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Abstract

Designing products to meet consumers’ preferences is essential for a business’s success.
We propose Gradient-based Survey (GBS), a discrete choice experiment for multiattribute
product design. The experiment elicits consumer preferences through a sequence of paired
comparisons for partial profiles. GBS adaptively constructs paired comparison questions
based on the respondents’ previous choices. Unlike the traditional random utility maxi-
mization paradigm, GBS is robust to model misspecification by not requiring a parametric
utility model. Cross-pollinating the machine learning and experiment design, GBS is scal-
able to products with hundreds of attributes and can design personalized products for
heterogeneous consumers. We demonstrate the advantage of GBS in accuracy and sample
efficiency compared to the existing parametric and nonparametric methods in simulations.
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1. Introduction

Identifying an optimal product based on consumers’ preferences is essential for the success
of a business. Such a problem is prevalent in companies where the product consists of multi-
ple attributes such as health insurance, cell phone plans, movies, pizzas, automobiles, logos,
and email advertisements (Balakrishnan et al., 2004; Bertsimas and Mǐsić, 2017; Ellickson
et al., 2022; Netzer and Srinivasan, 2011). In this paper, we focus on products with discrete
attributes represented as multivariate binary variables, as is the case in A/B testing 1.

Selecting appropriate products from a choice set is complicated for decision-makers.
First, the desired product should meet the unobserved consumer preferences. The latent
preferences are often revealed by survey experiments known as conjoint analysis (Green and
Rao, 1971; Luce and Tukey, 1964). Since the milestone work of Louviere and Woodworth
(1983), the choice-based conjoint (CBC) analysis became one of the most widely used meth-

1. A discrete attribute with more than two levels can be coded as multiple binary variables.
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ods to quantify multiattribute preference (Hein et al., 2020). A prevalent assumption is that
the preference for an attribute is quantified by a part-worth score, and the total utility of
a product profile is the sum of part-worths (Green and Srinivasan, 1978). This parametric
assumption, however, may oversimplify how respondents encode and evaluate products (Al-
lenby et al., 2005). Second, the choice set for product design grows exponentially with the
number of attributes, making the problem NP-hard (Kohli and Krishnamurti, 1989). The
problem is more evident with the development of technology when more and more compo-
nents are integrated into a single product. For example, the design of a smartphone might
need to consider hundreds of attributes from a digital camera, screen display, connectivity
modules, software applications, and a range of sensors. The high-dimensional attributes
pose a scalability challenge to the extant product design methods. Lastly, consumer pref-
erence is heterogeneous, and it is desired to provide a customized product aligned with
individual tastes. Nowadays, an increasing number of products are presented as digital
content, making personalized product design feasible.

Our proposed GBS is robust to model misspecification of the utility function, scalable to
high-dimensional attributes, and applicable to single or personalized product design. The
idea of GBS is to combine gradient-based machine learning with discrete choice experiments
(DCEs). We model the product attributes as random variables following Bernoulli distribu-
tions. The inference of the optimal product is by computing the gradient of the objective,
such as the market share, with respect to the distribution parameters. However, computing
the gradient is challenging because of the unknown functional form of respondent choice and
the infeasibility in computing a gradient with non-continuous variables. To address these
challenges, we adopt the score function method to compute the gradient using data from
DCEs. Building on the recent development of discrete optimization in machine learning,
we develop new variance reduction tools for the score function gradient. The unbiased and
low-variance gradient is then used to generate the next survey questionnaire and update
the optimal product’s distribution parameters by stochastic gradient descent (SGD).

We demonstrate that GBS scales to hundreds of attributes efficiently and can infer the
optimal products accurately in our experiments compared with parametric and nonparamet-
ric baselines. Over a variety of utility functions, GBS is more robust in model specification
than parametric methods and is more sample-efficient than neural networks. Finally, we
apply GBS to learn an individual policy with combinatorial actions via experiments. We
discuss the connection of GBS and related work in Appendix A.

