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Abstract

Selecting a well-performing algorithm for a given task or dataset can be time-consuming and1

tedious, but is crucial for the successful day-to-day business of developing new AI & ML2

applications. Algorithm Selection (AS) mitigates this through a meta-model leveraging3

meta-information about previous tasks. However, most of the available AS methods are4

error-prone because they characterize a task by either cheap-to-compute properties of the5

dataset or evaluations of cheap proxy algorithms, called landmarks. In this work, we extend6

the classical AS data setup to include multi-fidelity information and empirically demonstrate7

how meta-learning on algorithms’ learning behaviour allows us to exploit cheap test-time8

evidence effectively and combat myopia significantly. We further postulate a budget-regret9

trade-off w.r.t. the selection process. Our new selector MASIF is able to jointly interpret10

online evidence on a task in form of varying-length learning curves without any parametric11

assumption by leveraging a transformer-based encoder. This opens up new possibilities for12

guided rapid prototyping in data science on cheaply observed partial learning curves.13

1 Introduction14

Data scientists typically spend most of their time with data engineering and thus often have less time for15

choosing a well-performing algorithm for a given task (Anaconda, 2020). This selection process is typically16

powered by both the experience of the data scientist w.r.t. the performance of algorithms on previous tasks17

and datasets as well as a limited number of partial evaluations of the candidate algorithms on the task at18

hand. In doing so, a data scientist inherently carefully trades off (i) time invested into actively gathering19

performance information on the new task to make an informed decision and (ii) the regret in terms of20

performance incurred by possibly not selecting the best algorithm.21

On one extreme end of this trade-off lie classical AS (Rice, 1976; Kerschke et al., 2019) approaches which22

characterize a task using handcrafted meta-features (Vanschoren, 2018) of the corresponding dataset. These23

features are supposed to be informative w.r.t. the performance of an algorithm on that particular dataset.24

These approaches aim at learning a mapping from these characteristics to the pool of algorithms, allowing25

them to recommend an algorithm for a new task at hand. In practice, such dataset meta-features may show26

limited association with the performance of the considered classes of algorithms (Pfahringer et al., 2000;27

J. Fürnkranz, 2001). In particular, so-called dataset meta-features, corresponding to cheaply-computable28

properties of the dataset (including simple, statistical, information-theoretic, complexity- and model-based29

properties (Vanschoren, 2018)), are known to be only indicative of algorithm performance to a limited30

degree (Pfahringer et al., 2000). Similarly, the correlation of landmarking meta-features, i.e., performances of31

cheap proxy algorithms computed on the new dataset, can be limited, as they hinge on how well the proxy32

algorithms’ performances are associated with those of the pool of candidates. For instance, the performance33

of a decision stump might not be informative on how well a deep neural network will perform.34

On the other extreme end of this trade-off lie existing learning curve approaches (Mohr & van Rijn, 2021),35

which exclusively invest time into gathering information on potentially well-performing algorithms from the36

pool of candidates on the new dataset. They utilize cheap but premature approximations of the candidates’37

performances, such as training models only for a limited amount of epochs or only on parts of the training38
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Figure 1: In contrast to classical algorithm selection trained only on meta-features, MASIF utilizes the
information from both meta-features and learning curve values to predict the best performing algorithms.

data, and extrapolate to converged training on all the data. As such, learning curve approaches invest39

comparatively more budget on obtaining information naturally associated with the final performance of the40

classes of algorithms. A common downside to these approaches lies in their extrapolation strategy. Observing41

only premature approximations of the performance data with little or no meta-knowledge about an algorithm’s42

learning behavior, learning curve methods often resort to strong parametric assumptions (Mohr & van Rijn,43

2022) and are myopic in the sense that an extrapolated estimate of the final performance can only be based44

on the observed premature performance values. Further, with few exceptions, such as (van Rijn et al., 2015;45

Klein et al., 2017; Baker et al., 2018; Long et al., 2020), they only extrapolate each algorithm independently,46

ignorant of possible existing relations in learning behaviors to other algorithms.47

In this work, we propose MASIF (Meta-learned Algorithm Selection using Implicit Fidelity)1, an approach48

designed to support data scientists in the AS process in a much more intuitive manner. It supports a data49

scientist’s active discovery process on a new dataset, as it allows refining the expectation on the final ranking50

over algorithms based on his/hers incremental budget allocation. This provides the user with full flexibility51

in different trade-offs between invested budgets and regret of the final ranking. It is however also a limitation52

in the sense that a user has to make this decision. As alleviation, we later provide an exemplary solution but53

note that this opens up a new area for research.54

MASIF is powered by a transformer-based model accounting for the sequential nature of learning curves and55

interpreting their (partial) informational content. It learns to interpret them based on the meta-knowledge56

w.r.t. the candidates’ learning behavior obtained from observing them on other datasets. Using this encoder57

and the available meta-knowledge, our model neither requires explicitly extrapolating the curves nor does58

it necessitate assumptions on their parametric shapes. Learning a latent representation of each curve59

respectively, a subsequent transformer and MLP merge the gathered test-time evidence in the form of60

observed premature performances. This allows learning cross-correlations between the algorithms’ learning61

behaviors (cf. Figure 1).62

Overall, we make the following contributions:63

1. From a practical perspective, we formalize a meta-learning multi-fidelity setup that closely resembles64

a data scientist’s workflow. Based on this we discuss the budget-regret trade-off that contemporary65

algorithm selectors implicitly make.66

2. We introduce MASIF, a learning curve interpreter living in this framework, leveraging both dataset67

meta-features and formulating a well-informed meta-prior on the candidates’ learning behaviors. It68

mitigates the fallacies of classical AS and learning curve-based approaches; namely, as the first of its69

kind, it jointly interprets multiple learning curves of varying lengths and, utilizing meta-knowledge70

to combat myopia, leading to a better-informed ranking with less compute on a new dataset.71

