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Abstract

Most recent self-supervised methods for learning image representations focus on
either producing a global feature with invariance properties, or producing a set of
local features. The former works best for classification tasks while the latter is best
for detection and segmentation tasks. This paper explores the fundamental trade-
off between learning local and global features. A new method called VICRegL
is proposed that learns good global and local features simultaneously, yielding
excellent performance on detection and segmentation tasks while maintaining
good performance on classification tasks. Concretely, two identical branches of a
standard convolutional net architecture are fed two differently distorted versions
of the same image. The VICReg criterion is applied to pairs of global feature
vectors. Simultaneously, the VICReg criterion is applied to pairs of local feature
vectors occurring before the last pooling layer. Two local feature vectors are
attracted to each other if their l2-distance is below a threshold or if their relative
locations are consistent with a known geometric transformation between the two
input images. We demonstrate strong performance on linear classification and
segmentation transfer tasks. Code and pretrained models are publicly available at:
https://github.com/facebookresearch/VICRegL

1 Introduction

Recent advances in self-supervised learning for computer vision have been largely driven by down-
stream proxy tasks such as image categorization, with convolutional backbones [Chen et al., 2020a,b,
Grill et al., 2020, Lee et al., 2021, Caron et al., 2020, Zbontar et al., 2021, Bardes et al., 2022,
Tomasev et al., 2022], or vision transformers [Caron et al., 2021, Chen et al., 2021, Li et al., 2022,
Zhou et al., 2022a]. Current approaches rely on a joint embedding architecture and a loss function
that forces the learned features to be invariant to a sampling process selecting pairs of different views
of the same image, obtained by transformation such as cropping, rescaling, or color jittering [Misra
and Maaten, 2020, Chen et al., 2020a, He et al., 2020, Grill et al., 2020]. These methods learn
to eliminate the irrelevant part of position and color information, in order to satisfy the invariance
criterion, and perform well on image classification benchmarks. Some recent approaches go beyond
learning global features: to tackle tasks such as semantic segmentation where spatial information
plays a key role, [Yang et al., 2021, Xie et al., 2021, Hénaff et al., 2021, Yang et al., 2022, Hénaff
et al., 2022, El-Nouby et al., 2022] also learn image models with more emphasis on local image
structure. In the end most recent approaches to self-supervised learning of visual features learn
the corresponding image model using either a (possibly quite sophisticated) global criterion, or a
(necessarily) different one exploiting local image characteristics and spatial information. The best
performing local methods require a non-parametric pre-processing step that compute unsupervised
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segmentation masks [Hénaff et al., 2021], which can be done online [Hénaff et al., 2022], but with an
additional computational burden.

We argue that more complex reasoning systems should be structured in a hierarchical way, by learning
at several scales. To this end, we propose VICRegL, a method that learn features at a global scale,
and that additionally uses spatial information, and matches feature vectors that are either pooled from
close-by regions in the original input image, or close in the embedding space, therefore learning
features at a local scale. In practice, the global VICReg criterion [Bardes et al., 2022] is applied
to pairs of feature vectors, before and after the final pooling layer of a convolutional network, thus
learning local and global features at the same time. When a segmentation mask is available as
in [Hénaff et al., 2021], feature vectors that correspond to the same region in the mask can be pooled
together, and compared using a contrastive loss function, which allows spatial vectors far away in
the original image to be pooled together if they belong to the same object. In our case, segmentation
masks are not available, and we therefore face two challenges: (1) there is no a priori information on
how to pool vectors from the same object together, thus long-range matching should be learned in
a self-supervised manner, and (2) contrasting negatively feature vectors corresponding to far away
locations can have a negative effect, as these vectors could have been pooled from locations that
represent the same object in the image. In order to address these issues, VICRegL (1) matches feature
vectors according to a l2 nearest-neighbor criterion exploiting both the distances between features
and image locations, properly weighted, and (2) uses the VICReg criterion between matched feature
vectors. We use VICReg for its simplicity and its non-contrastive nature, which alleviates the need
for negative samples and therefore does not have an explicit negative contrasting effect between
feature vectors that could have been potential matches.

We demonstrate the effectiveness of VICRegL by evaluating the learned representations on vision
tasks such as image classification on ImageNet and semantic segmentation on various datasets. Our
evaluation is (mostly) done in the setting where the backbone learned by VICRegL is frozen, with
only a linear classification or segmentation head tuned to the task at hand. We believe that this
setting is a much better evaluation metric than the commonly used fine-tuning benchmarks, as the
performance can not be attributed to the use of a complex head, or to the availability of the ground
truth masks. Our results show that learning local features, in addition to global features, does not hurt
the classification performance, but significantly improves segmentation accuracy. On the Pascal VOC
linear frozen semantic segmentation task, VICRegL achieves 55.9 mIoU with a ResNet-50 backbone,
which is a +8.1 mIoU improvement over VICReg, and 67.5 mIoU with a ConvNeXt-S backbone,
which is a +6.6 mIoU improvement.

