
Universal approximation and model compression
for radial neural networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce a class of fully-connected neural networks whose activa-1

tion functions, rather than being pointwise, rescale feature vectors by a2

function depending only on their norm. We call such networks radial3

neural networks, extending previous work on rotation equivariant net-4

works that considers rescaling activations in less generality. We prove5

universal approximation theorems for radial neural networks, including6

in the more difficult cases of bounded widths and unbounded domains.7

Our proof techniques are novel, distinct from those in the pointwise case.8

Additionally, radial neural networks exhibit a rich group of orthogonal9

change-of-basis symmetries on the vector space of trainable parameters.10

Factoring out these symmetries leads to a practical lossless model com-11

pression algorithm. Optimization of the compressed model by gradient12

descent is equivalent to projected gradient descent for the full model.13

1 Introduction14

Inspired by biological neural networks, the theory of artificial neural networks has largely15

focused on pointwise (or “local”) nonlinear layers [46, 14], in which the same function16

σ : R→ R is applied to each coordinate independently:17

Rn → Rn, v = (v1 , . . . , vn) 7→ (σ(v1) , σ(v2) , . . . , σ(vn)). (1.1)

In networks with pointwise nonlinearities, the standard basis vectors in Rn can be inter-18

preted as “neurons” and the nonlinearity as a “neuron activation.” Research has generally19

focused on finding functions σ which lead to more stable training, have less sensitivity to20

initialization, or are better adapted to certain applications [42, 38, 37, 10, 29]. Many σ have21

been considered, including sigmoid, ReLU, arctangent, ELU, Swish, and others.22

However, by setting aside the biological metaphor, it is possible to consider a much23

broader class of nonlinearities, which are not necessarily pointwise, but instead depend24

simultaneously on many coordinates. Freedom from the pointwise assumption allows25

one to design activations that yield expressive function classes with specific advantages.26

Additionally, certain choices of non-pointwise activations maximize symmetry in the27

parameter space of the network, leading to compressibility and other desirable properties.28

In this paper, we introduce radial neural networks which employ non-pointwise nonlin-29

earities called radial rescaling activations. Such networks enjoy several provable properties30

including high model compressibility, symmetry in optimization, and universal approxi-31

mation. Radial rescaling activations are defined by rescaling each vector by a scalar that32

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not
distribute.

σ

σ
σ

σ

ρ
||·|| λ

Wi-1 Wi Wi-1 Wi

Figure 1: (Left) Pointwise activations distinguish a specific basis of each hidden layer and
treat each coordinate independently, see equation 1.1. (Right) Radial rescaling activations
rescale each feature vector by a function of the norm, see equation 1.2.

depends only on the norm of the vector:33

ρ : Rn → Rn, v 7→ λ(|v|)v, (1.2)

where λ is a scalar-valued function of the norm. Whereas in the pointwise setting, only the34

linear layers mix information between different components of the latent features, for radial35

rescaling, all coordinates of the activation output vector are affected by all coordinates of36

the activation input vector. The inherent geometric symmetry of radial rescalings makes37

them particularly useful for designing equivariant neural networks [55, 47, 56, 57].38

We note that radial neural networks constitute a simple and previously unconsidered type39

of multilayer radial basis functions network [4], namely, one where the number of hidden40

activation neurons (often denoted N) in each layer is equal to one. Indeed, pre-composing41

equation 1.2 with a translation and post-composing with a linear map, one obtains a special42

case of the local linear model extension of a radial basis functions network.43

In our first set of main results, we prove that radial neural networks are in fact universal44

approximators. Specifically, we demonstrate that any asymptotically affine function can be45

approximated with a radial neural network, suggesting potentially good extrapolation46

behavior. Moreover, this approximation can be done with bounded width. Our approach47

to proving these results departs markedly from techniques used in the pointwise case.48

Additionally, our result is not implied by the universality property of radial basis functions49

networks in general, and differs in significant ways, particularly in the bounded width50

property and the approximation of asymptotically affine functions.51

In our second set of main results, we exploit parameter space symmetries of radial neural52

networks to achieve model compression. Using the fact that radial rescaling activations53

commute with orthogonal transformations, we develop a practical algorithm to system-54

atically factor out orthogonal symmetries via iterated QR decompositions. This leads to55

another radial neural network with fewer neurons in each hidden layer. The resulting56

model compression algorithm is lossless: the compressed network and the original network57

both have the same value of the loss function on any batch of training data.58

Furthermore, we prove that the loss of the compressed model after one step of gradient59

descent is equal to the loss of the original model after one step of projected gradient descent.60

As explained below, projected gradient descent involves zeroing out certain parameter61

values after each step of gradient descent. Although training the original network may62

result in a lower loss function after fewer epochs, in many cases the compressed network63

takes less time per epoch to train and is faster in reaching a local minimum.64

To summarize, our main contributions are:65

• A formalization of radial neural networks, a new class of neural networks;66

• Universal approximations results for radial neural networks, including: a) approxi-67

mation of asymptotically affine functions, and b) bounded width approximation;68

• Implementation of a lossless compression algorithm for radial neural networks;69

2

• A theorem providing the precise relationship between gradient descent optimiza-70

tion of the original and compressed networks.71

2 Related work72

Radial rescaling activations. As noted, radial rescaling activations are a special case of the73

activations used in radial basis functions networks [4]. Radial rescaling functions have the74

symmetry property of preserving vector directions, and hence exhibit rotation equivariance.75

Consequently, examples of such functions, such as the squashing nonlinearity and Norm-76

ReLU, feature in the study of rotationally equivariant neural networks [55, 47, 56, 57, 26].77

However, previous works apply the activation only along the channel dimension, and78

consider the orthogonal group O(n) only for n = 2, 3. In contrast, we consider a radial79

rescaling activation across the entire hidden layer, and O(n)-equivariance where n is the80

hidden layer dimension. Our constructions echo the vector neurons formalism [15], in81

which the output of a nonlinearity is a vector rather than a scalar.82

Universal approximation. Neural networks of arbitrary width and sigmoid activations83

have long been known to be universal approximators [14]. Universality can also be achieved84

by bounded width networks with arbitrary depth [36], and generalizes to other activations85

and architectures [24, 60, 43, 50]. While most work has focused on compact domains,86

some recent work also considers non-compact domains [28, 54]. The techniques used for87

pointwise activations do not generalize to radial rescaling activations, where all activation88

output coordinates are affected by all input coordinates. Consequently, individual radial89

neural network approximators of two different functions cannot be easily combined to an90

approximator of the sum of the functions. The standard proof of universal approximation91

for radial basis functions networks requires an unbounded increase the number of hidden92

activation neurons, and hence does not apply to the case of radial neural networks [40].93

Groups and symmetry. Appearances of symmetry in machine learning have generally94

focused on symmetric input and output spaces. Most prominently, equivariant neural95

networks incorporate symmetry as an inductive bias and feature weight-sharing constraints96

based on equivariance. Examples include G-convolution, steerable CNN, and Clebsch-97

Gordon networks [13, 55, 11, 9, 30, 2, 58, 12, 57, 16, 31, 44]. By contrast, our approach to98

radial neural networks does not depend on symmetries of the input domain, output space,99

or feedforward mapping. Instead, we exploit parameter space symmetries and thus obtain100

more general results that apply to domains with no apparent symmetry.101

Model compression. A major goal in machine learning is to find methods to reduce102

the number of trainable parameters, decrease memory usage, or accelerate inference and103

training [8, 61]. Our approach toward this goal differs significantly from most existing104

methods in that it is based on the inherent symmetry of network parameter spaces.105

One prior method is weight pruning, which removes redundant weights with little loss106

in accuracy [20, 3, 27]. Pruning can be done during training [18] or at initialization107

[34, 53]. Gradient-based pruning removes weights by estimating the increase in loss resulting108

from their removal [33, 22, 17, 39]. A complementary approach is quantization, which109

decreases the bit depth of weights [59, 25, 19]. Knowledge distillation identifies a small model110

mimicking the performance of a larger model [5, 23, 1]. Matrix Factorization methods replace111

fully connected layers with lower rank or sparse factored tensors [6, 7, 52, 32, 45, 35] and112

can often be applied before training. Our method involves a type of matrix factorization113

based on the QR decomposition; however, rather than aim for rank reduction, we leverage114

this decomposition to reduce hidden widths via change-of-basis operations on the hidden115

representations. Close to our method are lossless compression methods which remove116

stable neurons in ReLU networks [49, 48] or exploit permutation parameter space symmetry117

to remove neurons [51]; our compression instead follows from the symmetries of the radial118

rescaling activation. Finally, the compression results of [26], while conceptually similar to119

ours, are weaker, as (1) the unitary group action is on disjoint layers instead of moving120

through all layers, and (2) the results are only stated for the squashing nonlinearity.121

3

−2 −1.5 −1 −0.5 0.5 1 1.5 2

−2
−1.5
−1
−0.5

0.5
1

1.5
2 (1) Step-ReLU(r)

(3) Shifted ReLU

(2) Squashing function

Figure 2: Examples of different radial rescaling functions in R1, see Example 1.

3 Radial neural networks122

In this section, we define radial rescaling functions and radial neural networks. Let123

h : R→ R be a function. For any n ≥ 1, set:124

h(n) : Rn → Rn h(n)(v) = h(|v|) v
|v|

for v ̸= 0, and h(n)(0) = 0. A function ρ : Rn → Rn is called a radial rescaling function if125

ρ = h(n) for some piecewise differentiable h : R→ R. Hence, ρ sends each input vector to126

a scalar multiple of itself, and that scalar depends only on the norm of the vector1. It is127

easy to show that radial rescaling functions commute with orthogonal transformations.128

Example 1. (1) Step-ReLU, where h(r) = r if r ≥ 1 and 0 otherwise. In this case, the radial129

rescaling function is given by130

ρ : Rn → Rn, v 7→ v if |v| ≥ 1; v 7→ 0 if |v| < 1 (3.1)

(2) The squashing function, where h(r) = r2/(r2 + 1). (3) Shifted ReLU, where h(r) =131

max(0, r − b) for r > 0 and b is a real number. See Figure 2. We refer to [55] and the132

references therein for more examples and discussion of radial functions.133

A radial neural network with L layers consists of a positive integer ni indicating the width of134

each layer i = 0, 1, . . . , L; the trainable parameters, comprising of a matrix Wi ∈ Rni×ni−1135

of weights and a bias vector bi ∈ Rni for each i = 1, . . . , L; and a radial rescaling function136

ρi : Rni → Rni for each i = 1, . . . , L. We refer to the tuple n = (n0, n1, . . . , nL) as the widths137

vector of the neural network. The hidden widths vector is nhid = (n1, n2, . . . , nL−1). The138

feedforward function F : Rn0 → RnL of a radial neural network is defined in the usual way139

as an iterated composition of affine maps and activations. Explicitly, set F0 = idRn0 and140

recursively define the partial feedforward functions for i = 1, . . . , L:141

Fi : Rn0 → Rni , x 7→ ρi (Wi ◦ Fi−1(x) + bi)

Then the feedforward function is F = FL. Radial neural networks are a special type of142

radial basis functions network; we explain the connection in Appendix F.143

Remark 2. If bi = 0 for all i, then the feedforward function takes the form F(x) = W (µ(x)x)144

where µ : Rn → R is a scalar-valued function and W = WLWL−1 · · ·W1 ∈ RnL×n0 is the145

product of the weight matrices. If any of the biases are non-zero, then the feedforward146

function lacks such a simple form.147

1A function Rn → R that depends only on the norm of a vector is known as a radial function.
Radial rescaling functions rescale each vector according to the radial function v 7→ λ(|v|) := h(|v|)

|v| .
This explains the connection to Equation 1.2.

4

4 Universal Approximation148

In this section, we consider two universal approximation results. The first approxi-149

mates asymptotically affine functions with a network of unbounded width. The second150

generalizes to bounded width networks. Proofs appear in Appendix B. Throughout,151

Br(c) = {x ∈ Rn : |x − c| < r} denotes the r-ball around a point c, and an affine map152

Rn → Rm is one of the from L(x) = Ax + b for a matrix A ∈ Rm×n and b ∈ Rm.153

4.1 Approximation of asymptotically affine functions154

A continuous function f : Rn → Rm is said to be asymptotically affine if there exists an155

affine map L : Rn → Rm such that, for every ϵ > 0, there is a compact subset K of Rn such156

that |L(x)− f (x)| < ϵ for all x ∈ Rn \ K. In particular, continuous functions with compact157

support are asymptotically affine. The continuity of f and compactness of K imply that,158

for any ϵ > 0, there exist c1, . . . , cN ∈ K and r1, . . . , rN ∈ (0, 1) such that, first, the union159

of the balls Bri (ci) covers K and, second, for all i, we have f (Bri (ci) ∩ K) ⊆ Bϵ(f (ci)). Let160

N(f , K, ϵ) be the minimal2 choice of N.161

Theorem 3 (Universal approximation). Let f : Rn → Rm be an asymptotically affine function.162

For any ϵ > 0, there exists a compact set K ⊂ Rn and a function F : Rn → Rm such that:163

1. F is the feedforward function of a radial neural network with N = N(f , K, ϵ) layers whose164

hidden widths are (n + 1, n + 2, . . . , n + N).165

2. For any x ∈ Rn, we have |F(x)− f (x)| < ϵ.166

We note that the approximation in Theorem 3 is valid on all of Rn. To give an idea167

of the proof, first fix c1, . . . , cN ∈ K and r1, . . . , rN ∈ (0, 1) as above. Let e1, . . . , eN be168

orthonormal basis vectors extending Rn to Rn+N . For i = 1, . . . , N define affine maps169

Ti : Rn+i−1 → Rn+i and Si : Rn+i → Rn+i by170

Ti(z) = z− ci + hiei Si(z) = z− (1 + h−1
i)⟨ei, z⟩ei + ci + ei

where h2
i = 1− r2

i and ⟨ei, z⟩ is the coefficient of ei in z. Setting ρi to be Step-ReLU171

(Equation 3.1) on Rn+i, these maps are chosen so that the composition Si ◦ ρi ◦ Ti maps172

the points in Bri (ci) to ci + ei, while keeping points outside this ball the same. We now173

describe a radial neural network with widths (n, n + 1, . . . , n + N, m) whose feedforward174

function approximates f . For i = 1, . . . , N the affine map from layer i− 1 to layer i is given175

by z 7→ Ti ◦ Si−1(z), with S0 = idRn . The activation at each hidden layer is Step-ReLU. Let176

L be the affine map such that |L− f | < ϵ on Rn \ K. The affine map from layer N to the177

output layer is Φ ◦ SN where Φ : Rn+N → Rm is the unique affine map determined by178

x 7→ L(x) if x ∈ Rn, and ei 7→ f (ci)− L(ci). This construction is illustrated in Figure 3.179

Corollary 4. Radial neural networks are dense in the space of all continuous functions with respect180

to the topology of compact convergence, and hence satisfy cc-universality.181

4.2 Bounded width approximation182

We now turn our attention to a bounded width universal approximation result.183

Theorem 5. Let f : Rn → Rm be an asymptotically affine function. For any ϵ > 0, there exists a184

compact set K ⊂ Rn and a function F : Rn → Rm such that:185

1. F is the feedforward function of a radial neural network with N = N(f , K, ϵ) hidden186

layers whose widths are all n + m + 1.187

2. For any x ∈ Rn, we have |F(x)− f (x)| < ϵ.188

The proof, which is more involved than that of Theorem 3, relies on using orthogonal189

dimensions to represent the domain and the range of f , together with an indicator190

2In many cases, the constant N(f , K, ϵ) can be bounded explicitly. For example, if K is the unit

cube in Rn and f is Lipschitz continuous with Lipschitz constant R, then N(f , K, ϵ) ≤
⌈

R
√

n
2ϵ

⌉n
.

