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Abstract

Recent years have witnessed impressive001
progress in Neural Dependency Parsing. Ac-002
cording to the different factorization ap-003
proaches to the graph joint probabilities, ex-004
isting parsers can be roughly divided into au-005
toregressive and non-autoregressive patterns.006
The former means that the graph should be fac-007
torized into multiple sequentially dependent008
components, then it can be built up compo-009
nent by component. And the latter assumes010
these components to be independent so that011
they can be outputted at once. However, when012
treating the directed edge in the dependency013
graph as an explicit dependency, we discover014
that there is a mixture of independent and in-015
terdependent components in the dependency016
graph, signifying that both fail to precisely cap-017
ture the explicit dependencies among nodes018
and edges. Based on this property, we design019
a Semi-Autoregressive Dependency Parser to020
generate dependency graphs via adding node021
groups and edge groups autoregressively while022
pouring out all group elements in parallel. The023
model meanwhile deals with two problems in024
graph generation with respect to the uncertainty025
of generation orders and edge sparsity, via in-026
troducing a novel concept of Topological Hier-027
archy and a Graph Transformer as the decoder.028
The experiments show the proposed parser out-029
performs strong baselines on Enhanced Uni-030
versal Dependencies of 14 languages. Also,031
the performances of model variations show the032
importance of specific parts.033

1 Introduction034

Dependency graph in neural parsing is a directed035

graph representing semantic dependencies between036

words, with a transitive relation traveling from the037

rooted node to all words in the sentence phase by038

phase. As such, transition-based parsing seems to039

be a natural choice, as it builds up the parsing graph040

sequentially so that the dependency relationships041

can be captured. However, graph-based parsing042
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Figure 1: (a) An example graph (b) Divide nodes into
different topological hierarchies based on their furthest
distances from the root node. (c) Semi-autoregressive
graph generation process.

dominates recent competitions on parsing technolo- 043

gies including IWPT 2020 and 2021 (Bouma et al., 044

2020, 2021), even if using a simple biaffine atten- 045

tion (Dozat and Manning, 2016) only to predict 046

the whole graph at once. To explore a more ef- 047

fective parsing method that can represent these de- 048

pendency relationships in a rigorous manner, we 049

define and construct Topological Hierarchies for 050

dependency graphs based on the explicit depen- 051

dencies carried by them. According to the charac- 052

teristics of topological hierarchies, we proposes a 053

Semi-Autoregressive Dependency Parser (SADP) – 054

a novel graph-based parsing fashion via the semi- 055

autoregressive graph generation. 056

Generally, autoregressive graph generation indi- 057

cates that the model dynamically adds nodes and 058

edges based on the generated sub-graph structure 059

until reaching the complete graph. Its first chal- 060

lenge is to determine an generation order so that 061

the joint probability of the graph can be factorized 062
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into the product of conditional probabilities. Al-063