1MASIF’s code is published on https://anonymous.4open.science/status/MASIF-824D
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3. Since we open up a new framework for AS with multi-fidelity information, we propose a new evaluation72

scheme based on fidelity slices.73

4. We demonstrate the usage of this novel learning curve interpreter as an algorithm selector based on74

a user’s budgetary and regret preferences, and evaluate its performance against other baselines on75

several benchmarks.76

2 Preliminaries77

As we seek to unify classical AS, multi-fidelity, and learning curves, we re-examine them and offer a notation,78

with which we later detail how selectors behave. Particularly, this notation is aimed at highlighting both the79

available meta-knowledge and the associated cost of acquiring information on a new dataset.80

The Algorithm Selection Problem denotes the task of finding an algorithm selector s : D → A from81

the space of algorithm selectors S, which selects the presumably most suitable (machine learning) algorithm82

A∗ ∈ A for a given dataset D ∈ D. Here, suitability is expressed through a costly-to-evaluate performance83

metric m : D × A → R, which quantifies how well the given algorithm performs on the given dataset at84

the end of its training process. Examples include the accuracy or cross-entropy loss on the test data. The85

(hypothetical) best algorithm selector, also called the oracle, s∗, chooses the best algorithm for every dataset86

D on the final performances:87

s∗(D) = A∗ ∈ arg max
A∈A

m(D, A) (1)

Classical Algorithm Selectors seek to meta-learn across datasets, which algorithm will perform best on88

a new dataset. As the performance of an algorithm A ∈ A is costly to evaluate, a complete enumeration over89

A to select the best one is often not feasible in practice, which leads to the application of machine learning to90

predict the best algorithm. To allow learning such a selector based on meta-training data, datasets D are91

characterized by their dataset meta-features ϕD and are fed as input to the selector. In the classical setting,92

these are quickly-computable properties of a dataset, called dataset meta-features Vanschoren (2018) such93

as, e.g., the number of data points, number of explanatory features or the entropy of a dataset’s dependent94

variable. For the purpose of analyzing a selector’s associated cost, computing ϕD is part of the selector’s95

computational budget on a meta-test dataset to gain information about it. Optionally, s can also take96

algorithm meta-features ϕA as input, e.g., the number of neurons in a particular layer of a neural net (Tornede97

et al., 2020; Pulatov et al., 2022).98

In practice, many AS approaches, either implicitly (Xu et al., 2012; Amadini et al., 2014) or explicitly99

(Cunha et al., 2018; Hanselle et al., 2020), compute a ranking over the algorithms A and return the best100

one. Correspondingly, as we also rely on rankings, for the remainder of this paper, we assume that a selector101

returns a ranking from the ranking space R(A) over the discrete set A, i.e., we consider algorithm selectors102

of the form s : D → R(A).103

In the classical setting, the data used to train a selector is called meta-training set2 to differentiate it from104

the actual datasets D, on which the individual algorithms are trained and evaluated. It is defined as105

Ωmeta−train = {ϕD, ϕA, m(D, A)|D ∈ Dtrain, A ∈ A}, (2)

where Dtrain is a set of datasets to meta-train on.106

Dtrain is used to train a selector s to predict rankings over the known set of algorithms A across datasets with107

minimal meta-train loss L : R(A) × R(A) → R, when comparing the prediction s(D) against the respective108

ground-truth ranking R∗
D(A) ∈ R(A). Hence, we solve the optimization problem defined as109

min
s∈S

∑
D∈Dtrain

L
(
R∗

D(A), s(D)
)
. (3)

2We refer to this meta-training set as meta-knowledge interchangeably.
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Similarly, the meta-test loss L′ of s is measured on the known set A on hold-out datasets D ∈ Dtest.110

Ltest(s) =
∑

D∈Dtest

L′(R∗
D(A), s(D)). (4)

While L usually is a differentiable training loss, during test time, L′ does not need to have this restriction.111

For the remainder, we assume this to be a regret function. In particular, since algorithm selectors return112

a recommendation of the most promising algorithms on the given dataset, we use the top-k regret for the113

test-loss as defined in Eq. (4)114

Ltest
k (R∗

D(A), s(D)) = min
A∈top-k(s(D))

m(D, A∗(D)) − m(D, A), (5)

where top-k returns the first k elements of the ranking that s recommended and A∗(D) = arg maxA∈A m(D, A).115

The selector s is allowed to access the available test-time information {ϕD, ϕA|A ∈ A} for its prediction on116

D, resulting in the meta-test knowledge: Ωmeta−test|D = {ϕD, ϕA|A ∈ A}.117

A particularly strong kind of meta-feature in classical AS is landmarking (Pfahringer et al., 2000). Landmarking118

features report the validation performances m(D, A) of cheap algorithms that are usually not in the pool of119

candidates (A /∈ A) as dataset meta-features. This relaxes the assumption that meta-features need to be very120

fast to compute. The utility of classical and landmarking meta-features w.r.t. the selection task depends on121

the alignment of their description of the topology to the topology that the candidate algorithms’ inductive122

biases are successful on – as observed in terms of their final test performance. This is particularly true for123

landmarking features as they apply their inductive biases to the datasets’ topology. Their relevance is related124

to the overlap in the functions that both sets of algorithms describe. For example, a shallow decision tree125

might be partially informative regarding the performance of other tree-based algorithms, such as random126

forests (Breimann, 2001) or xgboost (Chen & Guestrin, 2016). We refer to the question of information content127

as the alignment problem of meta-features and algorithm performance.128

Multi-Fidelity Optimization Since training a machine learning model to completion can be very expensive,129

multi-fidelity optimization (Li et al., 2018) aims at using cheap-to-evaluate proxies to make efficient decisions,130

e.g., which algorithm performs best. In automated machine learning (AutoML, Hutter et al. (2019)), these131

proxies can include training for a limited number of epochs, or training on a subset of the training data.132

