dν1(x) + p2 exp(αC2) < ∞.

For any y in Ω2, ∫
Ω3

exp(αd(x, y)2) dν3(x)

= p1

∫
Ω1

exp(αd(x, y)2) dν1(x) + p2

∫
Ω2

exp(αd2(x, y)2) dν2(x)

≤ p1

∫
Ω1

exp(αC2) dν1(x) + p2

∫
Ω2

exp(α2d2(x, y)2) dν2(x)

= p1 exp(αC2) + p2

∫
Ω2

exp(α2d2(x, y)2) dν2(x) < ∞.

This proves that ν3 has a square-exponential moment for some 0 < α < min(α1, α2).

Lemma 5. (Theorem 1.1 of Bolley et al. (2007)) Let ν be a probability measure on (Ω, F)
where Ω ⊆ Rn. ν satisfies a T1(η) inequality. Let ν̂ = 1

N

∑N
i=1 δfi be its associated empirical measure

defined on a sample set {f i}N
i=1 of size N drawn i.i.d from ν. Then for any n′ > n and η′ < η, there exists

some constant N0 depending on n′ and some square-exponential moment of ν such that for any ϵ > 0 and
N ≥ N0 max(ϵ−(n′+2), 1), the following holds:

P[WN (ν, ν̂) > ϵ] ≤ exp
(

−η′

2 Nϵ2
)

.

Theorem 2. Under the assumption of Theorem 1, Ωo and Ωd are disjoint and Ωo ∪ Ωd ⊆ Rn. Let
(Ωo ∪ Ωd, Fu, νs∪sd) and (Ωo ∪ Ωd, Fu, νt∪td) be two probability spaces with νs∪sd = 1/2νs + 1/2νsd and
νt∪td = 1/2νt + 1/2νtd , where νs, νsd , νt, νtd each has a square-exponential moment. From Lemma 3 and
4, νs∪sd satsifies T1(ηs) for some ηs and νt∪td satsifies T1(ηt) for some ηt. Let {f̂ i

s}Ns
i=1 and {f̂ i

t }Nt
i=1 be

two sample sets of size Ns and Nt drawn i.i.d from νs∪sd and νt∪td , respectively. ν̂s∪sd = 1
Ns

∑Ns

i=1 δf̂i
s

and
ν̂t∪td = 1

Nt

∑Nt

i=1 δf̂i
t

are associated empirical probability measures. Then, for any n′ > n and η′ < min(ηs, ηt),
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there exists a constant N0 depending on n′ such that for any δ > 0 and min(Ns, Nt) ≥ N0 max(δ−(n′+2), 1),
with probability at least 1 − δ, the following holds for all C:

εt(C) ≤ 2εs∪sd(C) + 4KL · WN (ν̂s∪sd , ν̂t∪td) + η∗ + 4KL ·
√

2
η′ log 1

δ

(√
1

Ns
+
√

1
Nt

)
, (17)

where η∗ = 2εs∪sd(C∗) + εt(C∗) is the ideal combined error and is a sufficiently small constant.

Proof. Based on Theorem 1,

εt(C) ≤ 2εs∪sd(C) + 4KL · WN (νs∪sd , νt∪td) + η∗.

As a part of a broader class of Wasserstein distances, WN satisfies the axioms of a distance Villani et al.
(2009). Hence, WN satisfies the triangle inequality:

εt(C) ≤ 2εs∪sd(C) + 4KL · WN (νs∪sd , ν̂s∪sd) + 4KL · WN (ν̂s∪sd , νt∪td) + η∗

≤ 2εs∪sd(C) + 4KL · WN (νs∪sd , ν̂s∪sd) + 4KL · WN (ν̂s∪sd , ν̂t∪td) + 4KL · WN (ν̂t∪td , νt∪td) + η∗.

From Lemma 5,

WN (νs∪sd , ν̂s∪sd) ≤

√
2
η′ log

(
1
δ

)
·
√

1
Ns

,

WN (νt∪td , ν̂t∪td) ≤

√
2
η′ log

(
1
δ

)
·
√

1
Nt

.

WN belongs to the family of 1-Wasserstein distance. By the symmetry property of distance,

WN (ν̂s∪sd , νs∪sd) = WN (νs∪sd , ν̂s∪sd) ≤

√
2
η′ log

(
1
δ

)
·
√

1
Ns

,

WN (ν̂t∪td , νt∪td) = WN (νt∪td , ν̂t∪td) ≤

√
2
η′ log

(
1
δ

)
·
√

1
Nt

.

Substituting back, we have:

εt(C) ≤ 2εs∪sd(C) + 4KL · WN (ν̂s∪sd , ν̂t∪td) + η∗ + 4KL ·
√

2
η′ log 1

δ

(√
1

Ns
+
√

1
Nt

)
.

