A Semi-Autoregressive Graph Generative Model for Dependency Parsing

Anonymous ACL submission

Abstract

Recent years have witnessed impressive
progress in Neural Dependency Parsing. Ac-
cording to the different factorization ap-
proaches to the graph joint probabilities, ex-
isting parsers can be roughly divided into au-
toregressive and non-autoregressive patterns.
The former means that the graph should be fac-
torized into multiple sequentially dependent
components, then it can be built up compo-
nent by component. And the latter assumes
these components to be independent so that
they can be outputted at once. However, when
treating the directed edge in the dependency
graph as an explicit dependency, we discover
that there is a mixture of independent and in-
terdependent components in the dependency
graph, signifying that both fail to precisely cap-
ture the explicit dependencies among nodes
and edges. Based on this property, we design
a Semi-Autoregressive Dependency Parser to
generate dependency graphs via adding node
groups and edge groups autoregressively while
pouring out all group elements in parallel. The
model meanwhile deals with two problems in
graph generation with respect to the uncertainty
of generation orders and edge sparsity, via in-
troducing a novel concept of Topological Hier-
archy and a Graph Transformer as the decoder.
The experiments show the proposed parser out-
performs strong baselines on Enhanced Uni-
versal Dependencies of 14 languages. Also,
the performances of model variations show the
importance of specific parts.

1 Introduction

Dependency graph in neural parsing is a directed
graph representing semantic dependencies between
words, with a transitive relation traveling from the
rooted node to all words in the sentence phase by
phase. As such, transition-based parsing seems to
be a natural choice, as it builds up the parsing graph
sequentially so that the dependency relationships
can be captured. However, graph-based parsing

Topo Topo
Hierarchy Distance

Oth-hier root

(c)

Figure 1: (a) An example graph (b) Divide nodes into
different topological hierarchies based on their furthest
distances from the root node. (c) Semi-autoregressive
graph generation process.

dominates recent competitions on parsing technolo-
gies including IWPT 2020 and 2021 (Bouma et al.,
2020, 2021), even if using a simple biaffine atten-
tion (Dozat and Manning, 2016) only to predict
the whole graph at once. To explore a more ef-
fective parsing method that can represent these de-
pendency relationships in a rigorous manner, we
define and construct Topological Hierarchies for
dependency graphs based on the explicit depen-
dencies carried by them. According to the charac-
teristics of topological hierarchies, we proposes a
Semi-Autoregressive Dependency Parser (SADP) —
a novel graph-based parsing fashion via the semi-
autoregressive graph generation.

Generally, autoregressive graph generation indi-
cates that the model dynamically adds nodes and
edges based on the generated sub-graph structure
until reaching the complete graph. Its first chal-
lenge is to determine an generation order so that
the joint probability of the graph can be factorized

into the product of conditional probabilities. Al-
though the dependency graphs stipulate the strict
sequential dependencies by directed edges, there is
a lack of such topological orders between sibling
nodes. For instance, node b in Figure 1.a depends
on the node a because there is an explicit edge
pointing from a to b. However, it is hard to decide
the dependency relationship between node d and
node e as they are not linked directly or indirectly.
Previous works on directed graph generation solve
the problem surfacely. Cai and Lam (2019, 2020)
sort these sibling nodes randomly at the early stage
of training and then change them to a determinis-
tic order (e.g., relation-frequency) at later training
steps. Some other works do the sorting by referring
to the orders of the known sequences like word or-
der or alphanumerical order (Zhang et al., 2019a,b;
Bevilacqua et al., 2021). Since the dependency
graph does not assign an explicit sequential rela-
tionship between sibling nodes, such imposed or-
ders would lead to exposure bias (Ranzato et al.,
2016) between training and inference. Once the
sibling nodes are not generated in the same order
as in the training, the learned knowledge would be
invalid and even mislead subsequent predictions.
The aforementioned random ordering seems to alle-
viate the problem to some extent, but it destabilizes
and complicates the training process and generally
results in inferior models.

Instead of imposing orders on these sibling
nodes, we assume them (including their incoming
edges) to be conditionally independent to construct
Topological Hierarchies (TH) as the generation or-
ders. As shown in Figure 1.b, we divide nodes
into several hierarchies according to their furthest
distances from the root node. We can see that there
are no explicit dependency relationships between
nodes in the same hierarchy. Besides, nodes in
the later hierarchies only depends on those in the
previous hierarchies, forming a natural generation
sequence. For a directed acyclic graph (DAG), it
at least has one topological ordering but only has
one topological hierarchy. At each generation step,
we firstly predict all new nodes in parallel and then
calculate their incoming edges by the biaffine at-
tention (Dozat and Manning, 2016). In a word,
our model autoregressively adds node groups and
edge groups but non-autoregressively generates el-
ements in these groups. See Figure 1.c for our
semi-autoregressive generation process.