5

Rn

K

c1
c2

c3

c4

c5 c6

c7

c8

c2 + e2

c2

S2 ◦ ρ ◦ T2

Rm

f (c2)

Φ

Figure 3: Two layers of the radial neural network used in the proof of Theorem 3. (Left)
The compact set K is covered with open balls. (Middle) Points close to c2 (green ball) are
mapped to c2 + e2, all other points are kept the same. (Right) In the final layer, c2 + e2 is
mapped to f (c2).

dimension to distinguish the two. We regard points in Rn+m+1 as triples (x, y, θ) where191

x ∈ Rn, y ∈ Rm and θ ∈ R. The proof of Theorem 5 parallels that of Theorem 3, but instead192

of mapping points in Bri (ci) to ci + ei, we map the points in Bri ((ci, 0, 0)) to (0, f (ci)−L(0)
s , 1),193

where s is chosen such that different balls do not interfere. The final layer then uses an194

affine map (x, y, θ) 7→ L(x) + sy, which takes (x, 0, 0) to L(x), and (0, f (ci)−L(0)
s , 1) to f (ci).195

We remark on several additional results; see Appendix B for full statements and proofs.196

The bound of Theorem 5 can be strengthened to max(n, m) + 1 in the case of functions197

f : K → Rm defined on a compact domain K ⊂ Rn (i.e., ignoring asymptotic behavior).198

Furthermore, with more layers, it is possible to reduce that bound to max(n, m).199

5 Model compression200

In this section, we prove a model compression result. Specifically, we provide an algorithm201

which, given any radial neural network, computes a different radial neural network with202

smaller widths. The resulting compressed network has the same feedforward function203

as the original network, and hence the same value of the loss function on any batch of204

training data. In other words, our model compression procedure is lossless. Although205

our algorithm is practical and explicit, it reflects more conceptual phenomena, namely, a206

change-of-basis action on network parameter spaces (Section 5.1).207

5.1 The parameter space208

Suppose a fully connected network has L layers and widths given by the tuple n =209

(n0, n1, n2, . . . , nL−1, nL). In other words, the i-th layer has input width ni−1 and output210

width ni. The parameter space is defined as the vector space of all possible choices of211

parameter values. Hence, it is given by the following product of vector spaces:212

Param(n) =
(
Rn1×n0 ×Rn2×n1 × · · · ×RnL×nL−1

)
× (Rn1 ×Rn2 × · · · ×RnL)

We denote an element therein as a pair of tuples (W, b) where W = (Wi ∈ Rni×ni−1)L
i=1213

are the weights and b = (bi ∈ Rni)L
i=1 are the biases. To describe certain symmetries of214

the parameter space, consider the following product of orthogonal groups, with sizes215

corresponding to the widths of the hidden layers:216

O(nhid) = O(n1)×O(n2)× · · · ×O(nL−1)

There is a change-of-basis action of O(nhid) on the parameter space Param(n). Explicitly,217

the tuple of orthogonal matrices Q = (Qi)
L−1
i=1 ∈ O(nhid) transforms the parameter values218

(W, b) to Q ·W :=
(

QiWiQ−1
i−1

)L

i=1
and Q ·b := (Qibi)

L
i=1, where Q0 = idn0 and QL = idnL .219

6

5.2 Model compression220

In order to state the compression result, we first define the reduced widths. Namely,221

the reduction nred = (nred
0 , nred

1 , . . . , nred
L) of a widths vector n is defined recursively by222

setting nred
0 = n0, then nred

i = min(ni, nred
i−1 + 1) for i = 1, . . . , L − 1, and finally nred

L =223

nL. For a tuple ρ = (ρi : Rni → Rni)L
i=1 of radial rescaling functions, we write ρred =224 (

ρred
i : Rnred

i → Rnred
i

)
for the corresponding tuple of restrictions, which are all radial225

rescaling functions. The following result relies on Algorithm 1 below.226

Theorem 6. Let (W, b, ρ) be a radial neural network with widths n. Let Wred and bred be the227

weights and biases of the compressed network produced by Algorithm 1. The feedforward function228

of the original network (W, b, ρ) coincides with that of the compressed network (Wred, bred, ρred).229

Algorithm 1: QR Model Compression (QR-compress)

input : W, b ∈ Param(n)
output : Q ∈ O(nhid) and Wred, bred ∈ Param(nred)

Q, Wred, bred ← [], [], [] // initialize output lists
A1 ← [b1 W1] // matrix of size n1 × (n0 + 1)
for i← 1 to L− 1 do // iterate through layers

Qi, Ri ← QR-decomp(Ai , mode = ‘complete’) // Ai = QiInciRi
Append Qi to Q
Append first column of Ri to bred // reduced bias for layer i
Append remainder of Ri to Wred // reduced weights for layer i
Set Ai+1 ← [bi+1 Wi+1QiInci] // matrix of size ni+1 × (nred

i + 1)
end
Append the first column of AL to bred // reduced bias for last layer
Append the remainder of AL to Wred // reduced weights for last layer

return Q, Wred, bred

230

We explain the notation of the algorithm. The inclusion matrix Inci ∈ Rni×nred
i has231

ones along the main diagonal and zeros elsewhere. The method QR-decomp with mode =232

‘complete’ computes the complete QR decomposition of the ni × (1 + nred
i−1) matrix Ai233

as QiInciRi where Qi ∈ O(ni) and Ri is upper-triangular of size nred
i × (1 + nred

i−1). The234

definition of nred
i implies that either nred

i = nred
i−1 + 1 or nred

i = ni. The matrix Ri is of size235

nred
i × nred

i in the former case and of size ni × (1 + nred
i−1) in the latter case.236

Example 7. Suppose the widths of a radial neural network are (1, 8, 16, 8, 1). Then it has237

∑4
i=1(ni−1 + 1)ni = 305 trainable parameters. The reduced network has widths (1, 2, 3, 4, 1)238

and ∑4
i=1(n

red
i−1 + 1)(nred

i) = 34 trainable parameters. Another example appears in Figure 4.239

We note that the tuple of matrices Q produced by Algorithm 1 does not feature in the240

statement of Theorem 6, but is important in the proof (which appears in Appendix C).241

R R4 R4 R4 R4 R


•
•
•
•


ρ


• • • •
• • • •
• • • •
• • • •


ρ

[
• • • •

]
R R2 R2 R4 R4 R

[
•
•

]
ρ


• •
• •
• •
• •


ρ

[
• • • •

]
R R2 R2 R3 R3 R

[
•
•

]
ρ

• •• •
• •


ρ

[
• • •

]

Figure 4: Model compression in 3 steps. Layer widths can be iteratively reduced to 1

greater than the previous. The number of trainable parameters reduces from 33 to 17.

7

Namely, an induction argument shows that the i-th partial feedforward function of the242

original and reduced models are related via the matrices Qi and Inci. A crucial ingredient243

in the proof is that radial rescaling activations commute with orthogonal transformations.244

6 Projected gradient descent245

The typical use case for model compression algorithms is to produce a smaller version246

of the fully trained model which can be deployed to make inference more efficient. It247

is also worth considering whether compression can be used to accelerate training. For248

example, for some compression algorithms, the compressed and full models have the same249

feedforward function after a step of gradient descent is applied to each, and so one can250

compress before training and still reach the same minimum. Unfortunately, in the context251

of radial neural networks, compression using Algorithm 1 and then training does not252

necessarily give the same result as training and then compression (see Appendix D.6 for a253

counterexample). However, QR-compress does lead to a precise mathematical relationship254

between optimization of the two models: the loss of the compressed model after one step255

of gradient descent is equivalent to the loss of (a transformed version of) the original model256

after one step of projected gradient descent. Proofs appear in Appendix D.257

To state our results, fix a tuple of widths n and a tuple ρ = (ρi : Rni → Rni)L
i=1 of radial258

rescaling functions. The loss function L : Param(n)→ R associated to a batch of training259

data {(xj, yj)} ⊆ Rn0 × RnL is defined as taking parameter values (W, b) to the sum260

∑j C(F(xj), yj) where C : RnL ×RnL → R is a cost function on the output space, and261

F = F(W,b,ρ) is the feedforward of the radial neural network with parameters (W, b) and262

activations ρ. Similarly, we have a loss function Lred on the parameter space Param(nred)263

with reduced widths vector. For any learning rate η > 0, we obtain gradient descent maps:264

γ : Param(n)→ Param(n) γred : Param(nred)→ Param(nred)

(W, b) 7→ (W, b)− η∇(W,b)L (V, c) 7→ (V, c)− η∇(V,c)Lred

We will also consider, for k ≥ 0, the k-fold composition γk = γ ◦ γ ◦ · · · ◦ γ and similarly265

for γred. The projected gradient descent map on Param(n) is given by:266

γproj : Param(n)→ Param(n), (W, b) 7→ Proj (γ(W, b))

where the map Proj zeroes out all entries in the bottom left (ni − nred
i)× nred

i−1 submatrix of267

Wi −∇WiL, and the bottom (ni − nred
i) entries in bi −∇bi

L, for each i. Schematically:268

Wi −∇WiL =

[
∗ ∗
∗ ∗

]
7→
[
∗ ∗
0 ∗

]
, bi −∇bi

L =

[
∗
∗

]
7→
[
∗
0

]
To state the following theorem, let Wred, bred, Q = QR-compress(W, b) be the outputs269

of Algorithm 1 applied to (W, b) ∈ Param(n). Hence (Wred, bred) ∈ Param(nred) are270

the parameters of the compressed model, and Q ∈ O(nhid) is an orthogonal parameter271

symmetry. We also consider the action (Section 5.1) of Q−1 applied to (W, b).272

Theorem 8. Let Wred, bred, Q = QR-compress(W, b) be the outputs of Algorithm 1 applied to273

(W, b) ∈ Param(n). Set U = Q−1 · (W, b)− (Wred, bred). For any k ≥ 0, we have:274

γk(W, b) = Q · γk(Q−1 · (W, b)) γk
proj(Q

−1 · (W, b)) = γk
red(W

red, bred) + U.

We conclude that gradient descent with initial values (W, b) is equivalent to gradient275

descent with initial values Q−1 · (W, b) since at any stage we can apply Q±1 to move from276

one to the other. Furthermore, projected gradient descent with initial values Q−1 · (W, b)277

is equivalent to gradient descent on Param(nred) with initial values (Wred, bred) since at278

any stage we can move from one to the other by ±U. Neither Q nor U depends on k.279

8

7 Experiments280

In addition to the theoretical results in this work, we provide an implementation of281

Algorithm 1, in order to validate the claims of Theorems 6 and 8 empirically, as well as to282

quantify real-world performance. Full experimental details are in Appendix E.283

(1) Empirical verification of Theorem 6. We learn the function f (x) = e−x2
from samples284

using a radial neural network with widths n = (1, 6, 7, 1) and activation the radial shifted285

sigmoid h(x) = 1/(1 + e−x+s). Applying QR-compress gives a compressed radial neural286

network with widths nred = (1, 2, 3, 1). Theorem 6 implies that the respective neural287

functions F and Fred are equal. Over 10 random initializations, the mean absolute error is288

negligible up to machine precision: (1/N)∑j |F(xj)− Fred(xj)| = 1.31 · 10−8 ± 4.45 · 10−9.289

(2) Empirical verification of Theorem 8. The claim is that training the transformed model290

with parameters Q−1 · (W, b) and objective L by projected gradient descent coincides291

with training the reduced model with parameters (Wred, bred) and objective Lred by292

usual gradient descent. We verified this on synthetic data as above. Over 10 random293

initializations, the loss functions after training match: |L − Lred| = 4.02 · 10−9 ± 7.01 · 10−9.294

(3) The compressed model trains faster. Our compression method may be applied before295

training to produce a smaller model class which trains faster without sacrificing accuracy.296

We demonstrate this in learning the function f : R2 → R2 sending (t1, t2) to (e−t2
1 , e−t2

2)297

using a radial neural network with widths n = (2, 16, 64, 128, 16, 2) and activation the298

radial sigmoid h(r) = 1/(1 + e−r). Applying QR-compress gives a compressed network299

with widths nred = (2, 3, 4, 5, 6, 2). We trained both models until the training loss was300

≤ 0.01. Over 10 random initializations on our system, the reduced network trained in301

15.32± 2.53 seconds and the original network trained in 31.24± 4.55 seconds.302

8 Conclusions and Discussion303

This paper demonstrates that radial neural networks are universal approximators and that304

their parameter spaces exhibit a rich symmetry group, leading to a model compression305

algorithm. The results of this work combine to build a theoretical foundation for the use of306

radial neural networks, and suggest that radial neural networks hold promise for wider307

practical applicability. Furthermore, this work makes an argument for considering the308

advantages of non-pointwise nonlinearities in neural networks.309

There are two main limitations of our results, each providing an opportunity for future310

work. First, our universal approximation constructions currently work only for Step-ReLU311

radial rescaling radial activations; it would be desirable to generalize to other activations.312