A.2 Implementation Details

Our code is based on the open-source implementation of the DefRec+PCM. We trained our three CDND
models with seeds {1, 2, 3} on A100 GPUs. For the PointSegDA dataset, we fixed the learning rate to be
0.001 and conducted a grid search to optimize the hyperparameters α, γ, β1, and β2 for each task. The specific
hyperparameter values can be found in Table 5. Similarly, for the PointDA dataset, the hyperparameters
are listed in Table 4. Training on the PointDA dataset takes approximately 10 hours, and around 8 hours
required for source-only training without any adaptation method. This results in a high computational cost
for hyperparameter tuning. Therefore, we do not tune the hyperparameters extensively. Similarly, for GAST
and ImplicitPCDA, we use the hyperparameters provided in their open-source code for the PointDA dataset.

However, GAST and ImplicitPCDA have not been tested on the PointSegDA dataset before. When im-
plementing GAST, we conduct a grid search on the PointSegDA dataset, exploring values of 0.1, 0.2, 0.5,
and 1.0 for both Lrot and Lloc. For ImplicitPCDA, we perform a grid search on the PointSegDA dataset,
considering values of 0.1, 0.2, 0.5, and 1.0 for LM . Please refer to the original papers for the definitions of
Lrot, Lloc, and LM .

For our method, we set the number of regions to be deformed to 5 for PointDA and 10 for PointSegDA. Each
region contains 55 points. The total number of regions is set to 20 for the PointDA dataset and 40 for the
PointSegDA dataset. For DefRec+PCM and CurvRec+PCM, we follow the hyperparameter settings used
in the open-source implementation of DefRec and PCM (PointMixup).
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Hyperparameter Values

Learning Rate 0.001, 0.0001 (S+M, MS)
α 0.5
γ 0.5
β1 [0.0, 1.0]
β2 0.2

# of Epochs 200

Table 4: Hyperparameters for PointDA.

Hyperparameter Values

Learning Rate 0.001
α 1.0
γ [0.05, 0.1, 0.2, 0.5, 1.0]
β1 [0.0, 0.05, 0.1, 0.2, 0.5, 1.0]
β2 [0.0, 0.2]

# of Epochs 150

Table 5: Hyperparameters for PointSegDA.

Challenges of Applying SPST with mIoU The mIoU metric is defined as:

mIoU = 1
M

M∑
m=1

TPm

TPm + FPm + FNm

where:


M = number of classes
TPm = true positive for class m

FPm = false positive for class m

FNm = false negative for class m

SPST typically relies on ranking training samples by difficulty and gradually incorporating harder examples
into training. The training samples for point cloud segmentation tasks are points in point clouds. However,
mIoU is a global metric that evaluates performance across an entire point cloud, making it challenging
to assign difficulty scores to individual points in a point cloud. The mechanism of SPST mismatches the
per-point cloud, rather than per-point, evaluation criterion of mIoU.

A.3 Additional Results

We also added visualization comparisons on ModelNet to ScanNet task in Figure 3, featuring three methods:
GAST and DefRec (which achieved second and third-best scores on the ModelNet to ScanNet task) and
PCFEA (the most recently published method). Our approach achieves the most distinct and well-separated
class clusters (represented by distinct colors) on the target domain test set, while PCFEA and GAST show
considerable class mixing, and DefRec shows a tight clustering of some groups, lacking a clear separation.

We present segmentation visualization results in Figure 4 for the PointSegDA dataset. Different segmentation
parts are highlighted using different colors. We selected three domains—MA, MF, and SA—to demonstrate
the effectiveness of our CDND method, which achieves state-of-the-art performance with a significant mar-
gin over the second-best method. In the figure, the last row labeled “GT” shows the ground truth. Our
CDND results are shown in the third row. Although CDND achieves 2% improvement in mIoU compared
to RS Sauder & Sievers (2019), we include this comparison to highlight the qualitative differences in seg-
mentation. The “Unsupervised” row represents results without any domain adaptation technique. From
Figure 4, it is evident that CDND produces segmentation results most closely aligned with the ground truth,
outperforming both RS and the unsupervised baseline. Additionally, It is worth noting that other methods
also report small increases in mIoU margins on PointSegDA dataset.