2. Problem Set Up

Denote Yi(Z,Z0) as the user i’s choice of product given the focal product Z and a baseline
product Z0. The products are represented by K binary features Z,Z0 ∈ {0, 1}K . The
baseline product Z0 can be a competitor’s product, the exisitng product in the market, or
an empty set. The potential outcome Yi(Z,Z0) is distributed according to the unknown data
generating process. Yi(Z1, Z0) = 1 if user i chooses Z1 and Yi(Z1, Z0) = 0 if Z0 is chosen.

We first consider how to identify a single optimal product. The objective is

max
Z

V (Z) = E[Yi(Z,Z0)], (1)
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which represents the potential market share of the proposed product Z in the presence of
the baseline product. The difficulties in solving Eq. (1) are that the number of possible
products grows exponentially with feature numbers, and the functional form of Yi(Z,Z0) is
unknown and might be complicated.

3. Gradient-based Survey Design

We adopt the Random Utility Maximisation (RUM) framework to model the choice behavior
(McFadden, 1974). Each product Zj is associated with a utility Ui(Zj) for individual i. The
alternative Z1 is chosen from the pair (Z1, Z0) if and only if Ui(Z1) > Ui(Z0). In RUM,
the utility is decomposed as Ui(Zj) = Vi(Zj) + εij , j = 0, 1 where Vi(Zj) is often called the
representative utility (Train, 2009). We assume the random εij independently follows type
I extreme value (Gumbel) distribution. Accordingly, the probability of choosing item Z is
p(Yi(Z,Z0) = 1) = exp(Vi(Z))/(exp(Vi(Z)) + exp(Vi(Z0))). Notice that the product Z that
maximizes the choice probability p(Yi(Z,Z0) = 1) is irrelevant to what the baseline product
Z0 is. We do not make a parametric assumption for the representative utility Vi(Z).

Instead of optimizing the discrete features Z directly, we consider Z as random variables
following distribution p(Z;π) =

∏K
k=1 Bern(zk;πk), πk ∈ [0, 1]. We then transform the

problem in Eq. (1) to an equivalent problem with the same optimal solution as

max
π

V (π) = EZ∼p(Z;π)E[Yi(Z,Z0) |Z]. (2)

The equivalence of probabilistic reformulation is shown in Yin et al. (2020) Theorem 1. To
facilitate the optimization in an unconstrained space, we parameterize the probability by
the sigmoid function Z ∼

∏K
k=1 Bern(z;πk = σ(φk)), φ ∈ RK , σ(x) = 1/(1 + e−x), and

optimize V (φ) := V (π = σ(φ)) with the logits φ.
The gradient of Eq. (2) can be computed by the score function estimator (a.k.a. RE-

INFORCE) as ∇φV (φ) = EZ∼p(Z;φ)[∇θ log p(Z;φ)E[Yi(Z,Z0) |Z]]. However, score function
gradients often suffer from high variance, and many works have been devoted to reducing
the variance. With a direct application of the antithetic sampling and control variates (Yin
and Zhou, 2019) to the product design problem, we have the following Lemma.

Lemma 1 An unbiased gradient of the objective V (φ) is

∇φV (φ) = Eu∼∏K
k=1 Unif(0,1)

[
E
[
(Yi(Z1(u), Z0)− Yi(Z2(u), Z0))(u−

1

2
) |u
]]
, (3)

where Z1(u) = 1[u > σ(−φ)], Z2(u) = 1[u < σ(φ)].

For completeness, the proof is in the Appendix. The gradient in Eq. (3) is guaranteed to
reduce the variance of score function gradient for non-negative objective (Yin and Zhou,
2019). A Monte-Carlo estimate of the gradient in Eq. (3) can be computed by asking
respondent i to choose between products Z1 and Z0, between Z2 and Z0, and take the
difference of the choices. However, such question design might be sensitive to the selection
of Z0. A strong or weak Z0 may make the choices Yi(Z1, Z0) and Yi(Z2, Z0) the same
frequently, resuting in a zero gradient. Moreover, a respondent’s preferences across two
choices may not be consistent and comparable.