Additionally, Theorem 6 achieves compression only for networks whose widths satisfy313

ni > ni−1 + 1 for some i. Neural networks which do not have increasing widths anywhere314

in their architecture, such as encoders, would not be compressible.315

Further extensions of this work include: First, little is currently known about the stabil-316

ity properties of radial neural networks during training, as well as their sensitivity to317

initialization. Second, radial rescaling activations provide an extreme case of symmetry;318

there may be benefits to combining radial and pointwise activations within a single net-319

work, for example, through ‘block’ radial rescaling functions. Our techniques may yield320

weaker compression properties for more general radial basis functions networks; radial321

neural networks may be the most compressible such networks. Third, the parameter space322

symmetries may provide a key ingredient in analyzing the gradient flow dynamics of323

radial neural networks and computation of conserved quantities. Fourth, radial rescaling324

activations can be used within convolutional or group-equivariant NNs. Finally, based325

on the theoretical advantages laid out in this paper, future work will explore empirically326

applications in which we expect radial networks to outperform alternate methods. Such327

potential applications include data spaces with circular or distance-based class boundaries.328

9

References329

[1] Lei Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? arXiv:1312.6184,330

2013. 3331

[2] Erkao Bao and Linqi Song. Equivariant neural networks and equivarification.332

arXiv:1906.07172, 2019. 3333

[3] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is334

the state of neural network pruning? arXiv:2003.03033, 2020. 3335

[4] David S Broomhead and David Lowe. Radial basis functions, multi-variable functional336

interpolation and adaptive networks. Technical report, Royal Signals and Radar337

Establishment Malvern (United Kingdom), 1988. 2, 3338

[5] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression.339

In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery340

and Data Mining, pages 535–541, 2006. 3341

[6] Yu Cheng, X Yu Felix, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary, and Shih-Fu342

Chang. Fast neural networks with circulant projections. arXiv:1502.03436, 2, 2015. 3343

[7] Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary, and Shi-Fu344

Chang. An exploration of parameter redundancy in deep networks with circulant345

projections. In Proceedings of the IEEE international conference on computer vision, pages346

2857–2865, 2015. 3347

[8] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression348

and acceleration for deep neural networks. arXiv:1710.09282, 2017. 3349

[9] Benjamin Chidester, Minh N. Do, and Jian Ma. Rotation equivariance and invariance350

in convolutional neural networks. arXiv:1805.12301, 2018. 3351

[10] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep352

network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289,353

2015. 1354

[11] Taco S. Cohen and Max Welling. Group equivariant convolutional networks. In355

International conference on machine learning (ICML), pages 2990–2999, 2016. 3356

[12] Taco S Cohen and Max Welling. Steerable CNNs. In Proceedings of the International357

Conference on Learning Representations (ICLR), 2017. 3358

[13] Taco S. Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equiv-359

ariant convolutional networks and the icosahedral CNN. In Proceedings of the 36th360

International Conference on Machine Learning (ICML), volume 97, pages 1321–1330, 2019.361

3362

[14] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-363

matics of control, signals and systems, 2(4):303–314, 1989. 1, 3364

[15] Congyue Deng, O. Litany, Yueqi Duan, A. Poulenard, A. Tagliasacchi, and L. Guibas.365

Vector Neurons: A General Framework for SO(3)-Equivariant Networks. 2021366

IEEE/CVF International Conference on Computer Vision (ICCV), 2021. doi: 10.1109/367

iccv48922.2021.01198. 3368

[16] Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu. Exploiting cyclic symme-369

try in convolutional neural networks. In International Conference on Machine Learning370

(ICML), 2016. 3371

[17] Xin Dong, Shangyu Chen, and Sinno Jialin Pan. Learning to prune deep neural372

networks via layer-wise optimal brain surgeon. arXiv preprint arXiv:1705.07565, 2017.373

3374

10

[18] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,375

trainable neural networks. arXiv:1803.03635, 2018. 3376

[19] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep377

convolutional networks using vector quantization. arXiv:1412.6115, 2014. 3378

[20] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neu-379

ral networks with pruning, trained quantization and huffman coding. arXiv:1510.00149,380

2015. 3381

[21] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli382

Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.383

Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew384

Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre385

Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,386

Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,387

585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL https:388

//doi.org/10.1038/s41586-020-2649-2. 35389

[22] Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal390

brain surgeon. Morgan Kaufmann, 1993. 3391

[23] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural392

network. arXiv:1503.02531, 2015. 3393

[24] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural394

networks, 4(2):251–257, 1991. 3395

[25] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,396

Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient con-397

volutional neural networks for mobile vision applications. arXiv:1704.04861, 2017.398

3399

[26] George Jeffreys and Siu-Cheong Lau. Kähler Geometry of Quiver Varieties and400

Machine Learning. arXiv:2101.11487, 2021. URL http://arxiv.org/abs/2101.11487.401

3402

[27] Ehud D Karnin. A simple procedure for pruning back-propagation trained neural403

networks. IEEE transactions on neural networks, 1(2):239–242, 1990. 3404

[28] Patrick Kidger and Terry Lyons. Universal approximation with deep narrow networks.405

In Conference on learning theory, pages 2306–2327. PMLR, 2020. 3406

[29] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-407

normalizing neural networks. Advances in neural information processing systems, 30,408

2017. 1409

[30] Risi Kondor and Shubhendu Trivedi. On the Generalization of Equivariance and410

Convolution in Neural Networks to the Action of Compact Groups. In International411

conference on machine learning (ICML), 2018. 3412

[31] Leon Lang and Maurice Weiler. A Wigner-Eckart theorem for group equivariant413

convolution kernels. In International Conference on Learning Representations (ICLR), 2021.414

3415

[32] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempit-416

sky. Speeding-up convolutional neural networks using fine-tuned cp-decomposition.417

arXiv:1412.6553, 2014. 3418

[33] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in419

neural information processing systems, pages 598–605, 1990. 3420

11

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://arxiv.org/abs/2101.11487

[34] Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip HS Torr. A421

signal propagation perspective for pruning neural networks at initialization. arXiv422

preprint arXiv:1906.06307, 2019. 3423

[35] Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and Rogerio424

Feris. Fully-adaptive feature sharing in multi-task networks with applications in425

person attribute classification. In Proceedings of the IEEE conference on computer vision426

and pattern recognition (CVPR), pages 5334–5343, 2017. 3427

[36] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The428

expressive power of neural networks: A view from the width. Advances in neural429

information processing systems, 30, 2017. 3430

[37] Mirco Milletarí, Thiparat Chotibut, and Paolo E Trevisanutto. Mean field theory of431

activation functions in deep neural networks. arXiv preprint arXiv:1805.08786, 2018. 1432

[38] Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv433

preprint arXiv:1908.08681, 2019. 1434

[39] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Prun-435

ing convolutional neural networks for resource efficient inference. arXiv preprint436

arXiv:1611.06440, 2016. 3437

[40] Jooyoung Park and Irwin W Sandberg. Universal approximation using radial-basis-438

function networks. Neural computation, 3(2):246–257, 1991. 3439

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory440

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban441

Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan442

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith443

Chintala. Pytorch: An imperative style, high-performance deep learning library. In444

H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett,445

editors, Advances in Neural Information Processing Systems (NeurIPS) 32, pages446

8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/447

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.448

pdf. 35449

[42] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions.450

arXiv preprint arXiv:1710.05941, 2017. 1451

[43] Siamak Ravanbakhsh. Universal equivariant multilayer perceptrons. In International452

Conference on Machine Learning, pages 7996–8006. PMLR, 2020. 3453

[44] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Equivariance through454

parameter-sharing. In International Conference on Machine Learning, pages 2892–2901.455

PMLR, 2017. 3456

[45] Roberto Rigamonti, Amos Sironi, Vincent Lepetit, and Pascal Fua. Learning separable457

filters. In Proceedings of the IEEE conference on computer vision and pattern recognition,458

pages 2754–2761, 2013. 3459

[46] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and460

organization in the brain. Psychological review, 65(6):386, 1958. 1461

[47] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between462

capsules. arXiv:1710.09829, 2017. 2, 3463

[48] Thiago Serra, Abhinav Kumar, and Srikumar Ramalingam. Lossless compression464

of deep neural networks. In International Conference on Integration of Constraint Pro-465

gramming, Artificial Intelligence, and Operations Research, pages 417–430. Springer, 2020.466

3467

12

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[49] Thiago Serra, Xin Yu, Abhinav Kumar, and Srikumar Ramalingam. Scaling up exact468

neural network compression by relu stability. Advances in Neural Information Processing469

Systems, 34, 2021. 3470

[50] Sho Sonoda and Noboru Murata. Neural network with unbounded activation func-471

tions is universal approximator. Applied and Computational Harmonic Analysis, 43(2):472

233–268, 2017. 3473

[51] Gustav Sourek, Filip Zelezny, and Ondrej Kuzelka. Lossless compression of structured474

convolutional models via lifting. arXiv preprint arXiv:2007.06567, 2020. 3475

[52] Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. Convolutional neural networks476

with low-rank regularization. arXiv:1511.06067, 2015. 3477

[53] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before478

training by preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020. 3479

[54] Ming-Xi Wang and Yang Qu. Approximation capabilities of neural networks on480

unbounded domains. Neural Networks, 145:56–67, 2022. 3481

[55] Maurice Weiler and Gabriele Cesa. General E(2)-Equivariant Steerable CNNs. Confer-482

ence on Neural Information Processing Systems (NeurIPS), 2019. 2, 3, 4483

[56] Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen.484

3D steerable CNNs: Learning rotationally equivariant features in volumetric data.485

Proceedings of the 32nd International Conference on Neural Information Processing Systems486

(NeurIPS), 2018. 2, 3487

[57] Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for488

rotation equivariant CNNs. In Proceedings of the IEEE Conference on Computer Vision489

and Pattern Recognition (CVPR), pages 849–858, 2018. 2, 3490

[58] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow.491

Harmonic networks: Deep translation and rotation equivariance. In Proceedings of the492

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5028–5037,493

2017. 3494

[59] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized495

convolutional neural networks for mobile devices. In Proceedings of the IEEE Conference496

on Computer Vision and Pattern Recognition (CVPR), pages 4820–4828, 2016. 3497

[60] Dmitry Yarotsky. Universal approximations of invariant maps by neural networks.498

Constructive Approximation, 55(1):407–474, 2022. 3499

[61] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad,500

and Yanzhi Wang. A systematic DNN weight pruning framework using alternating501

direction method of multipliers. In Proceedings of the European Conference on Computer502

Vision (ECCV), pages 184–199, 2018. 3503

13

Checklist504

1. For all authors...505

(a) Do the main claims made in the abstract and introduction accurately reflect506

the paper’s contributions and scope? [Yes]507

(b) Did you describe the limitations of your work? [Yes] See Section 8.508

(c) Did you discuss any potential negative societal impacts of your work? [N/A]509

Our work is theoretical and does not hold specific risks of negative impacts.510

(d) Have you read the ethics review guidelines and ensured that your paper511

conforms to them? [Yes]512

2. If you are including theoretical results...513

(a) Did you state the full set of assumptions of all theoretical results? [Yes]514

(b) Did you include complete proofs of all theoretical results? [Yes] Most of the515

proofs appear in the supplementary material.516

3. If you ran experiments...517

(a) Did you include the code, data, and instructions needed to reproduce the518

main experimental results (either in the supplemental material or as a URL)?519

[Yes]520

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how521

they were chosen)? [Yes]522

(c) Did you report error bars (e.g., with respect to the random seed after running523

experiments multiple times)? [Yes]524

(d) Did you include the total amount of compute and the type of resources used525

(e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix E.526

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new527

assets...528

(a) If your work uses existing assets, did you cite the creators? [Yes]529

(b) Did you mention the license of the assets? [N/A]530

(c) Did you include any new assets either in the supplemental material or as a531

URL? [N/A]532

(d) Did you discuss whether and how consent was obtained from people whose533

data you’re using/curating? [N/A]534

(e) Did you discuss whether the data you are using/curating contains personally535

identifiable information or offensive content? [N/A]536

5. If you used crowdsourcing or conducted research with human subjects...537

(a) Did you include the full text of instructions given to participants and screen-538

shots, if applicable? [N/A]539

(b) Did you describe any potential participant risks, with links to Institutional540

Review Board (IRB) approvals, if applicable? [N/A]541

(c) Did you include the estimated hourly wage paid to participants and the total542

amount spent on participant compensation? [N/A]543

14

A Organization of the appendices544

This paper is a contribution to the mathematical foundations of machine learning, and our545

results are motivated by expanding the applicability and performance of neural networks.546

At the same time, we give precise mathematical formulations of our results and proofs.547

The purposes of these appendices are several:548

1. To clarify the mathematical conventions and terminology, thus making the paper549

more accessible.550

2. To provide full proofs of the main results.551

3. To develop context around various construction appearing in the main text.552

4. To discuss in detail examples, special cases, and generalizations of our results.553

We now give a summary of the contents of the appendices.554

Appendix B contains proofs the universal approximation results (Theorems 3 and 5) stated555

in Section 4 of the main text, as well as proofs of additional bounded width results.556

The proofs use notation given in Appendix B.1, and rely on preliminary topological557

considerations given in Appendix B.2.558

In Appendix C, we give a proof of the model compression result given in Theorem 6, which559

appears in Section 5. For clarity and background we begin the appendix with a discussion560

of the version of the QR decomposition relevant for our purposes (Appendix C.1). We also561

establish elementary properties of radial rescaling activations (Appendix C.2).562

The focus of Appendix D is projected gradient descent, elaborating on Section 6. We563

first prove a result on the interaction of gradient descent and orthogonal transformations564

(Appendix D.1), before formulating projected gradient descent in more detail (Appendix565

D.2), and introducing the so-called interpolating space (Appendix D.3). We restate Theorem566

8 in more convenient notation (Appendix D.4) before proceeding to the proof (Appendix567

D.5).568

Appendix E contains implementation details for the experiments summarized in Section569

