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Abstract

A seminal result in game theory is von Neumann’s minmax theorem, which states
that zero-sum games admit an essentially unique equilibrium solution. Classical
learning results build on this theorem to show that online no-regret dynamics
converge to an equilibrium in a time-average sense in zero-sum games. In the past
several years, a key research direction has focused on characterizing the day-to-
day behavior of such dynamics. General results in this direction show that broad
classes of online learning dynamics are cyclic, and formally Poincaré recurrent,
in zero-sum games. We analyze the robustness of these online learning behaviors
in the case of periodic zero-sum games with a time-invariant equilibrium. This
model generalizes the usual repeated game formulation while also being a realistic
and natural model of a repeated competition between players that depends on
exogenous environmental variations such as time-of-day effects, week-to-week
trends, and seasonality. Interestingly, time-average convergence may fail even in
the simplest such settings, in spite of the equilibrium being fixed. In contrast, using
novel analysis methods, we show that Poincaré recurrence provably generalizes
despite the complex, non-autonomous nature of these dynamical systems.

1 Introduction

The study of learning dynamics in zero-sum games is arguably as old of a field as game theory
itself, dating back to the seminal work of Brown and Robinson [7, 27], which followed shortly
after the foundational minmax theorem of von Neumann [33]. The dynamics of online no-regret
learning algorithms [10, 29] are of particular interest in zero-sum games as they are designed with an
adversarial environment in mind. Moreover, well known results imply that such dynamics converge
in a time-average sense to a minmax equilibrium in zero-sum games [10, 15].

Despite the classical nature of the study of online no-regret learning dynamics in zero-sum games, the
actual transient behavior of such dynamics was historically not as understood. However, in the past
several years this topic has gained attention with a number of works studying such dynamics in zero-
sum games (and variants thereof) with a particular focus on continuous-time analysis [24, 25, 20, 6,
32, 23, 22]. The unifying emergent picture is that the dynamics are “approximately cyclic" in a formal
sense known as Poincaré recurrence. Moreover, these results have acted as fundamental building
blocks for understanding the limiting behavior of their discrete-time variants [2, 12, 21, 11, 3].
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Despite the plethora of emerging results regarding online learning dynamics in zero-sum games, an
important and well motivated aspect of this problem has only begun to receive attention.

How do online learning dynamics behave if the zero-sum game evolves over time?

Clearly, the answer to this question depends critically on how the game is allowed to evolve.

Problem Setting and Model. We study periodic zero-sum games with a time-invariant equilibrium,
which is a class of games we formally define in Section 2. In a periodic zero-sum game, the payoffs
that dictate the game are both T -periodic and zero-sum at all times. We consider both periodic
zero-sum bilinear games on infinite, unconstrained strategy spaces and periodic zero-sum matrix
games (along with network generalizations thereof) on finite strategy spaces. The goal of this work is
to evaluate the robustness of the archetypal online learning behaviors in zero-sum games, Poincaré
recurrence and time-average equilibrium convergence, to this natural model of game evolution.

Connections to Repeated Game Models. The time-evolving game model we study can be seen as
a generalization of usual repeated game formulations. A time-invariant game is a trivial version of
a periodic game, in which case we recover the repeated static game setting. For a general periodic
zero-sum game with period T , each stage game now is chosen according to a fixed length T sequence
of games, capturing interactions between the players with time-dependent payoffs.

Periodic zero-sum games can also fit into the frameworks of multi-agent contextual games [28] and
dynamic games (see, e.g., [5]). In a multi-agent contextual game [28], the environment selects a
context from a set before each round of play and this choice defines the game that is played. Periodic
zero-sum games can be seen as a multi-agent contextual game where the environment draws contexts
from the available set in a T -periodic fashion with each context defining a zero-sum game with a
common equilibrium. In the class of dynamic games, there is a game state on which the payoffs
may depend that evolves with dynamics. Periodic zero-sum games can be interpreted as a dynamic
game where the state transitions do not depend on the strategies of the players, the state is T -periodic,
and the payoffs are completely defined by the state. We remark that the focus of existing work on
contextual games and dynamic games is distinct from the questions investigated in this paper.

The periodic zero-sum game model allows us to capture competitive settings where exogenous
environmental variations manifest in an effectively periodic/epochal fashion. This naturally occurs in
market competitions where time-of-day effects, week-to-week trends, and seasonality can dictate the
game between players. To illustrate this point, consider a competition between service providers that
wish to maximize their users, while the total market size evolves seasonally over time. This evolution
affects the utility functions, even if the fundamentals of the market, and consequently the equilibrium,
remain invariant.