To mitigate these problems, we marginalize out the zero gradients using Lemma 2.
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Lemma 2 Y (Z1, Z0)− Y (Z2, Z0) |Y (Z1, Z0) 6= Y (Z2, Z0)
d
= (2Y (Z1, Z2)− 1)

With Lemmas 1 and 2, we have the following result.

Lemma 3 g̃ = (2Yi(Z1(u), Z2(u))− 1)(u− 1
2)p(Ai) satisfies E[g̃] = ∇φV (φ), where Z1(u),

Z2(u) are defined as in Lemma 1,u ∼
∏K
k=1 Unif(0, 1), event Ai = {Yi(Z1, Z0) 6= Yi(Z2, Z0)}.

Computing g̃ takes a choice Yi(Z1(u), Z2(u)) from a random respondent i between two par-
tial profiles Z1(u) and Z2(u). The baseline product Z0 is no longer needed. The partial
profile comparison alleviates cognitive burden and elicits respondents’ preferences more ac-
curately than a choice from a large action space (a demonstration is in Appendix Fig. 4).
Z1(u) and Z2(u) differ in feature k with probability 1 − |2πk − 1|, which increases mono-
tonically from 0 to 1 with the variance πk(1 − πk). It is aligned with the intuition that in
order to maximize the information gain from each question, features with high uncertainty
should have a high chance of being asked. Though the quantity p(Ai) is unknown, it is a
constant shared by all the elements of the stochastic gradient g̃. Therefore, the constant can
be absorbed in the stepsize of the SGD and does not affect the convergence. We propose
the gradient estimate for GBS with Z1(u), Z2(u) defined in Lemma 1 as

gGBS = (2Yi(Z1(u), Z2(u))− 1)(u− 1

2
), u ∼

K∏
k=1

Unif(0, 1). (4)

The steps of GBS are summarized in Alg. 1 in Appendix E.
The data collection of GBS shares the same form with the paired CBC analysis, which

has been widely applied to understanding individual preferences in marketing, politics, and
other computational social science for decades (Egami and Imai, 2019; Goplerud et al., 2022;
Hainmueller and Hopkins, 2015; Luce and Tukey, 1964; Toubia et al., 2003). GBS is thus
compatible with many existing survey systems. The paired choice design used in practice
requires a single choice for each question and rules out the situation of choosing both or
none, which echos the step of zero gradients marginalization in Eq. (3). In a nutshell, GBS
uses the gradient information to automatically and adaptively design experiments, and on
the other hand, uses the data from the experiments to estimate a low-variance stochastic
gradient for optimal product identification.

4. Individualized Policy Learning

A single product is often not optimal for all users. For example, a personalized email
designed based on individual shopping history may improve the consumers’ open rate. We
consider learning an individualized policy that assigns a customized product to each user.

Suppose the covariates Xi of individual i are observed. The optimization objective is

max
θ
V (θ) = EXi∼p(X)EZi∼p(Z;πθ(Xi))E[Yi(Zi, Z0)], (5)

where p(Z;πθ(Xi)) =
∏K
k=1 Bern(zk;πθ(Xi)k). The policy πθ(Xi) = σ(φi) and the logits

φi = g(Xi; θ) ∈ RK are the output of an amortized neural network parameterized by θ with
input Xi. Applying the results in § 3, an unbiased estimate of the gradient w.r.t. the logits
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Figure 1: The utility (Top row, higher is better) and the ranking (Bottom row, lower is
better) for the designed products with K = 10 features. Lines are averaged over 10 trials.

φi is ci(2Yi(Z1(u), Z2(u)) − 1)(u − 1
2) where u ∼

∏K
k=1 Unif(0, 1) and ci is a scalar to be

absorbed in the stepsize. Using the chain rule, the GBS gradient of policy parameter θ is

gGBS(θ) = (2Yi(Z1(u), Z2(u))− 1)(u− 1

2
)>
∂g(Xi; θ)

∂θ
, u ∼

K∏
k=1

Unif(0, 1) (6)

with Z1(u), Z2(u) defined in Lemma 1. See Alg. 2 in Appendix E for the algorithm.