7. Our implementations use shifted radial rescaling activations, which we formulate in570

Appendix E.1.571

Appendix F explains the connection between our constructions and radial basis functions572

networks. While radial neural networks turn out to be a specific type of radial basis573

functions network, our universality results are not implied by those for general radial basis574

functions networks.575

B Universal approximation proofs and additional results576

In this section, we provide full proofs of the universal approximation (UA) results for radial577

neural networks, as stated in Section 4. In order to do so, we first clarify our notational578

conventions (Appendix B.1), and collect basic topological results (Appendix B.2).579

B.1 Notation580

Recall that, for a point c in the Euclidean space Rn and a positive real number r, we denote581

the r-ball around c by Br(c) = {x ∈ Rn | |x− c| < r}. All networks in this section have the582

Step-ReLU radial rescaling activation function, defined as:583

ρ : Rn −→ Rn, z 7−→
{

z if |z| ≥ 1
0 otherwise

Throughout, ◦ denotes the composition of functions. We identify a linear map with a584

corresponding matrix (in the standard bases). In the case of linear maps, the operation ◦585

15

can be be identified with matrix multiplication. Recall also that an affine map L : Rn → Rm
586

is one of the from L(x) = Ax + b for a matrix A ∈ Rm×n and b ∈ Rm.587

B.2 Topology588

Let K be a compact subset of Rn and let f : K → Rm be a continuous function.589

Lemma 9. For any ϵ > 0, there exist c1, . . . , cN ∈ K and r1, . . . , rN ∈ (0, 1) such that, first, the590

union of the balls Bri (ci) covers K; second, for all i, we have f (Bri (ci) ∩ K) ⊆ Bϵ(f (ci)).591

Proof. The continuity of f implies that for each c ∈ K, there exists r = rc such that592

f (Brc(c)∩K) ⊆ Bϵ(f (c)). The subsets Brc(c)∩K form an open cover of K. The compactness593

of K implies that there is a finite subcover. The result follows.594

We also prove a variation of Lemma 9 that additionally guarantees that none of the balls in595

the cover of K contains the center point of another ball.596

Lemma 10. For any ϵ > 0, there exist c1, . . . , cM ∈ K and r1, . . . , rM ∈ (0, 1) such that, first, the597

union of the balls Bri (ci) covers K; second, for all i, we have f (Bri (ci)) ⊆ Bϵ(f (ci)); and, third,598

|ci − cj| ≥ ri.599

Proof. Because f is continuous on a compact domain, it is uniformly continuous. So, there600

exists r > 0 such that f (Br(c) ∩ K) ⊆ Bϵ(f (c)) for each c ∈ K. Because K is compact it has601

a finite volume, and so does Br/2(K) =
⋃

c∈K Br/2(c). Hence, there exists a finite maximal602

packing of Br/2(K) with balls of radius r/2. That is, a collection c1, . . . , cM ∈ Br/2(K)603

such that, for all i, Br/2(ci) ⊆ Br/2(K) and, for all j ̸= i, Br/2(ci) ∩ Br/2(cj) = ∅. The first604

condition implies that ci ∈ K. The second condition implies that |ci − cj| ≥ r. Finally, we605

argue that K ⊆ ⋃M
i=1 Br(ci). To see this, suppose, for a contradiction, that x ∈ K does not606

belong to
⋃M

i=1 Br(ci). Then Br/2(ci) ∩ Br/2(x) = ∅, and x could be added to the packing,607

which contradicts the fact that the packing was chosen to be maximal. So the union of the608

balls Br(ci) covers K.609

We turn our attention to the minimal choices of N and M in Lemmas 9 and 10.610

Definition 11. Given f : K → Rm continuous and ϵ > 0, let N(f , K, ϵ) be the minimal611

choice of N in Lemma 9, and let M(f , K, ϵ) be the minimal choice of M in Lemma 10.612

Observe that M(f , K, ϵ) ≥ N(f , K, ϵ). In many cases, it is possible to give explicit bounds613

for the constants N(f , K, ϵ) and M(f , K, ϵ). As an illustration, we give the argument in the614

case that K is the closed unit cube in Rn and f : K → Rm is Lipschtiz continuous.615

Proposition 12. Let K = [0, 1]n ⊂ Rn be the (closed) unit cube and let f : K → Rm be Lipschitz616

continuous with Lipschitz constant R. For any ϵ > 0, we have:617

N(f , K, ϵ) ≤
⌈

R
√

n
2ϵ

⌉n

and M(f , K, ϵ) ≤ Γ(n/2 + 1)
πn/2

(
2 +

2R
ϵ

)n
.

Proof. For the first inequality, observe that the unit cube can be covered with
⌈

R
√

n
2ϵ

⌉n
618

cubes of side length 2ϵ
R
√

n . Each cube is contained in a ball of radius ϵ
R centered at the619

center of the cube. (In general, a cube of side length a in Rn is contained in a ball of620

radius a
√

n
2 .) Lipschitz continuity implies that, for all x, x′ ∈ K, if |x − x′| < ϵ/R then621

| f (x)− f (x′)| ≤ R|x− x′| < ϵ.622

For the second inequality, let r = ϵ/R. Lipschitz continuity implies that, for all x, x′ ∈ K, if623

|x− x′| < r then | f (x)− f (x′)| ≤ R|x− x′| < ϵ. The n-dimensional volume of the set of624

points with distance at most r/2 to the unit cube is vol(Br/2(K)) ≤ (1 + r)n. The volume625

16

of a ball with radius r/2 is vol(Br/2(0)) = πn/2

Γ(n/2+1) (r/2)n. Hence, any packing of Br/2(K)626

with balls of radius r/2 consists of at most627

vol(Br/2(K))
vol(Br/2(0))

≤ Γ(n/2 + 1)
πn/2

(
2 +

2R
ϵ

)n

such balls. So there also exists a maximal packing with at most that many balls. This628

packing can be used in the proof of Lemma 10, which implies that it is a bound on629

M(f , K, ϵ).630

We note in passing that any differentiable function f : K → Rn on a compact subset K of631

Rn is Lipschitz continuous. Indeed, the compactness of K implies that there exists R such632

that | f ′(x)| ≤ R for all x ∈ K. Then one can take R to be the Lipschitz constant of f .633

B.3 Proof of Theorem 3: UA for asymptotically affine functions634

In this section, we restate and prove Theorem 3, which proves that radial neural networks635

are universal approximators of asymptotically affine functions. We recall the definition of636

such functions:637

Definition 13. A function f : Rn → Rm is asymptotically affine if there exists an affine638

function L : Rn → Rm such that, for all ϵ > 0, there exists a compact set K ⊂ Rn such that639

|L(x)− f (x)| < ϵ for all x ∈ Rn \ K. We say that L is the limit of f .640

Remark 14. An asymptotically linear function is defined in the same way, except L is taken641

to be linear (i.e., given just by applying matrix multiplication without translation). Hence642

any asymptotically linear function is in particular an asymptotically affine function, and643

Theorem 3 applies to asymptotically linear functions as well.644

Given an asymptotically affine function f : Rn → Rm and ϵ > 0, let K be a compact set as645

in Definition 13. We apply Lemma 9 to the restriction f |K of f to K and produce a minimal646

constant N = N(f |K, K, ϵ) as in Definition 11. We write simply N(f , K, ϵ) for this constant.647

Theorem 3 (Universal approximation). Let f : Rn → Rm be an asymptotically affine function.648

For any ϵ > 0, there exists a compact set K ⊂ Rn and a function F : Rn → Rm such that:649

1. F is the feedforward function of a radial neural network with N = N(f , K, ϵ) layers whose650

hidden widths are (n + 1, n + 2, . . . , n + N).651

2. For any x ∈ Rn, we have |F(x)− f (x)| < ϵ.652

Proof. By the hypothesis on f , there exists an affine function L : Rn → Rm and a compact653

set K ⊂ Rn such that |L(x)− f (x)| < ϵ for all x ∈ Rn \ K. Abbreviate N(f , K, ϵ) by N. As654

in Lemma 9, fix c1, . . . , cN ∈ K and r1, . . . , rN ∈ (0, 1) such that, first, the union of the balls655

Bri (ci) covers K and, second, for all i, we have f (Bri (ci)) ⊆ Bϵ(f (ci)). Let U =
⋃N

i=1 Bri (ci),656

so that K ⊂ U. Define F : Rn → Rm as:657

F(x) =

{
L(x) if x /∈ U
f (cj) where j is the smallest index with x ∈ Brj(cj)

If x /∈ U, then |F(x)− f (x)| = |L(x)− f (x)| < ϵ. Hence suppose x ∈ U. Let j be the658

smallest index such that x ∈ Brj(cj). Then F(x) = f (cj), and, by the choice of rj, we have:659

|F(x)− f (x)| = | f (cj)− f (x)| < ϵ.

We proceed to show that F is the feedforward function of a radial neural network. Let660

e1, . . . , eN be orthonormal basis vectors extending Rn to Rn+N . We regard each Rn+i−1 as661

a subspace of Rn+i by embedding into the first n + i− 1 coordinates. For i = 1, . . . , N, we662

set hi =
√

1− r2
i and define the following affine transformations:663

Ti : Rn+i−1 → Rn+i Si : Rn+i → Rn+i

z 7→ z− ci + hiei z 7→ z− (1 + h−1
i)⟨ei, z⟩ei + ci + ei

17

where ⟨ei, z⟩ is the coefficient of ei in z. Consider the radial neural network with widths664

(n, n + 1, . . . , n + N, m), whose affine transformations and activations are given by:665

• For i = 1, . . . , N the affine transformation from layer i− 1 to layer i is given by666

z 7→ Ti ◦ Si−1(z), where S0 = idRn .667

• The activation function at the i-th hidden layer is Step-ReLU on Rn+i, that is:668

ρi : Rn+i −→ Rn+i, z 7−→
{

z if |z| ≥ 1
0 otherwise

• The affine transformation from layer i = N to the output layer is669

z 7→ ΦL, f ,c ◦ SN(z)

where ΦL, f ,c is the affine transformation given by:670

ΦL, f ,c : Rn+N → Rm, x +
N

∑
i=1

aiei 7→ L(x) +
N

∑
i=1

ai(f (ci)− L(ci))

which can be shown to be affine when L is affine. Indeed, write L(x) = Ax + b671

where A is a matrix in Rm×n and b ∈ Rm is a vector. Then ΦL, f ,c is the composition672

of the linear map given by the matrix673

[A f (c1)− L(c1) f (c2)− L(c2) · · · f (cN)− L(cN)] ∈ Rm×(n+N)

and translation by b ∈ Rm. Note that we regard each f (ci) − L(ci) ∈ Rm as a674

column vector in the matrix above.675

We claim that the feedforward function of the above radial neural network is exactly F. To676

show this, we first state a lemma, whose (omitted) proof is an elementary computation.677

Lemma 3.1. For i = 1, . . . , N, the composition Si ◦ Ti is the embedding Rn+i−1 ↪→ Rn+i.678

Next, recursively define Gi : Rn → Rn+i via679

Gi = Si ◦ ρi ◦ Ti ◦ Gi−1,

where G0 = idRn . The function Gi admits an direct formulation:680

Proposition 3.2. For i = 0, 1, . . . , N, we have:681

Gi(x) =

{
x if x /∈ ⋃i

j=1 Brj(cj)

cj + ej where j ≤ i is the smallest index with x ∈ Brj(cj)
.

Proof. We proceed by induction. The base step i = 0 is immediate. For the induction step,682

assume the claim is true for i− 1, where 0 ≤ i− 1 < N. There are three cases to consider.683

Case 1. Suppose x /∈ ⋃i
j=1 Brj(cj). Then in particular x /∈ ⋃i−1

j=1 Brj(cj), so the induction684

hypothesis implies that Gi−1(x) = x. Additionally, x /∈ Bri (ci), so:685

|Ti(x)| = |x− ci + hiei| =
√
|x− ci|+ h2

i ≥
√

r2
i + 1− r2

i = 1.

Using the definition of ρi and Lemma 3.1, we compute:686

Gi(x) = Si ◦ ρi ◦ Ti ◦ Gi−1(x) = Si ◦ ρi ◦ Ti(x) = Si ◦ Ti(x) = x.

Case 2. Suppose x ∈ Bj \
⋃j−1

k=1 Brk (ck) for some j ≤ i− 1. Then the induction hypothesis687

implies that Gi−1(x) = cj + ej. We compute:688

|Ti(cj + ej)| = |cj + ej − ci + hiei| > |ej| = 1.

18

Therefore,689

Gi(x) = Si ◦ ρi ◦ Ti(cj + ej) = Si ◦ Ti(cj + ej) = cj + ej.

Case 3. Finally, suppose x ∈ Bi \
⋃i−1

j=1 Brj(cj). The induction hypothesis implies that690

Gi−1(x) = x. Since x ∈ Bri (ci), we have:691

|Ti(x)| = |x− ci + hiei| =
√
|x− ci|+ h2

i <
√

r2
i + 1− r2

i = 1.

Therefore:692

Gi(x) = Si ◦ ρi ◦ Ti(x) = Si(0) = ci + ei.