2 Related work

Global features. Most recent methods for global feature learning are based on a joint embedding
architecture that learns representations that are invariant to various views. These methods differ
in the way collapsing solutions are avoided. Contrastive methods [Hjelm et al., 2019, Chen et al.,
2020a, He et al., 2020, Chen et al., 2020b, Mitrovic et al., 2021, Dwibedi et al., 2021, Chen et al.,
2021, Tomasev et al., 2022] uses negative samples to push dissimilar samples apart from each other.
Clustering methods [Caron et al., 2018, 2020, 2021] ensure a balanced partition of the samples within
a set of clusters. Non-contrastive methods, which are dual to contrastive ones [Garrido et al., 2022],
rely on maintaining the informational content of the representations by either explicit regularization
[Zbontar et al., 2021, Bardes et al., 2022] or architectural design [Chen and He, 2020, Grill et al.,
2020, Richemond et al., 2020, Lee et al., 2021]. Finally, the best performing methods today are based
on vision transformers [Caron et al., 2021, Chen et al., 2021, Li et al., 2022, Zhou et al., 2022a,b] and
deliver strong results in both downstream classification and segmentation tasks.

Local features. In opposition to global methods, local one focus on explicitly learning a set of local
features that describe small parts of the image, which global methods do implicitly [Chen et al.,
2022], and are therefore better suited for segmentation tasks. Indeed these methods commonly only
evaluate on segmentation benchmarks. A contrastive loss function can be applied directly: (1) at the
pixel level [Xie et al., 2021], which forces consistency between pixels at similar locations; (2) at the
feature map level [Wang et al., 2021], which forces consistency between groups of pixels: (3) at the
image region level [Xiao et al., 2021], which forces consistency between large regions that overlap in
different views of an image. Similar to [Wang et al., 2021], our method VICRegL operates at the
feature map level but with a more advanced matching criterion that takes into account the distance in
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pixel space between the objects. Copy pasting a patch on a random background [Yang et al., 2021,
Wang et al., 2022] has also shown to be effective for learning to localize an object without relying on
spurious correlations with the background. Aggregating multiple images corresponding to several
object instances into a single image can also help the localization task [Yang et al., 2022]. These
approaches rely on carefully and handcrafted constructions of new images with modified background
or with aggregation of semantic content from several other images, which is not satisfactory, while
our method simply rely on the classical augmentations commonly used in self-supervised learning.
The best current approaches consist in using the information from unsupervised segmentation masks,
which can be computed as a pre-processing step [Hénaff et al., 2021] or computed online [Hénaff
et al., 2022]. The feature vectors coming from the same region in the mask are pooled together
and the resulting vectors are contrasted between each other with a contrastive loss function. These
approaches explicitly construct semantic segmentation masks using k-means for every input image,
which is computationally not efficient, and is a strong inductive bias in the architecture. Our method
does not rely on these masks and therefore learns less specialized features.

3 Method

Background. VICReg was introduced as a self-supervised method for learning image representations
that avoid the collapse problem by design. Its loss function is composed of three terms: a variance
term, that preserves the variance of the embeddings, and consists in a hinge loss function on the
standard deviation, on each component of the vectors individually and along the batch dimension; an
invariance term, which is simply an l2 distance between the embeddings from the two branches of a
siamese architecture; and finally a covariance term, that decorrelates the different dimensions of the
embeddings, by bringing to 0 the off-diagonal coefficients of the empirical covariance matrix of the
embeddings.

For completeness, we describe how the VICReg framework works [Bardes et al., 2022]. A seed
image I is first sampled in the unlabelled training dataset. Two views x and x′ are obtained by
a rectangular crop at random locations in I , rescaling them to a fixed size (R, S) and applying
various color jitters with random parameters. The views are fed to an encoder fθ : RC×R×S → RC
producing their representations y = fθ(x) and y′ = fθ(x′) ∈ RC , which are mapped by an expander
hϕ : RC → RD onto the embeddings z = hϕ(y) and z′ = hϕ(y′) ∈ RD. The VICReg loss function
is defined as follows:

ℓ(z, z′) = λs(z, z′) + µ[v(z) + v(z′)] + ν[c(z) + c(z′)], (1)

where s, v and c are the invariance, variance and covariance terms as described in [Bardes et al.,
2022], and λ, µ and ν are scalar coefficients weighting the terms.