5. Empirical Study

We compare GBS with baseline models using simulated data similar to Toubia et al. (2007).
The product Z is represented as K binary features. First, we study the problem of iden-
tifying a single optimal product. For each independent trial, the population-level marginal
preferences for the features are generated by µ ∼ N (a, I), a = (1, · · · , 1). The individual
preferences (partworths) are generated by Wi ∼ N (µ, I) for each individual i.

We consider three types of representative utilities 1) linear utility; 2)pairwise interac-
tions; and 3) a pre-trained neural network, which includes higher-order interactions of the
product features. For baselines, we consider 1) Logistic model; 2) hierarchical Bayes (HB)
model which is widely used in conjoint analysis (Allenby et al., 2005); and 3) a neural
network (NN)-based utility. For evaluation metrics, we consider the average utility for
the selected product. It compares the relative performance of different methods. When
computationally feasible, we also rank all the possible products according to their average
utility on the population from high to low. The ranking allows the evaluation of absolute
performance compared to the global optimum. See Appendix C for more details.

Fig. 1 shows the test utility and ranking of the estimated optimal product across a differ-
ent number of respondents for a product with K = 10 features. When the utility function is
correctly specified (Type 1), Logistic and HB reach the highest utility with a small number
of respondents. However, when the utility model is misspecified (Type 2, 3), the perfor-
mance of Logistic and HB with linearity assumption significantly deteriorates. For Type 2
utility, the ranking drops with an increasing number of respondents when the driving factor
for the estimates shifts from variance to bias. NN assumes a flexible nonparametric utility
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Figure 2: The utility (higher is better) with K = 100 features.
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ized Product.

function, but when the sample size is small, its performance is dominated by the variances
in the data. Fig. 5 in the Appendix E shows the results of NN with additional respondents.
For the utility function without interactions, it needs 500 respondents to select the optimal
product, and for relatively complex Type 2 and 3 utility, the number of respondents needed
is 4000 and 2000, respectively. The weak data efficiency increases the experimental cost
and may be infeasible. Moreover, finding the optimal product with a trained NN utility
function needs to explore all possible products as inputs, which becomes challenging when
the feature dimension is high. In comparison, GBS identifies the optimal products across
all utility types with less than 100 respondents. For the linear utility, when the respon-
dent number is small, the correctly specified models outperform GBS, but the performance
gap diminishes quickly when the respondent number increases to around 70. For nonlinear
utilities, GBS outperforms the baseline models and achieves the global optimum.

Fig. 2 shows the results for the single product design with K = 100 features. Finding
the optimal product with a trained NN needs to compare the predicted utility of 2100 items,
which is infeasible to compute, so we drop it from the baselines. Similarly, we drop the
ranking metric that needs to evaluate all product combinations. The performance pattern
is similar to K = 10. GBS can identify the optimal product from around 1030 choices in
less than half a minute. It is flexible with the underlying utility function and is efficient
with data size, which makes it practically applicable.

Next, we study the personalized product design with choice experiments. The data is
generated the same as before, except the individual preferences follow a mixture distribution
which reflects the preference heterogeneity in the population. See Appendix D for details.
Fig. 3 shows the selected products’ utility. Since Logistic estimates a single optimal product,
the estimate is a product with zero utility due to the symmetry of the population. NN-
ind adapts to individual heterogeneity and has utility higher than Logistic. However, it
is subject to model misspecification due to the last linear layer and may have low data
efficiency as in the case of the single optimal product. GBS reaches the highest utility, and
the performance improves with more respondents joining the experiments.