This completes the proof of the proposition.693

Finally, we show that the function F defined at the beginning of the proof is the feedforward694

function of the above radial neural network. The computation is elementary:695

Ffeedforward = ΦL, f ,c ◦ SN ◦ ρN ◦ TN ◦ SN−1 ◦ ρN−1 ◦ TN−1 ◦ · · · S1 ◦ ρ1 ◦ T1

= ΦL, f ,c ◦ GN

= F

where the first equality follows from the definition of the feedforward function, the second696

from the definition of GN , and the last from the case i = N of Proposition 3.2 together with697

the definition of ΦL, f ,c. This completes the proof of the theorem.698

B.4 Proof of Theorem 5: bounded width UA for asymptotically affine functions699

We restate and prove Theorem 5, which strengthens Theorem 3 by providing a bounded700

width radial neural network approximation of any asymptotically affine function.701

Theorem 5. Let f : Rn → Rm be an asymptotically affine function. For any ϵ > 0, there exists a702

compact set K ⊂ Rn and a function F : Rn → Rm such that:703

1. F is the feedforward function of a radial neural network with N = N(f , K, ϵ) hidden704

layers whose widths are all n + m + 1.705

2. For any x ∈ Rn, we have |F(x)− f (x)| < ϵ.706

Proof. By the hypothesis on f , there exists an affine function L : Rn → Rm and a compact set707

K ⊂ Rn such that |L(x)− f (x)| < ϵ for all x ∈ Rn \ K. Given ϵ > 0, let N = N(f , K, ϵ) and708

use Lemma 9 to choose c1, . . . , cN ∈ K and r1, . . . , rN ∈ (0, 1) such that the union of the balls709

Bri (ci) covers K, and, for all i, we have f (Bri (ci)) ⊆ Bϵ(f (ci)). Let s be the minimal non-zero710

value of | f (ci)− f (cj)| for i, j ∈ {1, . . . , N}, that is, s = mini,j, f (ci) ̸= f (cj)
| f (ci)− f (cj)|.711

Using the decomposition Rn+m+1 ∼= Rn × Rm × R, we write elements of Rn+m+1 as712

(x, y, θ), where x ∈ Rn, y ∈ Rm, and θ ∈ R. For i = 1, . . . , N, set:713

Ti : Rn+m+1 → Rn+m+1, (x, y, θ) 7→
(

x− (1− θ)ci , y− θ
f (ci)− L(0)

s
, (1− θ)hi

)
where hi =

√
1− r2

i . Note that Ti is an invertible affine transformation, whose inverse is714

given by:715

T−1
i (x, y, θ) =

(
x +

θ

hi
ci , y +

(
1− θ

hi

) f (ci)− L(0)
s

, 1− θ

hi

)
For i = 1, . . . , N, define Gi : Rn → Rn+m+1 via the following recursive definition:716

Gi = T−1
i ◦ ρ ◦ Ti ◦ Gi−1,

19

where G0(x) = (x, 0, 0) : Rn ↪→ Rn+m+1 is the inclusion, and ρ : Rn+m+1 → Rn+m+1 is717

Step-ReLU on Rn+m+1. We claim that, for x ∈ Rn, we have:718

Gi(x) =

(x, 0, 0) if x /∈ ⋃i
j=1 Brj(cj)(

0,
f (cj)−L(0)

s , 1
)

where j ≤ i is the smallest index with x ∈ Brj(cj)

This claim can be verified by a straightforward induction argument, similar to the one719

given in the proof of Proposition 3.2, and using the following key facts:720

• For x ∈ Rn,
∣∣Ti
(
(x, 0, 0)

)∣∣ = ∣∣(x− ci, 0, hi)
∣∣ < 1 if and only if |x− ci| < ri.721

• T−1
i (0) =

(
0, f (ci)−L(0)

s , 1
)

.722

• Ti

((
0,

f (cj)−L(0)
s , 1

))
=
(

0,
f (cj)− f (ci)

s , 0
)

, which, by the choice of s, has norm at723

least 1 if f (cj) ̸= f (ci), and is 0 if f (cj) = f (ci).724

Let Φ : Rn+m+1 → Rm denote the affine map sending (x, y, θ) to L(x) + sy. It follows that725

F = Φ ◦ GN satisfies726

F(x) =

{
L(x) if x /∈ ⋃N

j=1 Brj(cj)

f (cj) where j is the smallest index with x ∈ Brj(cj)

By construction, F is the feedforward function of a radial neural network with N hidden727

layers whose widths are all n + m + 1. Let x ∈ Rn. If x ∈ K, let j be the smallest index728

such that x ∈ Brj(cj). Then F(x) = f (cj), and, by the choice of rj, we have |F(x)− f (x)| =729

| f (cj)− f (x)| < ϵ. Otherwise, x ∈ Rn \ K, and |F(x)− f (x)| = |L(x)− f (x)| < ϵ.730

B.5 Additional result: bound of max(n, m) + 1731

We state and prove an additional bounded width result. In contrast to the results above, the732

theorem below only holds for functions defined on a compact domain, without assumptions733

about the asymptotic behavior. The proof is an adaptation of the proof of Theorem 5, so734

we give only a sketch.735

Theorem 15. Let f : K → Rm be a continuous function, where K is a compact subset of Rn. For736

any ϵ > 0, there exists F : Rn → Rm such that:737

1. F is the feedforward function of a radial neural network with N(f , K, ϵ) hidden layers738

whose widths are all max(n, m) + 1.739

2. For any x ∈ K, we have |F(x)− f (x)| < ϵ.740

Sketch of proof. The construction appearing in the proof of Theorem 5 with L ≡ 0 can741

be used to produce a radial neural network with N(f , K, ϵ) hidden layers with widths742

n + m + 1 that approximates f on K. (Note that the approximation works only on K, as f is743

not defined outside of K.) All values in the hidden layers are of the form (x, 0, 0) or (0, y, 1).744

We can therefore replace (x, y, θ) ∈ Rn+m+1 by (x + y, θ) ∈ Rmax(n,m) ×R ∼= Rmax(n,m)+1
745

everywhere, without affecting any statements about the hidden layers. In particular, the746

transformation Ti becomes747

Ti : Rmax(n,m)+1 → Rmax(n,m)+1, (x, θ) 7→
(

x− (1− θ)ci − θ
f (ci)

s
, (1− θ)hi

)
.

With this change the final affine map Φ sends (x, θ) to sx. From the rest of the proof748

of Theorem 5 it follows that the feedforward function F of the radial network satisfies749

|F(x)− f (x)| < ϵ for all x ∈ K.750

20

B.6 Additional result: bound of max(n, m)751

In this section, we prove a different version of the result of the previous section. Specifically,752

we reduce the bound on the widths to max(n, m) at the cost of using more layers. Again,753

we focus on functions defined on a compact domain without assumptions about their754

asymptotic behavior. Recall the notation M(f , K, ϵ) from Lemma 10 and Definition 11.755

Theorem 16. Let f : K → Rm be a continuous function, where K is a compact subset of Rn for756

n ≥ 2. For any ϵ > 0, there exists F : Rn → Rm such that:757

1. F is the feedforward function of a radial neural network with 2M(f , K, ϵ/2) hidden layers758

whose widths are all max(n, m).759

2. For any x ∈ K, we have |F(x)− f (x)| < ϵ.760

Proof. We first consider the proof in the case n = m. Set M = M(f , K, ϵ). As in Lemma 10,761

fix c1, . . . , cM ∈ K and r1, . . . , rM ∈ (0, 1) such that, first, the union of the balls Bri (ci) covers762

K; second, for all i, we have f (Bri (ci)) ⊆ Bϵ/2(f (ci)); and third, |ci − cj| ≥ ri for i ̸= j. For763

i = 1, . . . , M, set764

Ti : Rn → Rn, x 7→ x− ci
ri

,

and recursively define Gi : Rn → Rn as Gi = T−1
i ◦ ρ ◦ Ti ◦ Gi−1, where G0 = idRn is the765

identity on Rn and ρ : Rn → Rn is Step-ReLU.766

Lemma 16.1. For i = 0, 1, . . . , N, we have:767

Gi(x) =

{
x if x /∈ ⋃i

j=1 Brj(cj)

cj where j ≤ i is the smallest index with x ∈ Brj(cj).

We omit the full proof of Lemma 16.1, as it is a standard induction argument similar768

to Proposition 3.2, relying on the following two facts. First, |Ti(x)| < 1 if and only if769

x ∈ Bri (ci). Second, by the choice of ci, we have |ci − cj| ≥ ri for all i ̸= j. This implies that770

|Ti(cj)| ≥ 1 for i ̸= j.771

Next, perform the following loop over i = 1, . . . , M:772

• Set Pi−1 = {c1, . . . , cM} ∪ {d1, . . . , di−1}773

• Choose di in Bϵ/2(f (ci)) that is not colinear with any pair of points in Pi−1. This is774

where we use the hypothesis that n ≥ 2.775

• Let si be the minimum distance between any point on the line through ci and di776

and any point in Pi−1 \ {ci}.777

• Let Ui : Rn → Rn be the following affine transformation:778

Ui : Rn → Rn, x 7→ x− di
si

+

(
1

|ci − di|
− 1

si

)
⟨x− di, ci − di⟩
|ci − di|2

(ci − di)

• Define Hi : Rn → Rn recursively as Hi = U−1
i ◦ ρ ◦Ui ◦ Hi−1, where H0 = idRn .779

We note that the transformation Ui can also be written as Ai(x− di) where Ai is the linear780

map given by Ai =
1
si

proj⟨ci−di⟩⊥ + 1
|ci−di |

proj⟨ci−di⟩, which involves the projections onto781

the line spanned by ci − di and onto the orthogonal complement of this line.782

Lemma 16.2. For i, j = 1, . . . , M, we have:783

Hi(cj) =

{
dj if j ≤ i
cj if j > i

21

Proof. It is immediate that Ui(di) = 0 and |Ui(ci)| = 1/2. It is also straightforward to show,784

using the choice of si, that |Ui(p)| ≥ 1 for all p ∈ Pi−1 \ {ci}. It follows that U−1
i ◦ ρ ◦Ui785

sends ci to di and fixes all other points in Pi−1.786

Lemma 16.3. For x ∈ K, we have HM ◦ GM(x) = di where i is the smallest index with787

x ∈ Bri (ci)788

Proof. Let x ∈ K. By Lemma 16.1, we have that GM(x) = ci where i is the smallest index789

with x ∈ Bri (ci). (We use the fact that the balls {Bri (ci)} cover K.) By Lemma 16.2, we have790

that HM(ci) = di for all i. The result follows.791

Set F = HM ◦ GM. We see that, for x ∈ K:792

|F(x)− f (x)| = |di − f (x)| ≤ |di − f (ci)|+ | f (ci)− f (x)| < ϵ/2 + ϵ/2 = ϵ

where i is the smallest index with x ∈ Bri (ci). We show that F is the feedforward function793

of a radial neural network with 2M hidden layers, all of width equal to n. Indeed, take the794

affine transformations and activations as follows:795

• For i = 1, . . . , M the affine transformation from layer i− 1 to layer i is given by796

x 7→ Ti ◦ T−1
i−1(x), where T0 = idRn .797

• For i = 1, . . . , M the affine transformation from layer M + i− 1 to layer M + i is798

given by x 7→ Ui ◦U−1
i−1(x), where U0 = T−1

N .799

• The activation at each hidden layer is Step-ReLU on Rn that is ρ(x) = x if |x| ≥ 1800

and 0 otherwise.801

• Layer 2M + 1 has the affine transformation U−1
M .802

It is immediate from definitions that the feedforward function of this network is F.803

To conclude the proof, we discuss the cases where n ̸= m. Suppose n < m so that804

max(n, m) = m. Then we can regard K as a compact subset of Rm and apply the above805

constructions. Suppose n > m so that max(n, m) = n. Let inc : Rm ↪→ Rn. Apply the806

above constructions to the function f̃ = inc ◦ f : K → Rn.807

C Model compression proofs808

The aim of this appendix is to give a proof of Theorem 6. In order to do so, we first (1)809

provide background on a relevant version of the QR decomposition, and (2) establish basic810

properties of radial rescaling activations.811

C.1 The QR decomposition812

In this section, we recall the QR decomposition and note several relevant facts. For integers813

n and m, let (Rn×m)
upper denote the vector space of upper triangular n by m matrices.814

Theorem 17 (QR Decomposition). The following map is surjective:815

O(n)×
(
Rn×m)upper −→ Rn×m

Q , R 7→ Q ◦ R

In other words, any matrix can be written as the product of an orthogonal matrix and an816

upper-triangular matrix. When m ≤ n, the last n−m rows of any matrix in (Rn×m)
upper

817

are zero, and the top m rows form an upper-triangular m by m matrix. These observations818

lead to the following “complete” version of the QR decomposition, which coincides with819

the above result when m ≥ n:820

22

Corollary 18 (Complete QR Decomposition). The following map is surjective:821

µ : O(n)×
(

Rk×m
)upper

−→ Rn×m

Q , R 7→ Q ◦ inc ◦ R

where k = min(n, m) and inc : Rk ↪→ Rn is the standard inclusion into the first k coordinates.822

We make some remarks:823

1. There are several algorithms for computing the QR decomposition of a given824

matrix. One is Gram–Schmidt orthogonalization, and another is the method of825

Householder reflections. The latter has computational complexity O(n2m) in826

the case of a n × m matrix with n ≥ m. The package numpy includes a func-827

tion numpy.linalg.qr that computes the QR decomposition of a matrix using828

Householder reflections.829

2. In each iteration of the loop in Algorithm 1, the method QR-decomp with mode830

= ‘complete’ takes as input a matrix Ai of size ni × (nred
i−1 + 1), and pro-831

duces an orthogonal matrix Qi ∈ O(ni) and an upper-triangular matrix Ri832

of size min(ni, nred
i−1 + 1) × (nred

i−1 + 1) such that Ai = Qi ◦ inci ◦ Ri. Note that833

nred
i = min(ni, nred

i−1 + 1).834

3. The QR decomposition is not unique in general, or, in other words, the map µ is835

not injective in general. For example, if n > m, each fiber of µ contains a copy of836

the orthogonal group O(n−m).837

4. The QR decomposition is unique (in a certain sense) for invertible square matrices.838

To be precise, let B+
n be the subset of of (Rn×n)

upper consisting of upper triangular839

n by n matrices with positive entries along the diagonal. Both B+
n and O(n)840

are subgroups of the general linear group GLn(R), and the multiplication map841

O(n)× B+
n → GLn(R) is bijective. However, the QR decomposition is not unique842

for non-invertible square matrices.843

C.2 Radial rescaling functions844

We now prove the following basic facts about radial rescaling functions:845

Lemma 19. Let ρ = h(n) : Rn → Rn be a radial rescaling function on Rn.846

1. The function ρ commutes with any orthogonal transformation of Rn. That is, ρ ◦Q = Q ◦ ρ847

for any Q ∈ O(n).848

2. If m ≤ n and inc : Rm ↪→ Rn is the standard inclusion into the first m coordinates, then:849

h(n) ◦ inc = inc ◦ h(m).850

Proof. Suppose Q ∈ O(n) is an orthogonal transformation of Rn. Since Q is norm-851

preserving, we have |Qv| = |v| for any v ∈ Rn. Since Q is linear, we have Q(λv) = λQv852

for any λ ∈ R and v ∈ Rn. Using the definition of a = h(n) we compute:853

ρ(Qv) =
h(|Qv|)
|Qv| Qv =

h(|v|)
|v| Qv = Q

(
h(|v|)
|v| v

)
= Q(ρ(v)).

