
Under review as a conference paper at ICLR 2021

DISCOVERING PARAMETRIC ACTIVATION FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies have shown that the choice of activation function can significantly
affect the performance of deep learning networks. However, the benefits of novel
activation functions have been inconsistent and task dependent, and therefore the
rectified linear unit (ReLU) is still the most commonly used. This paper proposes
a technique for customizing activation functions automatically, resulting in reli-
able improvements in performance. Evolutionary search is used to discover the
general form of the function, and gradient descent to optimize its parameters for
different parts of the network and over the learning process. Experiments with
four different neural network architectures on the CIFAR-10 and CIFAR-100 im-
age classification datasets show that this approach is effective. It discovers both
general activation functions and specialized functions for different architectures,
consistently improving accuracy over ReLU and other recently proposed activa-
tion functions by significant margins. The approach can therefore be used as an
automated optimization step in applying deep learning to new tasks.

1 INTRODUCTION

The rectified linear unit (ReLU(x) = max{x, 0}) is the most commonly used activation function in
modern deep learning architectures (Nair & Hinton, 2010). When introduced, it offered substantial
improvements over the previously popular tanh and sigmoid activation functions. Because ReLU is
unbounded as x→∞, it is less susceptible to vanishing gradients than tanh and sigmoid are. It is
also simple to calculate, which leads to faster training times.

Activation function design continues to be an active area of research, and a number of novel activation
functions have been introduced since ReLU, each with different properties (Nwankpa et al., 2018). In
certain settings, these novel activation functions lead to substantial improvements in accuracy over
ReLU, but the gains are often inconsistent across tasks. Because of this inconsistency, ReLU is still
the most commonly used: it is reliable, even though it may be suboptimal.

The improvements and inconsistencies are due to a gradually evolving understanding of what makes
an activation function effective. For example, Leaky ReLU (Maas et al., 2013) allows a small amount
of gradient information to flow when the input is negative. It was introduced to prevent ReLU from
creating dead neurons, i.e. those that are stuck at always outputting zero. On the other hand, the ELU
activation function (Clevert et al., 2015) contains a negative saturation regime to control the forward
propagated variance. These two very different activation functions have seemingly contradicting
properties, yet each has proven more effective than ReLU in various tasks.

There are also often complex interactions between an activation function and other neural network
design choices, adding to the difficulty of selecting an appropriate activation function for a given task.
For example, Ramachandran et al. (2018) warned that the scale parameter in batch normalization
(Ioffe & Szegedy, 2015) should be set when training with the Swish activation function; Hendrycks
& Gimpel (2016) suggested using an optimizer with momentum when using GELU; Klambauer et al.
(2017) introduced a modification of dropout (Hinton et al., 2012) called alpha dropout to be used with
SELU. These results suggest that significant gains are possible by designing the activation function
properly for a network and task, but that it is difficult to do so manually.

This paper presents an approach to automatic activation function design. The approach is inspired
by genetic programming (Koza, 1992), which describes techniques for evolving computer programs
to solve a particular task. In contrast with previous studies (Bingham et al., 2020; Ramachandran
et al., 2018; Liu et al., 2020; Basirat & Roth, 2018), this paper focuses on automatically discovering
activation functions that are parametric. Evolution discovers the general form of the function,
while gradient descent optimizes the parameters of the function during training. The approach,

1

Under review as a conference paper at ICLR 2021

Table 1: The operator search space consists of basic unary and binary functions as well as existing
activation functions (Appendix D). σ(x) = (1 + e−x)−1. The unary operators bessel_i0e and
bessel_i1e are the exponentially scaled modified Bessel functions of order 0 and 1, respectively.

Unary Binary

0 |x| erf(x) tanh(x) arcsinh(x) ReLU(x) Softplus(x) x1 + x2 xx2
1

1 x−1 erfc(x) ex − 1 arctanh(x) ELU(x) Softsign(x) x1 − x2 max{x1, x2}
x x2 sinh(x) σ(x) bessel_i0e(x) SELU(x) HardSigmoid(x) x1 · x2 min{x1, x2}
−x ex cosh(x) log(σ(x)) bessel_i1e(x) Swish(x) x1/x2

called PANGAEA (Parametric ActivatioN functions Generated Automatically by an Evolutionary
Algorithm), discovers general activation functions that improve performance overall over previously
proposed functions. It also produces specialized functions for different architectures, such as Wide
ResNet, ResNet, and Preactivation ResNet, that perform even better than the general functions,
demonstrating its ability to customize activation functions to architectures.

2 RELATED WORK

Prior work in automatic activation function discovery includes that of Ramachandran et al. (2018),
who used reinforcement learning to design novel activation functions. They discovered multiple
functions, but analyzed just one in depth: Swish(x) = x ·σ(x). Of the top eight functions discovered,
only Swish and max{x, σ(x)} consistently outperformed ReLU across multiple tasks, suggesting
that improvements are possible but often task specific.

Bingham et al. (2020) used evolution to discover novel activation functions. Whereas their functions
had a fixed graph structure, PANGAEA utilizes a flexible search space that implements activation
functions as arbitrary computation graphs. PANGAEA also includes more powerful mutation
operations, and a function parameterization approach that makes it possible to further refine functions
through gradient descent.

Liu et al. (2020) evolved normalization-activation layers. They searched for a computation graph
that replaced both batch normalization and ReLU in multiple neural networks. They argued that the
inherent nonlinearity of the discovered layers precluded the need for any explicit activation function.
However, experiments in this paper show that carefully designed parametric activation functions can
in fact be a powerful augmentation to existing deep learning models.

f(x)

Unary

Unary

x

f(x)

Binary

Unary Unary

x x

Figure 1: Random acti-
vation function initializa-
tion. The initial popula-
tion consists of random
samples of two kinds of
computation graphs, ran-
domly initialized with the
operators in Table 1. In
this manner, the search
starts with simple graphs
and gradually expands to
more complex forms.

Finally, Basirat & Roth (2018) used a genetic algorithm to discover
task-specific piecewise activation functions. They showed that differ-
ent functions are optimal for different tasks. However, the discovered
activation functions did not outperform ELiSH and HardELiSH, two
hand-designed activation functions proposed in the same paper (Basirat
& Roth, 2018). The larger search space in PANGAEA affords evolution
extra flexibility in designing activation functions, while the trainable pa-
rameters give customizability to the network itself, leading to consistent,
significant improvement.