We also conduct experiments to evaluate the effects of different Gaussian variances and the total number of
regions in CurvRec. These experiments are performed on the FAUST to ADOBE task of the PointSegDA
dataset, and the results are presented in Table 6. Specifically, we vary the total number of regions, k ∈
{10, 25, 40, 55, 70, 85, 100}, and the Gaussian variance, σ2 ∈ {0.0001, 0.001, 0.01, 0.1}. The number of points
per region, Nk, is calculated as

⌊ 2048
k

⌋
+ 4, where 2048 is the number of points per sample. The additional 4

points ensure that k × Nk ≥ 2048. This condition is important because we want to maximize coverage of the
input point cloud—ideally assigning all 2048 points to regions. Without this constraint,

⌊ 2048
k

⌋
could be less

than 2048, leaving some points uncovered. By slightly increasing the number of points per region, we ensure
complete or near-complete coverage. As shown in the table, the optimal performance is achieved when the
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variance is set to 0.001 and the number of regions is 40, which aligns with our experimental settings. The
results also indicate that model performance is relatively insensitive to the number of regions but is more
sensitive to the choice of variance. In particular, large variances (e.g., 0.1) lead to more uniform deformations
and may negatively affect performance.

σ2 \ (k, Nk) (10, 208) (25, 85) (40, 55) (55, 41) (70, 33) (85, 28) (100, 24)

0.0001 80.5±0.9 80.3±2.8 79.8±1.9 79.6±1.2 79.4±1.0 80.6±1.7 80.1±1.7
0.001 80.8±1.2 80.7±1.8 81.5±2.0 80.9±1.7 79.2±2.3 78.9±2.1 79.1±2.0
0.01 78.6±2.9 80.3±2.3 81.0±1.9 79.3±4.0 79.9±2.3 79.6±3.0 77.5±4.0
0.1 69.0±2.8 68.3±3.6 68.2±5.6 67.2±4.4 67.9±4.9 69.9±4.5 67.0±5.2

Table 6: Results for varying σ2, number of regions k, and points per region Nk.

Another important hyperparameter is the number of regions selected for deformation. In Table 7, we present
results for the FAUST to ADOBE task of the PointSegDA dataset, where the total number of regions is
fixed at k = 40 and the Gaussian variance is set to σ2 = 0.001. We vary the number of deformed regions N
(expressed as the ratio N/k) to observe its effect on performance. The results show that performance is not
sensitive to the number of deformed regions. The optimal performance is achieved when the ratio is set to
0.25, which aligns with our experimental settings.

Ratio (N/k) 0.10 0.25 0.30 0.45

FA 80.3±3.0 81.5±2.0 81.1±2.3 79.5±3.3

Table 7: Results for varying the number of deformed regions N , expressed as the ratio N/k.

In the theoretical section, we note that the results can be generalized to arbitrary sampling ratios by adjusting
the mixture weights in the underlying probability measures. While it is theoretically challenging to prove
that a specific sampling ratio between original and deformed samples (e.g., 1:1, 2:3, etc.) is universally
optimal, our experimental results demonstrate that our chosen setting yields high performance. We conduct
experiments on the FAUST to ABODE task of the PointSegDA dataset. As shown in Table 8, we achieve
the highest mIoU with the 1:1 and 4:3 ratios. This supports the intuition that a balanced and sufficiently
diverse mix of original and deformed samples helps the model generalize more effectively across domains. It
is also worth noting that our method is not highly sensitive to changes in the sampling ratio.

We also conducted additional experiments to analyze the impact of hyperparameters on curvature estimation.
Curvature estimation depends on clean local geometry and can be influenced by real-world scanning artifacts.
To evaluate, we report classification accuracy on the ModelNet to ShapeNet task from the PointDA dataset,
and segmentation performance (mIoU) on the FAUST to ADOBE task from the PointSegDA dataset. Table
9 presents the results of varying the number of neighbors used in curvature computation. The performance
remains relatively stable (though the segmentation task is more sensitive) across different neighborhood sizes,
indicating that curvature estimation is not significantly sensitive to this parameter. Notably, our experiment

Ratio 1:1 1:2 1:3 1:4 2:1 2:3 2:4 3:1 3:2 3:4 4:1 4:2 4:3

FA 81.5±2.0 80.1±1.1 79.3±1.1 79.5±3.9 79.5±0.9 79.3±1.1 79.5±3.9 76.7±2.8 79.9±2.0 79.5±3.9 77.2±3.5 77.1±3.0 81.7±1.2

Table 8: Results for various original:deformed sample ratios.

Neighborhood 10 20 40 CDND (32)

MS (Accuracy) 84.1±0.3 83.7±0.4 83.6±0.4 84.1±0.3
FA (mIoU) 77.7±2.9 76.7±3.5 78.4±2.6 81.5±2.0

Table 9: Results for various neighborhoods.