though the dependency graphs stipulate the strict064

sequential dependencies by directed edges, there is065

a lack of such topological orders between sibling066

nodes. For instance, node b in Figure 1.a depends067

on the node a because there is an explicit edge068

pointing from a to b. However, it is hard to decide069

the dependency relationship between node d and070

node e as they are not linked directly or indirectly.071

Previous works on directed graph generation solve072

the problem surfacely. Cai and Lam (2019, 2020)073

sort these sibling nodes randomly at the early stage074

of training and then change them to a determinis-075

tic order (e.g., relation-frequency) at later training076

steps. Some other works do the sorting by referring077

to the orders of the known sequences like word or-078

der or alphanumerical order (Zhang et al., 2019a,b;079

Bevilacqua et al., 2021). Since the dependency080

graph does not assign an explicit sequential rela-081

tionship between sibling nodes, such imposed or-082

ders would lead to exposure bias (Ranzato et al.,083

2016) between training and inference. Once the084

sibling nodes are not generated in the same order085

as in the training, the learned knowledge would be086

invalid and even mislead subsequent predictions.087

The aforementioned random ordering seems to alle-088

viate the problem to some extent, but it destabilizes089

and complicates the training process and generally090

results in inferior models.091

Instead of imposing orders on these sibling092

nodes, we assume them (including their incoming093

edges) to be conditionally independent to construct094

Topological Hierarchies (TH) as the generation or-095

ders. As shown in Figure 1.b, we divide nodes096

into several hierarchies according to their furthest097

distances from the root node. We can see that there098

are no explicit dependency relationships between099

nodes in the same hierarchy. Besides, nodes in100

the later hierarchies only depends on those in the101

previous hierarchies, forming a natural generation102

sequence. For a directed acyclic graph (DAG), it103

at least has one topological ordering but only has104

one topological hierarchy. At each generation step,105

we firstly predict all new nodes in parallel and then106

calculate their incoming edges by the biaffine at-107

tention (Dozat and Manning, 2016). In a word,108

our model autoregressively adds node groups and109

edge groups but non-autoregressively generates el-110

ements in these groups. See Figure 1.c for our111

semi-autoregressive generation process.112

Another challenge is that incorrect sub-graph113

structures may be predicted during inference. Tradi- 114

tional graph representation models like GCN (Kipf 115

and Welling, 2016) heavily rely on the given adja- 116

cency to capture context information. That means 117

it may fail to represent historical information com- 118

pletely and efficiently when predicted edges make 119

mistakes. An extreme situation of edge sparsity is 120

that the new nodes have no incoming edges pre- 121

dicted so that the model can only represent its node 122

features rather than the sub-graph structure. To 123

enhance the robustness of the generator, we design 124

a novel graph representation model deriving from 125

Transformer-decoder (Vaswani et al., 2017). In 126

our Graph Transformer-decoder, there are implicit 127

edges linking from the nodes in the previous and 128

current hierarchies to the new node. Then, the pre- 129

dicted explicit edges serve as the bias to adjust the 130

attention distribution over the implicit edges so that 131

the model can adaptively select useful structural 132

information. 133

Overall, this paper proposes a novel direction 134

– semi-autoregression to deal with parsing prob- 135

lems, distinguished with autoregression and non- 136

autoregression (detailed definitions about them are 137

available in § 2). With the dependencies denoted as 138

the directed edges, the semi-autoregressive pattern 139

unflods graphs in the ordering of topological hier- 140

archies, which strictly follows the explicit depen- 141

dency relationships defined in dependency graphs. 142

Besides, it alleviates exposure bias in the genera- 143

tion orders as Independent elements are orderless, 144

which promotes models in both quality and effi- 145

ciency. On the other hand, graph transformer has 146

achieved significant progress in the field of classifi- 147

cation (Ying et al., 2021), but rare studies explore 148

its applications in the generation. This paper de- 149

signs a novel graph transformer and adapts it to the 150

semi-autoregressive graph generation to alleviate 151

the edge sparsity problem. On the experimental 152

side, we evaluate SADP on Enhanced Universal 153

Dependencies (EUD) which are non-tree depen- 154

dency graphs. In addition to the official evaluation 155

metric Enhanced Label Attachment Scores (ELAS), 156

we design a graph-level matching score (GMS) to 157

assess the probability of returning an absolutely 158

correct graph. The results show that our model 159

outperforms other baselines significantly. Finally, 160

we introduce multiple model variations to investi- 161

gate the effect of different model components and 162

show that our model is well-designed, especially 163

the parts of discarding imposed orders and adding 164
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implicit edges.165