6. Discussions

This paper bridges the domains of gradient-based machine learning and discrete choice
experiments. GBS is flexible with the underlying form of choice utility, is data-efficient with
adaptive design, is scalable to high-dimensional features, and can be applied to uniform or
personalized product designs. We include more discussions in Appendix F.
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Appendix A. Related Work

Conjoint analysis. Conjoint analysis (CA) uses a survey-based experiment design to
measure multidimensional preferences (Luce and Tukey, 1964; Toubia et al., 2003). We
collect the data with a paired comparison survey similar to CA. Different from CA, GBS
does not assume a linear additive utility model and is applicable to cases with nonlinear
interactive utilities. CA estimates partworths as the choice model parameters (Hainmueller
and Hopkins, 2015) while GBS does not estimate a choice model and identifies the optimal
product using the choice data directly.

Adaptive experimental design. Adaptive conjoint analysis (ACA) progressively re-
fines the attribute levels presented to respondents for more accurate and efficient data
collection (Toubia et al., 2004). For example, D-efficiency is designed to maximize Fisher
information (Kuhfeld et al., 1994), polyhedral methods combine geometric intuition and
analytic center technique to shrink feasible region (Sauré and Vielma, 2019; Toubia et al.,
2003, 2007), and adaptive self-explication integrates attribute importance in design (Netzer
and Srinivasan, 2011). It might be challenging to generalize heuristics to high-dimensional
features. GBS design is derived from variance reduction of score function gradient and
is aligned with the uncertainty reduction intuitions. Apart from ACA, an active learning
approach is proposed to learn nonparametric choice models using a directed acyclic graph.
Nodes in such a graph are the alternative profiles, which limit the number of nodes to a
small scale (Susan et al., 2022).

Product design by optimization. Existing product design methods often adopt op-
timization heuristics like Genetic Algorithms (Balakrishnan and Jacob, 1996; Balakrishnan
et al., 2004), simulated annealing (Tsafarakis, 2016), evolutionary algorithm, and beam
search (Hauser, 2011; Paetz et al., 2021). Though achieving empirical improvements, the
properties and generalization abilities of the heuristics is largely unclear. Discrete optimiza-
tion methods such as Lagrangian relaxation with branch-and-bound have also been applied
(Belloni et al., 2008; Camm et al., 2006). More broadly, deep learning methods such as vari-
ational autoencoders are used for the design of product aesthetics (Burnap et al., 2023).

Policy learning. The customized product design is related to policy learning. The
offline policy learning often estimates the outcome function (Wang et al., 2016) or directly
optimizes the value function by propensity weighting (Athey and Wager, 2017). However, it
is hardly possible for the observational data to contain the outcomes of all the actions from
a combinatorial space. The learned policy might be suboptimal due to the overlapping
issue. Online policy learning uses bandits and reinforcement learning to maximize the
cumulative reward. The combinatorial actions are studies with mixed integer optimation in
reinforcement learning (Delarue et al., 2020). Qin et al. (2014) explores combinatorial action
spaces for bandits, which require users to select actions from the complete action space and
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need external covariates for each feature dimension. GSB overcomes these challenges using
the partial profile design from the conjoint analysis.

Appendix B. Proof

This section provides the proof of Lemma 1 and Lemma 2.

Proof [Lemma 1] The optimization objective is

V (φ) = EZ∼p(Z;σ(φ))E[Yi(Z,Z0) |Z],

where p(Z;σ(φ)) =
∏K
k=1 Bern(zk;σ(φk)), Z = (z1, · · · , zK). The k-th element for the

gradient of V (φ) is

∇φkV (φ) = Ez\k∼
∏
ν 6=k Bern(zν ;σ(φν)){∇φkEzk∼Bern(σ(φk))E[Yi(Z,Z0) |Z]} (7)

Denote f(zk) = E[Yi(Z,Z0) |Z], we have

∇φkEzk∼Bern(σ(φk))[f(zk)]

=σ(φk)σ(−φk)[f(1)− f(0)]

=Eu∼Unif(0,1)[f(1[u < σ(φ)])(1− 2u)]