Contributions and Approach. In this paper, for the classes of periodic zero-sum bilinear games
and periodic zero-sum polymatrix games with time-invariant equilibrium, we investigate the day-to-
day and time-average behaviors of continuous-time gradient descent-ascent (GDA) and follow-the-
regularized-leader (FTRL) learning dynamics, respectively. This study highlights the careful attention
that must be given to the dynamical systems in periodic zero-sum games which preclude standard
proof techniques for Poincaré recurrence, while also revealing that intuition from existing results
on static zero-sum games can be totally invalidated even by simple restricted examples in periodic
zero-sum games.

Contribution 1: Poincaré Recurrence. A key technical challenge in this work is that the dynamical
systems which emerge from learning dynamics in periodic zero-sum games correspond to non-
autonomous ordinary differential equations, whereas learning dynamics in static zero-sum games
correspond to autonomous ordinary differential equations. Consequently, the usual proof methods
from static zero-sum games for showing Poincaré recurrence are insufficient on their own in periodic
zero-sum games. We overcome this challenge by delicately piecing together properties of periodic
systems to construct a discrete-time autonomous system that we are able to show is Poincaré recurrent.
This approach allows to prove both the GDA and FTRL learning dynamics are Poincaré recurrent in the
respective classes of periodic zero-sum games (Theorems 1 & 2). Finally, we show both periodicity
and a time-invariant equilibrium are necessary for such results in evolving games (Proposition 1).

Contribution 2: Time-Average Strategy Equilibration Fails. Given that Poincaré recurrence
provably generalizes from static zero-sum games to periodic zero-sum games, it may be expected that
the time-average strategies in periodic zero-sum games converge to the time-invariant equilibrium
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as in static zero-sum games. Surprisingly, we show that counterexamples can be constructed to
this intuition even in the simplest of periodic zero-sum games. In particular, we prove the negative
result that the time-average GDA and FTRL strategies do not necessarily converge to the time-invariant
equilibrium in the respective classes of zero-sum games (Propositions 2 & 3).

Contribution 3: Time-Average Equilibrium Utility Convergence. Despite the negative result on
the time-average strategy convergence, in the special case of periodic zero-sum bimatrix games we
are able to show a complimentary positive result on the time-average utility convergence. Specifically,
we show that the time-average utilities of the FTRL learning dynamics converge to the average of the
equilibrium utility values of all the zero-sum games included in a single period of our time-evolving
games. (Theorem 3).

Organization. In Section 2, we formalize the classes of games that we study. We present character-
istics of dynamical systems as they pertain to this work in Section 3. Section 4 and 5 contain our
results analyzing GDA and FTRL learning dynamics in continuous and finite strategy periodic zero-sum
bilinear and polymatrix games, respectively. We present numerical experiments in Section 6 and
finish with a discussion in Section 7. Proofs of are theoretical results are deferred to the appendix.

2 Game-Theoretic Preliminaries

2.1 Continuous Strategy Periodic Zero-Sum Games

For continuous strategy periodic zero-sum games, we study periodic zero-sum bilinear games. We
begin by formalizing zero-sum bilinear games and then define the periodic variant.

Zero-Sum Bilinear Games. Given a matrix A ∈ Rn1×n2 , a zero-sum bilinear game on continuous
strategy spaces can be defined by the max-min problem maxx1∈Rn1 minx2∈Rn2 x>1 Ax2. Formally,
the game is defined by the pair of payoff matrices {A,−A>} and the action space of agents 1
and 2 are given by Rn1 and Rn2 , respectively. Player 1 seeks to maximize the utility function
u1(x1, x2) = x>1 Ax2 while player 2 optimizes the utility u2(x1, x2) = −x>2 A>x1. The game is
zero-sum since for any x1 ∈ Rn1 and x2 ∈ Rn2 , the sum of utility over each player is zero. For
zero-sum bilinear games, a Nash equilibrium corresponds to a joint strategy (x∗1, x

∗
2) such that for

each player i and j 6= i, ui(x∗i , x
∗
j ) ≥ ui(xi, x∗j ), ∀xi ∈ Rni . Note that (x∗1, x

∗
2) = (0,0) is always

a Nash equilibrium of a zero-sum bilinear game.

