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Abstract

Several natural language processing (NLP)
tasks are defined as a classification problem in
its most complex form: Multi-label Hierarchi-
cal Extreme classification, in which items may
be associated with multiple classes from a set
of thousands of possible classes organized in
a hierarchy and with a highly unbalanced dis-
tribution both in terms of class frequency and
the number of labels per item. We analyze the
state of the art of evaluation metrics based on
a set of formal properties and we define an in-
formation theoretic based metric inspired by
the Information Contrast Model (ICM). Exper-
iments on synthetic data and a case study on
real data show the suitability of the ICM for
such scenarios.

1 Introduction

Many natural language processing (NLP) problems
involve classification, such as sentiment analysis,
entity linking, etc. However, the adequacy of eval-
uation metrics is still an open problem. Different
metrics such as Accuracy, F-measure or Macro Av-
erage Accuracy (MAAC) may differ substantially,
seriously affecting the system optimization process.
For instance, assigning all items to the majority
class can be highly effective according to Accuracy
and obtains a low score according to MAAC.

In addition, in many scenarios such as tagging
in social networks (Coope et al., 2018) or topic
identification (Yu et al., 2019), the classifier must
assign several labels to each item (multi-label clas-
sification). This greatly complicates the evaluation
problem since, in addition to the class specificity
(frequency), other variables appears such as the dis-
tribution of labels per item in the gold standard, the
excess or absence of labels in the system output,

etc.
The evaluation problem becomes even more

complicated if we consider hierarchical category
structures, which are very common in NLP. For
example, toxic messages are divided into different
types of toxicity (Fortuna et al., 2019), named enti-
ties could be organized in nested categories (Sekine
and Nobata, 2004), etc. In these scenarios, the cat-
egory proximity in the hierarchical structure is an
additional variable.

Even, the problem can be further complicated.
Extreme Classification scenarios address with thou-
sands of highly unbalanced categories (Gupta et al.,
2019), where a few categories are very frequent
and others completely infrequent (Almagro et al.,
2020). In addition, some items have no category
at all and some have many. An example scenario
that we will use as a case study in this article is the
labelling of adverse events in medical documents.

In this paper, we analyse the state of the art on
metrics for multi-label, hierarchical and extreme
classification problems. We characterize existing
metrics by means of a set of formal properties. The
analysis shows that different metric families satisfy
different properties, and that satisfying all of them
at the same time is not straightforward.

Then, propose an information-theoretic based
metric inspired by the Information Contrast Model
similarity measure (ICM), which can be particular-
ized to simpler scenarios (e.g. flat, single labeled)
while keeping its formal properties. Later, we de-
fine a set of five tests on synthetic data to compare
empirically ICM against existing metrics. Finally,
we explore a case study with real data which shows
the suitability of ICM for such extreme scenarios.
The paper ends with some conclusions and future
work.



2 Background

In this section, we analyze the literature on the
two main evaluation problems tackled in this paper:
multi-labeling and class hierarchies, keeping the
focus on extreme scenarios (numerous and unbal-
anced classes).

2.1 Multi-Label Classification

There are three main ways of generalizing effec-
tiveness metrics to the multi-label scenario (Zhang
and Zhou, 2014). The first one consists in model-
ing the problem as a ranking task, i.e. the system
returns an ordered label list for each item according
to their suitability. Some specific ranking metrics
applied in multi-label classification displayed in
(Wu and Zhou, 2017) are: Ranking Loss, which
is a ordinal correlation measure, one-error which
is based on Precision at 1, or Average Precision.
Although this approach is very common, it does
not take into account the specificity of (unbalanced)
classes. Jain et al. proposed the propensity versions
of ranking metrics (Precision@k, nDCG) in order
to weight classes according to their frequency in the
data set (Jain et al., 2016). These metric variants
are specially appropriate in extreme classification
scenarios. However, they require system output to
be in ranking format. In this paper, we focus on
classification outputs, so ranking based metrics are
out of our scope.