3 THE PANGAEA METHOD

3.1 REPRESENTING AND MODIFYING ACTIVATION FUNCTIONS

Activation functions are represented as computation graphs in which each
node is a unary or a binary operator (Table 1). The activation functions
are implemented in TensorFlow (Abadi et al., 2016), and safe operator
implementations are chosen when possible (e.g. the binary operator x1/x2
is implemented as tf.math.divide_no_nan, which returns 0 if
x2 = 0). The operators in Table 1 were chosen to create a large and
expressive search space that contains activation functions unlikely to be discovered by hand. Operators
that are periodic (e.g. sin(x)) and operators that contain repeated asymptotes were not included; in

2

Under review as a conference paper at ICLR 2021

f(x)

x2

x1 + x2

tanh(x) |x|

erf(x)

xx

(a) Parent

f(x)

x2

x1 + x2

Swish(x)

tanh(x)

|x|

erf(x)

xx

(b) Insert

f(x)

x2

|x|

erf(x)

x

(c) Remove

f(x)

x2

x1 · x2

tanh(x) |x|

erf(x)

xx

(d) Change

f(x)

−x

max{x1, x2}

0 tanh(x)

SELU(x)

xx

(e) Regenerate

Figure 2: Evolutionary operations on activation functions. In an ‘Insert’ mutation, a new operator
is inserted in one of the edges of the computation graph, like the Swish(x) in (b). In a ‘Remove’
mutation, a node in the computation graph is deleted, like the addition in (c). In a ‘Change’ mutation,
an operator at a node is replaced with another, like addition with multiplication in (d). These first
three mutations are useful in refining the function locally. In contrast, in a ‘Regenerate’ mutation (e),
every operator in the graph is replaced by a random operator, thus increasing exploration.

preliminary experiments they often caused training instability. All of the operators have domain R,
making it possible to compose them arbitrarily.

PANGAEA begins with an initial population of P random activation functions. Each function is
either of the form f(x) = unary1(unary2(x)) or f(x) = binary(unary1(x),unary2(x)),
as shown in Figure 1. Both forms are equally likely, and the unary and binary operators are also
selected uniformly at random. Previous work has suggested that it is difficult to discover high-
performing activation functions that have complicated computation graphs (Bingham et al., 2020).
The computation graphs in Figure 1 thus represent the simplest non-trivial computation graphs with
and without a binary operator.

During the search, all ReLU activation functions in a given neural network are replaced with a
candidate activation function. No other changes to the network or training setup are made. The
network is trained on the dataset, and the activation function is assigned a fitness score equal to the
network’s accuracy on the validation set.

Given a parent activation function, a child activation function is created by applying one of four
possible mutations (Figure 2). Other possible evolutionary operators like crossover are not used in
this paper. All mutations are equally likely with two special cases. If a remove mutation is selected
for an activation function with just one node, a change mutation is applied instead. Additionally, if an
activation function with greater than seven nodes is selected for mutation, the mutation is a remove
mutation, in order to reduce bloat.

Insert In an insert mutation, one operator in the search space is selected uniformly at random. This
operator is placed on a random edge of a parent activation function graph. In Figure 2b, the unary
operator Swish(x) is inserted at the edge connecting the output of tanh(x) to the input of x1 + x2.
After mutating, the parent activation function (tanh(x) + |erf(x)|)2 produces the child activation
function (Swish(tanh(x)) + |erf(x)|)2. If a binary operator is randomly chosen for the insertion, the
incoming input value is assigned to the variable x1. If the operator is addition or subtraction, the
input to x2 is set to 0. If the operator is multiplication, division, or exponentiation, the input to x2 is
set to 1. Finally, if the operator is the maximum or minimum operator, the input to x2 is a copy of
the input to x1. When a binary operator is inserted into a computation graph, the activation function
computed remains unchanged. However, the structure of the computation graph is modified and can
be further altered by future mutations.

Remove In a remove mutation, one node is selected uniformly at random and deleted. The node’s
input is rewired to its output. If the removed node is binary, one of the two inputs is chosen at random
and is deleted. The other input is kept. In Figure 2c, the addition operator is removed from the parent
activation function. The two inputs to addition, tanh(x) and |erf(x)|, cannot both be kept. By chance,
tanh(x) is discarded, resulting in the child activation function |erf(x)|2.

3

Under review as a conference paper at ICLR 2021

f(x)

σ(x)

x1 − x2

|x| arctan(x)

x x

f(x)

α

σ(x)

x1 − x2

β

|x|

arctan(x)

γ

x x

Figure 3: Parameterization
of activation functions. In
this example, parameters are
added to k = 3 random
edges, yielding the parametric
activation function ασ(β|x| −
arctan(γx)).

Change To perform a change mutation, one node in the computa-
tion graph is selected at random and replaced with another operator
from the search space, also uniformly at random. Unary opera-
tors are always replaced with unary operators, and binary operators
with binary operators. Figure 2d shows how changing addition to
multiplication produces the activation function (tanh(x) · |erf(x)|)2.

Regenerate In a regenerate mutation, every operator in the com-
putation graph is replaced with another operator from the search
space. As with change mutations, unary operators are replaced with
unary operators, and binary operators with binary operators. Al-
though every node in the graph is changed, the overall structure
of the computation graph remains the same. Regenerate mutations
are useful for increasing exploration, and are similar in principle
to burst mutation and delta coding (Gomez & Miikkulainen, 2003;
Whitley et al., 1991). Figure 2e shows the child activation func-
tion −max{0, tanh(SELU(x))}, which is quite different from the
parent function in Figure 2a.

Parameterization of Activation Functions After mutation (or random initialization), activation
functions are parameterized (Figure 3). A value k ∈ {0, 1, 2, 3} is chosen uniformly at random, and
k edges of the activation function graph are randomly selected. Multiplicative per-channel parameters
are inserted at these edges and initialized to one. Whereas evolution is well suited for discovering the
general form of the activation function in a discrete, structured search space, parameterization makes
it possible to fine-tune the function using gradient descent. The function parameters are updated at
every epoch during backpropagation, resulting in different activation functions in different stages
of training. As the parameters are per-channel, the process creates different activation functions at
different locations in the neural network. Thus, parameterization gives neural networks additional
flexibility to customize activation functions.

3.2 DISCOVERING ACTIVATION FUNCTIONS WITH EVOLUTION

Activation functions are discovered by regularized evolution (Real et al., 2019). Initially, P random
activation functions are created, parameterized, and assigned fitness scores. To generate a new
activation function, S functions are sampled with replacement from the current population. The
function with the highest validation accuracy serves as the parent, and is mutated to create a child
activation function. This function is parameterized and assigned a fitness score. The new activation
function is then added to the population, and the oldest function in the population is removed, ensuring
the population is always of size P . This process continues until C functions have been evaluated in
total, and the top functions over the history of the search are returned as a result.

Any activation function that achieves a fitness score less than a threshold V is discarded. These
functions are not added to the population, but they do count towards the total number of C activation
functions evaluated for each architecture. This quality control mechanism allows evolution to focus
only on the most promising candidates.