2 Related Work166

Autoregressive Parser. Generally, a generator is167

in an autoregressive fashion provided its generation168

probability at each step is conditional on items it169

produces previously. Transition-based parser ob-170

viously conforms to the characteristic, as it up-171

dates the action probability every step based on172

the words, tags and label embeddings previously173

put in the buffer and stack (Chen and Manning,174

2014). Meanwhile, we note that some mechanisms175

commonly used in autoregressive generators are176

used to improve transition-based parsers like beam177

search and pointer networks (Weiss et al., 2015;178

Ma et al., 2018; Fernández-González et al., 2019).179

On the other hand, Cheng et al. (2016) proposes a180

graph-based autoregressive parser by adding arcs181

sequentially with the considerations of previous182

parsing decisions. However, it should not be taken183

as a rigours graph generative model as it does not184

generate by extending the sub-graph structures. Ac-185

tually, instead of dependency graphs, it is more186

prevalent that leverage the autoregressive graph187

generators to parse Abstract Meaning Represen-188

tation (AMR) (Cai and Lam, 2019, 2020; Zhang189

et al., 2019b,a). They are all in the (fully) autore-190

gressive pattern that an order is imposed to nodes191

and edges without topological orderings. In this192

paper, we investigate the effects of these imposed193

orderings by introducing some variations of the194

proposed model. Further studies on AMR will be195

available in our future work.196

Non-Autoregressive Parser. In contrast, non-197

autoregression implies that all components factor-198

ized from the graph are independent, so their prob-199

abilities do not affect each other and can be ob-200

tained in parallel at any time. A representative201

non-autoregressive parser is Deep Biaffine Atten-202

tion (BiAtt) (Dozat and Manning, 2016) which203

assuming all edges are independent. For the tree-204

structure dependency graphs, it is often followed by205

a searching algorithm for the Maximum Spanning206

Tree (MST). Some heuristic algorithms (Li et al.,207

2020; Kiperwasser and Goldberg, 2016) construct208

the MST step by step, which yet does not mean they209

are in the autoregressive manner because all edge210

probabilities are predicted at once and fixed be-211

fore the searching. Another confusing models are212

higher-order graph-based parsers. Among them, Ji213

et al. (2019) incorporates the second-order knowl-214

edge into the word representations and still uses the 215

BiAtt as the final parser. Wang et al. (2019); Zhang 216

et al. (2020) decompose the graph into components 217

of different second-order parts. Different from Bi- 218

Att that each component is an edge, here some 219

components consists of two edges whose joint prob- 220

abilities can be calculated as a whole by a trilinear 221

function. They still belong to non-autoregressive 222

parsers because their components are independent 223

of each other and disable to be subdivided. 224

3 Proposed Model 225

3.1 Definitions 226

Problem Definition. Conditional on the source 227

sentence S = (wn)
N
n=1, the task is to generate a 228

dependency graph hierarchy by hierarchy. The gen- 229

eration process can be denoted as a sequence of 230

components: (C(t))Tt=0, T ≤ N . We firstly turn 231

dependency graphs to DAGs by deleting the back 232

edges in their cycles. It should be mentioned that 233

there are only a few graphs with cycles and we 234

can add these removed edges back by rules before 235

evaluations. Then we can construct Topological 236

Hierarchies based on the furthest distance from 237

each node to the root node. The initial compo- 238

nent C(0) = {v0} in the 0-th hierarchy only has 239

a root node. When t > 0, the component in the 240

t-th hierarchy is defined as C(t) = {V (t), E(t)}. 241

Let Vt =
⋃t

j=0 V
(j), then V (t) = {vi}|Vt|−1

i=|Vt−1| 242

is a set of nodes in the t-th hierarchy. And, 243

E(t) = {(vj , vi, zji)|vj ∈ Vt−1, vi ∈ V (t)} is a 244

set of edges pointing from nodes in the previous 245

hierarchies to the current nodes, where vj is the 246

head of vi and zji is the label on the arc. 247

Explicit and Implicit Edge. We define two 248

kinds of edges, namely explicit edges and implicit 249

edges. The former is what we need to really predict. 250

Let Ni be the explicit first-order neighbours of the 251

node vi ∈ V (t) and Di be the implicit neighbours, 252

and Ni ∪ Di = Vt. Notably, nodes in Ni can 253

not appear in V (t) according to the definition of 254

topological hierarchy. They have uni-directional 255

edges pointing to the node vi with arc labels, and 256

these edge can be found in E(t). On the other 257

hand, nodes in Di should not have pointed to vi, 258

but our model does so because we expect nodes to 259

learn structural information adaptively. It should 260

be mentioned that nodes in the same component or 261

hierarchy also have implicit edges linking to each 262

other, i.e., V (t) ⊆ Di. 263

Head and Dependent Representation. We de- 264

3



FFN

Message Passing

+ +++ + +++ + + + + +++ + + +

FFN

Message Passing

Inputs

FFN

Message Passing

Positional Encodings

Word Embeddings

Model

Outputs

Explicit Edge

Implicit Edge

he
ad

s

deps

No Edge
root

Figure 2: Semi-autoregressive generation process and graph transformer.