Apart from ranking metrics, multi-label effec-
tiveness metrics have been categorized into label-
and example-based metrics (Tsoumakas et al.,
2010; Zhang and Zhou, 2014). Label-based eval-
uation measures assess and average the predictive
performance for each category as a binary classi-
fication problem, where the negative category cor-
responds with the other categories. The most pop-
ular are the label-based Accuracy (LB-ACC) and
F-measure (LB-F). In the single label scenario, the
label-based F-measure converges to the traditional
F and the label-based accuracy is proportional to
the traditional ACC. The label-based metrics have
some drawbacks. First, they do not consider the
distribution of labels per item. Hits are rewarded
independently of how many labels are associated
to the item. Second, while items are supposed to
be random samples, classes are not, so the concept
of averaging results across classes is not always
consistent. That is, the metric scores can vary sub-
stantially depending on how the category space is
configured. Finally, if there are a large number

of possible categories (extreme classification), the
score contribution of any label has an upper limit of
1
|C| , being C the set of categories. This limit can be
problematic, specially when labels are unbalanced
and numerous.

On the other hand, the example-based metrics
compute for each object, the proximity between
predicted and true label sets (s(d) = {cs1, .., csn}
and g(d) = {cg1, .., c

g
n}). Some popular ways to

match category sets in multi-label classification
evaluation are the Jaccard similarity (EB-JACC)
which is computed as |s(d)∩g(d)||s(d)∪g(d)| (Godbole and

Sarawagi, 2004), or the precision
(
|s(d)∩g(d)|
|s(d)|

)
, re-

call
(
|s(d)∩g(d)|
|g(d)|

)
and their F combination (EB-F).

Another example-based metric is the Hamming
Loss (EB-HAMM) (Zhang et al., 2006) which
matching function is defined as: |s(d)XOR g(d)|

|Cg |
where Cg represents the set of categories anno-
tated in the gold standard. Subset Accuracy (EB-
SUBACC) (Ghamrawi and McCallum, 2005) is a
more strict measure due to it requires exact match-
ing between both category sets. Notice that all
example-based multi-label metrics converge to Ac-
curacy in the single-label scenario. On the other
hand, there are some situations in which these met-
rics are undefined. If both the gold standard and the
system output label sets are empty, the maximum
score is usually assigned to the item.

The drawback of these approaches is that they do
not take into account the specificity of classes (i.e.
unbalanced classes in extreme classification). The
label propensity applied over precision and recall
for single items can solve this lack. Each accurate
class in the intersection is weighted according to
the class propensity pc (Jain et al., 2016):

PropP (i) =

∑
c∈s(i)∩g(i)

1
pc

|s(i)| , PropR(i) =

∑
c∈s(i)∩g(i)

1
pc

|g(i)|

The propensity factor pc for each class is com-
puted as: pc = 1

1+Ce−A log2(Nc+B) where Nc is
the number of data points annotated with label c
in the observed ground truth data set of size N
and A, B are application specific parameters and
C = (logN −1)(B+1)A. In our experiments, we
set the recommended parameter values A = 0.55
and B = 1.5.

However, propensity precision and recall values
are not upper bounded as 1

pc
tends to infinite when

pc tends to zero. In order to solve this issue, we
replace the normalization factors |s(i)| and |g(i)|



with the accumulation of inverse propensities in the
system output or the gold standard. We also add
the empty class c∅ in both the system output and
the gold standard in order to capture the specificity
of classes in the mono-label scenario:

PropP (i) =

∑
c∈s′(i)∩g′(i)

1
pc∑

c∈s′(i)
1
pc

PropR(i) =

∑
c∈s′(i)∩g′(i)

1
pc∑

c∈g′(i)
1
pc

where s′(i) = s(i)∪ {c∅} and g′(i) = g(i)∪ {c∅}.
Propensity F-measure (PROP-F) is computed as
the harmonic mean of these values.