Formally, we seek to approximate a costly-to-evaluate function F by a fidelity fi ∈ F from the space of133

fidelities F . We note that also F is part of F . Each fidelity fi comes with a cost c(x, fi) to evaluate fi(x) at134

point x. The common assumption is that the approximation quality of fi w.r.t. F gets better in proportion135

to its cost c(·, fi), leading to a trade-off between approximation quality and cost of the fidelity.136

Learning Curves form an ordered sub-case in multi-fidelity optimization, in particular F is cost-ordered.137

In our case, we consider a learning curve of an algorithm to be the performance metric m : D × A × F → R138

observed on cost-ordered fidelities f1, . . . , FA, where c(x, FA) ≤ c(x, F ) and FA is the maximally observed139

fidelity for algorithm A. Formally, a learning curve can be defined as140

LCD,A,FA
= (m(D, A, f))f=f1,...,FA

. (6)

Notably, we distinguish between a partial learning curve, i.e., FA ̸= F , and a full learning curve, i.e., FA = F .141

Each algorithm may be observed at a different maximum fidelity FA, since a user may decide to spend142

different amounts of computing resources to evaluate different algorithms A.143

3 MASIF: Interpreting Partial Learning Curves Jointly144

In this section, we introduce our core contributions: (i) extending the classical AS setup by adding multi-145

fidelity information, allowing for a more detailed analysis of the budget-regret trade-off of algorithm selectors;146
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(ii) our transformer-based MASIF approach as an efficient method for this extended data setup; and (iii) a147

data augmentation scheme to achieve strong predictive performance and enable MASIF to accept arbitrary148

budget allocation strategies.149

3.1 Extending Algorithm Selection by Multi-Fidelity Information150

In addition to dataset meta-features, we propose to use information from learning curves as multi-fidelity151

information for algorithm selection. This allows inquiring about a new dataset’s topology from the perspective152

of the candidates’ inductive biases. Since this information is well aligned with the goal of AS, it opens up a153

new informative and cheap-to-compute information source. We summarize this setup in Figure 1.154

Meta-Training Data The aforementioned idea extends our available training meta-knowledge in Eq. (2)155

and Eq. (3) by fidelity information, amounting to156

Ωmeta−train = {ϕD, ϕA, LCD,A,F |D ∈ Dtrain, A ∈ A} (7)

where the learning curves LCD,A,F ∈ RF replace the performance values m(D, A) ∈ R in Eq. (2). For our157

experiments, we observed full learning curves up to the maximal fidelity F for the meta-training dataset.158

This meta-knowledge as part of the meta-training dataset encodes several aspects: (i) the relation of the159

algorithm’s performance w.r.t. the dataset’s topology, (ii) how information about the algorithm’s inductive160

bias is unrolled across fidelities and (iii) how the learning behavior of different algorithms relate to each other.161

Meta-Testing Data The meta-testing phase provides partial learning curves observed on a new hold-out162

dataset. The set of curves provides evidence of the dataset’s topology observed through the lens of the163

algorithms. The available information at test time for our selector s in Eq. (4) is:164

Ωmeta−test = {ϕD, ϕA, LCD,A,FA
|, FA ≤ F, A ∈ A, D ∈ D}. (8)

Notably, depending on a user’s budgetary preferences, some of the learning curves may be revealed nearly165

entirely or not at all; in general, we assume that the set of all learning curves may be incomplete. Since an166

algorithm selector returns a ranking over the algorithms on the given dataset, we use the top-k regret for the167

test-loss as defined in Eq. (4). Subsequently, we consider the performance comparison on the final fidelity F .168

3.2 MASIF Architecture169

We choose a deep learning architecture because of its functional flexibility and its non-parametric modelling.170

However, we have to exploit the little data typically available in AS without grossly over-fitting to the171

meta-data. Our proposed architecture is displayed in Figure 2; it consists of five main building blocks:172

Block 1 Assuming some valuable information on the topology in the classical meta-features fD, an MLP173

encodes them into a latent space. Utilizing this cheap set of features, from an informational standpoint, our174

method can only improve over classical AS methods and further allows us to contextualize the observed175

learning curves to the observed dataset. If, for instance, ϕD conveys some information regarding the complexity176

of the dataset, this may be indicative of how fast an algorithm might learn, affecting the shape of the curve.177

Block 2 As preprocessing of the learning curves, we apply zero-padding to fill the learning curves up to178

the final fidelity F and generate an according mask to store the padding information. To avoid technical179

issues with fully masked sequences, we append an extra learnable End Of Sequence (EOS) token (Dosovitskiy180

et al., 2020). We then use an MLP to embed each position of a learning curve individually, to increase181

the expressivity of our one-dimensional learning curve sequences into e dimensions akin to BERT’s vector182

representations for each word (Devlin et al., 2019). Specifically, a single shared MLP is applied separately to183

each position of each learning curve. To overcome the transformer’s native positional ignorance, we follow184

Vaswani et al. (2017) in encoding the positional information with sine and cosine functions and adding these185
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values to the embedded learning curves. This is a crucial step in preserving the sequence information, which186

in our case conveys the order in learning curves.187
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Figure 2: MASIF Architecture. Blue rectangles rep-
resent data, yellow rectangles denote MLP layers,
purple rectangles indicate positional encodings, and
orange rectangles are transformer layers. MASIF
receives the partial learning curves of all the algo-
rithms LCD,A,FA

∀A ∈ A (in this figure, we only
show two learning curves, i.e., LC1 and LC2, indi-
cating LCD,A1,FA1

and LCD,A2,FA2
). The two trans-

former encoder layers apply attention operations on
the fidelity and the algorithm dimensions, respectively.
Therefore, the output of each transformer needs to be
transposed to fit the dimension. The output of the last
transformer (FM1 and FM2) is concatenated with
the embedded meta-features ϕD. Finally, the joint
features are fed to the decoder to get the predicted
ranks.