3.1 VICRegL: feature vectors matching

When the encoder fθ is a convolutional neural network, the final representations are obtained
by performing an average pooling operation ⊕ : RC×H×W → RC on the output feature maps,
with C the number of channels and (H, W ) the spatial dimensions. We now denote the pooled
representations y⊕ and y′

⊕ ∈ RC and the unpooled representations y and y′ ∈ RC×H×W . We denote
yi,j and y′

i,j ∈ RC the feature vectors at position (i, j) in their corresponding feature maps. The main
idea is to apply the VICReg criterion between pairs of feature vectors from y and y′, by matching an
element of y to one from y′, using spatial and l2-distance based information. We introduce a local
projector network hlϕ : RC×H×W → RD×H×W , that embed the feature maps y and y′ ∈ RC×H×W

onto feature maps embeddings z = hlϕ(y) and z′ = hlϕ(y′) ∈ RD×H×W . The standard expander
of VICReg is now the global expander hgψ : RC → RD, which maps the pooled representations y⊕

and y′
⊕ ∈ RC to the embeddings z⊕ = hgψ(z⊕) and z′

⊕ = hgψ(z′
⊕) ∈ RD. We describe now how we

perform the matching, and introduce our loss functions.

Location-based matching. In order to take into account the transformation that occurs between the
views x and x′ of an image I , and thus matching features from similar locations, we compute the
absolute position in I that corresponds to the coordinate of each feature vector in its feature map.
Each feature vector zp at position p in the feature map is matched to its spatial nearest neighbor
according the the absolute position in I , and among the H × W resulting pairs, only the top-γ pairs
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Figure 1: Overview of VICRegL: Learning local and global features with VICReg. Given a
seed image, two views are produced and fed to an encoder that produces local features. The features
are further processed by a local projector that embed them into a smaller space, without destroying
the localization information. Two matchings, one based on the spatial information provided by
the transformation between the views, the other one based on the l2-distance in the embedding
space are computed, and the VICReg criterion is then applied between matched spatial embeddings.
Additionally, the local features from the encoder are pooled together, and the pooled features are fed
to a global expander. The VICReg criterion is finally applied between the two resulting embeddings.

are kept. The location-based matching loss function is defined as follows:

Ls(z, z′) =
∑
p∈P

l(zp, z′
NN(p)), (2)

where the sum is over coordinates p in P = {(h, w) | (h, w) ∈ [1, ..., H] × [1, ..., W ]} the set of all
coordinates in the feature map, and NN(p) denotes the (spatially) closest coordinate p′ to p according
to the actual distance in the seed image.

Feature-based matching. In addition to matching features that are close in terms of location in the
original image, we match features that are close in the embedding space. Each feature vector zp at
position p is matched to its nearest neighbor in z′ according to the l2 distance in the embedding space,
and among the H × W resulting pairs, only the top-γ pairs are kept. The feature-based matching
loss function is defined as follows:

Ld(z, z′) =
∑
p∈P

l(zp, NN′(zp)), (3)

where the sum is over coordinates p in P and NN′(zp) denotes the closest feature vector to zp in the
feature maps z′, in terms of the l2-distance. Similar to the location-based loss function, the feature-
based loss function enforces invariance on a local scale, but between vectors that are close in the
embedding space, and not necessarily pooled from the same location in the seed image. The purpose
of this loss function is mainly to capture long-range interactions not captured by the location-based
matching.

The general idea of top-γ filtering is to eliminate the mismatched pairs of feature vectors that are too
far away in the image for the location-based matching, and that therefore probably do not represent
the same objects, but most importantly that are probably mismatched for the feature-based matching,
especially at the beginning of the training when the network matches feature vectors representing
different objects or textures. Sometime, two views don’t or barely overlap, for the feature-based
matching this is not an issue, as the purpose of this matching is to capture long-range interactions not
captured by location-based matching. For the location-based matching, given the parameters we use
to generate the views (each view covers between 8% and 100% of the image, chosen uniformly), the
probability for the views to not overlap is small, and even in that case matching the closest points
between the views does not degrade the final performance. Indeed, we have tried to use a variable
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number of matches and a threshold value used to compute the matches, which did not improve the
performance compared to using a fixed number of matches. In practice, there are with high probability
always good local features to match as the views have a low probability of not overlapping, and this
explains why always matching the top-γ pairs, compared to introducing a threshold value at which
the pair is considered a match, does not degrade the performance.