Another challenge is that incorrect sub-graph

structures may be predicted during inference. Tradi-
tional graph representation models like GCN (Kipf
and Welling, 2016) heavily rely on the given adja-
cency to capture context information. That means
it may fail to represent historical information com-
pletely and efficiently when predicted edges make
mistakes. An extreme situation of edge sparsity is
that the new nodes have no incoming edges pre-
dicted so that the model can only represent its node
features rather than the sub-graph structure. To
enhance the robustness of the generator, we design
a novel graph representation model deriving from
Transformer-decoder (Vaswani et al., 2017). In
our Graph Transformer-decoder, there are implicit
edges linking from the nodes in the previous and
current hierarchies to the new node. Then, the pre-
dicted explicit edges serve as the bias to adjust the
attention distribution over the implicit edges so that
the model can adaptively select useful structural
information.

Overall, this paper proposes a novel direction
— semi-autoregression to deal with parsing prob-
lems, distinguished with autoregression and non-
autoregression (detailed definitions about them are
available in § 2). With the dependencies denoted as
the directed edges, the semi-autoregressive pattern
unflods graphs in the ordering of topological hier-
archies, which strictly follows the explicit depen-
dency relationships defined in dependency graphs.
Besides, it alleviates exposure bias in the genera-
tion orders as Independent elements are orderless,
which promotes models in both quality and effi-
ciency. On the other hand, graph transformer has
achieved significant progress in the field of classifi-
cation (Ying et al., 2021), but rare studies explore
its applications in the generation. This paper de-
signs a novel graph transformer and adapts it to the
semi-autoregressive graph generation to alleviate
the edge sparsity problem. On the experimental
side, we evaluate SADP on Enhanced Universal
Dependencies (EUD) which are non-tree depen-
dency graphs. In addition to the official evaluation
metric Enhanced Label Attachment Scores (ELAS),
we design a graph-level matching score (GMS) to
assess the probability of returning an absolutely
correct graph. The results show that our model
outperforms other baselines significantly. Finally,
we introduce multiple model variations to investi-
gate the effect of different model components and
show that our model is well-designed, especially
the parts of discarding imposed orders and adding

implicit edges.

2 Related Work

Autoregressive Parser. Generally, a generator is
in an autoregressive fashion provided its generation
probability at each step is conditional on items it
produces previously. Transition-based parser ob-
viously conforms to the characteristic, as it up-
dates the action probability every step based on
the words, tags and label embeddings previously
put in the buffer and stack (Chen and Manning,
2014). Meanwhile, we note that some mechanisms
commonly used in autoregressive generators are
used to improve transition-based parsers like beam
search and pointer networks (Weiss et al., 2015;
Ma et al., 2018; Fernandez-Gonzélez et al., 2019).
On the other hand, Cheng et al. (2016) proposes a
graph-based autoregressive parser by adding arcs
sequentially with the considerations of previous
parsing decisions. However, it should not be taken
as a rigours graph generative model as it does not
generate by extending the sub-graph structures. Ac-
tually, instead of dependency graphs, it is more
prevalent that leverage the autoregressive graph
generators to parse Abstract Meaning Represen-
tation (AMR) (Cai and Lam, 2019, 2020; Zhang
et al., 2019b,a). They are all in the (fully) autore-
gressive pattern that an order is imposed to nodes
and edges without topological orderings. In this
paper, we investigate the effects of these imposed
orderings by introducing some variations of the
proposed model. Further studies on AMR will be
available in our future work.

Non-Autoregressive Parser. In contrast, non-
autoregression implies that all components factor-
ized from the graph are independent, so their prob-
abilities do not affect each other and can be ob-
tained in parallel at any time. A representative
non-autoregressive parser is Deep Biaffine Atten-
tion (BiAtt) (Dozat and Manning, 2016) which
assuming all edges are independent. For the tree-
structure dependency graphs, it is often followed by
a searching algorithm for the Maximum Spanning
Tree (MST). Some heuristic algorithms (Li et al.,
2020; Kiperwasser and Goldberg, 2016) construct
the MST step by step, which yet does not mean they
are in the autoregressive manner because all edge
probabilities are predicted at once and fixed be-
fore the searching. Another confusing models are
higher-order graph-based parsers. Among them, Ji
et al. (2019) incorporates the second-order knowl-

edge into the word representations and still uses the
BiAtt as the final parser. Wang et al. (2019); Zhang
et al. (2020) decompose the graph into components
of different second-order parts. Different from Bi-
Att that each component is an edge, here some
components consists of two edges whose joint prob-
abilities can be calculated as a whole by a trilinear
function. They still belong to non-autoregressive
parsers because their components are independent
of each other and disable to be subdivided.