Periodic Zero-Sum Bilinear Games. We study the continuous-time GDA learning dynamics in a
class of games we refer to as periodic zero-sum bilinear games. The key distinction from a typical
static zero-sum bilinear game is that the payoff matrix is no longer fixed in this class of games.
Instead, the payoff matrix may change at each time instant as long as game remains zero-sum and the
continuous-time sequence of payoffs is periodic. The next definition formalizes this class of games.

Definition 1 (Periodic Zero-Sum Bilinear Game). A periodic zero-sum bilinear game is an infinite
sequence of zero-sum bilinear games {A(t),−A(t)>}∞t=0 in which the player set and strategy spaces
are fixed and the payoff matrix is such that A(t) = A(t+ T ) for a finite period T and all t ≥ 0. Note
that in such a game, (0, 0) is always a time-invariant Nash equilibrium. Furthermore, we assume that
the dependence of the payoff entries on time is smooth everywhere except for a finite set of points.

2.2 Finite Strategy Periodic Zero-Sum Games

For finite strategy periodic zero-sum games, we analyze periodic zero-sum polymatrix games. In
what follows we define a zero-sum polymatrix game, which is a network generalization of a bimatrix
game, and then detail the periodic variant considered in this paper.

Zero-Sum Polymatrix Games. An N -player polymatrix game is defined by an undirected graph
G = (V,E) where V is the player set and E is the edge set where a bimatrix game is played between
the endpoints of each edge [8]. Each player i ∈ V has a set of actions Ai = {1, . . . , ni} that can be
selected at random from a distribution xi called a mixed strategy. The mixed strategy set of player
i ∈ V is the simplex in Rni denoted by Xi = ∆ni−1 = {xi ∈ Rni≥0 :

∑
α∈Ai xiα = 1} where xiα

denotes the probability of action α ∈ Ai. The joint strategy space is denoted by by X = Πi∈V Xi.
The bimatrix game on edge (i, j) is described using a pair of matrices Aij ∈ Rni×nj and Aji ∈
Rnj×ni . The utility or payoff of agent i ∈ V under the strategy profile x ∈ X is given by ui(x) =
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∑
j:(i,j)∈E x

>
i A

ijxj and corresponds to the sum of payoffs from the bimatrix games the player
participates in. We further denote by uiα(x) =

∑
j:(i,j)∈E(Aijxj)α the utility of player i ∈ V under

the strategy profile x = (α, x−i) ∈ X for α ∈ Ai. The game is called zero-sum if
∑
i∈V ui(x) = 0

for all x ∈ X . Each bimatrix edge game is not necessarily zero-sum in a zero-sum polymatrix game.

A Nash equilibrium in a polymatrix game is a mixed strategy profile x∗ ∈ X such that for each
player i ∈ V , ui(x∗i , x

∗
−i) ≥ ui(xi, x∗−i), ∀xi ∈ Xi. A Nash equilibrium is said to be an interior if

supp(x∗i ) = Ai ∀i ∈ V where supp(x∗i ) = {α ∈ Ai : xiα > 0} is the support of x∗i ∈ Xi.
Periodic Zero-Sum Polymatrix Games. We analyze the continuous-time FTRL learning dynamics
in a class of games we call periodic zero-sum polymatrix games. This class of games is such that the
payoffs defined by the edge games evolve periodically. We consider that this periodic evolution is
such that there is a common interior Nash equilibrium that arises in each zero-sum polymatrix game
that arrives. The following definition formalizes the games we study on finite strategy spaces.

Definition 2 (Periodic Zero-Sum Polymatrix Game). A periodic zero-sum polymatrix game is an
infinite sequence of zero-sum polymatrix games {G(t) = (V (t), E(t))}∞t=0 in which the set of
players, strategy spaces, and edges are fixed and each bimatrix game on an edge (i, j) is such that
Aij(t) = Aij(t+ T ) and Aji(t) = Aji(t+ T ) for some finite period T and all t ≥ 0. We assume
there is a common interior Nash equilibrium x∗ ∈ X of the polymatrix game G(t) for all t ≥ 0.
Furthermore, we assume that the dependence of the payoff entries on time is smooth everywhere
except for a finite set of points.

3 Preliminaries on Dynamical Systems

We now cover concepts from dynamical systems theory that will help us analyze learning dynamics
in periodic zero-sum games and prove Poincaré recurrence. Careful attention must be given to these
preliminaries in this work since the dynamical systems we study are non-autonomous whereas typical
recurrence analysis in the study of learning in games deals with autonomous dynamical systems.

3.1 Background on Dynamical Systems

We begin this section by providing dynamical systems background that is necessary both for defining
Poincaré recurrence and sketching typical proof methods along with our approach.