fine two representations of the same node with265

different roles, namely the head representation and266

the dependent representation. Each generated node267

will first be used as a dependent node to calculate its268

incoming arcs, and then as a head node until the end269

of generation. We define the head vector of a node270

vi ∈ V (t) as hi and its dependent vector as di. For271

a component, its head matrix H(t) = Fθ(Vt, Et, S)272

and dependent matrix D(t) = Fθ(Vt, Et−1, S) are273

the concatenations of multiple corresponding node274

representation, where Et =
⋃t

j=0E
(t). We can see275

that the difference between them is that the latter276

inputs lack E(t), which means there are no avail-277

able explicit edges pointing to V (t) nodes when278

calculating dependent representations. It should279

be mentioned that the graph representation model280

Fθ(·) can represent all components, but we only281

need to focus on the new component at each gen-282

eration step because the new component does not283

affect node representations in the previous compo-284

nents.285

Training Objective. The objective is to maxi-286

mize the graph joint probability J :287

J =

T∏
t=1

P (V (t)|Vt−1, Et−1)P (E(t)|Vt, Et−1)

(1)288

289

P (V (t)|Vt−1, Et−1) =
∏

vi∈V (t)

P (vi|Vt−1, Et−1)

(2) 290

291

P (E(t)|Vt, Et−1) =
∏

ei∈E(t)

P (ei|Vt, Et−1) (3) 292

293

Vt = Vt−1 ∪ V (t), Et = Et−1 ∪ E(t) (4) 294

It indicates that we autoregressively generate the 295

new node group V (t) and the edge group E(t) based 296

on groups generated previously and the elements 297

in the same group are independent. 298

3.2 Graph Generation Process 299

Figure 2 presents the generative process from the 300

3-rd step to the 4-th step. Specifically, At the gen- 301

eration step t, we firstly update head representa- 302

tions H(t−1) for the last-step nodes V (t−1) using 303

their network structure information E(t−1). No- 304

tably, although there only generates an intermediate 305

sub-graph of the entire structure, the explicit topo- 306

logical information of V (t−1) nodes is completed 307

because they would not have incoming arcs from 308

nodes generated later. On the other hand, these 309
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sentence words have been represented as a dense310

matrix S by a Transformer-encoder. Then, their311

probabilities of being selected are calculated by:312

P (w1:N ) = MaxPool
[
σ
(

H(t−1)W1W⊤
2 S⊤

)]
(5)313

314

V (t) = {wn|P (wn) > 0.5} (6)315

where W ∈ Rd×d is a linear transformation matrix.316

This operation is similar to a multi-label classi-317

fication. Every source word is assigned with an318

independent probability, and words with probabili-319

ties larger than 0.5 are selected as new nodes V (t).320

To represent these new nodes as D(t) when their321

network structural information are unknown, we322

suppose that there are implicit edges pointing from323

previous nodes to these nodes. Besides, these new324

nodes are connected to each other by implicit edges.325

Although it is impossible to appear explicit edges326

among them, this operation can further enrich node327

representations. Their connections are illustrated328

by the second adjacency matrix in the middle block329

of Figure 2. Explicit edge connections and types330

are then figured out by Deep Biaffine Attention331

(Dozat and Manning, 2016):332

E(t) = DeepBiaffine
(
∥t−1
j=0H(j),D(t)