2.2 Hierarchical Classification
There are different taxonomies of hierarchical clas-
sification metrics (Costa et al., 2007; Kosmopou-
los et al., 2013). Kosmopoulos et al. distinguish
between pair and set-based metrics. Pair-based
metrics weight hits or misses according to the
distance between categories in the hierarchy. This
distance depends on the number of intermediate
nodes (Wang et al., 1999; Sun and Lim, 2001),
with the disadvantage that the specificity of the
categories is not taken into account. Depth-based
distance metrics include the class depth in the met-
ric (Blockeel et al., 2002). However, depending on
their frequency, leaf nodes at the first levels may
be more specific than leaf nodes at deeper levels.

We can compare the predicted and true single
labels by means of standard ontological similarity
measures such as Leackock and Chodorow (path-
based) (Leacock and Chodorow, 1998), Wu and
Palmer (Wu and Palmer, 1994), Resnik (depth-
based) (Resnik, 1999), Jiang and Conrath (Jiang
and Conrath, 1997) or Lin (Lin, 1998) similarities.
The last two are based on the notion of Informa-
tion Content (IC) or category specificity, i.e., the
amount of items belonging to the category or any
of its descendants.

However, extending pair-based hierarchical met-
rics to the multi-label scenario is not straightfor-
ward. Sun and Lim extended Accuracy, Precision
and Recall measures for ontological distance based
metrics (Sun and Lim, 2001). This method has
two drawbacks. First, it requires defining a neutral
hierarchical distance, i.e., an acceptable distance
threshold for range normalization purposes. The
second drawback is that it inherits the weaknesses
of label-based metrics (see previous section). Bloc-
keel et al. proposed computing a kernel and thus

define a Euclidean distance metric between sums
of class values (Blockeel et al., 2002). The draw-
back is that they assume a previously defined dis-
tance metric between categories and the origin and
between different categories. Information based
ontological similarity measures such as Jiang and
Conrath or Lin’s similarity do not fit in this frame-
work since they are not upper-bounded.

On the other hand, set-based metrics (also
called hierarchical-based) consider the ancestor
overlap (Kiritchenko et al., 2004; Costa et al.,
2007). More concretely, hierarchical precision and
recall are computed as the intersection of ancestor
divided by the amount of ancestors of the system
output category and of the gold standard respec-
tively1. Their combination is the Hierarchical F-
measure (HF). Since these metrics are based on cat-
egory set overlap, they can be applied as example
based multi-label classification by joining ances-
tors and computing the F measure. Their drawback
is that the specificity of categories is not strictly
captured since they assume a correspondence be-
tween specificity and hierarchical deepness. How-
ever, this correspondence is not necessarily true.
Categories in first levels can be infrequent whereas
leaf categories can be very common in the data set.

In this paper, we propose an information theo-
retic similarity measure called Information Con-
trast Model (ICM). ICM is an example-based met-
ric as it is computed per item. Just like HF, ICM
is a set-based multi-label metric as it computes
the similarity between category sets. Unlike HF,
ICM takes into account the statistical specificity of
categories.

3 Formal Properties

In order to define the set of desirable properties,
we formalize both the gold standard g and the sys-
tem output s as sets of item/category assignments
(i, c) ∈ I × C, where I and C represent the set of
items and categories respectively. We will denote
as P (cj) the probability of items to be classified
as cj in the gold standard (P ((i, cj) ∈ g|i ∈ I)).
We also assume that the categories in the hier-
archical structure are subsumed. For instance,
items in a PERSON_NAMED_ENTITY category
are implicitly labeled with the parent category
NAMED_ENTITY. The common ancestor with

1In our experiments, when computing the ancestor overlap
we consider the common empty label (root class) in order to
avoid undefined situations



maximum depth is denoted as lso(c1, c2) and the
descendant categories are denoted as Desc(c) in-
cluding itself.

The first property is related to hits in flat or hier-
archical classification:

Property 1 [Strict Monotonicity] A hit increases
effectiveness. Given a flat single label category
structure, if (i, c) ∈ g\s, then2 Eff(s∪{(i, c)}) >
Eff(s)

The next two properties state that the specificity of
both the predicted and the true category affects the
metric score. For instance, an error or a hit in an
infrequent category should have more effect than
in the majority category.