Our final loss function is a combination of the location-based and feature-based loss functions, which
form the local criterion, with in addition a standard VICReg loss function applied on the pooled
representations, which is the global criterion. Both location and feature-based loss functions are
symmetrized, because for both, the search for the best match is not a symmetric operation. Our final
loss function is described as follows:

L(z, z′) = αℓ(z⊕, z′
⊕) + (1 − α){Ls(z, z′) + Ls(z′, z) + Ld(z, z′) + Ld(z′, z)}, (4)

where α is an hyper-parameter controlling the importance one wants to put on learning global
rather than local features. We study later in Section 4.2 the influence of α on the downstream
performance, and show that there exists a trade-off such that the learned representations contain local
and global information at the same time, and therefore transfer well on both image classification and
segmentation tasks.

3.2 VICRegL with the ConvNeXt backbone

The feature matching procedure is designed to work with any kind of convolutional neural network.
In the experimental section, we provide results with a standard ResNet-50 backbone. However,
one can considerably improve the performance on downstream tasks by using a more sophisticated
backbone. We propose to use the recently introduced ConvNeXt architecture [Liu et al., 2022], that is
very similar to the ResNet one, but with many simple modifications to the original architecture, which
make it work as well as modern vision transformers. To the best of our knowledge, this is the first
time ConvNeXts have been used in self-supervised learning, and our work shows that convolutional
neural networks are still able to deliver state-of-the-art performances in most standard self-supervised
learning benchmarks. In order to make the performance competitive with recent approaches, we use
the multi-crop strategy introduced in [Caron et al., 2020]. Surprisingly, we found that the combination
of multi-crop with encoders from the ResNet family and the VICReg criterion is extremely difficult
to optimize, and haven’t been able to make it work properly. However, multi-crop shows very good
results when combined with ConvNeXts. Our intuitive explanation is based on a study of the optimal
batch size. The VICReg criterion regularizes the empirical covariance matrix of the embeddings,
computed using the current batch, and we hypothesize that there is a link between the size of the
batch, and the dimensionality of the representations. VICReg combined with a ResNet-50 has shown
to have an optimal batch size of 2048, which is exactly the dimensionality of the representations of a
ResNet-50. We found that the optimal batch size when working with ConvNeXts is 512 which is
much smaller, and correlates with the fact that ConvNeXts also have smaller representations (768
for ConvNeXt-S and 1024 for ConvNeXt-B). The optimal batch size might therefore be close to
the dimensionality of the representations. Now, the multi-crop strategy artificially increases the size
of the batch, which is much easier to handle when the size of the batch before multi-crop is small.
Indeed the effective batch size otherwise becomes too large, which causes optimization issues.

We now describe how the matching loss functions are adapted in order to work with multi-crop.
Instead of generating only two views of the seed image, N views (2 large, and N − 2 small), resized
to two different resolutions are generated, and further encoded into the feature maps embeddings
z1 and z2 for large views, and {zn}Nn=3 for small views. The spatial matching loss function is then
defined as follows:

Ls({zn}Nn=1) =
2∑

m=1

N∑
n ̸=m

{
∑
p∈P

l(zmp , znNN(p)) +
∑
p∈P

l(znp , zmNN(p))}, (5)

where only the top-γ1 and top-γ2 pairs of feature vectors of large and small views respectively are
kept in the computation of the loss. The feature-based loss function, and the global criterion are
adapted in a very similar way, one large view is matched to the other large views and to the small
views, and the final loss function is defined as follows:

L({zn}Nn=1) = αℓ({zn⊕}Nn=1) + (1 − α){Ls({zn}Nn=1) + Ld({zn}Nn=1)}. (6)
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Table 1: Comparison of various global and local self-supervised learning methods on different
linear evaluation benchmarks. Evaluation of the features learned from a ResNet-50 backbone
trained with different methods on: (1) linear classification accuracy (%) (frozen) on the validation set
of ImageNet (2) Linear segmentation (mIoU) (frozen and fine-tuning) on Pascal VOC, (3) Linear
segmentation (mIoU) (frozen) on Cityscapes. α is the weight of Eq. (4) balancing the importance
given to the global criterion, compared to the local criterion. The best result for each benchmark is
bold font. VICRegL consistently improves the linear segmentation mIoU over the VICReg baseline,
which shows that introducing a local criterion is beneficial for a localized understanding of the image.