)
(7)333

where ∥t−1
j=0H(j) is achieved by concatenating head334

representations of all nodes in the previous hierar-335

chies. The generation proceeds via repeating the336

aforementioned operations until no words can be337

selected as new nodes.338

3.3 Graph Representation Model339

Recently, Transformer (Vaswani et al., 2017) has340

made impressive progress in the graph repre-341

sentation field (Ying et al., 2021). In essence,342

Transformer regards inputs as an undirected fully-343

connected graph, thus serving as a special graph344

representation model that can enjoys global percep-345

tion at all layers. Previous works focusing on adapt-346

ing Transformer-encoder to node or graph classi-347

fication, while this paper modifies Transformer-348

decoder to conduct graph generation.349

Let x(l)
i denote the node vi embedding at the l-th350

layer. If the node vi is in the component Ct and351

copied from the source word wn, its initial node352

embedding x
(0)
i should be the summation of:353

x
(0)
i = S[n] +P[t] (8)354

where S,P indicate word embeddings and hierar- 355

chical positional encodings respectively, as shown 356

in Figure 2. Nodes in the same hierarchy have the 357

same hierarchical positional encodings. 358

The message passing layer actually takes the 359

position of the masked self-attention layer in the 360

decoder. The original decoder self-attention helps 361

every word to aggregate left-ward contexts. In con- 362

trast, every node in our model not only aggregates 363

left-ward contexts (i.e, nodes in previous hierar- 364

chies), but also nodes in the same hierarchy. To 365

distinguish explicit edges and implicit edges, the 366

message vector mji of the node vj with an explicit 367

edge pointing to the node vi should be enriched 368

with prior structural knowledge by: 369

m
(l)
ji =

{
x
(l)
j + relu

(
x
(l)
j Uzji

)
, vj ∈ Ni

x
(l)
j , vj ∈ Di

(9) 370

where Uzji ∈ Rd×d indicates the parametric em- 371

bedding matrix of the edge label zji. These edge 372

embedding metrics are shared across all layers. No- 373

tably, we assume that the central node vi is self- 374

connected implicitly, i.e. vi ∈ Di. The reduction 375

function is then defined as the multi-head attention: 376

αji =
exp

(
xiWQW

⊤
Km⊤

ji

)
∑

vu∈Ni∪Di
exp

(
xiWQW⊤

Km⊤
ui

) (10) 377

x
(l)′

i =

 H

∥
h=1

 ∑
vj∈Ni∪Di

αh
jim

(l)
ji W

h
V

WO

(11) 378

We can see that the query is the node embedding 379

xi, and the keys and values are those message vec- 380

tors mji. Its output x(l)′

i is then fed into the feed- 381

forward layer to enter the next layer: 382

x
(l+1)
i = FFN

(
x
(l)′

i

)
(12) 383

The outputs x(L) of the final layer are head repre- 384

sentations or dependent representations. 385

The edge embedding matrices U give the model 386

access to prior structural knowledge and enable it 387

to select useful prior knowledge adaptively. When 388

all structural knowledge is useless (i.e, parameters 389

in U are trained to be zeros) and each hierarchy 390

only contains one node, the graph model degrades 391

to a vanilla Transformer decoder. 392
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IWPT 2021 bg cs en et fi fr it lt lv nl pl ru sk sv uk avg
E

LA
S BiAtt 92.7 91.0 87.2 87.2 90.6 88.4 92.1 81.9 88.3 90.5 90.2 93.2 91.5 87.3 89.1 89.4

Tree-Graph 92.8 91.1 87.3 87.1 90.7 88.6 92.3 81.9 88.2 90.5 90.4 93.2 91.6 87.5 89.0 89.5
Ours 92.9 90.9 87.9 87.3 90.7 89.5 92.8 83.5 88.5 90.9 90.4 93.5 92.1 87.9 89.6 89.9

G
M

S BiAtt 47.4 44.8 36.3 37.1 38.7 40.3 43.8 21.0 38.4 46.9 40.8 50.3 51.0 32.2 34.6 40.2
Tree-Graph 47.8 45.3 36.9 37.0 39.1 41.1 44.7 21.0 37.9 47.0 41.9 50.8 51.5 33.4 34.2 40.6
Ours 48.8 45.6 40.3 39.2 41.4 45.4 47.1 28.2 42.8 51.3 43.6 54.2 57.8 38.2 39.2 44.2