3 Proposed Model

3.1 Definitions

Problem Definition. Conditional on the source
sentence S = (w,,)"_;, the task is to generate a
dependency graph hierarchy by hierarchy. The gen-
eration process can be denoted as a sequence of
components: (CM)]_ | T < N. We firstly turn
dependency graphs to DAGs by deleting the back
edges in their cycles. It should be mentioned that
there are only a few graphs with cycles and we
can add these removed edges back by rules before
evaluations. Then we can construct Topological
Hierarchies based on the furthest distance from
each node to the root node. The initial compo-
nent C(®) = {vg} in the O-th hierarchy only has
a root node. When ¢ > 0, the component in the
t-th hierarchy is defined as C* = {V{®) E®},
Let V, = UiV, then VO = s} 01
is a set of nodes in the ¢-th hierarchy. And,
E® = {(vj,vi, zji)|vj € Vi_1,v; € V(t)} 1s a
set of edges pointing from nodes in the previous
hierarchies to the current nodes, where v; is the
head of v; and zj; is the label on the arc.

Explicit and Implicit Edge. We define two
kinds of edges, namely explicit edges and implicit
edges. The former is what we need to really predict.
Let ; be the explicit first-order neighbours of the
node v; € V) and D; be the implicit neighbours,
and NV; U D; = V;. Notably, nodes in N; can
not appear in V) according to the definition of
topological hierarchy. They have uni-directional
edges pointing to the node v; with arc labels, and
these edge can be found in E®. On the other
hand, nodes in D; should not have pointed to v;,
but our model does so because we expect nodes to
learn structural information adaptively. It should
be mentioned that nodes in the same component or
hierarchy also have implicit edges linking to each
other, i.e., V() C D;.

Head and Dependent Representation. We de-

. Explicit Edge
|:| Implicit Edge
. No Edge

H, “' D3 ' H
— \ '
Outputs hy h; hy hy hy h; hy hy dy ds dg ' hy h; h, hy hy h; hg
T S xL™7
Mods g g
T TTT0000000 VTTTTO600000
! Y deps oomOoOOnOnc \ oOomOOmOc
O00O0 CoEOEREOOO | oROmNEO0OMN
oOomOnO VOREOOOOO \ oOEEOON MmO
iomCOENE S>OEEOOO0OO - OomEOOOOm
~OomEmEO0O oOEEmmOOO OEEmmOOO
omEEOO OEEmmOOO OEEmmOOO
oREEmNOOO oOEEmmOOO
mis O OO0 OOO0OO0OO0OO0OO0 OO0OO0O0O00O0O0

Positional Encodings | Pjg [Py P Py

+ + + + + + +
Word Embeddings ~ Sj Siz S5 Spg S Sp Sp
t=3

Po Py Py Py Py Py

Py Po Py Py Py Py Py Py

+ + + + + + + + + + +

S Sw Sp Sw S Sp S Se Sy Sp Sy
t=3 t=4

Figure 2: Semi-autoregressive generation process and graph transformer.

fine two representations of the same node with
different roles, namely the head representation and
the dependent representation. Each generated node
will first be used as a dependent node to calculate its
incoming arcs, and then as a head node until the end
of generation. We define the head vector of a node
v; € V) ag h; and its dependent vector as d;. For
a component, its head matrix H® = FoVi, &, S)
and dependent matrix D) = Fo(Vy,E-1,S) are
the concatenations of multiple corresponding node
representation, where & = U;:o E® . We can see
that the difference between them is that the latter
inputs lack E® which means there are no avail-
able explicit edges pointing to V() nodes when
calculating dependent representations. It should
be mentioned that the graph representation model
Fo(+) can represent all components, but we only
need to focus on the new component at each gen-
eration step because the new component does not
affect node representations in the previous compo-
nents.

Training Objective. The objective is to maxi-
mize the graph joint probability J:

T =[[PVONV1, &) P(EDV, Er)

t=1
(1

PVOWViy&a) = [PilVier, &)
viGV(t)

2

P(E(t)“/t,gtfl): H P(ei’Vt,gt—l) (3)
e;€E®)

Vi=Viauv® g =& UE® (4

It indicates that we autoregressively generate the
new node group V' (*) and the edge group E*) based
on groups generated previously and the elements
in the same group are independent.

3.2 Graph Generation Process

Figure 2 presents the generative process from the
3-rd step to the 4-th step. Specifically, At the gen-
eration step t, we firstly update head representa-
tions H*=) for the last-step nodes V=) using
their network structure information £~ No-
tably, although there only generates an intermediate
sub-graph of the entire structure, the explicit topo-
logical information of V=1 nodes is completed
because they would not have incoming arcs from
nodes generated later. On the other hand, these

sentence words have been represented as a dense
matrix S by a Transformer-encoder. Then, their
probabilities of being selected are calculated by:

P(w;.n) = MaxPool [o (H(t_l)WlwgST)}
6))

V® = {w,|P(wy) > 0.5} (6)

where W € R%*? is a linear transformation matrix.
This operation is similar to a multi-label classi-
fication. Every source word is assigned with an
independent probability, and words with probabili-
ties larger than 0.5 are selected as new nodes 17408
To represent these new nodes as D) when their
network structural information are unknown, we
suppose that there are implicit edges pointing from
previous nodes to these nodes. Besides, these new
nodes are connected to each other by implicit edges.
Although it is impossible to appear explicit edges
among them, this operation can further enrich node
representations. Their connections are illustrated
by the second adjacency matrix in the middle block
of Figure 2. Explicit edge connections and types
are then figured out by Deep Biaffine Attention
(Dozat and Manning, 2016):

B® — DeepBiaffine (Hﬁ;é H(j),D(t)) (7)

where H;;})H(j) is achieved by concatenating head
representations of all nodes in the previous hierar-
chies. The generation proceeds via repeating the
aforementioned operations until no words can be
selected as new nodes.