Property 2 [True Category Specificity] Given a
flat single label category distribution, if P (c1) <
P (c2) and (i, c1), (i, c2) ∈ g \ s, then Eff(s ∪
{(i, c1)}) > Eff(s ∪ {(i, c2)}).

Property 3 [Wrong Category Specificity] Given a
flat single label category distribution, if P (c1) <
P (c2) and (i, c1), (i, c2) /∈ g ∪ s, then Eff(s ∪
{(i, c1)}) < Eff(s ∪ {(i, c2)}).

The hierarchical proximity is captured by the fol-
lowing property.

Property 4 [Hierarchical Proximity] Under
equiprobable categories (P (c1) = P (c2) =
P (c3)), the deepness of the common ancestor
affects similarity. Given a single label hierarchical
category structure, if s(i) = ∅, g(i) = c1
and lso(c1, c2) ∈ Desc(lso(c1, c3)) then
Eff(s ∪ {(i, c2)}) > Eff(s ∪ {(i, c1)}).
The last two properties are related with the multi-
labeling problem. Property 5 rewards the amount of
predicted categories per item. Property 6 rewards
hits on multiple items regarding a single item with
multiple categories.

Property 5 [Multi-label Monotonicity] The
amount of predicted categories increases effective-
ness. Given a flat multi-label category structure, if
(i, c) ∈ g \ s, then Eff(s ∪ {(i, c)}) > Eff(s)

Property 6 [Label vs. Item Quantity] n hits on
different items are more beneficial than n labels
assigned to one item. Given a flat multi-label
category distribution, if ∀j = 1..n((j, cj) ∈
g \ s) and ∀j = 1..n, i > n((i, cj) ∈ g \ s)
then Eff(s ∪ {(1, c1), .., (n, cn)}) > Eff(s ∪
{(i, c1), .., (i, cn)}).

2Notice that x ∈ X \ Y ≡ x ∈ X ∧ x /∈ Y

4 Formal Analysis of the Metrics

In this section, we analyze existing metrics on the
basis of the proposed formal properties (Table 1).
Most of metrics satisfy Strict Monotonicity in sin-
gle label scenarios. The label-based metric LB-F
captures the true and wrong category specificity
via the recall component. The example-based met-
ric PROP-F (modified as described in Section 2)
captures these properties via the propensity factor.
Notice that the original propensity F-measure does
not capture the wrong category specificity (Prop-
erty 3) given that the pc factor is applied only to
hits. In addition, both kind of metrics do not cap-
ture hierarchical structures. The contribution of
example regarding label-based metrics is that, as
label-based metrics are computed item by item, the
property Label vs. Item Quantity is satisfied (Prop-
erty 6). The exception is EB-HAMM which does
not normalize the results with respect to the amount
of labels assigned to the item.

Unlike previous metrics, the set based F-measure
(HF) captures the hierarchical structure (Property
4). However, it does not capture the category speci-
ficity (properties 2 and 3). Some information-based
ontological similarity measures, (Lin and Jiang &
Conrath) capture both the category specificity and
the hierarchical structure. However, they are not de-
fined for multi-label classification (properties 5 and
6). In sum, different metric families satisfy differ-
ent properties, and that satisfying all of them at the
same time is not straightforward. The properties of
ICM are described in the next section.