To save computational resources during evolution, each activation function is evaluated by training a
neural network for 100 epochs using a compressed learning rate schedule (Appendix B). After evolu-
tion is complete, the top 10 activation functions from the entire search are reranked. Each function
receives an adjusted fitness score equal to the average validation accuracy from two independent
200-epoch training runs using the original learning rate schedule. The top three activation functions
after reranking proceed to the final testing experiments.

During evolution, it is possible that some activation functions achieve unusually high validation
accuracy by chance. The 100-epoch compressed learning rate schedule may also have a minor effect
on which activation functions are optimal compared to a full 200-epoch schedule. Reranking thus
serves two purposes. Full training reduces bias from the compressed schedule, and averaging two
such runs lessens the impact of activation functions that achieved high accuracy by chance.

4

Under review as a conference paper at ICLR 2021

4 DATASETS AND ARCHITECTURES

The experiments in this paper focus primarily on the CIFAR-100 image classification dataset
(Krizhevsky et al., 2009). This dataset is a more difficult version of the popular CIFAR-10 dataset,
with 100 object categories instead of 10. Fifty images from each class were randomly selected
from the training set to create a balanced validation set, resulting in a training/validation/test split of
45K/5K/10K images.

To demonstrate that PANGAEA can discover effective activation functions in various settings, it is
evaluated with three different neural networks. The models were implemented in TensorFlow (Abadi
et al., 2016), mirroring the original authors’ training setup as closely as possible (Appendix B).

Wide Residual Network (WRN-10-4; Zagoruyko & Komodakis, 2016) has a depth of 10 and
widening factor of four. Wide residual networks provide an interesting comparison because they
are shallower and wider than many other popular architectures, while still achieving good results.
WRN-10-4 was chosen because its CIFAR-100 accuracy is competitive, yet it trains relatively quickly.

Residual Network (ResNet-v1-56; He et al., 2016a), with a depth of 56, provides an important
contrast to WRN-10-4. It is significantly deeper and has a slightly different training setup, which
may have an effect on the performance of different activation functions.

Preactivation Residual Network (ResNet-v2-56; He et al., 2016b) has identical depth to ResNet-
v1-56, but is a fundamentally different architecture. Activation functions are not part of the skip
connections, as is the case in ResNet-v1-56. Since information does not have to pass through an
activation function, this structure makes it easier to train very deep architectures. PANGAEA should
exploit this structure and discover different activation functions for ResNet-v2-56 and ResNet-v1-56.

5 RESULTS

0 200 400 600 800 1000

Activation Functions Evaluated

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

V
a
li
d

at
io

n
A

cc
u

ra
cy

earcsinh(αx) − 1

(ex − 1) · α log(σ(βx))

log(σ(x)) · arcsinh(x)

max{αHardSigmoid(x),ELU(x)}
max{Swish(x), ασ(βx)}

αx− β log(σ(γx))

min{αSwish(x),ReLU(βx)}

min{Swish(x), αcosh(ELU(ReLU(x)))}
min{Swish(x), αELU(ReLU(βx))}

WRN-10-4

ResNet-v1-56

ResNet-v2-56

Acc. w/ ReLU

Annotated func.

Figure 4: Progress of PANGAEA on three different neural
networks. Evolution quickly discovered activation functions
that outperform ReLU (shown at x = 0), and continued to
improve throughout the experiment. The plots show the high-
est validation accuracy of all activation functions evaluated
so far after 100 epochs of training. Notable discovered ac-
tivation functions are identified with a star and annotated.
The improvements over ReLU are meaningful, but the val-
ues themselves are not directly comparable to the results in
Table 2, which lists test set accuracy after 200 epochs.

Overview Separate evolution exper-
iments were run to discover novel ac-
tivation functions for each of the three
architectures. Evolutionary parame-
ters P = 64, S = 16, C = 1,000,
and V = 20% were used since they
were found to work well in prelimi-
nary experiments.

Figure 4 visualizes progress in these
experiments. For all three architec-
tures, PANGAEA quickly discovered
activation functions that outperform
ReLU. It continued to make further
progress, gradually discovering bet-
ter activation functions, and did not
plateau during the time allotted for the
experiment. Each run took approxi-
mately 2,000 GPU hours on GeForce
GTX 1080 GPUs (Appendix C).

Table 2 shows the final test accuracy
for the top specialized activation func-
tions discovered by PANGAEA in
each run. For comparison, the accu-
racy of the top general functions dis-
covered in this process are also shown, as well as the accuracy of 28 baseline activation functions. In
sum, PANGAEA discovered the best activation function for ResNet-v2-56, the top two activation
functions for ResNet-v1-56, and the top three activation functions for WRN-10-4.

Specialized Activation Functions For all three architectures, there is at least one baseline acti-
vation function that outperforms ReLU by a statistically significant margin. This result already
demonstrates the importance of activation function design, and suggests that the common practice of

5

Under review as a conference paper at ICLR 2021

Table 2: CIFAR-100 test set accuracy shown as a median of ten runs, with mean ± sample standard
deviation in parenthesis. The top accuracy for each architecture is in bold. Asterisks indicate a
statistically significant improvement in mean accuracy over ReLU, with * if p ≤ 0.05, ** if p ≤ 0.01,
and *** if p ≤ 0.001; p-values are from one-tailed Welch’s t-tests. The ++ or +++ indicate a
statistically significant improvement in mean accuracy over all 28 baseline activation functions
(Appendix D), with p ≤ 0.01 or p ≤ 0.001 in every case, respectively.

WRN-10-4 ResNet-v1-56 ResNet-v2-56
Specialized for WRN-10-4
log(σ(αx)) · arcsinh(x) 73.23 (73.16± 0.41) *** +++ 11.15 (19.34± 20.14) 72.05 (64.30± 21.32)

log(σ(αx)) · βarcsinh(x) 73.22 (73.20± 0.37) *** +++ 05.78 (18.63± 21.04) 55.40 (45.88± 30.70)

−Swish(Swish(αx)) 72.38 (72.49± 0.55) *** 59.61 (58.86± 2.88) 74.70 (74.71± 0.20) *

Specialized for ResNet-v1-56
αx− β log(σ(γx)) 70.35 (70.28± 0.37) 70.82 (71.01± 0.64) *** ++ 74.41 (74.35± 0.45)

αx− log(σ(βx)) 70.62 (70.47± 0.53) 70.30 (70.30± 0.58) * 74.73 (74.70± 0.23) *

max{Swish(x), 0} 71.96 (72.10± 0.33) ** 69.46 (69.43± 0.69) 74.97 (74.97± 0.25) **