Gaussian Variance 0.0001 0.01 0.1 Clean

MS (Accuracy) 83.2±0.5 83.5±0.4 82.7±1.5 83.6±0.4
FA (mIoU) 79.9±1.3 75.8±5.1 56.4±1.9 78.4±2.6

Table 10: Results for adding Gaussian noise.
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PCFEA

GAST

Ours

DefRec

Figure 3: Umap results of other baselines on PointDA-10 dataset.

setting of 32 neighbors (labeled as CDND) yields the best overall performance for both tasks. Regarding the
number of principal components, we do not arbitrarily choose how many to use — the number is determined
by the dimensionality of the input point cloud data. In our case, the input points lie in 3D space, so the
covariance matrix is 3 × 3, yielding three eigenvalues and corresponding eigenvectors.

In Table 10, we introduce Gaussian noise to the point coordinates to evaluate the robustness of curvature
estimation. For these experiments, the number of neighbors is fixed at 40. The classification task (ModelNet
to ShapeNet) demonstrates robustness to noise, as the accuracy remains relatively consistent even with
increasing noise variance. However, the segmentation task (FAUST to ADOBE) is more sensitive—its
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MA
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Ours

GT

Unsupervised

SA MF

Figure 4: Segmentation visualization results of PointSegDA dataset.

performance degrades significantly with higher noise levels. This increased sensitivity in segmentation arises
because segmentation tasks require more precise, point-level geometric details to assign accurate labels to
each point. Noise distorts these fine-grained features, making it harder for the model to distinguish between
regions, especially in complex structures. In contrast, classification tasks benefit from more global shape
features and can tolerate localized noise to a greater extent.

Method Unsupervised DANN PointDAN RS DefRec + PCM PCFEA GAST ImplicitPCDA CDND

Time (hours) 8.0 9.0 9.2 35.9 10.4 8.3 18.9 9.8 10.4

Table 11: Training time (in hours) of different methods.

Table 11 presents the training time (in hours) for various baseline methods along with our proposed approach,
CDND. As observed, our method does not introduce a significant computational overhead compared to the
“Unsupervised” baseline (without any domain adaptation method), requiring extra 2.4 additional hours. This
demonstrates a decent efficiency of CDND, especially when contrasted with methods like RS and GAST,
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Entropy

Std

Lamp Table Plant

Figure 5: Visualization comparisons between curvature diversity metrics (entropy/standard deviation).

which have significantly higher training costs. Furthermore, CDND’s training time is still comparable to
DANN, PointDAN, and DefRec+PCM. Overall, CDND is practically viable without significantly sacrificing
efficiency.

To better illustrate the advantages of using entropy to evaluate curvature diversity, we provide visual compar-
isons between entropy- and standard deviation-based curvature diversity measures on ModelNet-10 dataset
in Figure 5. In these visualizations, warmer colors indicate regions with higher semantic richness and cur-
vature diversity. We observe that the entropy-based measure more effectively highlights structurally and
semantically important regions, such as the joints between object components. For example, in the lamp,
both the connection between the cap and the supporting rod, as well as the joint between the rod and the
base, are clearly highlighted in red by entropy, indicating high curvature diversity. Similarly, in the table,
the interfaces between the tabletop and its supporting legs are also captured with warm colors, emphasiz-
ing their semantic importance. In contrast, the standard deviation measure fails to consistently highlight
these joint regions. Furthermore, in the plant example, most of the leaves and flower structures—which are
semantically rich and geometrically intricate—are highlighted by entropy with warm tones. However, these
same regions are mostly shown in cooler colors (e.g., blue/green) under the standard deviation measure,
indicating a failure to recognize their informative structure. Overall, these visualizations demonstrate that
entropy provides a reliable and semantically aligned indicator of curvature diversity.

Additionally, in Table 2, CurvRec(En)-High performs worse than CurvRec(S)-High. This result also supports
the superiority of entropy in identifying semantically rich regions. Entropy is more effective than standard
deviation in capturing areas with high curvature diversity and semantic importance. In the CurvRec(En)-
High experiment, we intentionally deform the parts identified as having the highest curvature diversity—i.e.,
those that are semantically rich. Since entropy more accurately identifies these meaningful regions, deforming
them results in a greater loss of critical geometric information, which negatively impacts model performance.
On the other hand, CurvRec(S)-High, which uses standard deviation to select parts for deformation, may
incorrectly classify geometrically simple or less informative regions as “important.” As a result, fewer truly
semantically rich regions are deformed, and more informative structures are preserved. This allows the
model to continue learning from these preserved rich regions, leading to better performance compared to
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CurvRec(En)-High. Therefore, the fact that CurvRec(En)-High leads to a larger performance drop actually
reinforces our claim: entropy is more accurate in identifying semantically rich parts, and its deformation has
a more significant impact on the model.
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