5 Information Contrast Model

The Information Contrast Model (ICM) is a simi-
larity measure that unifies measures based on both
feature sets and Information Theory (Amigó et al.,
2020). Given two feature sets A and B, ICM is
computed as:

ICM(A,B) = α1IC(A)+α2IC(B)−βIC(A∪B)

Where IC(A) represents the information content
(−log(P (A)). The intuition is that the more the
feature sets are unlikely to occur simultaneously
(large IC(A∪B)), the less they are similar. Given a
fixed joint IC, the more the feature sets are specific
(IC(A) and IC(B)), the more they are similar.
ICM is grounded on similarity axioms supported
by the literature in both information access and
cognitive sciences. In addition, it generalizes the



Table 1: Metric and Formal Properties

Family Metrics Constraints

Strict True Wrong Hierarchical Multi-label Label vs.
Monotonicity Category Category Proximity Monotonicity Item

Specificity Specificity Quantity

Label
Based

Accuracy (LB-ACC) 3 - - - 3 -
F measure (LB-F) 3 3 3 - 3 -

Example
Based

Jaccard (EB-JACC) 3 - - - 3 3
Hamming (EB-HAMM) 3 - - - 3 -
Subset Acc. (EB-SUBACC) 3 - - - - 3
F-measure (EB-F) 3 - - - 3 3
Propensity F (PROP-F) 3 3 3 - 3 3

Set
Based Hierarchical F (HF) 3 - - 3 3 3

Ontological
Similarity
Measures
(single-label
classification)

Leacock and Chodorows 3 - - 3 - -
Wu and Palmer 3 - - 3 - -
Resnik 3 3 - 3 - -
Jiang and Conrath 3 3 3 3 - -
Lin’s similarity 3 3 3 3 - -

ICM 3 3 3 3 3 -

Pointwise Mutual Information and the Tversky’s
linear contrast model (Amigó et al., 2020).

5.1 Computing Information Content

The IC of a single category corresponds with the
probability of items to appear in the category or any
of its descendant. It can be estimated as follows:

IC(c) = −log2(P (c)) ' −log2

(∣∣⋃
c′∈{c}∪Desc(c) Ic′

∣∣∣∣⋃
c′∈C Ic′

∣∣
)

where Ic′ represent the set of items assigned to the
category c′ and Desc(c) represents the set of de-
scendant categories. In order to estimate the IC of
category set, we state the following considerations.
The first one is that, given two categories A and B
the common ancestor represents their intersection
in terms of feature sets:

{ci} ∩ {cj} = lso(ci, cj) (1)

The second consideration is that we assume Infor-
mation Additivity, i.e. the IC of the union of two
sets is the sum of their IC’s minus the IC of its
intersection:

IC({ci}∪{cj}) = IC(ci)+IC(cj)−I({ci}∩{cj})
(2)

Equations 1 and 2 are enough to compute ICM in
the single label scenario. Generalizing for category

sets:

IC({c1, c2, .., cn}) = IC

(⋃
i

{ci}

)
=

IC(c1) + IC({c2, .., cn})− IC({c1} ∩ {c2, .., cn})

where, according to the transitivity property;

{c1} ∩ {c2, .., cn} =
⋃

i=2..n

({c1} ∩ {ci})

and according to Equation 1, it is equivalent to⋃
i=2..n{lso(c1, ci)}. Then, we finally obtain a

recursive function to compute the IC of a category
set:

IC({c1, c2, .., cn}) =

IC(c1) + IC

( ⋃
i=2..n

{ci}

)
− IC

( ⋃
i=2..n

{lso(c1, ci)}

)

In the case of ICM, it is possible the need for
estimating the IC of classes that do not appear in
the gold standard. Therefore, we have not evidence
about its frequency or probability. We apply a
smoothing approach by considering the minimum
probability 1

|I| .

5.2 Parameterization and Formal Properties
On the basis of five general similarity axioms, in
(Amigó et al., 2020) it is stated that the ICM pa-
rameters should satisfy α1, α2 < β < α1 + α2.



We propose the parameter values α1 = α2 = 2 an
β = 3. This parameterization leads to the follow-
ing instantiations for each particular classification
scenario. In the hierarchical mono-label scenario,
it becomes into (equations 1 and 2):

ICM(c1, c2) = −IC(c1)−IC(c2)+IC(lso(c1, c2))
(3)

which is similar to the Jiang and Conrath onto-
logical similarity measure. In the flat multi-label
scenario, it becomes into:

ICM(C,C ′) =
∑

c∈C∩C′
IC(c)−

∑
c∈C\C′
∪C′\C

IC(c)

(4)
which is an information additive example-based
metric. That is, the information content of the com-
mon categories minus the differences. Finally, in
the traditional flat mono-label scenario, it becomes
into:

ICM(c1, c2) '

{
IC(c1) if c1 = c2

−IC(c1)− IC(c2) i.o.c.
(5)

which corresponds with Accuracy weighted accord-
ing to the information content of categories.