Specialized for ResNet-v2-56
Softplus(ELU(x)) 71.51 (71.36± 0.34) 69.94 (69.96± 0.39) 75.60 (75.61± 0.42) ***

min{log(σ(x)), α log(σ(βx))} 72.05 (72.04± 0.34) ** 69.63 (69.56± 0.48) 75.20 (75.19± 0.39) ***

SELU(Swish(x)) 01.00 (01.00± 0.00) 01.00 (01.00± 0.00) 75.06 (75.02± 0.35) **

General Activation Functions
max{Swish(x), α log(σ(ReLU(x)))} 72.50 (72.54± 0.26) *** 69.97 (69.91± 0.37) 75.21 (75.20± 0.41) ***

min{Swish(x), αELU(ReLU(βx))} 72.44 (72.39± 0.29) *** 69.90 (69.82± 0.40) 75.20 (75.27± 0.38) ***

log(σ(x)) 72.38 (72.33± 0.32) *** 69.49 (69.58± 0.35) 75.45 (75.53± 0.37) ***

Baseline Activation Functions
ReLU 71.44 (71.46± 0.50) 69.78 (69.64± 0.65) 74.43 (74.39± 0.44)

ELiSH 01.00 (01.00± 0.00) 01.00 (01.00± 0.00) 75.16 (75.20± 0.31) ***

ELU 72.41 (72.30± 0.32) *** 69.59 (69.67± 0.46) 74.86 (74.95± 0.30) **

GELU 72.00 (71.95± 0.35) * 70.16 (70.19± 0.40) * 74.84 (74.86± 0.33) **

HardSigmoid 55.55 (54.99± 1.00) 33.31 (32.55± 4.06) 65.03 (64.90± 0.69)

Leaky ReLU 71.76 (71.73± 0.33) 69.77 (69.78± 0.33) 74.75 (74.73± 0.35) *

Mish 72.02 (71.95± 0.41) * 70.03 (69.88± 0.54) 75.33 (75.32± 0.29) ***

SELU 70.55 (70.53± 0.42) 68.51 (68.52± 0.29) 73.86 (73.79± 0.36)

sigmoid 56.45 (56.10± 0.98) 37.07 (36.47± 3.32) 66.72 (66.45± 0.92)

Softplus 72.25 (72.27± 0.26) *** 69.71 (69.71± 0.36) 75.47 (75.46± 0.52) ***

Softsign 56.72 (56.30± 2.16) 58.33 (58.38± 0.96) 69.31 (69.33± 0.39)

Swish 72.27 (72.26± 0.28) *** 69.60 (69.68± 0.38) 75.17 (75.08± 0.36) ***

tanh 56.29 (56.52± 1.53) 63.89 (63.88± 0.38) 70.53 (70.44± 0.40)

Parametric Baseline Functions
αReLU(βx) 72.01 (71.96± 0.31) ** 68.91 (68.93± 0.22) 73.60 (73.52± 0.37)

αELiSH(βx) 01.00 (01.00± 0.00) 01.00 (01.00± 0.00) 73.95 (73.94± 0.33)

αELU(βx) 71.96 (71.98± 0.24) ** 68.91 (69.06± 0.37) 74.03 (73.97± 0.45)

αGELU(βx) 71.86 (71.96± 0.34) ** 69.35 (69.39± 0.35) 73.77 (73.83± 0.24)

αHardSigmoid(βx) 66.74 (66.70± 0.64) 33.47 (34.33± 6.53) 65.09 (65.10± 0.40)

αLeaky ReLU(βx) 71.70 (71.74± 0.39) 69.18 (69.11± 0.47) 73.53 (73.44± 0.29)

αMish(βx) 72.02 (72.11± 0.31) ** 69.66 (69.51± 0.67) 73.72 (73.72± 0.32)

αSELU(βx) 71.04 (71.07± 0.33) 68.06 (68.05± 0.39) 73.44 (73.37± 0.38)

αsigmoid(βx) 67.16 (66.98± 0.66) 43.72 (44.40± 2.62) 66.80 (66.98± 0.85)

αSoftplus(βx) 71.82 (71.73± 0.31) 68.84 (68.84± 0.30) 73.92 (73.95± 0.37)

αSoftsign(βx) 62.19 (62.12± 0.83) 01.00 (9.18± 13.75) 68.91 (68.87± 0.38)

αSwish(βx) 72.36 (72.26± 0.29) *** 69.25 (69.25± 0.28) 73.97 (73.93± 0.22)

αtanh(βx) 63.72 (63.55± 0.56) 01.00 (02.92± 6.07) 69.61 (69.55± 0.62)

PReLU 72.25 (72.23± 0.37) *** 69.67 (69.77± 0.40) 74.99 (75.10± 0.53) **

PSwish = x · σ(βx) 72.46 (72.40± 0.31) *** 70.19 (70.16± 0.46) * 75.37 (75.39± 0.28) ***

using ReLU by default is suboptimal. The best baseline activation function is different for different
architectures, reinforcing the importance of developing specialized activation functions.

Because PANGAEA uses validation accuracy from a single neural network to assign fitness scores to
activation functions, there is selective pressure to discover functions that exploit the structure of the
network. The functions thus become specialized to the architecture. They increase the performance
of that architecture; however, they may not be as effective with other architectures. Specialized
activation function accuracies are highlighted in gray in Table 2. To verify that the functions are
customized to a specific architecture, the functions were cross-evaluated with other architectures.

6

Under review as a conference paper at ICLR 2021

−1

0

1

2

3

4

5

log(σ(αx)) · arcsinh(x)

−1

0

1

2

3

4

5

log(σ(αx)) · βarcsinh(x)

−1

0

−Swish(Swish(αx))

−2

0

2

4

αx− β log(σ(γx))

−2

0

2

4

αx− log(σ(βx))

E
p

o
c
h

0
E

p
o
c
h

2
0
0

−2 0 2

−1

0

1

2

3

4

5

−2 0 2

−1

0

1

2

3

4

5

−2 0 2

−1

0

−5 0 5

−2

0

2

4

−5 0 5

−2

0

2

4

S
h
a
ll
o
w

L
a
y
e
r

D
e
e
p

L
a
y
e
r

Figure 5: Adaptation of parametric activation functions over
time and space. Top: The parameters change during training,
resulting in different activation functions in the early and late
stages. The plots were created by averaging the values of
α, β, and γ across the entire network at different training
epochs. Bottom: The parameters are updated separately in
each channel, inducing different activation functions at dif-
ferent locations of a neural network. The plots were created
by averaging α, β, and γ at each layer of the network after
the completion of training.