3.3 Graph Representation Model

Recently, Transformer (Vaswani et al., 2017) has
made impressive progress in the graph repre-
sentation field (Ying et al., 2021). In essence,
Transformer regards inputs as an undirected fully-
connected graph, thus serving as a special graph
representation model that can enjoys global percep-
tion at all layers. Previous works focusing on adapt-
ing Transformer-encoder to node or graph classi-
fication, while this paper modifies Transformer-
decoder to conduct graph generation.

Let xz(-l) denote the node v; embedding at the /-th
layer. If the node v; is in the component C; and

copied from the source word w,, its initial node
(0)

embedding x; "’ should be the summation of:

x") = 8y, + Py ®)

where S, P indicate word embeddings and hierar-
chical positional encodings respectively, as shown
in Figure 2. Nodes in the same hierarchy have the
same hierarchical positional encodings.

The message passing layer actually takes the
position of the masked self-attention layer in the
decoder. The original decoder self-attention helps
every word to aggregate left-ward contexts. In con-
trast, every node in our model not only aggregates
left-ward contexts (i.e, nodes in previous hierar-
chies), but also nodes in the same hierarchy. To
distinguish explicit edges and implicit edges, the
message vector my; of the node v; with an explicit
edge pointing to the node v; should be enriched
with prior structural knowledge by:

O {xgl) + relu (xgl)Uzﬁ) . v EN;
i

v € D;
©)
where U, € R¥? indicates the parametric em-
bedding matrix of the edge label z;;. These edge
embedding metrics are shared across all layers. No-
tably, we assume that the central node v; is self-
connected implicitly, i.e. v; € D;. The reduction
function is then defined as the multi-head attention:

<0,

exp <X1WQW}m};)

o = (10)
Y enup, P (xiW QW fm.))
H
1)’ [
V=Y hmlDWE | [Wo
h=1"\ 4,;eN,uD;
(11)

We can see that the query is the node embedding
X;, and the keys and values are those message vec-

/
tors m;. Its output xgl) is then fed into the feed-
forward layer to enter the next layer:

xH) — FEN (xle) (12)

The outputs x(&) of the final layer are head repre-
sentations or dependent representations.

The edge embedding matrices U give the model
access to prior structural knowledge and enable it
to select useful prior knowledge adaptively. When
all structural knowledge is useless (i.e, parameters
in U are trained to be zeros) and each hierarchy
only contains one node, the graph model degrades
to a vanilla Transformer decoder.

IWPT 2021 bg cs en et fi fr it It Iv nl pl ru sk sV uk avg
«~y BiAtt 927 910 872 872 906 884 921 819 883 905 902 932 915 87.3 89.1 89.4
S Tree-Graph 928 911 873 871 907 8.6 923 819 82 905 904 932 916 875 89.0 89.5
M Qurs 929 909 879 873 907 8.5 928 835 885 909 904 935 921 87.9 89.6 899
«, BiAtt 474 448 363 371 387 403 438 21.0 384 469 408 503 51.0 322 346 402
S Tree-Graph 478 453 369 370 391 41.1 447 21.0 379 470 419 508 515 334 342 40.6
C Ours 488 456 403 392 414 454 471 282 428 513 436 542 578 382 392 4.2

IWPT 2020 bg cs en et fi fr it 1t Iv nl pl ru sk sV uk avg
vy Second-order 915 90.1 871 8.0 89.0 8.3 915 789 876 8.2 840 923 876 84.7 88.0 87.3
S5 UDify 90.7 875 872 845 895 859 915 776 849 847 846 907 886 85.6 872 86.7
M Qurs 926 904 882 869 90.1 874 926 8.5 885 8.7 867 932 91.0 87.0 89.0 88.9
<, Second-order 43.1 377 357 318 344 292 444 151 353 31.0 28,6 471 38.7 26.5 30.5 339
= UDify 41.4 314 34.1 31.2 34.5 332 41.5 17.8 31.6 23.8 26.1 40.6 43.1 27.1 31.2 32.6
© Ours 483 435 416 366 384 387 471 256 420 341 329 537 552 364 383 408

Table 1: Average ELAS and GMS results of 3 calculations on IWPT 2021 and IWPT 2020 datasets. We use L = 2

according to ELAS on the English dev-set.