Block 3 We use a variation of the transformer-188

encoder proposed by Vaswani et al. (2017) on the set of189

partially observed learning curves LCD,A,FA
of each al-190

gorithm A ∈ A to translate the (incomplete/masked)191

learning curve sequence into a latent vector repre-192

sentation enriched with the meta-knowledge of the193

algorithms’ marginal learning behaviors.194

Since the classical dataset meta-features may carry195

valuable information for the amount and variability of196

information at each position in the sequence, we intro-197

duce a mechanism we dub guided attention. Similar198

to the classical attention module, our encoder receives199

a query Q, key K, and value V tensor, containing200

the preprocessed learning curves from Block 2. That201

is, we multiply the query Q of the attention heads202

element-wise with a linear projection of the embedding203

described in Block 1 if dataset meta-features are avail-204

able. The projection’s role is merely to fit the shape205

of Q. To increase parallelism and reduce the number206

of learnable parameters, we use a batch trick; i.e.,207

we only process one dataset at a time, but conceive208

the set of algorithms A to be a batch of dimensions209

[A, F , e], that is processed in parallel. The attention-210

guided transformer-encoder layer returns a tensor of211

the same dimension as its input. This layer is repeated212

N times. The result is a marginal summarisation of213

the latent representation of each of the learning curves.214

The order of the batch is held fixed over all datasets,215

s.t. the subsequent module receives the latent vector216

representation of an algorithm’s learning curve at the217

exact same position every time.218

Given the generated feature maps, the next step is219

aimed at receiving a joint representation of the ev-220

idence on D encoded in these vectors. Specifically,221

we reduce the [A, F , e]-dimensional tensor along the222

fidelity dimension. This is done using a learnable223

weighted average over the fidelities F applied inde-224

pendently over A, resulting in e-dimensional vectors.225

Given the properties of the target dataset, the model226

should focus on different stages of the learning curves.227

Therefore, we make these weights learnable. More precisely, if dataset meta-features are available, these228

weights are computed by an MLP that projects the dataset meta-feature embedding to the size of F .229

Otherwise, these weights directly become learnable parameters.230

Block 4 The model up until this point is still unaware of the cross-algorithm information between different231

learning curves, which is essential to predict the relative ranking of each algorithm. Therefore, we build232

another transformer on top of the first transformer that fuses the evidence on the topology derived from the233

partial learning curves of all A ∈ A. The rationale is that since the algorithms are always presented in the234

same position, the position of these vectors holds meaning. From the perspective of BERT, each algorithm235

vector is the embedding to a token, and the sequence of algorithms is a sentence. Therefore, we transpose the236
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set of representations and make the batch dimension explicit [1, A, e]. To let the transformer identify different237

algorithms, we encode the algorithms’ features (i.e., their hyperparameters or a simple one-hot encoding when238

no hyperparameter is available) as positional encoding and attach them to the generated transformations.239

Block 5 Yet again, we employ an MLP on the concatenation of the vectorized evidence and the dataset240

meta-feature embedding to fuse their information and project to the size nA = |A|. The returned values are241

scores for the respective algorithms, corresponding to latent utility values, which are used to construct a242

ranking across the algorithms. As an objective, optimally, we would like to maximize the Spearman rank243

correlation between predicted and true algorithm ranks. In order to obtain a differentiable loss, we thus244

leverage a differentiable sorting algorithm (Blondel et al., 2020) to compute the training loss.245

3.3 Data Augmentation246

Since AS usually only has a limited amount of dataset-algorithm combinations in its meta-training dataset247

for which we observe a single learning curve instantiation, respectively, we use a data augmentation strategy.248

Namely, we employ random masking on the learning curves to avoid meta-overfitting. The masking strategy249

consists of sampling the available learning curve length FA uniformly and independently over [0, F ], where 0250

indicates complete lack of information on that learning curve. This strategy also facilitates that our model251

can be presented with any budget allocation (combination of fidelities), i.e. {FA ∈ F ∪ {0}}A∈A – including252

the option of not evaluating a curve during test-time.253

3.4 MASIF’s Benefits254

The transformer encoding of the learning curves offers significant advantages: at no point do the learning255

curves require extrapolation. Instead, only their informational content is summarized and transformed into256

a conditioned ranking score. Our method, therefore, does not fall victim to error propagation as often257

encountered in time series regression or multi-label classification (Senge et al., 2012). Additionally, leveraging258

the meta-knowledge of having observed the learning curves of the same algorithms on meta-training datasets,259

we combat multi-fidelity’s inherent myopia problem effectively and can be fully non-parametric in the shape of260

the learning curves due to a strong meta-prior encoded in the weights of our architecture. To this end, MASIF261

exploits extensive meta-knowledge of observing the algorithms’ learning curves on multiple datasets jointly.262

Depending on the fidelity type and type of algorithms considered, this meta-knowledge in form of algorithms’263

learning curves comes almost at no cost when collecting the meta-training data in the classical AS setting.264

Crucially, taking a multi-fidelity lens – independent of whether or not we include classical and landmarking265

meta-features – its ranking ability is no longer bounded by the alignment of tediously handcrafted and highly266

task-specific meta-features. Instead, it is governed by the trade-off between the approximation quality of the267

fidelities and the induced cost of querying them. It does, however, readily consider expert knowledge in form268

of dataset meta-features to contextualize the observed learning curves.269

Given some budget allocation, the MASIF model corresponds to an algorithm selector since it produces270

a ranking that takes all the available meta-knowledge and the gathered evidence on the test dataset into271

account. However, since any budget allocation is possible, it can be readily utilized not only as a selector but272

as an interpreter of the incrementally arriving performance feedback from the budget allocation. Queried273

continuously as more evidence arrives, users can observe the shift in expectation on the final ranking,274

conditioned on what has been observed so far. This application mode makes this model an actionable support275

system for data science practitioners facing the AS problem.276

The trade-off between approximation quality and budget costs opens up the opportunity of defining a scheduler277

that iteratively queries the fidelities of algorithms (i.e., extending their learning curves) by exploiting our model.278