The first claim follows. The second claim is an elementary verification.854

More generally, the restriction of the radial rescaling function ρ to a linear subspace of Rn
855

is a radial rescaling function on that subspace. Given a tuple radial rescaling functions ρ =856

(ρi : Rni → Rni)L
i=1 suited to widths n = (ni)

L
i=1, we write ρred =

(
ρred

i : Rnred
i → Rnred

i

)
857

for the tuple of restrictions suited to the reduced widths nred, so that ρred
i = ρi

∣∣∣∣
R

nred
i

.858

23

https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html

C.3 Proof of Theorem 6859

Adopting notation from above and Section 5, we now restate and prove Theorem 6.860

Theorem 6. Let (W, b, ρ) be a radial neural network with widths n. Let Wred and bred be the861

weights and biases of the compressed network produced by Algorithm 1. The feedforward function862

of the original network (W, b, ρ) coincides with that of the compressed network (Wred, bred, ρred).863

Proof. Let (Wred, bred, Q) = QR-Compress(W, b) be the output of Algorithm 1, so that864

Q ∈ O(nhid) and (Wred, bred, ρred) is a neural network with widths nred and radial865

rescaling activations ρred
i = ρi

∣∣∣∣
R

nred
i

. Let F = F(W,b,ρ) denote the feedforward function866

of the radial neural network with parameters (W, b) and activations ρ. Similarly, let867

Fred = F(Wred,bred,ρred) denote the feedforward function of the radial neural network with868

parameters (Wred, bred) and activations ρred. Additionally, we have the partial feedforward869

functions Fi and Fred
i . We show by induction that870

Fi = Qi ◦ inci ◦ Fred
i

for any i = 0, 1, . . . , N. (Continuing conventions from Sections 5.1 and 5.2, we set Q0 =871

idRn0 , QL = idRnL , and inci : Rnred
i → Rni to be the inclusion map.) The base step i = 0872

immediate. For the induction step, let x ∈ Rn0 . Then:873

Fi(x) = ρi (Wi ◦ Fi−1(x) + bi)

= ρi

(
Wi ◦Qi−1 ◦ inci−1 ◦ Fred

i−1(x) + bi

)
= ρi

(
[bi Wi ◦Qi−1 ◦ inci−1]

[
1

Fred
i−1(x)

])
= ρi

(
Qi ◦ inci ◦

[
bred

i Wred
i

] [1
Fred

i−1(x)

])
= Qi ◦ inci ◦ ρi

∣∣∣∣
R

nred
i

(
Wred

i ◦ Fred
i−1(x) + bred

i

)
= Qi ◦ inci ◦ Fred

i

The first equality relies on the definition of the partial feedforward function Fi; the second874

on the induction hypothesis; the fourth on an inspection of Algorithm 1, noting that875

Ri = [bred
i Wred

i]; the fifth on the results of Lemma 19, observing that ρi ◦ inci = ρi|
R

nred
i

=876

inci ◦ ρred
i ; and the sixth on the definition of Fred

i . In the case i = L, we have:877

F = FL = QL ◦ incL ◦ Fred
L = Fred

since QL = incL = idRnL and Fred
L = Fred. The theorem now follows.878

The techniques of the above proof can be used to show that the action of the group O(nhid)879

of orthogonal change-of-basis symmetries on the parameter space Param(n) leaves the880

feedforward function unchanged. We do not use this result directly, but state is precisely it881

nonetheless:882

Proposition 20. Let (W, b, ρ) be a radial neural network with widths vector n. Suppose g ∈883

O(nhid). Then the original and transformed networks have the same feedforward function:884

F(g·W, g·b, ρ) = F(W, b, ρ)

In other words, fix parameters (W, b) ∈ Param(n), radial rescaling activations ρ, and g ∈885

O(nhid). Then the radial neural network with parameters (W, b) has the same feedforward886

24

function as the radial neural network with transformed parameters (g ·W, g · b), where we887

take radial rescaling activations ρ in both cases.888

We remark that Proposition 20 is analogous to the “non-negative homogeneity” (or “positive
scaling invariance”) of the pointwise ReLU activation function3. In that setting, instead of
considering the product of orthogonal groups O(nhid), one considers the rescaling action
of the following subgroup of ∏L−1

i=1 GLni :

G =

{
g = (gi) ∈

L−1

∏
i=1

GLni | each gi is diagonal with positive diagonal entries

}

Note that G is isomorphic to the product ∏L−1
i=1 R

ni
>0, and the action on Param(n) is given889

by the same formulas as those appearing near the end of Section 5.1. The feedforward890

function of a MLP with pointwise ReLU activations is invariant for the action of G on891

Param(n).892

D Projected gradient descent proofs893

In this section, we give a proof of Theorem 8, which relates projected gradient descent894

for a representation with dimension n to (usual) gradient descent for the corresponding895

reduced representation with dimension vector nred. This proof requires some set up and896

background resutls.897

D.1 Gradient descent and orthogonal symmetries898

We first prove a result that gradient descent commutes with invariant orthogonal trans-899

formations. This section is general and departs from the specific case of radial neural900

networks.901

D.1.1 Setting902

Let L : V = Rp → R be a smooth function. Semantically, V is a the parameter space of903

a neural network and L the loss function with respect to a batch of training data. The904

differential dLv of L at v ∈ V is row vector, while the gradient ∇vL of L at v is a column905

vector4:906

dLv =

[
∂L
∂x1

∣∣∣∣
v
· · · ∂L

∂xp

∣∣∣∣
v

]
∇vL =


∂L
∂x1

∣∣∣∣
v

...
∂L
∂xp

∣∣∣∣
v


Hence ∇vL is the transpose of dLv, that is: ∇vL = (dLv)T . A step of gradient descent907

with respect to L at learning rate η > 0 is defined as:908

γ = γη : V −→ V

v 7−→ v− η∇vL

3See Armenta and Jodoin, The Representation Theory of Neural Networks, arXiv:2007.12213; Dinh,
Pascanu, Bengio, and Bengio, Sharp Minima Can Generalize For Deep Nets, ICML 2017; Meng, Zheng,
Zhang, Chen, Ye, Ma, Yu, and Liu, G-SGD: Optimizing ReLU Neural Networks in its Positively Scale-
Invariant Space, 2019; and Neyshabur, Salakhutdinov, and Srebro. Path-SGD: path-normalized optimiza-
tion in deep neural networks, NIPS’15.

4Following usual conventions, we regard column vectors as elements of V and row vectors as
elements of the dual vector space V∗. The differential dLv of L at v ∈ V is also known as the Jacobian
of L at v ∈ V.

25

Figure 5: Illustration of Lemma 22. If the loss is invariant with respect to an orthogonal
transformation Q of the parameter space, then optimization of the network by gradient
descent is also invariant with respect to Q. (Note: in this example, projected and usual
gradient descent match; this is not the case in higher dimensions, as explained in D.6.)

We drop η from the notation when it is clear from context. For any k ≥ 0, we denote by γk
909

the k-fold composition of the gradient descent map γ:910

γk =

k︷ ︸︸ ︷
γ ◦ γ ◦ · · · ◦ γ

D.1.2 Invariant group action911

Now suppose ρ : G → GL(V) is an action of a Lie group G on V such that L is G-invariant,912

i.e.:913

L(ρ(g)(v)) = L(v)
for all g ∈ G and v ∈ V. We write simply g · v for ρ(g)(v), and g for ρ(g).914

Lemma 21. For any v ∈ V and g ∈ G, we have:

∇vL = gT · (∇g·vL)

Proof. The proof is a computation:915

∇vL = (dvL)T = (d(L ◦ g)v)
T = (dLg·v ◦ dgv)

T = (dLg·v ◦ g)T = gT · (dLg·v)
T

= gT · (∇Lg·v)

The second equality relies on the hypothesis that L ◦ g = L, the third on the chain rule,916

and the fourth on the fact that dgv = g since g is a linear map.917

One can perform the computation of the proof in coordinates, for i = 1, . . . , p:918

(∇vL)i = (dLv)
i =

∂L
∂xi

∣∣∣∣
v
=

∂(L ◦ g)
∂xi

∣∣∣∣
v
=

∂L
∂xj

∣∣∣∣
gv

∂gj

∂xi

∣∣∣∣
v

=
(
∇gvL

)
j gi

j = (gT)
j
i
(
∇gvL

)
j =

(
gT · ∇gvL

)
i

D.1.3 Orthogonal case919

Furthermore, suppose the action of G is by orthogonal transformations, so that ρ(g)T =920

ρ(g)−1 for all g ∈ G. Then Lemma 21 implies that921

∇g·vL = g · ∇vL (D.1)
for any v ∈ V and g ∈ G. The proof of the following lemma is immediate from Equation922

D.1, together with the definition of γ. See Figure 5 for an illustration.923

Lemma 22. Suppose the action of G on V is by orthogonal transformations, and that L is G-924

invariant. Then the action of G commutes with gradient descent (for any learning rate). That925

is,926

γk(g · v) = g · γk(v)
for any v ∈ V, g ∈ G, and k ≥ 0.927

26

D.2 Gradient descent notation and set-up928

We now turn our attention back to radial neural networks. In this section, we recall notation929

from above, and introduce new notation that will be relevant for the formulation and proof930

of Theorem 8.931

D.2.1 Merging widths and biases932

Let n = (n0, n1, n2, . . . , nL−1, nL) be the widths vector of an MLP. Recall the definition of933

Param(n) as the parameter space of all possible choices of trainable parameters:934

Param(n) =
(
Rn1×n0 ×Rn2×n1 × · · · ×RnL×nL−1

)
× (Rn1 ×Rn2 × · · · ×RnL)

We have been denoting an element therein as a pair of tuples (W, b) where W = (Wi ∈935

Rni×ni−1)L
i=1 are the weights and b = (bi ∈ Rni)L

i=1 are the biases. However, in this936

appendix we adopt different notation. Observe that, placing each bias vector as a extra937

column on the left of the weight matrix, we obtain matrices:938

Ai = [bi Wi] ∈ Rni×(1+ni−1).

Thus, there is an isomorphism:939

Param(n) ≃
L⊕

i=1

Rni×(ni−1+1) = Rn1×(n0+1) ×Rn2×(n1+1) × · · · ×RnL×(nL−1+1)

In this appendix, we regard an element of Param(n) as a tuple of ‘merged’ matrices940

A = (Ai ∈ Rni×(1+ni−1))L
i=1. We now define convenient maps to translate between the941

merged notation and the split notation. For each i, define the extension-by-one map from942

Rni to R×Rni ≃ Rni+1 as follows:943

exti : Rni → Rni+1 v = (v1, v2, . . . , vni) 7→ (1, v1, v2, . . . , vni) (D.2)

Observe that, for any i and x ∈ Rni−1 , we have

Ai ◦ exti−1(x) = Wix + bi.

Consequently, the i-th partial feedforward function can be defined recursively as:944

Fi = ρi ◦ Ai ◦ exti−1 ◦ Fi−1 (D.3)

where ρi : Rni → Rni is the activation5 at the i-th layer, and F0 is the identity on Rn0 .945

D.2.2 Orthogonal change-of-basis action946

To describe the orthogonal change-of-basis symmetries of the parameter space in the947

merged notation, recall the following product of orthogonal groups, with sizes correspond-948

ing to the widths of the hidden layers:949

O(nhid) = O(n1)×O(n2)× · · · ×O(nL−1)

In the merged notation, the element Q = (Qi)
L−1
i=1 ∈ O(nhid) transforms A ∈ Param(n) as:950

A 7→ Q ·A :=
(

Qi ◦ Ai ◦
[

1 0
0 Q−1

i−1

])L

i=1
(D.4)

where Q0 = idn0 and QL = idnL .951

5In this general formulation, ρi can be any piece-wise differentiable function; for most of the rest
of the paper we will be interested in the case where ρi is a radial rescaling function.

27

D.2.3 Model compression algorithm952

We now restate Algorithm 1 in the merged notation. We emphasize that Algorithms 1 and953

2 are mathematically equivalent; the later simply uses more compact notation.954

Algorithm 2: QR Model Compression (QR-compress)

input : A ∈ Param(n)
output : Q ∈ O(nhidden) and V ∈ Param(nred)

Q, V← [], [] // initialize output matrix lists
M1 ← A1
for i← 1 to L− 1 do // iterate through layers

Qi, Ri ← QR-decomp(Mi, mode = ‘complete’) // Mi = Qi ◦ inci ◦ Ri
Append Qi to Q
Append Ri to V // reduced merged weights for layer i

Set Mi+1 ← Ai+1 ◦
[

1 0
0 Qi ◦ inci

]
// transform next layer

end
Append ML to V

return Q, V

955

We explain the notation. As noted in Appendix B.1, the symbol ‘◦’ denotes composition956

of maps, or matrix multiplication in the case of linear maps. The standard inclusion957

inci : Rnred
i ↪→ Rni maps into the first nred

i coordinates. As a matrix, Inci ∈ Rni×nred
i has958

ones along the main diagonal and zeros elsewhere. The method QR-decomp with mode =959

‘complete’ computes the complete QR decomposition of the ni × (1 + nred
i−1) matrix Mi as960

Qi ◦ inci ◦ Ri where Qi ∈ O(ni) and Ri is upper-triangular of size nred
i × (1 + nred

i−1). The961

definition of nred
i implies that either nred

i = nred
i−1 + 1 or nred

i = ni. The matrix Ri is of size962

nred
i × nred

i in the former case and of size ni × (1 + nred
i−1) in the latter case.963

D.2.4 Gradient descent definitions964

As in Section 6, we fix:965

• a widths vector n = (n0, n1, . . . , nL).966

• a tuple ρ = (ρ1, . . . , ρL) of radial rescaling activations, where ρi : Rni → Rni for967

i = 1, . . . , L.968

• a batch of training data {(xj, yj)} ⊆ Rn0 ×RnL = Rnred
0 ×Rnred

L .969

• a cost function C : RnL ×RnL → R970

As a result, we have a loss function on Param(n):971

L : Param(n)→ R L(A) = ∑ C(F(A,ρ)(xj), yj)

where F(A,ρ) is the feedforward of the radial neural network with (merged) parameters A972

and activations ρ. We emphasize that the loss function L depends on the batch of training973

data chosen above; however, for clarity, we omit extra notation indicating this dependency974

since the batch of training data is fixed throughout this discussion. Similarly, we have:975