Linear Cls. (%) Linear Seg. (mIoU)
ImageNet Pascal VOC Cityscapes

Method Epochs Frozen Frozen Fine-Tuned Frozen

Global features
MoCo v2 [Chen et al., 2020b] 200 67.5 35.6 64.8 14.3
SimCLR [Chen et al., 2020a] 400 68.2 45.9 65.4 17.9
BYOL [Grill et al., 2020] 300 72.3 47.1 65.7 22.6
VICReg [Bardes et al., 2022] 300 71.5 47.8 65.5 23.5

Local features
PixPro [Xie et al., 2021] 400 60.6 52.8 67.5 22.6
DenseCL [Wang et al., 2021] 200 65.0 45.3 66.8 11.2
DetCon [Hénaff et al., 2021] 1000 66.3 53.6 67.4 16.2
InsLoc [Yang et al., 2022] 400 45.0 24.1 64.4 7.0
CP2 [Wang et al., 2022] 820 53.1 21.7 65.2 8.4
ReSim [Xiao et al., 2021] 400 59.5 51.9 67.3 12.3

Ours
VICRegL α = 0.9 300 71.2 54.0 66.6 25.1
VICRegL α = 0.75 300 70.4 55.9 67.6 25.2

3.3 Implementation details

We provide here the implementation details necessary to reproduce the results obtained with our
best ResNet-50 and ConvNeXts models. All the models are pretrained on the 1000-class unlabelled
ImageNet dataset. Most hyper-parameters are kept unchanged compared to the implementation
provided by [Bardes et al., 2022], the VICReg loss variance, invariance and covariance coefficients
are set to 25, 25 and 1. The global expander is a 3-layers fully-connected network with dimensions
(2048-8192-8192-8192). The local projector is much smaller, due to memory limitations, and has
dimensions (2048-512-512-512). With the ResNet-50 backbone, we train our models on 32 Nvidia
Tesla V100-32Gb GPUs, with the LARS optimizer [You et al., 2017, Goyal et al., 2017], a weight
decay of 10−6, a batch size of 2048 and a learning rate of 0.1. The learning rate follows a cosine
decay schedule [Loshchilov and Hutter, 2017], starting from 0 with 10 warmup epochs and with
final value of 0.002. The number of selected best matches γ of Eq. (2) and (3) is set to 20. With
ConvNeXts backbones, we noticed that much smaller batch sizes actually improve the performance,
we therefore train our ConvNeXt-S models on 8 Nvidia Tesla V100-32Gb GPUs, with the AdamW
optimizer [Loshchilov and Hutter, 2019], a weight decay of 10−6, a batch size of 384 and a learning
rate of 0.001, and our ConvNeXt-B models on 16 Nvidia Tesla V100-32Gb GPUs with a batch size
of 572 and the same other hyper-parameters. The learning rate follows a cosine decay schedule,
starting from 0 with 10 warmup epochs and with final value of 0.00001. The number of selected best
matches γ1 and γ2 of Eq. (5) are set to 20 for feature maps from large views and 4 for feature maps
from small views.

4 Experimental Results

In this section, we evaluate the representations obtained after pretraining VICRegL with a ResNet-50,
and ConvNeXt backbones [Liu et al., 2022] of various size, on linear classification on ImageNet-
1k [Deng et al., 2009], and linear semantic segmentation on Pacal VOC [Everingham et al., 2010],
Cityscapes [Cordts et al., 2016] and ADE20k [Zhou et al., 2019]. We demonstrate that VICRegL
strongly improves on segmentation results over VICReg while preserving the classification perfor-
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Table 2: Comparison of various global and local self-supervised learning methods on differ-
ent linear evaluation benchmarks. Evaluation of the features learned from ConvNeXt and ViT
backbones trained with different methods on: (1) linear classification accuracy (%) (frozen) on the
validation set of ImageNet (2) Linear segmentation (mIoU) (frozen and fine-tuning) on Pascal VOC,
(3) Linear segmentation (mIoU) (frozen) on ADE20k. α is the weight of Eq. (4) balancing the
importance given to the global criterion, compared to the local criterion. The best result for each
benchmark is bold font. † denotes pretraining on ImageNet-22k.