4 Experiment

4.1 Datasets

We tune our models primarily on 15 languages
that appear in IWPT 2020 dataset and IWPT 2021
dataset (Bouma et al., 2020, 2021). The two shared
tasks focus on EUD (Schuster and Manning, 2016)
which are non-tree graphs with reentrancies, empty
nodes and sparsity cycles. To construct the topo-
logical hierarchy, we need to delete the back edges
in cycles firstly and add them back by rules at in-
ference time. For the language that has multiple
treebanks, we simply concatenate all of its tree-
banks. Besides, we use gold tokenization and gold
sentence segmentation during training and develop-
ment. At test time, we use the results of tokeniza-
tion and segmentation provided by the top ranked
models.

4.2 Baseline Models

Our comparison experiments aim to investigate the
performances of models themselves, without con-
sidering some learning techniques like ensembling
(Griinewald et al., 2021), two-stage training (Shi
and Lee, 2021) and automated concatenation of
embeddings (Wang et al., 2021). We conclude four
strong baselines from top-ranked systems in IWPT
2021 and IWPT 2020, namely Deep Biaffine At-
tention (Dozat and Manning, 2016), Tree-Graph
Parser (Shi and Lee, 2021), Second-order Parser
(Wang et al., 2019, 2020) and Language-specific
UDify (Kondratyuk and Straka, 2019; Kanerva
et al., 2020). Their results are reported after elimi-
nating the effects of learning techniques.

4.3 Evaluation Metrics

ELAS results are evaluated by the official script
provided by IWPT 2021. Besides, we also define
a graph-level matching score (GMS) to investigate
whether the model can deal with a few arcs that are
difficult to predict properly in a sample. Since we
segment UD sentences from raw texts, the numbers
of sentences are different for each system. There-
fore, GMS is a Fj score around the number of
absolutely matched graphs. The specific GMS cal-
culation is put in App. 1.

4.4 Word Embeddings

Similar to the operations in most top-ranked sys-
tems, our word embeddings Sy,,| are initialized as
the weighted summation of the corresponding hid-
den states in XLM-R layers (Conneau et al., 2020),
where the weights are the learned attention distri-
bution over all XLM-R layers. For the word com-
posed of multiple subwords, we extract the hidden
states of the last one. We set up the dimension in
the graph representation model as d = 1024, the
same as that in the pre-trained models. See App. 2
for more experiment details.

5 Results and Analysis
51

The official evaluation metrics ELAS of our mod-
els and baselines are shown in Table 1. We note
that SADP achieves at least comparable results
on all languages. In IWPT 2021, in addition to
obtaining the best average ELAS performance (av-
erage ~ 0.4% points), our model brings significant
improvements over multiple languages like Lithua-
nian (~ 1.6% points), French (~ 0.9% points), En-
glish (~ 0.6% points). This enhancement is more

Main Results

Origin A B D E F G
0.88
0.9
0.87 0.82
0.86 0.80 0.8
0.85 0.78 0.7
sV It sk
0.89
0.87 0.92
0.88 0.91
0.86
en fr it

Figure 3: Test-set ELAS results, comparing the origin model with different model variations

significant when comparing our model with the top
two models in IWPT 2020 (average ~ 1.6% points
). Besides, sharper increases appears in GMS of
IWPT 2021 (average ~ 3.6% points) and IWPT
2020 (average ~ 6.9% points), where our model
achieves an amazing rising against the baselines in
all languages.

It should be mentioned that a higher ELAS does
not mean a higher GMS, as shown in the results
of Czech (cs) language. In other words, some ob-
stinate errors are fixed to make more dependency
graphs completely correct, but there appear some
samples where more mistakes concentrate. This
situation derives from the inherent characteristics
of autoregressive generation that the prediction ac-
curacy at one certain step is heavily dependent on
that at historical steps. In ideal states, the historical
information can calibrate some obstinate errors by
the learned dependencies. However, once devia-
tion occurs in an immediate step, it may lead to
some mistakes that are too simple to make. This is
the essential reason that autoregressive parsers are
weaker than non-autoregressive parsers. By com-
parison, our semi-autoregressive parser mitigates
the negative impact of this characteristic by remov-
ing some dependency relationships, thus resulting
in better performances in both ELAS and GMS.

5.2 Model Variant Ablation Studies

To investigate the importance of different model
components and input features, we evaluated the
following variations of our model.

A. Autoregressive generation with random
orders. We impose random orders to the sib-
ling nodes, so the model is converted to a fully-
autoregressive generator. At each step, the model
only generates a new node and its all incoming

edges. The sibling nodes will be re-ordered after a
training epoch.

B. Autoregressive generation with word or-
ders. The sibling nodes are sorted by the the posi-
tions of the node words in the sentence.

C. Combine random orders and word orders.
The sibling nodes are firstly randomly sorted at the
early stage of training and fixed to the word orders
at later training.

D. No implicit edges. Without the implicit
edges, the graph representation model is similar
to GAT (Velickovic et al., 2017) but the messages
are additionally enriched with the arc label infor-
mation.