IWPT 2020 bg cs en et fi fr it lt lv nl pl ru sk sv uk avg

E
LA

S Second-order 91.5 90.1 87.1 86.0 89.0 85.3 91.5 78.9 87.6 86.2 84.0 92.3 87.6 84.7 88.0 87.3
UDify 90.7 87.5 87.2 84.5 89.5 85.9 91.5 77.6 84.9 84.7 84.6 90.7 88.6 85.6 87.2 86.7
Ours 92.6 90.4 88.2 86.9 90.1 87.4 92.6 82.5 88.5 86.7 86.7 93.2 91.0 87.0 89.0 88.9

G
M

S Second-order 43.1 37.7 35.7 31.8 34.4 29.2 44.4 15.1 35.3 31.0 28.6 47.1 38.7 26.5 30.5 33.9
UDify 41.4 31.4 34.1 31.2 34.5 33.2 41.5 17.8 31.6 23.8 26.1 40.6 43.1 27.1 31.2 32.6
Ours 48.3 43.5 41.6 36.6 38.4 38.7 47.1 25.6 42.0 34.1 32.9 53.7 55.2 36.4 38.3 40.8

Table 1: Average ELAS and GMS results of 3 calculations on IWPT 2021 and IWPT 2020 datasets. We use L = 2
according to ELAS on the English dev-set.

4 Experiment393

4.1 Datasets394

We tune our models primarily on 15 languages395

that appear in IWPT 2020 dataset and IWPT 2021396

dataset (Bouma et al., 2020, 2021). The two shared397

tasks focus on EUD (Schuster and Manning, 2016)398

which are non-tree graphs with reentrancies, empty399

nodes and sparsity cycles. To construct the topo-400

logical hierarchy, we need to delete the back edges401

in cycles firstly and add them back by rules at in-402

ference time. For the language that has multiple403

treebanks, we simply concatenate all of its tree-404

banks. Besides, we use gold tokenization and gold405

sentence segmentation during training and develop-406

ment. At test time, we use the results of tokeniza-407

tion and segmentation provided by the top ranked408

models.409

4.2 Baseline Models410

Our comparison experiments aim to investigate the411

performances of models themselves, without con-412

sidering some learning techniques like ensembling413

(Grünewald et al., 2021), two-stage training (Shi414

and Lee, 2021) and automated concatenation of415

embeddings (Wang et al., 2021). We conclude four416

strong baselines from top-ranked systems in IWPT417

2021 and IWPT 2020, namely Deep Biaffine At-418

tention (Dozat and Manning, 2016), Tree-Graph419

Parser (Shi and Lee, 2021), Second-order Parser420

(Wang et al., 2019, 2020) and Language-specific421

UDify (Kondratyuk and Straka, 2019; Kanerva422

et al., 2020). Their results are reported after elimi-423

nating the effects of learning techniques.424

4.3 Evaluation Metrics 425

ELAS results are evaluated by the official script 426

provided by IWPT 2021. Besides, we also define 427

a graph-level matching score (GMS) to investigate 428

whether the model can deal with a few arcs that are 429

difficult to predict properly in a sample. Since we 430

segment UD sentences from raw texts, the numbers 431

of sentences are different for each system. There- 432

fore, GMS is a F1 score around the number of 433

absolutely matched graphs. The specific GMS cal- 434

culation is put in App. 1. 435

4.4 Word Embeddings 436

Similar to the operations in most top-ranked sys- 437

tems, our word embeddings S[n] are initialized as 438

the weighted summation of the corresponding hid- 439

den states in XLM-R layers (Conneau et al., 2020), 440

where the weights are the learned attention distri- 441

bution over all XLM-R layers. For the word com- 442

posed of multiple subwords, we extract the hidden 443

states of the last one. We set up the dimension in 444

the graph representation model as d = 1024, the 445

same as that in the pre-trained models. See App. 2 446

for more experiment details. 447

5 Results and Analysis 448

5.1 Main Results 449

The official evaluation metrics ELAS of our mod- 450

els and baselines are shown in Table 1. We note 451

that SADP achieves at least comparable results 452

on all languages. In IWPT 2021, in addition to 453

obtaining the best average ELAS performance (av- 454

erage ∼ 0.4% points), our model brings significant 455

improvements over multiple languages like Lithua- 456

nian (∼ 1.6% points), French (∼ 0.9% points), En- 457

glish (∼ 0.6% points). This enhancement is more 458
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Figure 3: Test-set ELAS results, comparing the origin model with different model variations