According to the flat mono-label instantiation
(Equation 5) ICMα1=α2=2,β=3 satisfies the prop-
erties 1 2 and 3. According to the single label
hierarchical instantiation (Equation 3) Property 4
is satisfied. According to the flat multi-label instan-
tiation (Equation 4), Property 5 is satisfied. Un-
fortunately, the label vs item quantity property is
not strictly satisfied given that the gain per hit is
additive in non hierarchical scenarios (Property 6).
However, in the experiments we will see that the
hit gain on items with many categories is smoothed
out if the categories are related to each other by a
hierarchical structure.

6 Experiments on Synthetic Data

Different evaluation aspects such as error rate, cat-
egory specificity, hierarchical structures, etc., may
have more or less weight depending on the scenario.
These aspects correspond to the formal properties
defined in the previous section. We perform a set of
tests in order to quantify the suitability of metrics
with respect to each property or evaluation aspect.

First, we generate the following synthetic data
set. Given a hierarchical structure structure of
700 categories exposed in Figure 1, and 1000
items, we generate assignments for each pair

Figure 1: Category hierarchy for experiments on syn-
thetic data.

item/category (i, c) with a probability of pi · pc
where pi = max

(
51−i
2225 ,

1
2225

)
with i = 1..1000

and pc =
max( 512

c
,1)

1713 where c = 1..700. We re-
peat this 1000 times. The result is a distribution
(300, 150, 40, .., 0.6, 0.6) items per category and
(22.5, 22, 21.6, 21.1, ..., 0.5, 0.5) labels per item.
The purpose is to ensure unbalanced assignments
across items and classes. We generate 1000 gold
standards by reordering the category identifiers c
each time in the pc computation in order to alter the
distribution of items in the hierarchical structure.

We consider in this experiment the metrics label-
based Accuracy and F-measure (LB-ACC and
LB-F), the example-based metrics Hamming (EB-
HAMM), Jaccard (EB-JACC), Subset Accuracy
(EB-SUBACC), F-measure (EB-F) and Propensity
F-measure (PROP-F), the Hierarchical F-measure
(HF) and ICM. The ontological similarity metrics
are discarded given that they are not defined for
the multi-label case. Ranking based metrics are
discarded as the synthetic data set does not include
graded assignments.

After this, we perform the following tests by
comparing two noisy versions of the gold standard.
The test result is the percentage of cases in which
the hypothetically worse noised output is outscored
by the best noised output (Table 2). Ties count 0.5.

In the first experiment referred in Table 2 as
Sensitivity to Error Rate, we randomly remove
selected (i, c) assignments with a probability of
0.09 and 0.1 for the best and worst outputs respec-
tively. For all metrics the best output outperforms
the worst output in more that 50% of cases. LB-
ACC and EB-HAMM seems to be specially sensi-
tive to the error rate. This is due to the fact that they



Table 2: Experiments over synthetic data. Ratio of cases in which the best synthetic output outperforms the worst.

Metrics Metric Test

Sensitivity True Wrong Hierarchical Item
to error Category Category Proximity Specificity
rate Specificity Specificity

Accuracy (LB-ACC) 100% 50% 50% 50% 50%
F-measure(LB-F) 84.98% 100% 100% 52.65% 26.38%
Jaccard (EB-JACC) 86.59% 50% 50% 50% 100%
Hamming (EB-HAMM) 100% 50% 50% 50% 50%
Subset Accuracy (EB-SUBACC) 91.79% 50% 50% 50% 96.80%
Example Based F-measure (EB-F) 79.43% 50% 50% 50% 100%
Hierarchical F-measure (HF) 81.03% 46.55% 42.04% 100% 99.90%
Propensity F-Measure (PROP-F) 85.64% 100% 100% 53.15% 100%
ICM 96.10% 100% 100% 100% 74.77%

do not consider other aspects such as the category
specificity or the hierarchical proximity. Surpris-
ingly, ICM achieves a relatively high error rate
sensitivity although it also consider other aspects.
We do not have a clear explanation for this.