• the reduced widths vector nred = (nred
0 , nred

1 , . . . , nred
L).976

• the restrictions ρred = (ρred
1 , . . . , ρred

L), where ρred
i : Rnred

i → Rnred
i for i = 1, . . . , L.977

Using the fact that nred
0 = n0 and nred

L = nL, there is a loss function on Param(nred):978

Lred : Param(nred)→ R Lred(B) = ∑ C(F(B,ρred)(xj), yj)

28

where F(B,ρred) is the feedforward of the radial neural network with parameters B ∈979

Param(nred) and activations ρred. (Again, technically speaking, the loss function Lred980

depends on the batch of training data fixed above.) For any learning rate η > 0, we obtain981

a gradient descent maps:982

γ : Param(n)→ Param(n) γred : Param(nred)→ Param(nred)

A 7→ A− η∇AL B 7→ B− η∇BLred

D.3 The interpolating space983

In this section, we introduce a subspace Paramint(n) of Param(n), that, as we will later see,984

interpolates between Param(n) and Param(nred).985

Let Paramint(n) denote the subspace of Param(n) consisting of those T = (T1, . . . , TL) ∈986

Param(n) for which the bottom left (ni − nred
i)× (1 + nred

i−1) block of Ti is zero for each i.987

Schematically:988

Ti =

[
∗ ∗
0 ∗

]
where the rows are divided as nred

i on top and ni − nred
i on the bottom, while the columns989

are divided as (1 + nred
i−1) on the left and ni−1 − nred

i−1 on the right. Let990

ι1 : Paramint(n) ↪→ Param(n)

be the inclusion. The following proposition follows from an elementary analysis of the991

workings of Algorithm 2 (or, equivalently, Algorithm 1).992

Proposition 23. Let A ∈ Param(n) and let Q ∈ O(nhid) be the tuple of orthogonal matrices993

produced by Algorithm 2. Then Q−1 ·A belongs to Paramint(n).994

Define a map995

q1 : Param(n)→ Paramint(n)

by taking A ∈ Param(n) and zeroing out the bottom left (ni − nred
i)× (1 + nred

i−1) block of996

Ai for each i. Schematically:997

A =

(
Ai =

[
∗ ∗
∗ ∗

])L

i=1
7→ q1(A) =

([
∗ ∗
0 ∗

])L

i=1

It is straightforward to check that q1 is a well-defined, surjective linear map. The transpose998

of q1 is the inclusion ι1. We summarize the situation in the following diagram:999

Paramint(n)
ι1

--
Param(n)

q1

mm (D.5)

We observe that the composition q1 ◦ ι is the identity on Paramint(n).1000

D.4 Projected gradient descent and model compression1001

Recall from Section 6 that the projected gradient descent map on Param(n) is given by:1002

γproj : Param(n)→ Param(n), A 7→ Proj (A− η∇AL)

where A = (W, b) are the merged parameters (Appendix D.2), and, in the notation of the1003

previous section, the map Proj is ι1 ◦ q1. To reiterate, while all entries of each weight matrix1004

and each bias vector contribute to the computation of the gradient ∇AL = ∇(W,b)L, only1005

those not in the bottom left submatrix get updated under the projected gradient descent1006

map γproj.1007

29

Let V, Q = QR-Compress(A) be the outputs of Algorithm 2 (which is equivalent to1008

Algorithm 1), so that V = (Wred, bred) ∈ Param(nred) are the parameters of the com-1009

pressed model corresponding to the full model with merged parameters A = (W, b), and1010

Q ∈ O(nhid) is an orthogonal change-of-basis symmetry of the parameter space. Moreover,1011

set T = Q−1 ·A ∈ Paramint(n), where we use the change-of-basis action from Appendix1012

D.2 and Proposition 23. We have the following rephrasing of Theorem 8.1013

Theorem 24 (Theorem 8). Let A ∈ Param(n), and let V, Q, T be as above. For any k ≥ 0:1014

1. γk(A) = Q · γk(T)1015

2. γk
proj(T) = γk

red(V) + T−V.1016

More precisely, the second equality is γk
proj(T) = ι(γk

red(V)) + T − ι(V) where ι :1017

Param(nred) ↪→ Param(n) is the inclusion into the top left corner in each coordinate.1018

Also, in the statement of Theorem 8, we have U = T−V.1019

We summarize this result in the following diagram. The left horizontal maps indicate1020

the addition of U = T−V, the right horizontal arrows indicate the action of Q, and the1021

vertical maps are various versions of gradient descent. The shaded regions indicate the1022

(smallest) vector space to which the various representations naturally belong.1023

V T W

γk
red(V) γk

proj(T) γk(T) γk(W)

+T−V

proj-GD on Param(n)

+T−V

GD on Param(nred) GD on Param(n)

Q·

Q·

GD on Param(n)

Param(nred) Paramint(n) Param(n)

D.5 Proof of Theorem 81024

We begin by explaining the sense in which Paramint(n) interpolates between Param(n) and1025

Param(nred). One extends Diagram D.5 as follows:1026

Param(nred)
ι2

--
Paramint(n)

q2

mm

ι1
--
Param(n)

q1

mm

• The map1027

ι2 : Param(nred) ↪→ Paramint(n)

takes B = (Bi) ∈ Param(nred) and pad each matrix with ni − nred
i rows of zeros on1028

the bottom and ni−1 − nred
i−1 columns of zeros on the right:1029

B = (Bi)
L
i=1 7→ ι2(B) =

([
Bi 0
0 0

])L

i=1

It is straightforward to check that ι2 is a well-defined injective linear map.1030

• The map1031

q2 : Paramint(n) ↠ Param(nred)

30

extracts from T the top left nred
i × (1 + nred

i−1) matrix:1032

T =

(
Ti =

[
T(1)

i T(2)
i

0 T(4)
i

])L

i=1

7→ q2(T) =
(

T(1)
i

)L

i=1

It is straightforward to check that q2 is a surjective linear map. The transpose of q21033

is the inclusion ι2.1034

1035

Lemma 25. We have the following:1036

1. The inclusion ι : Param(nred) ↪→ Param(n) coincides with the composition ι1 ◦ ι2, and1037

commutes with the loss functions:1038

Param(nred) �
� ι1◦ι2=ι

//

Lred
%%

Param(n)

L
zz

R

2. The following diagram commutes:1039

Paramint(n)
q2

// //
_�

ι1

��

Param(nred)

Lred

��

Param(n) L // R

3. For any T ∈ Paramint(n), we have: q1

(
∇ι1(T)L

)
= ι2

(
∇q2(T)Lred

)
.1040

Proof. We have the following standard inclusions into the first coordinates and projections1041

onto the first coordinates, for i = 0, 1, . . . , L:1042

inci = incnred
i ,ni

: Rnred
i ↪→ Rni , ĩnci = inc1+nred

i ,1+ni
: R1+nred

i ↪→ R1+ni ,
1043

πi : Rni ↠ Rnred
i , π̃i : R1+ni ↠ R1+nred

i .
Observe that Paramint(n) is the subspace of Param(n) consisting of those T = (T1, . . . , TL) ∈1044

Param(n) such that:1045

(idni − inci ◦ πi) ◦ Ti ◦ ĩnci−1 ◦ π̃i−1 = 0
for i = 1, . . . , L.1046

By the definition of radial rescaling functions, for each i = 1, . . . , L, there is a piece-wise1047

differentiable function hi : R → R such that ρi = h(ni)
i . Note that ρred

i = h
(nred

i)
i , and1048

h(ni) ◦ inci = inci ◦ h(n
red
i).1049

The identity ι = ι1 ◦ ι2 follows directly from definitions. To prove the commutativity of1050

the first diagram, it is enough to show that, for any X in Param(nred), the feedforward1051

functions of X and ι(X) coincide. This follows easily from the fact that, for i = 1, . . . , L, we1052

have:1053

πi ◦ h(ni) ◦ inci = πi ◦ inci ◦ h(n
red
i) = h(n

red
i).

For the second claim, let T ∈ Paramint(n). It suffices to show that ι1(T) and q2(T)1054

have the same feedforward function. Recall the exti maps and the formulation of the1055

feedforward function in the merged notation given in Equation D.3. Using this set-up, the1056

key computation is:1057

inci ◦ h(n
red
i) ◦ πi ◦ Ti ◦ extni−1 ◦ inci−1 = h(ni) ◦ inci ◦ πi ◦ Ti ◦ ĩnci−1 ◦ extni−1

= h(ni) ◦ Ti ◦ ĩnci−1 ◦ extni−1

= h(ni) ◦ Ti ◦ extni−1 ◦ inci−1

31

which uses the fact that (idni − inci ◦ πi) ◦ Ti ◦ ĩnci−1 = 0, or, equivalently, inci ◦ πi ◦ Ti ◦1058

ĩnci−1 = Ti ◦ ĩnci−1, as well as the fact that exti ◦ inci = ĩnci ◦ exti. Applying this relation1059

successively starting with the second-to-last layer (i = L− 1) and ending in the first (i = 1),1060

one obtains the result. For the last claim, one computes ∇T(L ◦ ι1) in two different ways.1061

The first way is:1062

∇T(L ◦ ι1) = (d(LT ◦ ι1))
T =

(
dLι1(T) ◦ dTι1

)T
=
(

dLι1(T) ◦ ι1

)T

= ιT1

(
dLT

ι1(T)

)
= q1

(
∇ι1(T)L

)
where we use the fact that ι1 is a linear map whose transpose is q1. The second way uses1063

the commutative diagram of the second part of the Lemma:1064

∇T(L ◦ ι1) = ∇T (Lred ◦ q2) = (d (Lred)T ◦ q2)
T =

(
d (Lred)q2(T) ◦ d (q2)Z

)T

=
(

d (Lred)q2(T) ◦ q2

)T
= qT

2

(
d (Lred)

T
q2(T)

)
= ι2

(
∇q2(T)Lred

)
.

We also use the fact that q2 is a linear map whose transpose is ι2.1065

Proof of Theorem 8. As above, let R, Q = QR-compress(A) be the outputs of Algorithm1066

1, so that V = (Wred, bred) ∈ Param(nred) is the dimensional reduction of the merged1067

parameters A = (W, b), and Q ∈ O(nhid). Set T = Q−1 ·A ∈ Paramint(n).1068

The action of Q ∈ O(nhid) on Param(n) is an orthogonal transformation, so the first claim1069

follows from Lemma 22.1070

For the second claim, it suffices to consider the case η = 1. The general case follows1071

similarly. We proceed by induction. The base case k = 0 amounts to Theorem 6. For the1072

induction step, we set1073

Z(k) = ι(γk
red(V)) + T− ι(V).

Each Z(k) belongs to Paramint(n), so i1(Z(k)) = Z(k). Moreover, q2

(
Z(k)

)
= γk

red(V). We1074

compute:1075

γk+1
proj(Q

−1 ·A) = γproj

(
γk

proj(Q
−1 ·A)

)
= γproj

(
ι(γk

red(V)) + T− ι(V)
)

= ι1 ◦ q1

(
ι(γk

red(V)) + T− ι(V)−∇ι(γk
red(V))+T−ι(V)L

)
= ι(γk

red(V))− ι1 ◦ q1

(
∇ι1(Z(k))L

)
+ T− ι(V)

= ι(γk
red(V))− ι1 ◦ ι2

(
∇q2(Z(k))Lred

)
+ T− ι(V)

= ι
(

γk
red(V)−∇γk

red(V)Lred

)
+ T− ι(V)

= ι
(

γk+1
red (V)

)
+ T− ι(V)

where the second equality uses the induction hypothesis; the third invokes the definition1076

of γproj; the fourth uses the fact that Z(k) = ι(γk
red(V)) + T− ι(V) belongs to Paramint(n);1077

the fifth and sixth use Lemma 25 above; and the last uses the definition of γred.1078

D.6 Example1079

We now discuss an example where projected gradient descent does not match usual1080

gradient descent.1081

32

Let n = (1, 3, 1) be a widths vector. The space of parameters with this widths vector is1082

10-dimensional:1083

Param(n) = Hom(R2, R3)⊕Hom(R4, R) ≃ R10.

We identify a choice of parameters (in the merged notation)1084

A =

 A1 =

a b
c d
e f

 , A2 = [g h i j]

 ∈ Param((1, 3, 1)) (D.6)

with the point p = (a, b, c, d, e, f , g, h, i, j) in R10. To be even more explicit, the weights for1085

the first layer are W1 =

b
d
f

, the bias in the first hidden hidden layer is b1 = (a, c, e), the1086

weights for the second layer are W2 = [h i j], and the bias for the output layer is b2 = g.1087

The action of the orthogonal group O(n) = O(3) on Param(n) ≃ R10 can be expressed as:1088

Q 7→

Q 0 0 0
0 Q 0 0
0 0 1 0
0 0 0 Q

 ,

where the rows and columns are divided according to the partition 3 + 3 + 1 + 3 = 10.1089

Consider the function6:1090

L : Param(n)→ R

p = (a, b, c, d, e, f , g, h, i, j) 7→ h(a + b) + i(c + d) + j(e + f) + g

By the product rule, we have:1091

∇pL = (h, h, i, i, j, j, 1, a + b, c + d, e + f)

One easily checks that L(Q · p) = L(p) and that ∇Q·pL = Q · ∇pL for any Q ∈ O(3).1092

The interpolating space is the eight-dimensional subspace of Param(n) ≃ R10 with e =1093

f = 0 (using the notation of Equation D.6). Suppose p′ = (a, b, c, d, 0, 0, g, h, i, j) belongs to1094

the interpolating space. Then the gradient is1095

∇p′L = (h, h, i, i, j, j, 1, a + b, c + d, 0)

which does not belong to the interpolating space. So one step of usual gradient descent,1096

with learning rate η > 0 yields:1097

γ :p′ = (a, b, c, d, 0, 0, g, h, i, j) 7→
(a− ηh , b− ηh , c− ηi , d− ηi , −η j , −η j , g− η , h− η(a + b) , i− η(c + d) , j)

On the other hand, one step of projected gradient descent yields:1098

γproj : p′ = (a, b, c, d, 0, 0, g, h, i, j) 7→
(a− ηh , b− ηh , c− ηi , d− ηi , 0 , 0 , g− η , h− η(a + b) , i− η(c + d) , j)

Direct computation shows that the difference between the evaluation of L after one step of1099

gradient descent and the evaluation of L after one step of projected gradient descent is:1100

L(γ(p′))−L(γproj(p′)) = 2η j2.