PANGAEA discovered two special-
ized activation functions for WRN-
10-4 and one for ResNet-v1-56 that
achieved statistically significant im-
provements in mean accuracy over
all baseline activation functions. All
three specialized activation functions
evolved for ResNet-v2-56 signifi-
cantly outperformed ReLU as well.
These results strongly demonstrate the
power of customizing activation func-
tions to architectures.

General Activation Functions Al-
though the best performance tends to
come from specialization, it is also
useful to discover activation functions
that achieve high accuracy across mul-
tiple architectures. For instance, they
could be used initially on a new ar-
chitecture before spending compute
on specialization. A powerful albeit
computationally demanding approach
would be to evolve general functions
directly, by evaluating candidates on
multiple architectures during evolu-
tion. However, it turns out that each
specialized evolution run already generates a variety of functions, many of which are general.

To evaluate whether the PANGAEA runs discovered general functions as well, the top 10 functions
from each run were combined into a pool of 30 candidate functions. Each candidate was assigned
three fitness scores equal to the average validation accuracy from two independent training runs on
each of the three architectures. Candidate functions that were Pareto-dominated, were functionally
equivalent to one of the baseline activation functions, or had already been selected as a specialized
activation function were discarded, leaving three Pareto-optimal general activation functions.

These functions indeed turned out to be effective as general activation functions: they all performed
well on all architectures. One outperformed all baseline activation functions on WRN-10-4, while
two functions on ResNet-v1-56 and three functions on ResNet-v2-56 outperformed 25 of the 28
baseline functions. However, specialized activation functions, i.e. those specifically evolved for each
architecture, still tend to give the biggest improvements.

Table 3: CIFAR-100 test set accuracy
shown as a median of ten runs, with
mean ± sample standard deviation in
parenthesis. The parametric evolved
functions tend to outperform their non-
parametric counterparts, demonstrating
the value of parameterization.

WRN-10-4
log(σ(αx)) · arcsinh(x) 73.23 (73.16± 0.41)

log(σ(αx)) · βarcsinh(x) 73.22 (73.20± 0.37)

log(σ(x)) · arcsinh(x) 72.42 (72.51± 0.30)

−Swish(Swish(αx)) 72.38 (72.49± 0.55)

−Swish(Swish(x)) 71.99 (71.97± 0.22)

ResNet-v1-56
αx− β log(σ(γx)) 70.82 (71.01± 0.64)

αx− log(σ(βx)) 70.30 (70.30± 0.58)

x− log σ(x) 69.44 (69.29± 0.45)

ResNet-v2-56
min{log(σ(x)), α log(σ(βx))} 75.20 (75.19± 0.39)

log(σ(x)) 75.45 (75.53± 0.37)

Shapes of Discovered Functions Many of the top dis-
covered activation functions are compositions of multiple
unary operators. These functions do not exist in the core
unit search space of Ramachandran et al. (2018), which
requires binary operators. They also do not exist in the S1

or S2 search spaces proposed by Bingham et al. (2020),
which are too shallow. The design of the search space is
therefore as important as the search algorithm itself. Pre-
vious search spaces that rely on repeated fixed building
blocks only have limited representational power. In con-
trast, PANGAEA utilizes a flexible search space that can
represent activation functions in an arbitrary computation
graph.

Figure 5 shows examples of parametric activation func-
tions discovered by PANGAEA. As training progresses,
gradient descent makes small adjustments to the function
parameters α, β, and γ, resulting in activation functions
that change over time. This result suggests that it is ad-

7

Under review as a conference paper at ICLR 2021

vantageous to have one activation function in the early stages of training when the network learns
rapidly, and a different activation function in the later stages of training when the network is focused
on fine-tuning. The parameters α, β, and γ are also learned separately for the different channels,
resulting in activation functions that vary with location in a neural network. Functions in deep layers
(near the output) are more nonlinear than those in shallow layers (closer to the input), possibly
contrasting the need to form regularized embeddings with the need to form categorizations. In this
manner, PANGAEA customizes the activation functions to both time and space for each architecture.

6 ABLATIONS AND VARIATIONS

Table 4: WRN-10-4 accuracy with
different activation functions on CIFAR-
100, shown as a median of ten runs, with
mean ± sample standard deviation in
parenthesis. PANGAEA discovers better
activation functions than random search
and nonparametric evolution.

PANGAEA
log(σ(αx)) · arcsinh(x) 73.23 (73.16± 0.41)

log(σ(αx)) · βarcsinh(x) 73.22 (73.20± 0.37)

−Swish(Swish(αx)) 72.38 (72.49± 0.55)

Random Search
αSwish(x) 72.80 (72.85± 0.25)

Softplus(x) · arctan(αx) 72.78 (72.81± 0.35)

ReLU(αarcsinh(βσ(x))) · SELU(γx) 72.63 (72.69± 0.21)

Nonparametric Evolution
cosh(1) · Swish(x) 72.81 (72.78± 0.24)

(e1 − 1) · Swish(x) 72.57 (72.52± 0.34)

ReLU(Swish(x)) 72.06 (72.04± 0.54)

ReLU 71.44 (71.46± 0.50)

Swish 72.27 (72.26± 0.28)

Effect of Parameterization To understand the effect
that parameterizing activation functions has on perfor-
mance, the specialized functions (Table 2) were trained
without them. As Table 3 shows, when parameters are
removed, performance drops. The function log(σ(x)) is
the only exception to this rule, but its high performance is
not surprising, since it was previously discovered as a gen-
eral activation function (Table 2). These results confirm
that the learnable parameters contributed to the success of
PANGAEA.

Search Strategy As additional baseline comparisons,
two alternative search strategies were used to discover ac-
tivation functions for WRN-10-4. First, a random search
baseline was established by applying random mutations
without regard to fitness values. This approach corre-
sponds to setting evolutionary parameters P = 1, S = 1,
and V = 0%. Second, to understand the effects of func-
tion parameterization, a nonparametric evolution baseline
was run. This setting is identical to PANGAEA, except
functions are not parameterized (Figure 3). Otherwise,
both baselines follow the same setup as PANGAEA, in-
cluding evaluating C = 1,000 candidate functions and
reranking the most promising ones (Section 3.2).

Table 5: Specialized activation functions
discovered for WRN-10-4, ResNet-v1-
56, and ResNet-v2-56 are evaluated
on larger versions of those architec-
tures: WRN-16-8, ResNet-v1-110, and
ResNet-v2-110, respectively. CIFAR-
100 test accuracy is reported as the
median of three runs, with mean ±
sample standard deviation in parenthe-
sis. Specialized activation functions
successfully transfer to WRN-16-8 and
ResNet-v2-110, outperforming ReLU.