Linear Cls. (%) Linear Seg. (mIoU)
ImageNet Pascal VOC ADE20k

Method Backbone Params Epochs Frozen Frozen FT Frozen

Global features
MoCo v3 [Chen et al., 2021] ViT-S 21M 300 73.2 57.1 75.9 23.7
DINO [Caron et al., 2021] ViT-S 21M 400 77.0 65.2 79.5 30.5
IBOT [Zhou et al., 2022a] ViT-S 21M 400 77.9 68.2 79.9 33.2
VICReg [Bardes et al., 2022] CNX-S 50M 400 76.2 60.1 77.8 28.6
MoCo v3 ViT-B 85M 300 76.7 64.8 78.9 28.7
DINO ViT-B 85M 400 78.2 70.1 82.0 34.5
IBOT [Zhou et al., 2022a] ViT-B 85M 400 79.5 73.0 82.4 38.3
MAE [He et al., 2022] ViT-B 85M 400 68.0 59.6 82.4 27.0
VICReg CNX-B 85M 400 77.6 67.2 81.1 32.7

Local features
CP2 [Wang et al., 2022] ViT-S 21M 320 62.8 63.5 79.6 25.3

Ours
VICRegL α = 0.9 CNX-S 50M 400 75.9 66.7 80.0 30.8
VICRegL α = 0.75 CNX-S 50M 400 74.6 67.5 80.6 31.2
VICRegL α = 0.9 CNX-B 85M 400 77.1 69.3 81.2 33.5
VICRegL α = 0.75 CNX-B 85M 400 76.3 70.4 82.5 35.3
VICRegL α = 0.75† CNX-XL 350M 150 79.4 78.7 84.1 43.2

mance, and is competitive with other local and global self-supervised learning methods. We choose
the linear evaluation with frozen weights as our main evaluation metrics, as we believe it is a much
better way of evaluating the learned representations. Indeed, the performance can not be attributed to
the use of a complex segmentation head, or to the availability of the ground truth masks, and contrary
to the frozen setting, the fine-tuning setting measures whether the relevant information is present in
the representation, but does not measure if the information is easily extractable from it. We perform
the linear evaluation using the protocol introduced by [Zhou et al., 2022a], where the learned feature
maps are fed to a linear classifier that outputs a vector with the same size as the number of target
classes in the dataset, and is then upsampled to the resolution of the image to produce the predicted
mask. The results are averaged over 3 runs with randomly initialized parameters and we found that
the difference in performance between worse and best runs is always lower than 0.2%.

4.1 Comparison with prior work

ResNet-50 backbone. Table 1 presents our results against several other global and local self-
supervised learning methods, all pretrained with a ResNet-50 backbone [He et al., 2016]. The main
observation we make is the improvement of VICRegL over VICReg on linear segmentation. On
Pascal VOC, when the weights of the backbone are frozen, VICRegL α = 0.9 improves by +6.2 mIoU
while only loosing 0.3% classification accuracy, and VICRegL α = 0.75 improves by +8.1 mIoU.
On fine-tuning the improvement is less significative, which we attribute to the non-informative nature
of fine-tuning benchmarks. Indeed, some methods like InsLoc and CP2 that seem competitive on
fine-tuning significantly underperform in the frozen regime, which shows that the actual performance
of these methods can be attributed to the fact that the weights of the backbone benefit form the
availability of the labels during the fine-tuning phase. On Cityscapes, which is much harder, most
methods do not perform very well in the linear frozen regime, which sets a new challenge for self-
supervised learning of local features. VICRegL outperforms the VICReg baseline by +1.7 mIoU,
as well as every other local features methods by a significant margin. The second observation we
make is the robustness of VICRegL in classification, which indicates that it learns both local and
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Figure 2: Study of the trade-off between local
and global criteria. Evaluation on linear classifi-
cation on ImageNet and on linear Segmentation
on Pascal VOC of VICRegL pretrained with vari-
ous α coefficients of Eq. (4), controlling the im-
portance of the global criterion against the local
criterion.

Table 3: Ablation: matching criterion. Compar-
ison between using the feature-based matching
loss (Ld), the location-based matching loss (Ls),
none of the two (Baseline), or both at the same
time.

Method Cls. (%) Seg. (mIoU)

Baseline 73.8 56.0
Ls 73.5 58.9
Ld 73.6 57.7
Ls-Ld 73.6 60.3

Figure 3: Selected matches: visualization of the
locations of the best local matches selected by
VICRegL. Left image is the seed image, with in
red and blue the crop locations for the two views.
Left column are the feature-based matches. Right
column are the location-based matches. Only 10
matches are visualized for better clarity, but the
actual number of selected matches is 20. We dis-
play the matches according to the location of the
feature vectors in the feature maps. Note that the
receptive field of these feature vectors is much
larger than only the patch represented by one
square of the grid in the figure. Best viewed in
color with zoom.

global features at the same time. The performance of most local methods is greatly impacted on
classification where they all perform around 10 to 20% below global methods. Global methods on
the contrary are efficient for classification but underperform in segmentation compared to VICRegL.