E. No implicit edges in the same hierarchy.
We remove the implicit edges between nodes in the
same topological hierarchy. In this case, each node
only has the incoming arcs from the nodes in the
previous hierarchies.

F. No explicit edges. We replace all explicit
edges by implicit edges, which is equal to forcing
the edge embedding matrix U to zeros.

G. No hierarchical positional encodings. In
this case, the model would lose the sequential re-
lationships between hierarchies and fail to locate
nodes of different hierarchy.

The ablation results of 6 languages are summa-
rized in Figure 3. We firstly focus on the fully-
autoregressive variations, namely the model A, B
and C. We can see that there are significant declines
in performances when imposing orderings to sib-
ling nodes, indicating that the autoregressive mode
heavily suffers from exposure bias in terms of gen-
eration orderings. Besides, the extent of declines
varies a lot in different languages, ranging from
over 30% in the Slovak (sk) dataset and within 1%
in the English (en) and Italian (ir) datasets. This

0ss
S
052
0ss
Fow
3 @088
< k]
Tons
] ™
om0 os
. . .
0o
(@) (b)

Figure 4: (a) Accuracy of nodes in the correct hierarchy.
(b) ELAS results using Oracle Topological Hierarchy.

proves that the impact of imposed sorting is quite
unstable.

Moving to the model D, E and F which are varia-
tions with respect to explicit and implicit edges. Al-
though it is not as significant as the negative effects
of using autoregressive modes, that of removing
implicit or explicit edges cannot be ignored. Gener-
ally, implicit edges play a more important role than
explicit edges as the performances of model D are
often lower than those of model E and F. This vali-
dates that the edge sparsity is the major problem of
graph generation after the uncertainty of generation
orderings. Besides, the implicit edges in the same
hierarchy (see model E) and the historical arc la-
bel information (see model F) are both compulsory
model components because the model always per-
forms worse when dropping them. The final is the
model without hierarchical positional encodings.
Compared with other variations, its performance is
the closest to the origin model, implying that our
graph representation model is not very sensitive to
the sequential relationships between hierarchies.

5.3 Error analysis of Topological Hierarchy

Since a Topological Hierarchy regulates the rough
topological structure of a dependency graph, its
prediction accuracy is crucial for the whole model.
We investigate the node accuracy on 5 languages
(see Figure 4.a), and find that about 90% nodes
can fall into correct hierarchies. Even the language
performing worst under the ELAS evaluation can
reach 80% node accuracy. We then provide the
model with the Oracle node group at each gener-
ation step and plot the comparison results against
the origin model in Figure 4.b. There is about a 1%
increase of ELAS on most languages when using
Oracle Topological Hierarchies. It is surprising that
Oracle TH does not bring about improvement to
the English dataset, indicating that corrupt topolog-
ical hierarchies do not always lead to incorrect arcs.
Actually, it would cause bad results only when the

0.9225

0.9200

0.9175

0.

©

1

0.

0.8775

0.8750)

0.8725

0.8

Figure 5: Sensitive analysis of layers on test sets.

dependent node of an arc is generated before its
head nodes. It does not matter for corruptions that
do not shuffle the orders of heads and dependents.

5.4 Sensitive analysis of Layers

We test the sensitivity of ELAS results to different
L. As shown in Figure 5, We select four languages
whose ELAS are significantly higher than base-
lines’ when L = 2. We find that our model still
outperforms the baseline whichever L is used. Be-
sides, it is hard to disclose a trend between model
performance and the number of layers from the
four plots. This is possibly because graph trans-
former can capture context information of high-
order neighbours even with one layer. Overall,
SADP is insensitive to the number of layers.

6 Conclusion and Limitation

This paper explores a semi-autoregressive depen-
dency parser that learns the explicit dependencies
in dependency graphs. This generation pattern cap-
tures the edge dependencies while reducing expo-
sure bias, resulting in a more effective parser. Be-
sides, the paper gives some insights into the two
problems of graph generation, namely the ordering
uncertainty and edge sparsity.

The limitations of our work fall into the in-
ference speed and the decoding strategy. Semi-
autoregressive inference speed is between non-
autoregressive and autoregressive, and it is dif-
ficult to return graphs immediately like non-
autoregressive parsers. Besides, this paper only
introduces greedy search as the decoding strategy,
which often performs worse than beam search as
the latter provides a buffer for exposure bias. It
is challenging for the semi-autoregressive beam
search because it needs to select variable combi-
nations with the highest probabilities instead of
several single variables. We will include it in our
future work.

References

Thomas Bachlechner, Bodhisattwa Prasad Majumder,
Henry Mao, Gary Cottrell, and Julian McAuley.
2021. Rezero is all you need: Fast convergence at
large depth. In Uncertainty in Artificial Intelligence,
pages 1352-1361. PMLR.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One spring to rule them both: Sym-
metric amr semantic parsing and generation without
a complex pipeline. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35,
pages 12564-12573.