WRN-16-8
log(σ(αx)) · arcsinh(x) 78.42 (78.34± 0.20)

log(σ(αx)) · βarcsinh(x) 78.38 (78.36± 0.17)

−Swish(Swish(αx)) 77.90 (78.00± 0.35)

ReLU 78.14 (78.15± 0.03)

ResNet-v1-110
αx− β log(σ(γx)) 70.88 (70.85± 0.50)

αx− log(σ(βx)) 70.40 (70.34± 0.60)

max{Swish(x), 0} 70.30 (70.36± 0.56)

ReLU 71.15 (71.23± 0.25)

ResNet-v2-110
Softplus(ELU(x)) 77.34 (77.14± 0.38)

min{log(σ(x)), α log(σ(βx))} 76.99 (76.93± 0.19)

SELU(Swish(x)) 77.04 (76.96± 0.14)

ReLU 76.35 (76.34± 0.11)

Table 4 shows the results of this experiment. Random
search is able to discover good functions that outperform
ReLU, but the functions are not as powerful as those dis-
covered by PANGAEA. This result demonstrates the im-
portance of fitness selection in evolutionary search. The
functions discovered by nonparametric evolution similarly
outperform ReLU but underperform PANGAEA. Interest-
ingly, without parameterization, evolution is not as cre-
ative: two of the three functions discovered are merely
Swish multiplied by a constant. Random search and non-
parametric evolution both discovered good functions that
improved accuracy, but PANGAEA achieves the best per-
formance by combining the advantages of fitness selection
and function parameterization.

Scaling Up PANGAEA discovered specialized activa-
tion functions for WRN-10-4, ResNet-v1-56, and ResNet-
v2-56. Table 5 shows the performance of these activation
functions when paired with the larger WRN-16-8, ResNet-v1-110, and ResNet-v2-110 architectures.
Due to time constraints, ReLU is the only baseline activation function in these experiments.

Two of the three functions discovered for WRN-10-4 outperform ReLU with WRN-16-8, and all
three functions discovered for ResNet-v2-56 outperform ReLU with ResNet-v2-110. Interestingly,
ReLU achieves the highest accuracy for ResNet-v1-110, where activation functions are part of
the skip connections, but not for ResNet-v2-110, where they are not. Thus, it is easier to achieve

8

Under review as a conference paper at ICLR 2021

high performance with specialized activation functions on very deep architectures when they are
not confounded by skip connections. Notably, ResNet-v2-110 with Softplus(ELU(x)) performs
comparably to much larger ResNet-v2-1001 with ReLU (77.34 vs. 77.29, as reported by He et al.
(2016b)).

Evolving novel activation functions can be computationally expensive. The results in Table 5 suggest
that it is possible to reduce this cost by evolving activation functions for smaller architectures, and
then using the discovered functions with larger architectures.

Table 6: All-CNN-C accuracy with dif-
ferent activation functions on CIFAR-10,
shown as a median of ten runs, with
mean ± sample standard deviation
in parenthesis. PANGAEA improves
performance significantly also with this
different architecture and task.

αReLU(β|ReLU(γx)|) 92.80 (92.77± 0.13)

αSwish(x) · cosh(β) 92.67 (92.66± 0.08)

αSwish(βx) 92.63 (76.15± 34.86)

ReLU 88.47 (88.47± 0.14)

All-CNN-C Finally, to verify that PANGAEA is effec-
tive with different datasets and types of architectures, ac-
tivation functions were evolved for the All-CNN-C (Sprin-
genberg et al., 2015) architecture on the CIFAR-10 dataset.
All-CNN-C is quite distinct from the architectures consid-
ered above: it contains only convolutional layers, activa-
tion functions, and a global average pooling layer, but it
does not have residual connections. As shown in Table 6,
PANGAEA improves significantly over ReLU in this set-
ting as well. The accuracy improvement from 88.47% to
92.80% corresponds to an impressive 37.55% reduction in
the error rate. This experiment provides further evidence
that PANGAEA can improve performance for different architectures and tasks.

7 FUTURE WORK

It is difficult to select an appropriate activation function for a given architecture because the activation
function, network topology, and training setup interact in complex ways. It is especially promising
that PANGAEA discovered activation functions that significantly outperformed the baselines, since
the architectures and training setups were standard and developed with ReLU. A compelling research
direction is to jointly optimize the architecture, training setup, and activation function.

More specifically, there has been significant recent research in automatically discovering the archi-
tecture of neural networks through gradient-based, reinforcement learning, or neuroevolutionary
methods (Elsken et al., 2019; Wistuba et al., 2019; Real et al., 2019). In related work, evolution
was used discover novel loss functions automatically (Gonzalez & Miikkulainen, 2019; 2020; Liang
et al., 2020), outperforming the standard cross entropy loss. In the future, it may be possible to
optimize many of these aspects of neural network design jointly. Just as new activation functions
improve the accuracy of existing network architectures, it is likely that different architectures will be
discovered when the activation function is not ReLU. One such example is EfficientNet (Tan & Le,
2019), which achieved state-of-the-art accuracy for ImageNet (Deng et al., 2009) using the Swish
activation function (Ramachandran et al., 2018; Elfwing et al., 2018). Coevolution of activation
functions, topologies, loss functions, and possibly other aspects of neural network design could allow
taking advantage of interactions between them, leading to further improvements in the future.

8 CONCLUSION

This paper introduced PANGAEA, a technique for automatically designing novel, high-performing,
parametric activation functions. PANGAEA builds a synergy of two different optimization processes:
evolutionary population-based search for the general form, and gradient descent-based fine-tuning of
the parameters of the activation function. Compared to previous studies, the search space is extended
to include deeper and more complex functional forms, including ones unlikely to be discovered by
humans. The parameters are adapted during training and are different in different locations of the
architecture, thus customizing the functions over both time and space. PANGAEA is able to discover
general activation functions that perform well across architectures, and specialized functions taking
advantage of a particular architecture, significantly outperforming previously proposed activation
functions in both cases. It is thus a promising step towards automatic configuration of neural networks.

9

Under review as a conference paper at ICLR 2021

REFERENCES

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), pp. 265–283, 2016.

M. Basirat and P. M. Roth. The quest for the golden activation function. arXiv:1808.00783, 2018.

G. Bingham, W. Macke, and R. Miikkulainen. Evolutionary optimization of deep learning activation
functions. In Genetic and Evolutionary Computation Conference (GECCO ’20), July 8–12, 2020,
Cancún, Mexico, 2020.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). CoRR, abs/1511.07289, 2015.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

S. Elfwing, E. Uchibe, and K. Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.

T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. Journal of Machine
Learning Research, 20(55):1–21, 2019.

F. Gomez and R. Miikkulainen. Active guidance for a finless rocket using neuroevolution. In
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 2084–2095, 2003.