Flows. Consider an ordinary differential equation ẋ = f(t, x) on a topological space X . We can
define the flow φ : R × X → X of a dynamical system ẋ, for which the following holds: (i)
φ(t, ·) : X → X , often denoted φt : X → X , is a homeomorphism for each t ∈ R, (ii) φ(t+ s, x) =
φ(t, φ(s, x)) for all t, s ∈ R and all x ∈ X , (iii) for each x ∈ X , d

dt |t=0φ(t, x) = f(t, x), and (iv)
φ(t, x0) = x(t) is the solution.

Existence and Uniqueness. We utilize Carathéodory’s existence theorem to guarantee the existence
of a flow for ẋ, even for some discontinuous functions f .

Theorem (Carathéodory’s existence theorem [13, 16]). Consider a differential equation ẋ = f(t, x)
on a rectangular domain R = {(t, y)| |t − t0| ≤ a, |x − x0| ≤ b}. If f satisfies the following
conditions:

1. f(t, x) is continuous in y for each fixed t,

2. f(t, x) is measurable in t for each fixed y,

3. there is a Lebesgue-integrable function m : [t0 − a, t0 + a] → [0,∞) such that
|f(t, x)| ≤ m(t) for all (t, x) ∈ R,

then the differential equation has a solution. Moreover, if f is also Lipschitz continuous, meaning
|f(t, x1)− f(t, x2)| ≤ k(t)|x1 − x2| with some Lebesgue-integrable function k : [t0 − a, t0 + a]→
[0,∞), then there exists a unique solution of the differential equation.

In the settings we study, the above three conditions hold: Condition 1 holds because for every fixed
t, the dynamics we study (specifically GDA and FTRL) are continuous functions of their state space.
Condition 2 holds because the systems we study are finite and continuous almost-everywhere, and
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so by Lusin’s theorem [18] are measurable for each fixed y. Finally, Condition 3 is always satisfied
because the games we study always admit bounded orbits. Hence, it follows that a unique flow exists
for all the dynamical systems studied in this paper.

Conservation of Volume. The flow φ of an ordinary differential equations is called volume preserving
if the volume of the image of any set U ⊆ Rd under φt is preserved, meaning that vol(φt(U)) =
vol(U). Liouville’s theorem states that a flow is volume preserving if the divergence of f at any point
x ∈ Rd equals zero: that is, divf(t, x) = tr(Df(t, x)) =

∑d
i=1

∂f(t,x)
∂xi

= 0.

We now transition to give general Poincaré recurrence statements along with discussion of how the
results are usually applied in game theory before we outline our proof methods.

3.2 Poincaré Recurrence in Autonomous Dynamical Systems

A number of works in the past several years show that online no-regret learning dynamics are Poincaré
recurrent in repeated static zero-sum games (see, e.g., [24, 20, 6]). The proof methods for deriving
such results crucially rely on the static nature of the game for the reason that the learning dynamics
amount to an autonomous dynamical system. Informally, the standard Poincaré recurrence theorem
states that if an autonomous dynamical system preserves volume and every orbit remains bounded,
almost all trajectories return arbitrarily close to their initial position, and do so infinitely often [26];
this property of a dynamical system is known as Poincaré recurrence. Thus, proving the Poincaré
recurrence of dynamics in repeated static zero-sum games is tantamount to verifying the volume
preservation and bounded orbit properties. We now formalize the Poincaré recurrence theorem.

Given a flow φt on a topological space X , a point x ∈ X is nonwandering for φt if for each
open neighborhood U containing x, there exists T > 1 such that U ∩ φT (U) 6= ∅. The set of all
nonwandering points for φt, called the nonwandering set, is denoted Ω(φt).
Theorem (Poincaré Recurrence for Continuous-Time Systems [26]). If a flow preserves volume and
has only bounded orbits, then for each open set almost all orbits intersecting the set intersect it
infinitely often: if φt is a volume preserving flow on a bounded set Z ⊂ Rd, then Ω(φt) = Z.

In order to describe our proof methods in the following subsection for showing Poincaré recurrence
in periodic zero-sum games, it will be useful for us to state an alternative formulation of the Poincaré
recurrence theorem that is applicable to autonomous discrete-time systems.
Theorem (Poincaré Recurrence for Discrete-Time Maps [4]). Let (X,Σ, µ) be a finite measure
space and let φ : X → X be a measure-preserving map. For any E ∈ Σ, the set of those points x
of E for which there exists N ∈ N such that φn(x) /∈ E for all n > N has zero measure. In other
words, almost every point of E returns to E. In fact, almost every point returns infinitely often. That
is, µ ({x ∈ E : ∃ N s.t. φn(x) /∈ E for all n > N}) = 0.