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2020. Overview of the IWPT 2020 shared task
on parsing into enhanced Universal Dependencies.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020
Shared Task on Parsing into Enhanced Universal
Dependencies, pages 151-161, Online. Association
for Computational Linguistics.

Gosse Bouma, Djamé Seddah, and Daniel Zeman. 2021.
From raw text to enhanced Universal Dependen-
cies: The parsing shared task at IWPT 2021. In
Proceedings of the 17th International Conference
on Parsing Technologies and the IWPT 2021
Shared Task on Parsing into Enhanced Universal
Dependencies (IWPT 2021), pages 146—157, Online.
Association for Computational Linguistics.

Deng Cai and Wai Lam. 2019. Core seman-
tic first: A top-down approach for amr pars-
ing. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 3799-38009.

Deng Cai and Wai Lam. 2020. Amr parsing via
graph-sequence iterative inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1290-1301.

Dangi Chen and Christopher Manning. 2014. A fast and
accurate dependency parser using neural networks.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 740750, Doha, Qatar. Association for Com-
putational Linguistics.

Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao, and
Li Deng. 2016. Bi-directional attention with agree-
ment for dependency parsing. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 2204-2214, Austin,
Texas. Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmaéan, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pages
8440-8451, Online. Association for Computational
Linguistics.

Timothy Dozat and Christopher D Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. arXiv preprint arXiv:1611.01734.

Daniel Ferndndez-Gonzélez, Carlos Gémez-Rodriguez,
and Carlos Goémez-Rodriguez. 2019. Left-
to-right dependency parsing with pointer net-
works. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 710-716, Minneapolis, Minnesota. Associa-
tion for Computational Linguistics.

Stefan Griinewald and Annemarie Friedrich. 2020.
RobertNLP at the IWPT 2020 shared task: Sur-
prisingly simple enhanced UD parsing for English.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020
Shared Task on Parsing into Enhanced Universal
Dependencies, pages 245-252, Online. Association
for Computational Linguistics.

Stefan Griinewald, Frederik Tobias Oertel, and An-
nemarie Friedrich. 2021. RobertNLP at the IWPT
2021 shared task: Simple enhanced UD parsing
for 17 languages. In Proceedings of the 17th
International Conference on Parsing Technologies
and the IWPT 2021 Shared Task on Parsing into
Enhanced Universal Dependencies IWPT 2021),
pages 196-203, Online. Association for Computa-
tional Linguistics.

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-
based dependency parsing with graph neural net-
works. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 2475-2485, Florence, Italy. Association for
Computational Linguistics.

Jenna Kanerva, Filip Ginter, and Sampo Pyysalo. 2020.
Turku enhanced parser pipeline: From raw text to en-
hanced graphs in the IWPT 2020 shared task. In
Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020
Shared Task on Parsing into Enhanced Universal
Dependencies, pages 162—173, Online. Association
for Computational Linguistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Easy-
first dependency parsing with hierarchical tree Istms.
Trans. Assoc. Comput. Linguistics, 4:445-461.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Dan Kondratyuk and Milan Straka. 2019. 75 languages,
I model: Parsing Universal Dependencies univer-
sally. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing

https://doi.org/10.18653/v1/2020.iwpt-1.16
https://doi.org/10.18653/v1/2020.iwpt-1.16
https://doi.org/10.18653/v1/2020.iwpt-1.16
https://doi.org/10.18653/v1/2021.iwpt-1.15
https://doi.org/10.18653/v1/2021.iwpt-1.15
https://doi.org/10.18653/v1/2021.iwpt-1.15
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.18653/v1/D16-1238
https://doi.org/10.18653/v1/D16-1238
https://doi.org/10.18653/v1/D16-1238
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/2020.iwpt-1.26
https://doi.org/10.18653/v1/2020.iwpt-1.26
https://doi.org/10.18653/v1/2020.iwpt-1.26
https://doi.org/10.18653/v1/2021.iwpt-1.21
https://doi.org/10.18653/v1/2021.iwpt-1.21
https://doi.org/10.18653/v1/2021.iwpt-1.21
https://doi.org/10.18653/v1/2021.iwpt-1.21
https://doi.org/10.18653/v1/2021.iwpt-1.21
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/2020.iwpt-1.17
https://doi.org/10.18653/v1/2020.iwpt-1.17
https://doi.org/10.18653/v1/2020.iwpt-1.17
https://transacl.org/ojs/index.php/tacl/article/view/798
https://transacl.org/ojs/index.php/tacl/article/view/798
https://transacl.org/ojs/index.php/tacl/article/view/798
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279

and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 2779-2795, Hong Kong, China. Association
for Computational Linguistics.

Zuchao Li, Hai Zhao, and Kevin Parnow. 2020. Global

greedy dependency parsing. In Proceedings of
the AAAI conference on artificial intelligence, vol-

ume 34, pages 8319-8326.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In
Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1403—1414, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Marc’ Aurelio Ranzato, Sumit Chopra, Michael
Auli, and Wojciech Zaremba. 2016. Se-
quence level training with recurrent neural net-
works. In 4th International Conference on Learning
Representations, ICLR 2016.