=Eu∼Unif(0,1)[f(1[u < σ(φ)])(1/2− u)] + Eũ∼Unif(0,1)[f(1[ũ < σ(φ)])(1/2− ũ)]

=Eu∼Unif(0,1)

[(
f(1[u > σ(−φ)])− f(1[u < σ(φ)])

)
(u− 1/2)

]
. (8)

The first two equations can be straightforwardly evaluated since it is an expectation with
a scalar variable. The third equation is applying antithetic sampling with ũ = 1 − u. The
last equation is summing up the two expectations. Plugging Eq. (8) into Eq. (7) gives

∇φkV (φ)

=Ez\k∼
∏
ν 6=k Bern(zν ;σ(φν))

{
Euk∼Unif(0,1)

[(
E[Yi(Z,Z0) |Z = (z\k, zk = 1[uk > σ(−φk)])]−

E[Yi(Z,Z0) |Z = (z\k, zk = 1[uk < σ(φk)])]
)
(uk −

1

2
)
]

=Eu∼
∏K
k=1 Unif(0,1)

[(
E[Yi(Z,Z0) |Z = 1[u > σ(−φ)])]− E[Yi(Z,Z0) |Z = 1[u < σ(φ)])]

)
(uk −

1

2
)
]

Therefore,

∇φV (φ) = Eu∼∏K
k=1 Unif(0,1)

[
E[(Yi(Z1(u), Z0)− Yi(Z2(u), Z0))(u−

1

2
) |u]

]
, (9)

where Z1(u) = 1[u > σ(−φ)], Z2(u) = 1[u < σ(φ)].

Proof [Lemma 2] Y (Z1, Z0)−Y (Z2, Z0) |Y (Z1, Z0) 6= Y (Z2, Z0)
d
= (2Y (Z1, Z2)−1) Denote

S = Y (Z1, Z0)− Y (Z2, Z0), T = 2Y (Z1, Z2)− 1. We have

p(S = 1) =p(Y (Z1, Z0) = 1, Y (Z2, Z0) = 0)

=
eU(Z1)

eU(Z1) + eU(Z0)
· eU(Z0)

eU(Z2) + eU(Z0)
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and

p(S = 1 |Y (Z1, Z0) 6= Y (Z2, Z0))

=
p(Y (Z1, Z0) = 1, Y (Z2, Z0) = 0)

p(Y (Z1, Z0) = 1, Y (Z2, Z0) = 0) + p(Y (Z1, Z0) = 0, Y (Z2, Z0) = 1)

=
eU(Z1)+U(Z0)

eU(Z1)+U(Z0) + eU(Z2)+U(Z0)

=
eU(Z1)

eU(Z1) + eU(Z2)

=p(Y (Z1, Z2) = 1)

=p(T = 1).

Similarly, we have p(S = −1 |Y (Z1, Z0) 6= Y (Z2, Z0)) = p(T = −1). Therefore, S |Y (Z1, Z0) 6=
Y (Z2, Z0)

d
= T .

Proof [Lemma 3] Denote the event Ai = {Yi(Z1, Z0) 6= Yi(Z2, Z0)}, we have

Eu∼∏K
k=1 Unif(0,1)

[
E
[
(Yi(Z1(u), Z0)− Yi(Z2(u), Z0))(u−

1

2
) |u
]]

(10)

=Eu∼∏K
k=1 Unif(0,1)

[
E
[
(Yi(Z1(u), Z0)− Yi(Z2(u), Z0))(u−

1

2
) |u,Ai

]
p(Ai)

]
(11)

=Eu∼∏K
k=1 Unif(0,1)

[
E
[
(2Yi(Z1(u), Z2(u))− 1)(u− 1

2
)p(Ai) |u

]]
. (12)

The first equality is by the law of total expectation; the second is by Lemma 2 and the law
of unconscious statistician (LOTUS). The Monte Carlo estimation of the gradient in ?? is
g̃ = (2Yi(Z1(u), Z2(u))− 1)(u− 1

2)p(Ai), u ∼
∏K
k=1 Unif(0, 1).