3.3 Poincaré Recurrence in Periodic Dynamical Systems

The proof methods described in the last section for showing the Poincaré recurrence of dynamics
in static zero-sum games cannot directly be applied to time-evolving zero-sum games as a result of
the non-autonomous nature of the systems. In fact, we can construct time-evolving zero-sum games
without both periodic payoffs and a time-invariant equilibrium, where online learning dynamics are
not Poincaré recurrent.3 Despite this hurdle, we show that in the natural subclass of time-evolving
games covered by periodic zero-sum games (periodic payoffs and a time-invariant equilibrium), we
can develop proof methods to show the Poincaré recurrence of online learning dynamics. Given
the previous claim regarding the possible non-recurrent nature of learning dynamics when there is
not both periodic payoffs and a time-invariant equilibrium, this is perhaps the most general class of
time-evolving zero-sum games with obtainable positive results in this direction.

We now give an overview of our approach, beginning by recalling properties of periodic systems.

Periodic Systems and Poincaré Maps. A system ẋ = f(t, x) is T -periodic if f(t+T, x) = f(t, x)
for all (x, t). Let φt : Rn → Rn denote the mapping taking x ∈ Rn to the value at time t. For
a T -periodic system, φT+s = φs ◦ φT so that φkT = (φT )k for any integer k. The mapping
φT : Rn → Rn is called the Poincaré map or the mapping at a period.

3We formalize this statement in Proposition 1 of the following section.
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If the differential equation is well-defined for all x and has a solution for all t ∈ [0, T ], then for each
initial condition (where we have suppressed the dependence on x0), the Poincaré map φT defines
a discrete-time autonomous dynamical system x+ = φT (x). The learning dynamics we study in
periodic zero-sum games form T -periodic dynamical systems. Thus, the discrete-time autonomous
dynamical system x+ = φT (x) formed by the Poincaré map is key to the analysis methods we pursue.
In particular, our approach is to show that this system is Poincaré recurrent, which we then use to
conclude that the original continuous-time non-autonomous system is Poincaré recurrent.

Given the previously presented Poincaré recurrence theorem for discrete-time maps, proving the
Poincaré recurrence of the system x+ = φT (x) requires verifying the volume preservation and
bounded orbit properties, which then implies the measure preserving property. The following result
states that if the divergence of a T -periodic vector field f(x, t) is divergence free so that the flow φt

is volume preserving, then the Poincaré map φT and the resulting discrete-time dynamical system
x+ = φT (x) is also volume preserving.
Theorem (Volume preservation for T -Periodic Systems [1, 3.16.B, Thm 2]). If the T -periodic system
ẋ = f(t, x) is divergence-free, then φT preserves volume.

Similarly, if orbits of ẋ = f(t, x) are bounded, then clearly the orbits of x+ = φT (x) are bounded.
Hence, to show the system x+ = φT (x) is Poincaré recurrent, we prove ẋ = f(t, x) has a divergence-
free vector-field (equivalently, that the flow is volume preserving) and only bounded orbits. This will
then be sufficient to conclude ẋ = f(t, x) is Poincaré recurrent since the discrete-time system forms
a subsequence of the continuous-time system.

4 Gradient Descent-Ascent in Periodic Zero-Sum Bilinear Games

This section focuses on the continuous-time GDA learning dynamics in periodic zero-sum bilinear
games. The dynamics are such that each player seeks to maximize their utility by following the
gradient with respect to their choice variable and are given by

ẋ1 = A(t)x2(t)

ẋ2 = −A>(t)x1(t).

4.1 Poincaré Recurrence

The focus of this section is on characterizing the transient behavior of the continuous-time GDA
learning dynamics in periodic zero-sum games. Specifically, we show the following result.
Theorem 1. The continuous-time GDA learning dynamics are Poincaré recurrent in any periodic
zero-sum bilinear game as given in Definition 1.

Theorem 1 establishes that the recurrent nature of continuous-time GDA dynamics in static zero-sum
bilinear games is robust to the dynamic evolution of the payoffs in periodic zero-sum bilinear games.

Prior to outlining the proof steps for Theorem 1, we elaborate on the claim from the previous section
that without the periodicity property and a time-invariant equilibrium, such a result is unobtainable.
In particular, we show the Poincaré recurrence of the GDA dynamics is not guaranteed without both
properties by constructing counterexamples when only one of the properties holds.
Proposition 1. There exists time-evolving zero-sum games such that there is a time-invariant equilib-
rium or the payoffs are periodic (but not both simultaneously) in which the GDA dynamics are not
Poincaré recurrent.