The second experiment is the True Category
Specificity test. With an error rate of 0.05, for
the best output, we remove a randomly selected
single label assignment. For the worst output, the
first select randomly a category and we remove an
assignment to a single labeled item. The result is
that the best output tends to concentrate the gaps
in frequent categories to a greater extent than the
worst output. At the table shows, the metrics that
satisfy the corresponding property achieve high
scores (LB-F, PROP-F and ICM).

The third experiment is the Wrong Category
Specificity test. With an error rate of 0.05, we
select an assignment (i, c) randomly from items
with a single label. For the best output we replace
c with the most frequent class different than c. For
the worst output, we replace c with a randomly
selected category different than c. We obtain the
same result than in the previous experiment.

The fourth experiment is the Hierarchical Sim-
ilarity test. Again, with an error rate of 0.05, we
select an assignment (i, c) randomly from single la-
beled items with leaf categories. For the best output
we replace c with a sister wrong category. For the
worst output, we replace cwith a randomly selected
wrong category. Again, the metrics that satisfy the
corresponding property achieve high scores.

The last test is Item Specificity. For the best out-
put, we randomly select an assignment (i, c) (with
the same error rate 0.05). For the worst output,
we randomly select an item i, and we take one if

its assignments (i, c). In both cases, the category
is replaced with a randomly selected wrong label.
The effect is that the best output concentrates errors
in items with many labels. Again, those metrics
that satisfy the corresponding metric achieve high
performance. The label-based F-measure tends to
reward the worst output. The reason is that items
with many labels tend to concentrate diverse labels.
Therefore, the label-based F measure penalizes the
best output. As discussed in the previous section,
although ICM does not satisfy the property, the hit
gain on items with many categories is smoothed
out if the categories are related to each other by a
hierarchical structure.

7 A Case Study

The problem addressed is the automatic encod-
ing of discharge reports (Dermouche et al., 2016;
Bampa and Dalianis, 2020) from a Spanish hospital
to detect adverse events (AEs) from CIE-10-ES3,
the Spanish version of the tenth revision of the
International Classification of Diseases (ICD-10).

AEs detection fits to the scenario tackled in this
article due to the following reasons: (i) Extreme:
CIE-10-ES contains 4816 codes related to AEs,
which probability follows a power-law distribution
since most of them rarely appear in health records
or even they do not appear; (ii) Hierarchical: CIE-
10-ES is a hierarchy with six levels: an empty root
(c∅ such that IC(c∅) = 0), and then a level com-
posed by three-character-codes categories which
can be divided into successive nested subcategories
adding characters until seven-character-codes at
most; and (iii) Multi-label classification: Each

3https://eciemaps.mscbs.gob.es/ecieMaps/



Table 3: Experimental results over real data. Metrics values for each baseline. The normalised value with respect
to the maximum and minimum of the five baseline scores is shown in brackets.

Metrics Baselines: Metric result (normalization)