Since our contribution focuses on the model part and since MASIF’s model works with arbitrary strategies for279

deciding the budget allocation, in our experiments we show exemplary results with the prominent scheduling280

approach of Successive Halving (SH) (Jamieson & Talwalkar, 2016). While the original SH procedure in each281

“bracket” retains the current top-performing algorithms, our variant, dubbed SH Scheduler retains those that282

based on the current observation MASIF predicts to be top-performing on the final ranking.283

7



Under review as submission to TMLR

4 Experiments284

In this section, we first introduce a new evaluation protocol for our proposed extension of the classical AS285

meta-data setup with added fidelity information. Then, we detail our baselines along with their perks and286

shortcomings, briefly describe the meta-datasets we use as benchmarks and subsequently detail our findings.287

4.1 Fidelity-Slice Evaluation Protocol288

In order to assess the ability of methods to improve performance as a function of the length of the observed289

learning curves, we introduce a standardized fidelity-slice evaluation protocol that demonstrates how a290

method’s top-k regret w.r.t. the true ranking changes as more and more fidelity information becomes available.291

This way, we can observe the progression of an information-bounded expectation traded with the additional292

cost incurred. In particular, this protocol computes the regret of s(D)’s prediction on the test set at a293

gradually increasing amount of available fidelity slices; i.e. all algorithms are observed up to the same fidelity.294

4.2 Baselines295

We consider several baselines to highlight different aspects of our setup and architecture ranging from simple296

random rankings over classical AS to an extended version of successive halving.297

Random Baseline. Consider a selector that randomly guesses the ranking. It will lead to a regret298

distribution depending on (i) k in top-k (ii) the spread and clustering of learning curves on a single dataset,299

indicating the hardness of the ranking task and (iii) the performance scale. This baseline averages the300

obtainable regret of each dataset instance. It contextualizes the selectors’ regrets across tasks.301

Classical Algorithm Selection. While AS allows for generalization over dataset instances, its limitation302

in ranking performance lies in the limited expressivity and relevance of the employed meta-features. Therefore,303

we seek to demonstrate the benefit of partial learning curves as an addition to classical meta-features. For304

that purpose, we compare against SatZilla’11 (Xu et al., 2012), a portfolio-based algorithm selector, which305

models the AS problem as a multi-class classification problem and solves it using a cost-sensitive all-pairs306

decomposition to single label classification by employing one random forest classifier for each subproblem.307

The final ranking is then obtained by voting. This selector is irrespective of fidelity and will produce a308

constant value in the slice evaluation protocol.309

Fidelity enabled Algorithm Selection. Classical AS only considers the dataset and algorithms’ meta-310

features. Considering that our method’s learning curve embedding could be conceived to be a latent311

meta-feature ϕD, classical AS can conceptually similarly be enabled. To achieve that, the classical ϕD can be312

extended by m(D, A, f) for some intermediate fidelities f < F observed for all A ∈ A. Given f ∈ F ′ with313

F ′ ⊂ F , this implies that |A| · |F ′| columns are added to the feature space. Consequently, we limit |F ′| to a314

subset of evenly spaced fidelities.3 In the slice evaluation protocol, the intermediate fidelities are added only315

up until the horizon of the protocol.316

Parametric Learning Curve Predictors. Neglecting any meta-knowledge and combating myopia through317

strong parametric assumptions, a naive learning curve predictor can interpret any partial information available.318

Such a predictor fits a parametric curve to each partial curve and extrapolates it to the final performance. The319

selector s independently extrapolates to the final performances and ranks the algorithms according to these.320

To create a meaningful and more expressive selector that mimics a practitioner’s attempt at extrapolating321

learning curves for AS, we fit all parametric curves described in Mohr et al. (2022) and select the best fitting322

one on the observed part for extrapolation. This baseline highlights that learning curve predictors are used323

as algorithm selectors by practitioners when lacking meta-knowledge. Surpassing this baseline indicates that324

our method’s expectation of the ranking can benefit from joined meta-knowledge about an algorithm’s past325

progressions and related learning behaviors.326

3In our experiment, this amounts to the fidelity sequence [0, 0.2, 0.4, 0.6, 0.8, 1].
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IMFAS (Mohan et al., 2022) Implicit Multi-Fidelity Algorithm Selection (IMFAS) utilizes an LSTM-327

based architecture that initializes its hidden state using an MLP encoding of the dataset meta-features and328

auto-regressively accepts slices of fidelity to refine the expectation of the ranking.329

Successive Halving (SH). Despite its simplicity, SH (Karnin et al., 2013; Jamieson & Talwalkar, 2016)330

has several desirable properties to compare against in terms of its interpretation of partial learning curves. It331

is a meta-agnostic and therefore myopic, fidelity-aware but non-parametric method. SH naturally produces332

a myopic ranking, by the level at which it terminates the algorithm. Ties within this set of terminated333

algorithms are resolved by their relative performances on that bracket. Limiting the fidelity information334

horizon of the selectors implies that for every such horizon, we need to recompute the ranking induced by335

SH. Notably, to permit SH the same information horizon, the last available fidelity in its schedule will be336

the maximum fidelity in that horizon. The benefit of this convention is that SH has access to the same337

fidelity information and can make better decisions for the algorithms it recommends. Its drawback of SH as a338

baseline is that the incurred cost differs from that of our method.339

4.3 Datasets340

Where possible, we utilize training, validation, and test learning curves for the training of all approaches.341

These are obtained by splitting each dataset in the corresponding benchmark in training, validation, and test342

data, training the corresponding algorithms on the training data under each fidelity, and computing their343

validation and test performance corresponding to the model trained for that fidelity. While the classical AS344

approaches only receive the final test performance on the meta-train datasets as training data, we provide345