This proposition highlights the strength of our results regarding GDA, given that the assumptions
needed to obtain them are more or less tight.

We now outline the key intermediate results we prove to obtain Theorem 1, following the techniques
described in Section 3.3. For the GDA dynamics, we utilize the observation that the corresponding
vector fields are divergence free to show that the learning dynamics are volume-preserving. We now
state this result formally.
Lemma 1. The GDA learning dynamics are volume preserving in any periodic zero-sum bilinear
game as given in Definition 1.
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We then proceed by showing that the GDA orbits are bounded by deriving a time-invariant function.
This step relies on the fact that we have a time-invariant equilibrium.

Lemma 2. The function Φ(t) = 1
2

(
x>1 (t)x1(t) + x>2 (t)x2(t)

)
is time-invariant. Hence, the GDA

orbits are bounded in any periodic zero-sum bilinear game as given in Definition 1.

Given the volume preservation and bounded orbit characteristics of the continuous-time GDA learning
dynamics in periodic zero-sum games, the proof of recurrence follows by applying the arguments
described in Section 3.3.

4.2 Time-Average Convergence

The Poincaré recurrence continuous-time GDA learning dynamics in periodic zero-sum bilinear games
indicates that the system has regularities which couple the evolving players and evolving game despite
the failure to converge to a fixed point. A natural follow-up question to the cyclic transient behavior
of the dynamics is whether the long-run converges to a game-theoretically meaningful outcome.

We show that in periodic zero-sum bilinear games, the time-average of GDA learning dynamics may
not converge to the time-invariant Nash equilibrium. To prove this, we consider a periodic zero-sum
bilinear game with the action space of each player on R so that the evolving payoff simply rescales
the vector field. We construct the payoff sequence so that the dynamics return back to the initial
condition after a period of the game, while the time-average of the dynamics are not equal to the
time-invariant equilibrium (x∗1, x

∗
2) = (0,0). Given the simplicity of this example, it effectively rules

out hope to provide a meaningful time-average convergence guarantee in this class of games.

Proposition 2. There exists periodic zero-sum bilinear games satisfying Definition 1 where the
time-average strategies of the GDA dynamics fail to converge to the time-invariant equilibrium (0,0).

5 Follow-the-Regularized-Leader in Periodic Zero-Sum Polymatrix Games

We now analyze continuous-time FTRL learning dynamics in periodic zero-sum polymatrix games.
Players that follow FTRL learning dynamics in this class of games select a mixed strategy at each time
that maximizes the difference between the cumulative payoff evaluated over the history of games
and a regularization penalty. This adaptive strategy balances exploitation based on the past with
exploration.

Formally, the continuous-time FTRL learning dynamics for any player i ∈ V in a periodic zero-sum
polymatrix game with an initial payoff vector yi(0) ∈ Rni are given by

yi(t) = yi(0) +
∫ t
0

∑
j:(i,j)∈E A

ij(τ)xj(τ)dτ

xi(t) = argmaxxi∈Xi{〈xi, yi(t)〉 − hi(xi)}
(1)

where hi : Xi → R is a penalty term which encourages exploration away from the strategy which
maximizes the cumulative payoffs in hindsight. We assume that the regularization function hi(·) for
each player i ∈ V is continuous, strictly convex on Xi, and smooth on the relative interior of every
face of Xi. These assumptions ensure the update xi(t) is well-defined since a unique solution exists.

Common FTRL learning dynamics include the multiplicative weights update and the projected gradient
dynamics. The multiplicative weights dynamics for a player i ∈ V arise from the regularization
function hi(xi) =

∑
α∈Ai xiα log xiα and correspond to the replicator dynamics. The projected

gradient dynamics for a player i ∈ V derive from the Euclidean regularization hi(xi) = 1
2‖xi‖

2
2.

To simplify notation, the FTRL dynamics can equivalently be formulated as the following update

yi(t) = y(0) +
∫ t
0
vi(x(τ), τ)dτ

xi(t) = Qi(yi(t)).
(2)

Observe that we denote by vi(x, τ) = (uiα(x, τ))α∈Ai the vector of each pure strategy α ∈ Ai utility
for agent i ∈ V under the joint profile x = (α, x−i) ∈ X at time τ ≥ 0. Moreover, Qi : Rni → Xi
is known as the choice map and defined as

Qi(yi(t)) = argmaxxi∈Xi{〈yi(t), xi〉 − hi(xi)}.
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In this notation, the utility of the player i ∈ V under the joint strategy x = (xi, x−i) ∈ X at time
t ≥ 0 is given by ui(x, τ) = 〈vi(x, τ), xi〉. Observe that in our notation of utility we are now
including the time index to make the dependence on the evolving game and payoffs explicit.