ALL NONE MOST FREQ. MATCH 75% SVM DESCR. SVM CODES

Accuracy (LB-ACC) 0.9999 (1.00) 0.9997 (0.00) 0.9998 (0.50) 0.9999 (1.00) 0.9999 (1.00)
F-measure(LB-F) 0.9248 (0.79) 0.9248 (0.79) 0.9005 (0.00) 0.9273 (0.88) 0.9309 (1.00)
Jaccard (EB-JACC) 0.8395 (0.97) 0.0055 (0.00) 0.7209 (0.83) 0.8409 (0.97) 0.8644 (1.00)
-Hamming×103 (EB-HAMM) −0.0507 (0.98) −0.254 (0.00) −0.117 (0.66) −0.0506 (0.98)−0.0472 (1.00)
Subset Accuracy (EB-SUBACC) 0.8395 (0.97) 0.0027 (0.00) 0.7205 (0.83) 0.8392 (0.97) 0.8573 (1.00)
Example Based F (EB-F) 0.8395 (0.96) 0.0066 (0.00) 0.7210 (0.83) 0.8416 (0.97) 0.8670 (1.00)
Hierarchical F (HF) 0.8902 (0.97) 0.2750 (0.00) 0.8054 (0.83) 0.8913 (0.97) 0.9080 (1.00)
Propensity F (PROP-F) 0.8893 (0.96) 0.5024 (0.00) 0.7742 (0.67) 0.8903 (0.96) 0.9030 (1.00)
ICM Average -2.2062 (0.92) -8.6158 (0.00) -5.5761 (0.43) -2.1107 (0.94) -1,700 (1.00)

discharge report could have associated with several
AEs codes.

We have used a corpus composed of 36264
real anonymized discharge reports (Almagro et al.,
2020) annotated with AEs codes by experts. The
corpus has been divided into three data sets, train-
ing, development and test, following the proportion
50%-30%-20% respectively. The corpus includes
only 671 AEs codes of 4816 and 84% of the dis-
charge reports have no AEs, so the data is highly
biased and unbalanced.

We have applied five simple baselines in order
to analyze the behaviour of the metrics: (i) ALL
NONE does not assign any code to each item;
(ii) MOST FREQ. assigns the most frequent AE
code in the training data set (T45.1X5A) to each
item, which just appears in 68 items of 7253; (iii)
MATCH 75% divides each item into sentences
and assigns a code if a sentence contains 75% of the
words of the code description avoiding stop-words;
(iv) SVM DESCR. creates a binary classifier for
each AE code in the training set using the pres-
ence of words of the AEs codes descriptions in the
items as features, excepting stop-words; (v) SVM
CODES: similar to the previous one but using as
features the annotated non-AEs codes in order to
check if AEs codes are related to non-AEs codes.
Note that MATCH 75% is able to assign any AE,
but the SVM baselines are only able to assign AEs
appearing in the training data set.

Table 3 shows the metrics results obtained by
each baseline and these values normalized. LB-
ACC, LB-F and EB-HAMM reward the absence
of most of the labels in the corpus, so they are not
suitable in this scenario. The rest of the metrics
sort systems in the same way. The particularity of
ICM is that, as shows the normalized results, the

baseline MATCH 75% is penalized with respect
to ALL NONE to a greater extent than in other
metrics, since MATCH 75% assigns many codes
incorrectly, whereas ALL NONE does not provide
any information. Another slight particularity of
ICM is that the system SVM CODES is rewarded
against the rest of baselines to a greater extent.
Notice that SVM CODES achieves 269 hits while
SVM DESCR achieves 77 hits.

8 Conclusions and Future Work

The definition of evaluation metrics is an open
problem for extreme hierarchical multi-label clas-
sification scenarios due to the role of several vari-
ables, for instance, a huge number of labels, un-
balanced and biased label and item distributions,
proximity between classes into the hierarchy, etc.
Our formal analysis shows that metrics from differ-
ent families (label, example, set-based, ontological
similarity measures etc.) satisfy different proper-
ties and capture different evaluation aspects. The
information-theoretic metric ICM proposed in this
paper, combines strengths from different families.
Just like example-based multi-label metrics, it com-
putes scores by items. Just like set-based metrics, it
compares hierarchical category sets. Just like some
ontological similarity measures (Lin or Jiang and
Conrath), it considers the specificity of categories
in terms of Information Content. Our experiments
using synthetic and real data show the suitability
of ICM with respect to existing metrics.

ICM does not strictly hold the label vs. item
quantity property. We propose to adapt ICM in or-
der to guarantee all the formal properties as future
work.
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