6For A ∈ Param(n), the neural function of the neural network with affine maps determined by
A and identity activation functions is R → R; x 7→ L(W)x. The function L can appear as a loss
function for certain batches of training data and cost function on R.

33

E Experiments1101

As mentioned in Section 7, we provide an implementation of Algorithm 1 in order to (1)1102

empirically validate that our implementation satisfies the claims of Theorems 6 and Theo-1103

rem 8 and (2) quantify real-world performance. Our implementation uses a generalization1104

of radial neural networks, which we explain presently.1105

E.1 Radial neural networks with shifts1106

In this section, we consider radial neural networks with an extra trainable parameter in1107

each layer that shifts the radial rescaling activation. Adding such parameters allows for1108

more flexibility in the model, and (as shown in Theorem 26) the model compression of1109

Theorem 6 holds for such networks. It is this generalization that we use in our experiments.1110

Let h : R→ R be a function. For any n ≥ 1 and any t ∈ R, the corresponding shifted radial1111

rescaling function on Rn is given by:1112

ρ = h(n,t) : v 7→ h(|v| − t)
|v| v

if v ̸= 0 and ρ(0) = 0. A radial neural network with shifts consists of the following data:1113

1. Hyperparameters: A positive integer L and a widths vector n = (n0, n1, n2, . . . , nL).1114

2. Trainable parameters:1115

(a) A choice of weights and biases (W, b) ∈ Param(n).1116

(b) A vector of shifts t = (t1, t2, . . . , tL) ∈ RL.1117

3. Activations: A tuple h = (h1, . . . , hL) of piecewise differentiable functions R→ R.1118

Together with the shifts, we have the shifted radial rescaling activation ρi = h(ni ,ti)
i :1119

Rni → Rni in each layer.1120

The feedforward function of a radial neural network with shifts is defined in the usual1121

recursive way, as in Section 3. The trainable parameters form the vector space Param(n)×1122

RL, and the loss function of a batch of training data {(xi, yi)} ⊂ Rn0 ×RnL is defined as1123

L : Param(n)×RL −→ R; (W, t) 7→∑
j
C(F(W,b,t,h)(xj), yj)

where F(W,b,t,h) is the feedforward function of a radial neural network with weights W,1124

biases b, shifts t, and radial rescaling activations produced from h. We have the gradient1125

descent map:1126

γ : Param(n)×RL −→ Param(n)×RL

which updates the entries of W, b, and t. The group O(nhid) = O(n1)× · · · ×O(nL−1)1127

acts on Param(n) as usual (see Section 5.1), and on RL trivially. The neural function1128

is unchanged by this action. We conclude that the O(nhid) action on Param(n) × RL
1129

commutes with gradient descent γ. We now state a generalization of Theorem 6 for the1130

case of radial neural networks with shifts. We omit a proof, as it uses the same techniques1131

as the proof of Theorem 6.1132

Theorem 26. Let (W, b, t, h) be a radial neural network with shifts and widths vector n. Let1133

Wred and bred be the weights and biases of the compressed network produced by Algorithm 1.1134

The feedforward function of the original network (W, b, t, h) coincides with that of the compressed1135

network (Wred, bred, t, h).1136

Theorem 8 also generalizes to the setting of radial neural networks with shifts, using1137

projected gradient descent with respect to the subspace Paramint(n)×RL of Param(n)×RL.1138

34

E.2 Implementation details1139

Our implementation is written in Python and uses the QR decomposition routine in1140

NumPy [21]. We also implement a general class RadNet for radial neural networks using1141

PyTorch [41]. For brevity, we write Ŵ for (W, b) and Ŵred for (Wred, bred).1142

(1) Empirical verification of Theorem 6. We use synthetic data to learn the function1143

f (x) = e−x2
with N = 121 samples xj = −3 + j/20 for 0 ≤ j < 121. We model fŴ1144

as a radial neural network with widths n = (1, 6, 7, 1) and activation the radial shifted1145

sigmoid h(x) = 1/(1 + e−x+s). Applying QR-compress gives a radial neural network1146

fŴred with widths nred = (1, 2, 3, 1). Theorem 6 implies that the neural functions of1147

fŴ and fŴred are equal. Over 10 random initializations of Ŵ, the mean absolute error1148

(1/N)∑j | fŴ(xj)− fŴred(xj)| = 1.31 · 10−8 ± 4.45 · 10−9. Thus fŴ and fŴred agree up to1149

machine precision.1150

(2) Empirical verification of Theorem 8. Adopting the notation from above, the claim is1151

that training fQ−1·Ŵ with objective L by projected gradient descent coincides with training1152

fŴred with objective Lred by usual gradient descent. We verified this on synthetic data1153

using 3000 epochs at learning rate 0.01. Over 10 random initializations of Ŵ, the loss1154

functions match up to machine precision with |L − Lred| = 4.02 · 10−9 ± 7.01 · 10−9.1155

(3) Reduced model trains faster. Due to the relation between projected gradient descent1156

of the full network Ŵ and gradient descent of the reduced network Ŵred, our method may1157

be applied before training to produce a smaller model class which trains faster without1158

sacrificing accuracy. We test this hypothesis in learning the function f : R2 → R2 sending1159

x = (t1, t2) to (e−t2
1 , e−t2

2) using N = 1212 samples (−3 + j/20,−3 + k/20) for 0 ≤ j, k <1160

121. We model fŴ as a radial neural network with layer widths n = (2, 16, 64, 128, 16, 2)1161

and activation the radial sigmoid h(r) = 1/(1+ e−r). Applying QR-compress gives a radial1162

neural network fŴred with widths nred = (2, 3, 4, 5, 6, 2). We trained both models until1163

the training loss was ≤ 0.01. Running on a system with an Intel i5-8257U@1.40GHz and1164

8GB of RAM and averaged over 10 random initializations, the reduced network trained in1165

15.32± 2.53 seconds and the original network trained in 31.24± 4.55 seconds.1166

F Relation to radial basis function networks1167

In this appendix, we show that radial neural networks are equivalent to a particular class of1168

multilayer radial basis functions networks. This class is obtained by imposing the condition1169

that the so-called ‘hidden dimension’ at each layer is equal to one; the total number of1170

layers, however, is unconstrained. To our knowledge, the literature contains no universal1171

approximation result for this class of radial basis functions networks.1172

F.1 Single layer case1173

We first recall the definition of a radial basis function network. A local linear model extension1174

of a radial basis function network (henceforth abbreviated simply by RBFN) consists of:1175

• An input dimension n, an output dimension m, and a ‘hidden’ dimension N.1176

• For i = 1, . . . , N, a matrix Wi ∈ Rm×n, a vector bi ∈ Rn, and a weight ai ∈ Rm.1177

• A nonlinear function7 λ : R→ R.1178

7A more general version allows for a different nonlinear function for every i = 1, . . . , N.

35

The feedforward function of a RBFN is defined as:

F : Rn → Rm x 7→
N

∑
i=1

(ai + Wi(x + bi)) λ(|x + bi|).

The integer N is commonly referred to as ‘the hidden number of neurons’. This is a bit of1179

a misnomer. Really there is only one layer with input dimension n and output dimension1180

m; the integer N is part of the specification of the activation function.1181

We observe that if N = 1 and a1 = 0, then the feedforward function is given by:

F : Rn → Rm x 7→Wρ(x + b)

where ρ is the radial rescaling function determined by λ. In words, one adds b1 = b ∈ Rn
1182

to the input vector x, applies the activation ρ to obtain new vector in Rn, and then applies1183

the linear transformation determined by the matrix W1 = W to obtain the output vector in1184

Rm. Motivated by this observation, we say that a RBFN is constrained if N = 1 and a1 = 0.1185

F.2 Constrained multilayer case1186

Next, we consider the constrained multilayer case of a radial basis functions network.1187

Specifically, a constrained multilayer RBFN consists of:1188

• A widths vector (n0, . . . , nL) where L is the number of layers.1189

• A matrix Wℓ ∈ Rnℓ×nℓ−1 for ℓ = 1, . . . , L.1190

• A vector bℓ ∈ Rnℓ for ℓ = 0, 1, . . . , L− 1.1191

• A nonlinear function λℓ : R → R for ℓ = 0, 1, . . . , L − 1. (Equivalently, the1192

corresponding radial rescaling function ρℓ : Rnℓ → Rnℓ for ℓ = 0, . . . , L− 1.)1193

The feedforward function is defined as follows. For ℓ = 0, . . . , L, we recursively define
Fℓ : Rn0 → Rnℓ by setting F0(x) = x and

Fℓ(x) = Wℓρℓ−1(Fℓ−1(x) + bℓ−1)

for ℓ = 1, . . . , L. The feedforward function is FL.1194

F.3 Relation to radial neural networks1195

We now demonstrate that radial neural networks are equivalent to multilayer RBFNs.1196

Proposition 27. For any radial neural network, there is a constrained multilayer RBFN with the1197

same feedforward function. Conversely, for any constrained multiplayer RBFN, there is a radial1198

neural network with the same feedforward function.1199

Proof. For the first statement, let (W, b, ρ) be a radial neural network with L layers and
widths vector (n0, . . . , nL). Recall the partial feedforward functions Gℓ : Rn0 → Rnℓ defined
recursively by setting G0(x) = x and

Gℓ(x) = ρℓ (WℓGℓ−1(x) + bℓ)

The feedforward function is GL. Consider the constrained multilayer RBFN with L + 11200

layers and the following:1201

• Widths vector (n0, n1, . . . , nL−1, nL, nL). The last two layers have the same dimen-1202

sion.1203

• Weight matrices Wℓ ∈ Rnℓ×nℓ−1 for ℓ = 1, . . . , L and WL+1 = idnL ∈ RnL×nL .1204

• A vector bℓ ∈ Rnℓ for ℓ = 1, . . . , L, and b0 = 0 ∈ Rn0 .1205

• A radial rescaling activation ρℓ : Rnℓ → Rnℓ for ℓ = 1, . . . , L, and ρ0 = idn0 .1206

36

Let Fℓ be the partial feedforward functions for this RBFN, defined recursively as above. We
claim that

Fℓ(x) = Wℓ ◦ Gℓ−1(x)
for any x ∈ Rn0 and ℓ = 1, . . . , L. We prove this by induction. The base case is ℓ = 1:

F1(x) = W1 ◦ ρ0 (F0(x) + b0) = W1x = W1 ◦ G0(x)

For the induction step, take ℓ > 1 and compute:

Fℓ(x) = Wℓ ◦ ρℓ−1 (Fℓ−1(x) + bℓ−1) = Wℓ ◦ ρℓ−1 (Wℓ−1Gℓ−2(x) + bℓ−1) = Wℓ ◦ Gℓ−1(x)

The first claim now follows from the case ℓ = L, using the fact that WL+1 is the identity.1207

For the second statement, let (W, b, ρ) be a constrained multilayer RBFN with L layers and1208

widths vector (n0, . . . , nL). Consider the radial neural network with L + 1 layers and the1209

following:1210

• Widths vector (n0, n0, n1, . . . , nL−1, nL). The first two layers have the same dimen-1211

sion.1212

• Weight matrices given by W̃1 = idn0 and W̃ℓ = Wℓ−1 for ℓ = 2, . . . , L + 1.1213

• Bias vectors given by b̃ℓ = bℓ−1 for ℓ = 1, 2, . . . , L, and b̃L+1 = 0.1214

• Radial rescaling activations given by ρ̃ℓ = ρℓ−1 for ℓ = 1, . . . , L, and ρ̃L+1 = idnL .1215

One uses the recursive definition of the partial feedforward functions to show that, for
ℓ = 1, . . . , L, we have Fℓ(x) = Wℓ ◦ Gℓ(x), where Fℓ and Gℓ are the partial feedforward
functions of the RBFN and radial neural network, respectively. Then:

GL+1(x) = ρ̃L+1
(
W̃L+1 ◦ GL(x) + b̃L+1

)
= WL ◦ GL(x) = FL(x),

so the two feedforward functions coincide.1216

F.4 Conclusions1217

While radial neural networks are equivalent to a certain class of radial basis function1218

network, we point out differences between our results and the standard theory of radial1219

basis functions network. First, RBFNs generally only have two layers; we consider ones1220

with unbounded depth. Second, to our knowledge, ours is the first universal approximation1221

result such that:1222

• it uses networks in the subclass of multilayer RBFNs satisfying the constraint that1223

all the number of ‘hidden neurons’ in each layer is equal to 1.1224

• it approximates functions with networks of bounded width.1225

• it can be used to approximate asymptotically affine functions, rather than functions1226

defined on a compact domain.1227

Our compressibility result may apply to multilayer RBFNs where the number of ‘hidden1228

neurons’ Nℓ at each layer is not equal to 1, but we expect the compression to be weaker,1229

and that constrained mulitlayer RBFNs are in some sense the most compressible type of1230

RBFN.1231

37

	Introduction
	Related work
	Radial neural networks
	Universal Approximation
	Approximation of asymptotically affine functions
	Bounded width approximation

	Model compression
	The parameter space
	Model compression

	Projected gradient descent
	Experiments
	Conclusions and Discussion
	Organization of the appendices
	Universal approximation proofs and additional results
	Notation
	Topology
	Proof of Theorem 3: UA for asymptotically affine functions
	Proof of Theorem 5: bounded width UA for asymptotically affine functions
	Additional result: bound of max(n,m) + 1
	Additional result: bound of max(n,m)

	Model compression proofs
	The QR decomposition
	Radial rescaling functions
	Proof of Theorem 6

	 Projected gradient descent proofs
	Gradient descent and orthogonal symmetries
	Setting
	Invariant group action
	Orthogonal case

	Gradient descent notation and set-up
	Merging widths and biases
	Orthogonal change-of-basis action
	Model compression algorithm
	Gradient descent definitions

	The interpolating space
	Projected gradient descent and model compression
	Proof of Theorem 8
	Example

	Experiments
	Radial neural networks with shifts
	Implementation details

	Relation to radial basis function networks
	Single layer case
	Constrained multilayer case
	Relation to radial neural networks
	Conclusions