ConvNeXt backbone. Table 2 presents our results when pretraining with ConvNeXts backbones
against several other global and local self-supervised learning methods pretrained with vision trans-
formers [Dosovitskiy et al., 2021]. Similar to our experiments with a ResNet-50 backbone, the main
observation we make is the improvement on segmentation tasks provided by the introduction of
the local criterion. With a ConvNeXt-S backbone, in the linear frozen regime, VICRegL α = 0.9
improves over VICReg by +6.6 mIoU on the Pascal VOC, and by +2.2 mIoU on the ADE20K, while
preserving most of the classification accuracy. VICRegL α = 0.75 further improves by +7.4 mIoU
and +3.6 over VICReg on these two benchmarks respectively. With a ConvNeXt-B backbone, the
performance improvement remain consistent over VICReg, and VICRegL α = 0.75 is competitive
with other strong methods such as DINO and IBOT. The improvement also remain consistent in linear
fine-tuning where VICRegL also achieves a strong performance. Finally, we report the performance of
a much larger ConvNeXt-XL backbone, pretrained in ImageNet-22k, which is significantly improved
on segmentation tasks and set a new state-of-the art in linear segmentation. Our results highlight
the trade-off between classification and segmentation performance, which can be controlled by the
weight given to the local criterion.

4.2 Ablations

For all the experiments done in this section, unless specified otherwise, we pretrain a ConvNeXt-S on
ImageNet over 100 epochs, with the hyper-parameters described in Section 3.3, and report both the
linear classification accuracy on ImageNet, and the linear frozen segmentation mIoU on Pascal VOC.
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Table 4: Ablation: SSL criterion. Introducing
our local criterion with VICReg gives a stronger
improvement compared to SimCLR, which is con-
trastive. (ResNet-50, 300 epochs)

Method Cls. (%) Seg. (mIoU)

VICReg 71.1 47.8
VICRegL 70.4 55.9
SimCLR 67.5 45.9
SimCLR-L 66.6 51.3

Table 5: Ablation: impact of multi-crop. In-
troducing our local criterion yields an improved
performance with or without the usage of multi-
crop.

Method Multi-crop Cls. (%) Seg. (mIoU)

VICReg 70.1 52.9
VICRegL 69.9 57.8
VICReg ✓ 73.9 54.4
VICRegL ✓ 73.6 60.3

Table 6: Ablation: number of selected matches.
The large feature maps are of size 7 × 7 and the
small ones are of size 3 × 3. There are therefore
a total number of 49 large and 9 small feature
vectors and as many possible matches, and only
the top-γ1 large and top-γ2 small are kept.

γ1 γ2 Cls. (%) Seg. (mIoU)

10 2 73.4 59.2
20 4 73.6 60.3
49 9 73.5 59.6

Table 7: Ablation: VICReg local criterion. The
collapse problem is automatically prevented with
the global criterion. We study here how regulariz-
ing the local feature vectors influence the perfor-
mance. V: variance criterion is used, I: invariance
criterion is used, C: covariance criterion is used.

Criterion Cls. (%) Seg. (mIoU)

I 73.4 59.0
VI 73.3 58.2
VIC 73.6 60.3

Trade-off between the local and global criterion. The parameter α of Eq. (4) controls the importance
that is given to the global criterion, compared to the local criterion. Figure 2 shows that there exists
a fundamental trade-off between the ability of a model to learn global visual features, as opposed
to learning local features. In the case α = 1.0, which is simply VICReg, the model is very efficient
at producing global representations of the image, as demonstrated by the performance of 73.9%
in classification accuracy. When α < 1, which introduces the local criterion, the performance in
segmentation is greatly increased, by +3.4 mIoU when α = 0.9, +4.3 mIoU when α = 0.75 and +4.6
mIoU when the local and global criteria are weighted equally. At the same time, the classification
accuracy only drops by respectively 0.2%, 1.2% and 2.9%. This highlights the existence of a sweet
spot, where the model is strongly performing at both classification and segmentation, which indicates
that it has learned both meaningful local and global features. When α decreases too much, the model
starts to lose its performance in both tasks, which shows that having a global understanding of the
image is necessary, even for localized tasks.