significant when comparing our model with the top459

two models in IWPT 2020 (average ∼ 1.6% points460

). Besides, sharper increases appears in GMS of461

IWPT 2021 (average ∼ 3.6% points) and IWPT462

2020 (average ∼ 6.9% points), where our model463

achieves an amazing rising against the baselines in464

all languages.465

It should be mentioned that a higher ELAS does466

not mean a higher GMS, as shown in the results467

of Czech (cs) language. In other words, some ob-468

stinate errors are fixed to make more dependency469

graphs completely correct, but there appear some470

samples where more mistakes concentrate. This471

situation derives from the inherent characteristics472

of autoregressive generation that the prediction ac-473

curacy at one certain step is heavily dependent on474

that at historical steps. In ideal states, the historical475

information can calibrate some obstinate errors by476

the learned dependencies. However, once devia-477

tion occurs in an immediate step, it may lead to478

some mistakes that are too simple to make. This is479

the essential reason that autoregressive parsers are480

weaker than non-autoregressive parsers. By com-481

parison, our semi-autoregressive parser mitigates482

the negative impact of this characteristic by remov-483

ing some dependency relationships, thus resulting484

in better performances in both ELAS and GMS.485

5.2 Model Variant Ablation Studies486

To investigate the importance of different model487

components and input features, we evaluated the488

following variations of our model.489

A. Autoregressive generation with random490

orders. We impose random orders to the sib-491

ling nodes, so the model is converted to a fully-492

autoregressive generator. At each step, the model493

only generates a new node and its all incoming494

edges. The sibling nodes will be re-ordered after a 495

training epoch. 496

B. Autoregressive generation with word or- 497

ders. The sibling nodes are sorted by the the posi- 498

tions of the node words in the sentence. 499

C. Combine random orders and word orders. 500

The sibling nodes are firstly randomly sorted at the 501

early stage of training and fixed to the word orders 502

at later training. 503

D. No implicit edges. Without the implicit 504

edges, the graph representation model is similar 505

to GAT (Veličković et al., 2017) but the messages 506

are additionally enriched with the arc label infor- 507

mation. 508

E. No implicit edges in the same hierarchy. 509

We remove the implicit edges between nodes in the 510

same topological hierarchy. In this case, each node 511

only has the incoming arcs from the nodes in the 512

previous hierarchies. 513

F. No explicit edges. We replace all explicit 514

edges by implicit edges, which is equal to forcing 515

the edge embedding matrix U to zeros. 516

G. No hierarchical positional encodings. In 517

this case, the model would lose the sequential re- 518

lationships between hierarchies and fail to locate 519

nodes of different hierarchy. 520

The ablation results of 6 languages are summa- 521

rized in Figure 3. We firstly focus on the fully- 522

autoregressive variations, namely the model A, B 523

and C. We can see that there are significant declines 524

in performances when imposing orderings to sib- 525

ling nodes, indicating that the autoregressive mode 526

heavily suffers from exposure bias in terms of gen- 527

eration orderings. Besides, the extent of declines 528

varies a lot in different languages, ranging from 529

over 30% in the Slovak (sk) dataset and within 1% 530

in the English (en) and Italian (it) datasets. This 531
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Figure 4: (a) Accuracy of nodes in the correct hierarchy.
(b) ELAS results using Oracle Topological Hierarchy.