Sebastian Schuster and Christopher D. Manning. 2016.
Enhanced English Universal Dependencies: An
improved representation for natural language un-
derstanding tasks. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 2371-2378, Por-
toroz, Slovenia. European Language Resources As-
sociation (ELRA).

Tianze Shi and Lillian Lee. 2021. TGIF: Tree-graph
integrated-format parser for enhanced UD with two-
stage generic- to individual-language finetuning. In
Proceedings of the 17th International Conference
on Parsing Technologies and the IWPT 2021
Shared Task on Parsing into Enhanced Universal
Dependencies IWPT 2021), pages 213-224, Online.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. Advances in neural information
processing systems, 30.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019.
Second-order semantic dependency parsing with
end-to-end neural networks. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4609-4618, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Xinyu Wang, Zixia Jia, Yong Jiang, and Kewei Tu. 2021.
Enhanced Universal Dependency parsing with auto-
mated concatenation of embeddings. In Proceedings
of the 17th International Conference on Parsing

Technologies and the IWPT 2021 Shared Task
on Parsing into Enhanced Universal Dependencies
(IWPT 2021), pages 189—-195, Online. Association
for Computational Linguistics.

Xinyu Wang, Yong Jiang, and Kewei Tu. 2020. En-
hanced Universal Dependency parsing with second-
order inference and mixture of training data. In
Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020
Shared Task on Parsing into Enhanced Universal
Dependencies, pages 215-220, Online. Association
for Computational Linguistics.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 323333, Beijing,
China. Association for Computational Linguistics.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin
Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-
Yan Liu. 2021. Do transformers really perform
badly for graph representation? Advances in Neural
Information Processing Systems, 34.

Sheng Zhang, Xutai Ma, Kevin Duh, and Ben-
jamin Van Durme. 2019a. Amr parsing as
sequence-to-graph transduction. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 80-94.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019b. Broad-coverage semantic
parsing as transduction. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 3786-3798.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 3295-3305, Online. Association for Computa-
tional Linguistics.

A Appendix

A1l GMS
#matched graph
Recall = 13
coa #gold sentences (13)
tched h
Precision = #rmatched grap (14)
#system sentences
GMS — 2 X Recall x Precision (15)

Recall + Precision

where # represents T'he number of.

https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://aclanthology.org/L16-1376
https://aclanthology.org/L16-1376
https://aclanthology.org/L16-1376
https://aclanthology.org/L16-1376
https://aclanthology.org/L16-1376
https://doi.org/10.18653/v1/2021.iwpt-1.23
https://doi.org/10.18653/v1/2021.iwpt-1.23
https://doi.org/10.18653/v1/2021.iwpt-1.23
https://doi.org/10.18653/v1/2021.iwpt-1.23
https://doi.org/10.18653/v1/2021.iwpt-1.23
https://doi.org/10.18653/v1/P19-1454
https://doi.org/10.18653/v1/P19-1454
https://doi.org/10.18653/v1/P19-1454
https://doi.org/10.18653/v1/2021.iwpt-1.20
https://doi.org/10.18653/v1/2021.iwpt-1.20
https://doi.org/10.18653/v1/2021.iwpt-1.20
https://doi.org/10.18653/v1/2020.iwpt-1.22
https://doi.org/10.18653/v1/2020.iwpt-1.22
https://doi.org/10.18653/v1/2020.iwpt-1.22
https://doi.org/10.18653/v1/2020.iwpt-1.22
https://doi.org/10.18653/v1/2020.iwpt-1.22
https://doi.org/10.3115/v1/P15-1032
https://doi.org/10.3115/v1/P15-1032
https://doi.org/10.3115/v1/P15-1032
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302

A.2 Experiment Details

We train models directly on each language with
Teacher Forcing Training to output all head (depen-
dent) representations at once. Besides, we truncate
the input sentences to 100 words at training time.
We totally run 100 epochs with 16 batch size and
select the model parameters base on the ELAS on
the development sets. We train our models on a
single v100 with a speed of about 10000 samples
in 10 minutes.

We use ReZero (Bachlechner et al., 2021) in
our graph transformer, instead of LayerNorm op-
erations commonly used in Transformer. In this
case, we do not need to use the warm-up learning
schedule, and we use Adam optimizer with the 0.97
decay ratio of the learning rate. We set up the initial
learning rate of pre-trained embeddings as 2e — 5,
and that of others as 1e — 3. Besides, dropout rates
in the part of pre-training and graph representation
are set to 0.1, while the output layers of nodes and
edges are set to 0.3.

We build up the vocabulary on the arc labels for
each language respectively. To shrink the size of
edge vocabularies, we follow the de-lexicalization
operations of arc labels (Griinewald and Friedrich,
2020) and re-lexicalize them before evaluations.

11