(partial) validation curves to SH, the learning curve approaches, and MASIF to train on, but measure the346

final regret with respect to the full fidelity test performance. The same applies when the approaches are347

applied to new test datasets. We then assess the performance of each approach by performing a 10-fold outer348

cross-validation of the meta-dataset. We use three different benchmarks (more details in Appendix A.1):349

• Synthetic. We constructed the Synthetic meta-dataset based on parametric learning curves taken350

from Mohr et al. (2022), specifically to demonstrate the myopia of SH and learning curve predictors.351

Particularly, it introduces noisy curves, that exhibit crossing points. We show how MASIF alleviates352

myopia through strong prior knowledge w.r.t. the functional family an algorithm is adhering to.353

• Task-set. Task-set (Metz et al., 2020) is a fairly noisy real-world dataset based on parameterizations354

of the Adam optimizer (Kingma & Ba, 2015), with a variety of learning rates, run on a large variety355

of modern deep learning architectures and datasets.356

• Scikit-CC18. With Scikit-CC18, we evaluated multiple well-known scikit-learn (Pedregosa et al.,357

2011) algorithms on the classification benchmark OpenML-CC18 (Bischl et al., 2021b). Since it is358

the only benchmark with available meta-features ϕD, we can evaluate SatZilla and IMFAS only on it.359

These three benchmarks differ in their availability of dataset and algorithm meta-features: while Synthetic and360

Task-set exhibit neither, Scikit-CC18 exhibits both. We further investigated LCBench (Zimmer et al., 2021)361

as a similar benchmark to Task-set that provides qualitative similar results and is shown in Appendix A.2.362

4.4 Results363

Summarizing our results, depicted in Figure 3, on benchmarks Task-set and Synthetic, MASIF outperforms364

the other methods in terms of top-1 regret, and on Scikit-CC18 it performs competitively. Since our baselines365

applied in the slice-evaluation protocol on their own already reveal a few features of the meta-datasets we366

would like to detail their implications first. Afterwards, we discuss our experiments in light of the available367

meta-knowledge w.r.t. myopia and parametric assumptions.368

Benchmark Difficulty. First of all, paying close attention to the random baseline and SH already indicates369

the difficulty of a benchmark; the random baseline can be thought of as an upper regret bound for any370

meaningful selector. If this threshold already incurs a small regret as in Scikit-CC18, this implies that371
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Figure 3: Average test-set top-1 regret over ten meta-dataset folds in the slice evaluation protocol. Available
fidelity is expressed in share of the target fidelity’s budget. The standard error bands originate from five
repetitions for each of the ten folds. (right) exhibits dataset meta-features, while (left) and (mid) do not.

there is only little to gain, increasing the difficulty for a selector to improve. SH, on the other hand, pays372

close attention to the earlier parts of the curve. If this is already very indicative in terms of the final373

performance, only few crossings of the curves occur and thus decisions based on low-fidelity are good w.r.t.374

final performance. In this sense, Scikit-CC18 is an arguably easier meta-dataset than Task-set, as SH is375

close to oracle performance after a few fidelity slices in their top-3 regrets (compare with Figure A.3). SH’s376

detrimental performance on Task-set on the other hand likely is due to the high variability and crossing of the377

curves, indicating the difficulty of this meta-dataset. The fact that no method obtains zero regret on Task-set378

at the final fidelity originates from the noisy target as indicated by the final fidelity of the parametric baseline.379

Moreover, parametric learning curve is (almost) guaranteed to yield oracle performance on Synthetic by380

construction.381

The Role of Meta-knowledge. We highlight the fact that zero-fidelity corresponds to the classical AS382

setup and expresses the prior belief of a selector in the final performance based on the meta-knowledge. Baring383

this in mind, the fact that MASIF is almost constant and already top-performing on Synthetic indicates that384

the strong prior derived from meta-knowledge is already sufficient – which in the case of Synthetic is by385

construction. A decrease in regret indicates that the additional test-time fidelity information up to Fmax386

refines this meta-knowledge-based belief and thus is indicative of the benefit of fidelity information.387

The trajectory of parametric learning curve is a strong myopic baseline to demonstrate the effect of meta-388

knowledge, as more fidelity becomes available. SH similarly acts as a myopic baseline, but its schedule’s389

path dependency may deny it to recover from early mistakes and hence result in sub-optimal states even390

when full fidelity is available. The steep decay in regret of MASIF at the beginning of its regret curves on391

Task-set and the minor adjustments on Scikit-CC18 demonstrate, that MASIF’s prior can be improved based392

on incoming fidelity information, which corroborates that this intended property does indeed work in practice.393

Similarly, IMFAS (Mohan et al., 2022) exhibits, albeit far less pronounced, such a decay indicating that394

fidelity information also helps it. Its dependence on classical dataset meta-features as initialization and its395

autoregressive nature prevent it from excelling at fidelity information. This strong dependence on classical396

dataset meta-features also prevents it from being runnable on Synthetic and Task-set.397

A direct comparison of MASIF with the parametric learning curve baseline on Synthetic and Task-set in398

terms of reduced variability and consistent superiority – already – in the early stages highlights the benefit399

of having meta-learned the algorithms’ learning behaviour to combat myopia effectively. The SH Scheduler400

observed on Task-set supports this fact. When comparing SH against SH Scheduler on this noisy dataset it is401

apparent, that the gained meta-knowledge becomes the main driver of the regret curve. Notably, the SH402