proves that the impact of imposed sorting is quite532

unstable.533

Moving to the model D, E and F which are varia-534

tions with respect to explicit and implicit edges. Al-535

though it is not as significant as the negative effects536

of using autoregressive modes, that of removing537

implicit or explicit edges cannot be ignored. Gener-538

ally, implicit edges play a more important role than539

explicit edges as the performances of model D are540

often lower than those of model E and F. This vali-541

dates that the edge sparsity is the major problem of542

graph generation after the uncertainty of generation543

orderings. Besides, the implicit edges in the same544

hierarchy (see model E) and the historical arc la-545

bel information (see model F) are both compulsory546

model components because the model always per-547

forms worse when dropping them. The final is the548

model without hierarchical positional encodings.549

Compared with other variations, its performance is550

the closest to the origin model, implying that our551

graph representation model is not very sensitive to552

the sequential relationships between hierarchies.553

5.3 Error analysis of Topological Hierarchy554

Since a Topological Hierarchy regulates the rough555

topological structure of a dependency graph, its556

prediction accuracy is crucial for the whole model.557

We investigate the node accuracy on 5 languages558

(see Figure 4.a), and find that about 90% nodes559

can fall into correct hierarchies. Even the language560

performing worst under the ELAS evaluation can561

reach 80% node accuracy. We then provide the562

model with the Oracle node group at each gener-563

ation step and plot the comparison results against564

the origin model in Figure 4.b. There is about a 1%565

increase of ELAS on most languages when using566

Oracle Topological Hierarchies. It is surprising that567

Oracle TH does not bring about improvement to568

the English dataset, indicating that corrupt topolog-569

ical hierarchies do not always lead to incorrect arcs.570

Actually, it would cause bad results only when the571
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Figure 5: Sensitive analysis of layers on test sets.

dependent node of an arc is generated before its 572

head nodes. It does not matter for corruptions that 573

do not shuffle the orders of heads and dependents. 574

5.4 Sensitive analysis of Layers 575

We test the sensitivity of ELAS results to different 576

L. As shown in Figure 5, We select four languages 577

whose ELAS are significantly higher than base- 578

lines’ when L = 2. We find that our model still 579

outperforms the baseline whichever L is used. Be- 580

sides, it is hard to disclose a trend between model 581

performance and the number of layers from the 582

four plots. This is possibly because graph trans- 583

former can capture context information of high- 584

order neighbours even with one layer. Overall, 585

SADP is insensitive to the number of layers. 586

6 Conclusion and Limitation 587

This paper explores a semi-autoregressive depen- 588

dency parser that learns the explicit dependencies 589

in dependency graphs. This generation pattern cap- 590

tures the edge dependencies while reducing expo- 591

sure bias, resulting in a more effective parser. Be- 592

sides, the paper gives some insights into the two 593

problems of graph generation, namely the ordering 594

uncertainty and edge sparsity. 595

The limitations of our work fall into the in- 596

ference speed and the decoding strategy. Semi- 597

autoregressive inference speed is between non- 598

autoregressive and autoregressive, and it is dif- 599

ficult to return graphs immediately like non- 600

autoregressive parsers. Besides, this paper only 601

introduces greedy search as the decoding strategy, 602

which often performs worse than beam search as 603

the latter provides a buffer for exposure bias. It 604

is challenging for the semi-autoregressive beam 605

search because it needs to select variable combi- 606

nations with the highest probabilities instead of 607

several single variables. We will include it in our 608

future work. 609
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A.1 GMS 823

Recall =
#matched graph

#gold sentences
(13) 824
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Precision =
#matched graph
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2×Recall × Precision

Recall + Precision
(15) 827

where # represents The number of . 828
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A.2 Experiment Details829

We train models directly on each language with830

Teacher Forcing Training to output all head (depen-831

dent) representations at once. Besides, we truncate832

the input sentences to 100 words at training time.833

We totally run 100 epochs with 16 batch size and834

select the model parameters base on the ELAS on835

the development sets. We train our models on a836

single v100 with a speed of about 10000 samples837

in 10 minutes.838

We use ReZero (Bachlechner et al., 2021) in839

our graph transformer, instead of LayerNorm op-840

erations commonly used in Transformer. In this841

case, we do not need to use the warm-up learning842

schedule, and we use Adam optimizer with the 0.97843

decay ratio of the learning rate. We set up the initial844

learning rate of pre-trained embeddings as 2e− 5,845

and that of others as 1e− 3. Besides, dropout rates846

in the part of pre-training and graph representation847

are set to 0.1, while the output layers of nodes and848

edges are set to 0.3.849

We build up the vocabulary on the arc labels for850

each language respectively. To shrink the size of851

edge vocabularies, we follow the de-lexicalization852

operations of arc labels (Grünewald and Friedrich,853

2020) and re-lexicalize them before evaluations.854
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