S. Gonzalez and R. Miikkulainen. Improved training speed, accuracy, and data utilization through
loss function optimization. arXiv:1905.11528, 2019.

S. Gonzalez and R. Miikkulainen. Evolving loss functions with multivariate taylor polynomial
parameterizations. arXiv:2002.00059, 2020.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In Proceedings of the IEEE international conference on
computer vision, pp. 1026–1034, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016a.

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In European
conference on computer vision, pp. 630–645. Springer, 2016b.

D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv:1606.08415, 2016.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving neural
networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, 2012.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pp. 448–456, 2015.

G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-normalizing neural networks. In
Advances in neural information processing systems, pp. 971–980, 2017.

J. R. Koza. Genetic programming: on the programming of computers by means of natural selection,
volume 1. MIT press, 1992.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, University of Toronto, 2009.

J. Liang, S. Gonzalez, and R. Miikkulainen. Population-based training for loss function optimization.
arXiv:2002.04225, 2020.

H. Liu, A. Brock, K. Simonyan, and Q. V. Le. Evolving normalization-activation layers.
arXiv:2004.02967, 2020.

10

Under review as a conference paper at ICLR 2021

A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network acoustic
models. In Proceedings of the 30th international conference on machine learning (ICML-13), pp.
3, 2013.

D. Misra. Mish: A self regularized non-monotonic neural activation function. arXiv:1908.08681,
2019.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Pro-
ceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. Activation functions: Comparison of trends
in practice and research for deep learning. arXiv:1811.03378, 2018.

P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation functions. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Workshop Track Proceedings, 2018.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier architecture
search. In Proceedings of the aaai conference on artificial intelligence, volume 33, pp. 4780–4789,
2019.

J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The all
convolutional net. In ICLR (workshop track), 2015.

M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In
International Conference on Machine Learning, pp. 6105–6114, 2019.

D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the condor experience.
Concurrency and computation: practice and experience, 17(2-4):323–356, 2005.

D. Whitley, K. Mathias, and P. Fitzhorn. Delta-Coding: An iterative search strategy for genetic
algorithms. In Proceedings of the International Conference on Genetic Algorithms, pp. 77–84,
1991.

M. Wistuba, A. Rawat, and T. Pedapati. A survey on neural architecture search. arXiv:1905.01392,
2019.

S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv:1605.07146, 2016.

11

Under review as a conference paper at ICLR 2021

1 2 4 8 16
WRN-10-X (Changing Width)

60

65

70

75

C
IF

AR
-1

00
 T

es
t A

cc
ur

ac
y

ReLU
log(σ(αx)) ⋅ βarcsinh(x) 2

4

6

8

10

R
el

at
iv

e
Im

pr
ov

em
en

t (
%

)

10 16 22 28 34
WRN-X-4 (Changing Depth)

71

72

73

74

75

76

77

C
IF

AR
-1

00
 T

es
t A

cc
ur

ac
y

ReLU
log(σ(αx)) ⋅ βarcsinh(x)

−6

−4

−2

0

2

R
el

at
iv

e
Im

pr
ov

em
en

t (
%

)

20 38 56 74 92110 164
ResNet-v2-X

72

74

76

78

C
IF

AR
-1

00
 T

es
t A

cc
ur

ac
y

ReLU
Softplus(ELU(x))

0.5

1.0

1.5

2.0

R
el

at
iv

e
Im

pr
ov

em
en

t (
%

)

Figure 6: CIFAR-100 test accuracy for different neural networks and activation functions. Accuracy
with ReLU is shown in blue, and accuracy with the specialized activation functions in red. The relative
improvement of the specialized functions over ReLU is shown as a dotted green line, according to the
axis values on the right of each plot. Left: The depth of Wide ResNet is fixed at 10, and the width
varies from 1 to 16. Center: The depth of Wide ResNet varies from 10 to 34, while the width is fixed
at four. Right: The depth of Preactivation ResNet ranges from 20 to 164. The width and depth of a
network can affect how much a specialized activation function outperforms ReLU.

A ADJUSTING ARCHITECTURE WIDTH AND DEPTH

To further investigate the effect of network size on the performance of novel activation functions, two
specialized activation functions were paired with neural networks of different widths and depths. Due
to time constraints, the results in this experiment are based on single training runs.

Wide Residual Networks The specialized activation function log(σ(αx)) · βarcsinh(x) was dis-
covered for a Wide ResNet of depth 10 and width four (WRN-10-4). Figure 6 shows the performance
of this function when paired with Wide ResNets of different depths and widths.

For all widths tested, log(σ(αx)) · βarcsinh(x) outperforms ReLU, albeit with diminishing returns
as the width becomes large. This result implies that log(σ(αx)) · βarcsinh(x) gives the network
more representational power than ReLU. As the width of the architecture is increased, the additional
network parameters partially offset this advantage, explaining the decreasing relative improvement of
log(σ(αx)) · βarcsinh(x) over ReLU.

For a fixed architecture width of four, log(σ(αx)) · βarcsinh(x) outperforms ReLU only when the
depth is 10 and 16. Surprisingly, as the depth is increased to 22 and beyond, the performance of
log(σ(αx)) · βarcsinh(x) drops. This result suggests that log(σ(αx)) · βarcsinh(x) is specialized to
shallow architectures.

Preactivation Residual Networks The specialized activation function Softplus(ELU(x)) was
discovered for a Preactivation ResNet of depth 56 (ResNet-v2-56). Figure 6 shows the performance
of this function when paired with Preactivation ResNets of different depths. Unlike with the Wide
ResNets, there is no clear increase or decrease in relative improvement over ReLU as depth increases.
Impressively, ResNet-v2-164 with Softplus(ELU(x)) achieved test set accuracy 78.01, outperforming
the accuracy of ResNet-v2-1001 with ReLU (77.29) as reported by He et al. (2016b).

B TRAINING DETAILS

Wide Residual Network (WRN-10-4) When measuring final performance after evolution, the
standard WRN setup is used; all ReLU activations in WRN-10-4 are replaced with the evolved
activation function, but no other changes to the architecture are made. The network is optimized using
stochastic gradient descent with Nesterov momentum 0.9. The network is trained for 200 epochs;
the initial learning rate is 0.1, and it is decreased by a factor of 0.2 after epochs 60, 120, and 160.
Dropout probability is set to 0.3, and L2 regularization of 0.0005 is applied to the weights. Data
augmentation includes featurewise center, featurewise standard deviation normalization, horizontal
flip, and random 32× 32 crops of images padded with four pixels on all sides. This setup was chosen
to mirror the original WRN setup (Zagoruyko & Komodakis, 2016) as closely as possible.