Appendix C. Experimental Details

Data generation. We consider three types of representative utilities Vi(Z). The first
type is linear utility Vi(Z) = W>i Z. The second type includes pairwise interactions Vi(Z) =
W>i Z +

∑
k,k′ W̃

kk′
i ZkZk′ where W̃ kk′

i ∼ Unif(−2a, 0). For K = 10, all the pairwise inter-
actions are included, and for K = 100, a subset of 100 pairwise interaction terms is used
to compute Vi(Z). The third type set Vi(Z) = f0(Z) where f0(·) is a pre-trained neural
network. This type of utility includes higher-order interactions of the product features. The
data for each method are the query product features and the choices collected from paired
choice questions, i.e., {(Yi(Zij1 , Z

ij
0 ), Zij1 , Z

ij
0 )}j=1:nq

i=1:N . For non-adaptive methods, the item
pair in a question is generated randomly. Each respondent makes nq = 10 times the choices.

Baselines. A logistic model (Logistic) assumes V̂i(Z) = W>Z. For a pair of products
(Z1, Z2), the likelihood of choosing Z1 is 1/(1 + exp(W>(Z2 − Z1))). The parameter W
is estimated by maximum likelihood and the optimal product is 1[ŴMLE > 0]. A mixed
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logit model is a hierarchical Bayes (HB) model widely used in conjoint analysis (Allenby
et al., 2005). It assumes m ∼ N (0, I), wi |m ∼ N (µ, I), and p(Y (Z1, Z2) = 1 |wi, Z1, Z2) =
1/(1 + exp(w>i (Z2 − Z1))). We estimate m as the maximum a posteriori estimation using
the PyMC package, and the estimated optimal product is 1[m̂MAP > 0]. Another baseline
takes the representative utility V̂i(Z) = fγ(Z). fγ(·) is a feedforward neural network (NN)
with two hidden layers and parameters γ. γ is estimated as an MLE. The estimated optimal
product is arg maxZ fγ(Z), which requires enumerating all possible products.

Evaluation metrics. The first metric for evaluating a chosen product is the average
utility on a hold-out test set. It compares the relative performance of different methods.
When computationally feasible, we also rank all the possible products according to their
average utility on the population from high to low. The ranking allows the evaluation of
absolute performance compared to the global optimum.

Appendix D. Data Generating Process for Personalized Product Design
Experiments

The data is generated the same as before, except the individual preferences follow a mix-
ture distribution Wi ∼ 0.5N (µ1,Σ) + 0.5N (µ2,Σ) where µ1 is positive on the first half
of elements and negative on the others, and µ2 is opposite. The mixture distribution re-
flects the preference heterogeneity in the population. We assume the observed covariates
Xi = exp(Wi) of individual i and take the utility as the nonlinear Type 2. We modify the
neural network utility model as V̂ (Z,Xi) = Z>fγ(Xi) (denoted as NN-ind). The utility
form gives an estimated optimal product for individual i as 1[fγ(Xi) > 0] without the need
to evaluate all possible products’ utility for each individual.

Appendix E. Additional Results

This section contains the product design algorithms and additional results for the empirical
study in § 5. Fig. 5 shows the utility and ranking for the NN baseline with a large number
of respondents.

Algorithm 1 Gradient-based Survey for Product Design
input : Number of features K, number of questions per respondent nq, stepsize η
Initialize the logits φ randomly
while not converged do

Sample a random individual i from the population.
for j = 1, 2 · · ·nq do

Sample u ∼
∏K

k=1 Unif(0, 1)
Generate a pair of products Z1(u) = 1[u > σ(−φ)], Z2(u) = 1[u < σ(φ)]
Record the respondent’s choice Yi(Z1(u), Z2(u))
Compute the gradient estimate gGBS = (2Yi(Z1(u), Z2(u))− 1)(u− 1