Scheduler’s curve appears inferior at first to MASIF’s trajectory, until we factor in that MASIF follows the403

slice evaluation protocol very closely and the SH Scheduler has considerably less overall budget available404

due to the SH’s budget allocation strategy. It also suffers from its path dependency, yielding slightly inferior405

results to MASIF, but at considerably less cost. This regret gap diminishes with lower benchmark difficulty406

in terms of accuracy of the meta-knowledge, as can be observed on Synthetic and Scikit-CC18, when strong407

prior beliefs facilitate making good decisions early on. This most prominently demonstrates the budget-regret408

trade-off a scheduler incurs. A comparison of Satzilla11 and our variants on Scikit-CC18 similarly highlights409

this trade-off; Satzilla11 incurs zero additional cost at test time over the computation of dataset meta-features410
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which are available to all three. Its prediction must fully rely on its prior, but MASIF can reduce Satzilla11’s411

regret at a small additional cost during test time, having learned the algorithms’ learning behaviors.412

To our surprise, fidelity-enabled Satzilla11 performs similarly to that without fidelity information on Scikit-413

CC18. This fidelity-aware but non-parametric baseline ignores the naturally occurring sequential nature and414

fails to improve over its fidelity-agnostic variant. It remains unclear as to why this occurs in our experiments.415

We conjecture that it grossly overfits the meta-training data due to its sizable feature space.416

As the ablation results in Appendix A.4 suggest, the usefulness of the raw dataset & algorithm meta-features417

in the two datasets is negligible at best. This has two implications: first, the meta-learned multi-fidelity418

information is the definite driver of our model and well outperforms the classical meta-feature-based approaches.419

A small caveat to the results of classical methods is their handcrafted nature. Considerable time investment420

into the generation and preprocessing of task-specific meta-features may yield improved regret performances421

for all models accepting dataset meta-features. This is why, despite the lack of strong evidence for its422

improvement, we keep the dataset- and algorithm meta-features as an optional part of our architecture.423

5 Related Work424

Classical AS approaches are based on the assumption that dataset instances (tasks) can be represented using425

meta-features. They learn mappings between datasets and algorithms w.r.t. performance based on such426

pre-computed meta-features. Most methods to learn such mappings in the literature either leverage regression427

techniques (Xu et al., 2008; Bischl et al., 2016), ranking techniques (Cunha et al., 2018; Abdulrahman et al.,428

2018), collaborative filtering (Stern et al., 2010; Fusi et al., 2018), instance-based learning approaches (Amadini429

et al., 2014; Kadioglu et al., 2010) or mixtures of the aforementioned techniques (Hanselle et al., 2020; Fehring430

et al., 2022). All of these approaches, however, suffer from the same limitation: Pre-computed meta-features,431

as mentioned earlier, can have trouble sufficiently characterizing the datasets and algorithms due to the432

alignment problem discussed in Section 2. Our approach circumvents the alignment issue by landmarking433

datasets directly based on the candidate algorithms’ inductive biases, as unrolled in their partial learning434

curves, and predicts a rank over the set of candidate algorithms.435

The idea of exploiting partial learning curves has previously been explored in some works. SAM (Leite &436

Brazdil, 2004) non-parametrically matched partial learning curves to the closest in terms of shape from the437

observed meta-learning curves using kNN, while van Rijn et al. (2015) reduced the cost of cross-validation by438

exploiting the similarity of the partially-observed rankings with those of the meta-datasets and using the439

most similar learning curve as surrogates. Mohr & van Rijn (2021) extended this approach by terminating440

less promising candidates early on based on their predicted learning curves modelled in a semi-parametric441

way under the assumption of concavity. In contrast to this explicit prediction of the missing parts of the442

learning curves, MASIF implicitly meta-learns correlations between the partial performances of algorithms to443

predict a ranking. Leite & Brazdil (2010) pursue a cheaper and meta-informed alternative to cross-validation444

that evaluates the collection of fidelities using SAM, and then actively schedules them in a cost-aware manner.445

Similarly, in hyperparameter optimization (Bischl et al., 2021a) the majority of approaches leverage learning446

curves or ideas from multi-fidelity in one way or the other (Swersky et al., 2014; Li et al., 2018; Falkner et al.,447

2018; Awad et al., 2021).448

Two approaches orthogonal to ours, although bearing some resemblances in terms of setup, are Meta-REVEAL449

(Nguyen et al., 2021) and MetaBu (Rakotoarison et al., 2021). Meta-REVEAL focuses on scheduling the450

algorithms and fidelities through a Reinforcement Learning perspective by modelling it as a REVEAL game.451

The agent acts on a discrete action space that does not account for the correlations between learning curves.452

As we do not focus on scheduling but on learning cross-correlations on the learning behaviour, we refrain453

from a comparison. Consequently, using the estimates produced by MASIF can provide a pre-processed454

action space for their problem. MetaBu extends the classical AS idea by relating dataset meta-features455

and algorithms’ hyperparameters using a learned optimal transport map. They, however, ignore that the456

dataset meta-features cannot sufficiently characterize the dataset, thus, subsequently falling victim to the457

same fallacies as the methods mentioned before.458
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The approach that comes closest to ours in terms of its setting is the Multi-LCNet (Jawed et al., 2021). While459

they use a related Ωmeta−train and Ωmeta−test data setup, the work has substantial differences and rigid460

assumptions, which make us abstain from an experimental comparison of MASIF to it, as a fair comparison is461

not possible. The core differences are threefold; 1. they consider a hyperparameter optimization multi-fidelity462

problem 2. their model can assume the existence of auxiliary curves for a single algorithm, because of the463

narrow definition of an algorithm and 3. they use this multi-modal data in an autoregressive way for the464

explicit extrapolation of a single curve at a time. A more detailed discussion is deferred to Appendix A.5.465