12

Under review as a conference paper at ICLR 2021

During evolution of activation functions, the training is compressed to save time. The network is
trained for only 100 epochs; the learning rate begins at 0.1 and is decreased by a factor of 0.2 after
epochs 30, 60, and 80. Empirically, the accuracy achieved by this shorter schedule is sufficient to
guide evolution; the computational cost saved by halving the time required to evaluate an activation
function can then be used to search for additional activation functions.

Residual Network (ResNet-v1-56) As with WRN-10-4, when measuring final performance with
ResNet-v1-56, the only change to the architecture is replacing the ReLU activations with an evolved
activation function. The network is optimized with stochastic gradient descent and momentum 0.9.
Dropout is not used, and L2 regularization of 0.0001 is applied to the weights. In the original ResNet
experiments (He et al., 2016a), an initial learning rate of 0.01 was used for 400 iterations before
increasing it to 0.1, and further decreasing it by a factor of 0.1 after 32K and 48K iterations. An
iteration represents a single forward and backward pass over one training batch, while an epoch
consists of training over the entire training dataset. In this paper, the learning rate schedule is
implemented by beginning with a learning rate of 0.01 for one epoch, increasing it to 0.1, and then
decreasing it by a factor of 0.1 after epochs 91 and 137. (For example, (48K iterations / 45K training
images) * batch size of 128≈ 137.) The network is trained for 200 epochs in total. Data augmentation
includes a random horizontal flip and random 32× 32 crops of images padded with four pixels on all
sides, as in the original setup (He et al., 2016a).

When evolving activation functions for ResNet-v1-56, the learning rate schedule is again compressed.
The network is trained for 100 epochs; the initial warmup learning rate of 0.01 still lasts one epoch,
the learning rate increases to 0.1, and then decreases by a factor of 0.1 after epochs 46 and 68.
When evolving activation functions, their relative performance is more important than the absolute
accuracies they achieve. The shorter training schedule is therefore a cost-efficient way of discovering
high-performing activation functions.

Preactivation Residual Network (ResNet-v2-56) The full training setup, data augmentation, and
compressed learning rate schedule used during evolution for ResNet-v2-56 are all identical to those
for ResNet-v1-56 with one exception: with ResNet-v2-56, it is not necessary to warm up training
with an initial learning rate of 0.01 (He et al., 2016b), so this step is skipped.

All-CNN-C When measuring final performance with All-CNN-C, the ReLU activation function
is replaced with an evolved one, but the setup otherwise mirrors that of Springenberg et al. (2015)
as closely as possible. The network is optimized with stochastic gradient descent and momentum
0.9. Dropout probability is 0.5, and L2 regularization of 0.001 is applied to the weights. The data
augmentation involves featurewise centering and normalizing, random horizontal flips, and random
32× 32 crops of images padded with five pixels on all sides. The initial learning rate is set to 0.01,
and it is decreased by a factor of 0.1 after epochs 200, 250, and 300. The network is trained for 350
epochs in total.

During evolution of activation functions, the same training setup was used. It is not necessary to
compress the learning rate schedule as was done with the residual networks because All-CNN-C
trains more quickly.

CIFAR-10 As with CIFAR-100, a balanced validation set was created for CIFAR-10 by randomly
selecting 500 images from each class, resulting in a training/validation/test split of 45K/5K/10K
images.

C IMPLEMENTATION AND COMPUTE REQUIREMENTS

High-performance computing in two clusters is utilized for the experiments. One cluster uses
HTCondor (Thain et al., 2005) for scheduling jobs, while the other uses the Slurm workload manager.
Training is executed on GeForce GTX 1080 GPUs on both clusters. When a job begins executing, a
parent activation function is selected by sampling S = 16 functions from the P = 64 most recently
evaluated activation functions. This is a minor difference from the original regularized evolution
(Real et al., 2019), which is based on a strict sliding window of size P . This approach may give extra
influence to some activation functions, depending on how quickly or slowly jobs are executed in each

13

Under review as a conference paper at ICLR 2021

of the clusters. In practice the method is highly effective; it allows evolution to progress quickly by
taking advantage of extra compute when demand on the clusters is low.

It is difficult to know ahead of time how computationally expensive the evolutionary search will
be. Some activation functions immediately result in an undefined loss, causing training to end. In
that case only a few seconds have been spent and another activation function can immediately be
evaluated. Other activation functions train successfully, but their complicated expressions result in
longer-than-usual training times. In these experiments, evolution for WRN-10-4 took 2,314 GPU
hours, evolution for ResNet-v1-56 took 1,594 GPU hours, and evolution for ResNet-v2-56 took
2,175 GPU hours. These numbers do not include costs for reranking and repeated runs in the final
experiments. Although substantial, the computational cost is negligible compared to the cost in
human labor in designing activation functions. Evolution of parametric activation functions requires
minimal manual setup and delivers automatic improvements in accuracy.

D BASELINE ACTIVATION FUNCTION DETAILS

Table 7: Baseline activation functions from the operator search space (Table 1) and final results
(Table 2).

Name Definition Reference(s)

ReLU max{x, 0} Nair & Hinton (2010)
ELiSH x

1+e−x if x ≥ 0 else ex−1
1+e−x Basirat & Roth (2018)

ELU x if x ≥ 0 else α(ex − 1), with α = 1 Clevert et al. (2015)
GELU xΦ(x), with Φ(x) = P (X ≤ x), X ∼ N (0, 1),

approximated as 0.5x(1 + tanh[
√

2/π(x+ 0.044715x3)])
Hendrycks & Gimpel (2016)

HardSigmoid max{0,min{1, 0.2x+ 0.5}}
Leaky ReLU x if x ≥ 0 else 0.01x Maas et al. (2013)
Mish x · tanh(Softplus(x)) Misra (2019)
SELU λx if x ≥ 0 else λα(ex − 1),

with λ = 1.05070098, α = 1.67326324
Klambauer et al. (2017)

sigmoid (1 + e−x)−1

Softplus log(ex + 1)
Softsign x/(|x|+ 1)
Swish x · σ(x), with σ(x) = (1 + e−x)−1 Ramachandran et al. (2018)

and Elfwing et al. (2018)
tanh ex−e−x

ex+e−x

PReLU x if x ≥ 0 else αx, where α is a per-neuron
learnable parameter initialized to 0.25

He et al. (2015)

PSwish x · σ(βx), where β is a per-channel learnable parameter Ramachandran et al. (2018)

14

	Introduction
	Related Work
	The PANGAEA Method
	Representing and Modifying Activation Functions
	Discovering Activation Functions with Evolution

	Datasets and Architectures
	Results
	Ablations and Variations
	Future Work
	Conclusion
	Adjusting Architecture Width and Depth
	Training Details
	Implementation and Compute Requirements
	Baseline Activation Function Details