For any player i ∈ V we denote by h∗i : Rni → R the convex conjugate of the regularization function
hi : Xi → R which is given by the quantity h∗i (yi(t)) = maxxi∈Xi{〈xi, yi(t)〉 − hi(xi)}.

5.1 Poincaré Recurrence

We now focus on characterizing the transient behavior of the continuous-time FTRL learning dynamics
in periodic zero-sum polymatrix games. It is known that the continuous-time FTRL learning dynamics
are Poincaré recurrent in static zero-sum polymatrix games [20]. The following result demonstrates
that this characteristic holds even in games that are evolving in a periodic fashion with a time-invariant
equilibrium, providing a broad generalization.
Theorem 2. The FTRL learning dynamics are Poincaré recurrent in any periodic zero-sum polymatrix
game as given in Definition 2.

For the remainder of this subsection, we describe our proof methods. The general approach is that we
prove the Poincaré recurrence of a transformed system using the techniques described in Section 3.3.
This conclusion then allows us to infer the equivalent property for the original FTRL system.

The utility differences for each player i ∈ V and pure strategy αi ∈ Ai \ βi evolve following the
differential equation

żiαi = viαi(x(t), t)− viβi(x(t), t).

Toward proving that this system is Poincaré recurrent, we show that the vector field ż is divergence
free and hence volume preserving.
Lemma 3. The dynamics defined by the system ż are volume preserving in any periodic zero-sum
polymatrix game as given in Definition 2.

We then construct a time-invariant function along the evolution of the system that is sufficient to
guarantee that the orbits generated by the ż dynamics are bounded. Recall that x∗ denotes the
common, time-invariant interior Nash equilibrium of the periodic zero-sum polymatrix game.
Lemma 4. The function Φ(x∗, y(t)) =

∑
i∈V

(
h∗i (yi(t))− 〈x∗i , yi(t)〉+ hi(x

∗
i )
)

is time-invariant.
Hence, the orbits generated by the ż dynamics are bounded in any periodic zero-sum polymatrix
game as given in Definition 2.

From this point, we follow the arguments from Section 3.3 to conclude the ż dynamics are Poincaré
recurrent. Finally, we show that Poincaré recurrence of the ż system is sufficient to guarantee the
Poincaré recurrence of the FTRL learning dynamics.

The proofs of the results in this section can be found in Appendix D.

5.2 Time-Average Convergence

A number of well-known properties of zero-sum bimatrix games fail to generalize to zero-sum
polymatrix games. Indeed, fundamental characteristics of zero-sum bimatrix games include that
each agent has a unique utility value in any Nash equilibrium and that equilibrium strategies are
exchangeable. However, Cai and Daskalakis [8] show that neither of these properties are guaranteed
in zero-sum polymatrix games. Consequently, in general, time-average convergence to the set of
equilibrium values in the utility and strategy spaces does not equate to the stronger notion of pointwise
convergence.

For the reasons just outlined, we pursue a different notion of time-average convergence in periodic
zero-sum polymatrix games. That is, we consider the subclass of periodic zero-sum bimatrix games
(2-player periodic zero-sum polymatrix games) and show that the time-average utility of each agent
converges to the time-average of the game values (that is, the unique utility the player obtains at any
Nash equilibrium) over a period of the periodic game.
Theorem 3. In periodic zero-sum bimatrix games satisfying Definition 2, if each player follows FTRL
dynamics, then the time-average utility of each player converges to the time-average over a period of
the game equilibrium utility values.
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Theorem 3 paints a positive view of the time-average behavior of FTRL learning dynamics in periodic
zero-sum games. However, the following result demonstrates that much like in the case of GDA in
periodic zero-sum bilinear games, the time-average strategies are not guaranteed to converge to the
time-invariant Nash equilibrium.

Proposition 3. There exist periodic zero-sum bimatrix games satisfying Definition 1 in which the
time-average strategies of FTRL dynamics fail to converge to the time-invariant Nash equilibrium.

We prove the negative result in this proposition by constructing a simple counterexample that
corresponds to a time-varying rescaling of Matching Pennies.