Study of the importance between feature-based and location-based local criteria. VICRegL
matches feature vectors according to a location-based criterion Ls of Eq. (2) and a feature-based
criterion Ld of Eq. (3). Table 3 study the importance of these criterion. Baseline in the table means
that no local criterion is used, and is simply VICReg. The location-based criterion gives the best
improvement by +2.9 mIoU over the baseline, compared to only +1.7 mIoU for the feature-based
criterion, but it is the combination of the two that significantly improves over the baseline by +4.3
mIoU, which shows that using both the learned distance in the embedding space in combination with
the actual distance in the pixel space produces local features with the best quality. In all cases, the
classification accuracy is not affected, which is expected as the local criterion has little effect on the
quality of the global features, and therefore on the downstream classification accuracy.

Study of the number of matches. We study here the influence of changing the number of selected
best matches γ1 and γ2 of Eq. (5), to keep for the computation of the local losses. For our experiments
with multi-crop, the size of the feature maps is (2048 × 7 × 7) for the large crops and (2048 × 3 × 3)
for the small crops. There are therefore in one branch of the siamese architecture 49 feature maps for
large crops, and 9 for small crops. Tables 6 shows that there is a trade-off between keeping all the
matches (γ1 = 49 and γ2 = 9), and keeping a small number of matches (γ1 = 10 and γ2 = 2), and
that the best segmentation performance is obtained with an in-between number of matches, (γ1 = 20
and γ2 = 4), which improves by +0.7 mIoU compared to keeping all the matches. Similar to the
study on the influence of the local losses, the classification accuracy is not affected, as the local
criterion does not improve or degrade the global features.

Study of VICReg components for the local criterion. The global criterion is sufficient for the
vectors to not collapse to trivial solutions. We therefore investigate if introducing the variance (V) and
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covariance (C) criterion, in addition to the invariance (I) criterion, applied by the local loss functions
on the feature vectors, is useful or not. Table 7 shows that these regularization criteria are actually
helping the performance, introducing the variance criterion improves on segmentation by +0.8 mIoU,
and additionally adding the covariance criterion further improves the performance by +1.3 mIoU over
the baseline. Similar to other ablations on the local loss functions, the classification accuracy is not
significantly impacted.

Study of a different collapse prevention method. Our collapse-prevention mechanism is the
variance and covariance regularization of VICReg, which is a non-contrastive criterion that therefore
does not contrast negatively on potential positive matchings. We study however the incorporation
of our local criterion with a contrastive criterion, SimCLR [Chen et al., 2020a]. We simply replace
VICReg by SimCLR in Eq. (2) and Eq. (3) and refer this new method as SimCLR-L. Table 4 reports
the performance, and we observe that although there is a gap in performance between regular SimCLR
and VICReg, the additional benefit provided by the local criterion is much stronger with VICReg.

Impact of multi-crop. We study the impact of using the multi-crop strategy for the data augmentation,
by comparing VICReg to VICRegL. Table 5 reports our results. Whether multi-crop is used or not,
introducing the local criterion always improve significantly the segmentation results, while preserving
again most of the classification performance.

4.3 Visualization

We provide in Figure 3, a visualization of the pairs of matched feature vectors selected by VICRegL.
Right to the seed image, the left column shows the feature-based matches, and the right column shows
the location-based matches. Each case in the the grid represents a position in the feature map, and a
match between two feature vectors is represented by a yellow line. The receptive field of these feature
vectors is larger than a single case in the grid, and actually spans the entire image, but we observe
that the embedding space is shaped such that the feature-based matching is coherent regarding the
semantic content at a position in the image where a feature vector is pooled. A feature vector that is
located at a position corresponding to a texture representing "sky" or "grass" in one view is matched
to another one on the other view located at a position corresponding to a similar "sky" or "grass"
texture. Additional visualizations are available in Appendix ??.

5 Conclusion

In this work, we introduced VICRegL, a method for learning both local and global visual features
at the same time, by matching feature vectors with respect to their distance in the pixel space
and in the embedding space. We show that introducing a local criterion significantly improves the
performance on segmentation tasks, while preserving the classification accuracy. We also demonstrate
that convolutional networks are competitive to vision transformers in self-supervised learning, by
using the ConvNeXt backbone.

Limitations and Future work. Convolutional neural networks by design produce feature maps that
have a receptive field that covers the entire image. It is not clear to which extent a feature vector at a
given position in the feature maps actually contains mainly information about the objects located
at the corresponding location in the input image. The learned tokens of a vision transformers are
also good candidates for local features, and a detailed study of the actual local nature of both the
feature vectors of a convolutional network and the tokens of a vision transformer, would provide
useful insights for future directions of self-supervised learning of local features. Future work will
also tackle the problem of learning hierarchical features, by applying a criterion not only at a local
and a global scale, but also at multiple levels in the encoder network.
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