2 )
Update φ← φ+ ηgGBS

end

end
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Algorithm 2 Gradient-based Survey for Policy Learning

input : Individual covariates {Xi}, policy function g(·; θ), number of features K, number of ques-
tions per respondent nq, stepsize η

Initialize the policy parameters θ randomly.
while not converged do

Sample a random individual i from the population.
for j = 1, 2 · · ·nq do

Sample u ∼
∏K

k=1 Unif(0, 1)
Generate a pair of products Z1(u) = 1[u > σ(−φ)], Z2(u) = 1[u < σ(φ)]
Record the respondent’s choice Yi(Z1(u), Z2(u))
Compute the gradient estimate gGBS(θ) by Eq. (6)
Update θ ← θ + ηgGBS(θ)

end

end

Figure 4: Demonstration of a paired choice question for a logo design.

Appendix F. More Discussions and Future Work

This paper bridges the domains of gradient-based machine learning and discrete choice
experiments. GBS is flexible with the underlying form of choice utility, is data-efficient with
adaptive design, is scalable to high-dimensional features, and can be applied to uniform or
personalized product designs.

Bridging gradient-based machine learning and experiments borrow strength from both
worlds. The sequential nature of SGD naturally provides an adaptive approach to design
experiments. Unlike traditional heuristic or rule-based adaptive design (Green et al., 1991;
Netzer and Srinivasan, 2011), the gradient method is derived mathematically and is readily
to incorporate new statistical tools for variance control. The greedy property and the
variance reduction technique of the gradient maximize the information extracted from each
paired comparison question. The proposed GBS collects the data like a typical paired
conjoint design where the respondents are randomly selected from a population and asked

14



0 1000 2000 3000 4000 5000 6000 7000 8000
Number of respondents

6

7

8

9

10

Ut
ilit

y
NN

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of respondents

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ut
ilit

y

NN

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of respondents

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ut
ilit

y

NN

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of respondents

0

100

200

300

400

500

600

Ra
nk

NN

(a) Type 1

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of respondents

0

20

40

60

80

100

120

140

160

Ra
nk

NN

(b) Type 2

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of respondents

0

100

200

300

400

500

600

700

Ra
nk

NN

(c) Type 3

Figure 5: The utility (Top row) and the ranking (Bottom row) for the NN baseline with a
large number of respondents.

to choose between a pair of items with different attributes. Hence, GBS can be seamlessly
integrated into commercial adaptive conjoint software like Sawtooth Software (Huber, 2005).
On the other hand, the experiment offers the data generation by which machine learning
can explore combinatorial action spaces. In contrast, using observational data may face
overlapping and extrapolation problems since the data may only be collected with a small
subset of attribute combinations in practice.

However, there is no free lunch. GBS does not estimate a choice model. It does not
provide a full rank of all the possible products. To explain people’s preferences, GBS may
need explainable AI techniques such as saliency map (Adebayo et al., 2018) rather than
estimating the preferences as a part of model parameters. Nevertheless, GBS provides a
flexible optimization framework. Except for maximizing the market share, the objective
may incorporate the costs and prices of a product to maximize the profit. The constrained
optimization might be considered using a proximal gradient if the product design is under
a budget constraint.

From a manager’s view, a company often needs to design a product line consisting of sev-
eral products (Balakrishnan et al., 2004; Belloni et al., 2008). One way to apply GBS for this
task is by a separate approach, where the population is clustered into segments, and a single
best product is determined for each segment (Paetz et al., 2021). It is also feasible to model
a product line as several binary vectors and apply GBS to design a product line jointly.

GBS builds on the inference of discrete latent variables in machine learning (Dong
et al., 2020; Gu et al., 2015; Jang et al., 2017; Kool et al., 2019; Kunes et al., 2023; Tucker
et al., 2017). If a gradient estimator contrasts two function values, as the ARM gradient
(Yin and Zhou, 2019) adopted in this paper, it can potentially be used for the adaptive
question design. Combining recent discrete optimization techniques with experiments is an
interesting future direction.
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