The proofs of the results in this section can be found in Appendix E.

6 Experiments

In this section, we present several experimental simulations that illustrate our theoretical results.
To begin, for continuous-time GDA dynamics we show that Poincaré recurrence holds in a periodic
zero-sum bilinear game. We consider the ubiquitous Matching Pennies game with payoff matrix(

1 −1
−1 1

)
. We then use the following periodic rescaling with period 2π:

α(t) =

{
sin(t) 0 ≤ t ≤ 3π

2(
2
π

)
(t mod(2π)− 2π) 3π

2 ≤ t ≤ 2π

When players follow the GDA learning dynamics, we see from Figure 1 that the trajectories when
plotted alongside the value of the periodic rescaling are bounded. A similar experimental result holds
in the case of FTRL dynamics. In the supplementary material, we simulate replicator dynamics with
the same periodic rescaling as in Figure 1. The trajectories in the dual/payoff space also remain
bounded due to the invariance of the Kullback-Leibler divergences (KL-divergence).

Figure 1: Bounded trajectories for a
periodically rescaled Matching Pennies
game updated using GDA.

Figure 2: Weighted sum of KL-divergences for a 64-player
periodically rescaled Matching Pennies game. Note that
despite the complicated trajectories of each player, the
weighted sum of their divergences remains constant.

Lemmas 2 and 4 describe functions Φ which remain time-invariant. In the case of replicator dynamics,
Φ(t) is the sum of Kullback-Leibler divergences measured between the strategy of each player and
their mixed Nash strategy [1/2, 1/2]. We simulated a 64-player polymatrix extension to the Matching
Pennies game, where each agent plays against the opponent immediately adjacent to them, forming
a ’toroid’-like chain of games. Furthermore, we randomly rescale each game with a different
periodic function. Figure 2 depicts the claim presented in the lemmas: although each agent’s specific
divergence term KL(x∗i ‖xi(t)) fluctuates, the sum

∑
i∈V KL(x∗i ‖xi(t)) remains constant.

To generate Figure 3, we show the data from a simplified 64-player polymatrix game simulation,
where the graph that represents player interactions is sparse. Here, the strategy of each player informs
the RGB value of a corresponding pixel on a grid. If the system exhibits Poincaré recurrence, we
should eventually see similar patterns emerge as the pixels change color over time (i.e., as their
corresponding mixed strategies evolve). As observed in Figure 3, the system returns near the initial
image at time T = 6226. Further details about the experiments can be found in Appendix F.
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(a) T = 0 (b) T = 700 (c) T = 1500 (d) T = 3000 (e) T = 5000 (f) T = 6226

Figure 3: Sequence of images showing Poincaré recurrence in an 8× 8 zero-sum polymatrix game,
where the changing color of each pixel on the grid represents the mixed strategy of the player over
time. After time T = 6226, we see that an approximation of the original image is recovered, showing
that the recurrence property holds.

7 Discussion

We study both GDA and FTRL learning dynamics in periodically varying zero-sum games. We prove
that the recurrent nature of such dynamics carries over from static games to the classes of evolving
games we study. Yet, in the settings we analyze, the time-average convergence behavior from static
zero-sum games can fail to generalize. This work takes a step toward understanding the behavior of
classical learning algorithms for games in the more realistic setting where the game itself is not fixed.

We conclude by discussing related works on learning dynamics in evolving games. The existing
literature considers a number of models that admit distinct results [19, 30, 9, 14]. In a class of
time-evolving games where the evolution can be arbitrary [9], algorithms are designed that provide
a novel type of regret guarantee called Nash equilibrium regret. In a sense these algorithms are
competitive against the Nash equilibrium of the long-term-averaged payoff matrix. In an analysis of
discrete-time FTRL dynamics in evolving games that are strictly/strongly monotone [14], sufficient
conditions (e.g., when the evolving game stabilizes) under which the dynamics track/converge to
the evolving equilibrium are derived. Unfortunately, zero-sum games do not satisfy these strong
properties. Finally, in a model of endogenously evolving zero-sum games where a parametric game
evolves itself adversarially towards the participating agents, a transformation that treats the game
as an additional “hidden" agents allows for a reduction to a more standard static network zero-sum
game has been developed [19, 30] under which both time-average convergence to equilibrium as well
as Poincaré recurrence holds.

This growing literature indicates that time-varying games can exhibit distinct and often times more
complex behavior than their classic static counterparts. As such, there is much potential for future
work towards a better understanding of their learning dynamics.
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