6 Conclusion466

In this work, we revisited classical meta-learning- and learning curve-based approaches to AS from the467

perspective of a trade-off between the budget they invest in inquiring information about a new dataset and the468

corresponding regret of choosing an inferior algorithm. Doing so, we argued that both of these selector classes469

are on opposite ends of the spectrum in this trade-off and both suffer from severe limitations, likely leaving470

data scientists with an inferior selected algorithm. To alleviate this, we present MASIF, an algorithm selector471

designed to support data scientists in the selection process in a far more native manner, whose position in the472

spectrum can be controlled by the data scientist depending on their budgetary constraints. MASIF leverages473

a transformer-encoder-based architecture to model the performance of algorithms across both, fidelities and474

algorithms in the form of learning curves of varying lengths. As such, it alleviates the myopia of many475

existing learning curve-based approaches while making no parametric assumptions on the learning curves it476

can model. Crucially, our selector utilizes computation from previous selections as meta-knowledge. In an477

extensive experimental study on four different benchmarks, we showed that MASIF outperforms existing478

meta-learning-based approaches in terms of the regret of the selected algorithm and learning curve-based479

algorithm selectors in terms of regret for the invested budget. As such, MASIF is not only an AS approach480

designed to support the data scientist in practice by leaving the concrete instantiation of the trade-off to481

their preference but also yields state-of-the-art AS performance.482

7 Future Work483

The aforementioned budget-regret trade-off leads to a multi-objective view of the AS problem, where both484

the budget invested and the regret of the corresponding algorithm selector are rivaling objectives. This485

holistic view naturally suggests tackling the problem with multi-objective methods to be able to present a486

Pareto front of selectors to choose from, suited to a data scientist’s budget-regret preferences in the face487

of uncertainty. This line of work is orthogonal to previous multi-objective work in Algorithm Selection488

(Bossek & Trautmann, 2018). Any instance on this Pareto front is a scheduler of sorts. Determining how a489

scheduler knowledgeable in learning behaviors should choose its budget allocation sequentially and in the490

face of uncertainty inspires research on its own. Lastly, in the current form of this work, the algorithms are491

predominantly represented through their learning curves and we use algorithm meta-features in a relatively492

limited manner. Multi-LCNet (Jawed et al., 2021) presumes that using hyperparameters among other493

informative algorithm meta-features may also be beneficial in contextualizing a learning curve. In that sense,494

a natural extension to the scope of this work is the transition from tackling the AS problem to tackling the495

hyperparameter optimization problem. In contrast to existing approaches, we will seek to extract the joint496

topology evidence derived from the observed partial learning curves in order to tackle this problem.497
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A Appendix653

A.1 Meta-Datasets654

Figure 4: A snapshot of a Synthetic dataset

Synthetic To make the task even more challenging,655

we add random noises to the generated curves. A656

snapshot of the synthetic curve meta-dataset can be657

found under Figure 4. To demonstrate that MASIF658

is a non-myopic approach, we create a synthetic func-659

tion meta-dataset. To break the myopic algorithms,660

we force the curves in one dataset to intersect at661

least another curve in an incrementally way. We662

initialize by randomly picking a parametric curve.663

Subsequent curves are generated by first sampling a664

parametric family as described by Mohr et al. (2022)665

and then computing its parametrization such that666

it is ensured to intersect with its predecessor. In667

more detail, we want to ensure that the intersections668

occur at different stages of the training procedure. This is obtained by randomly selecting one of a few669

preset intervals in which the intersection is supposed to take place. Repeating this process for |A| − 1 times670

produces a single dataset. To obtain strong meta-knowledge across datasets originating from the shape of671

an algorithm’s curve, a new dataset is generated by perturbing the parametrization of the existing curves.672

Therefore, these datasets contain similar but non-identical curves, that yield variability in the final ranking.673

This dataset does not provide dataset meta-features. Overall, we collect 22 datasets each containing 30674

learning curves with 51 fidelities.675

Task-set Task-set (Metz et al., 2020) is a meta-dataset that consists of over a thousand tasks ranging from676

image classification with fully connected or convolutional neural networks to variational autoencoders on a677

variety of datasets. Each task is characterized by 1. an initialization function 2. data split 3. loss function678

4. gradients679

On these tasks, the training, validation, and test curves of multiple optimizer settings have been recorded. For680

our experiments, we sub-sample the tasks that consist of curves generated from fully-connected networks run681
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on image recognition tasks. Additionally, we sample the set of algorithms to be the different configurations of682

the Adam optimizer (Kingma & Ba, 2015) with only the learning rate varying. This allows us to create a683

meta-dataset of 1000 configurations on 100 tasks. This meta-dataset does not provide dataset meta-features.684

The rationale is that given the noise in the curves sampled from realistic tasks, the performance on initial685

fidelities is not indicative of the final ranks, making it hard for methods like Successive Halving to get a good686

regret value without any form of meta-knowledge.687

Scikit-CC18 OpenML-CC18 (Bischl et al., 2021b) is a curated classification benchmark featuring 72688

carefully selected datasets from OpenML (Vanschoren et al., 2014) with a variety of desirable properties for689

a benchmark (see (Bischl et al., 2021b) for details). We generated learning curves on these datasets for 16690

classifiers from Scikit-learn (Pedregosa et al., 2011), namely (i) ExtraTreeClassifier (ii) DecisionTreeClassifier691

(iii) MLPClassifier (iv) KNeighborsClassifier (v) SGDClassifier (vi) RidgeClassifier (vii) PassiveAggres-692

siveClassifier (viii) GradientBoostingClassifier (ix) ExtraTreesClassifier (x) BernoulliNB (xi) LinearSVC693

(xii) LogisticRegression (xiii) MultinomialNB (xiv) NearestCentroid (xv) Perceptron (xvi) SVC.694

We collect their learning curves performing the following procedure for every dataset and learner pair: We695

performed three-fold cross-validation and for each of these folds again split 20% off of the training data as696

validation data. We then trained the classifier on 5%, 10%, . . . , 100% of the training data and evaluated it on697

the train, test, and validation data using accuracy as a loss function. As preprocessing, we imputed missing698

feature values with the most frequent one in the training data and one-hot encoded categorical features.699

Correspondingly, the budgeted resource is the dataset subset size for this meta-dataset. This dataset provides700

dataset meta-features.701

A.2 Results on LCBench702

LCBench (Zimmer et al., 2021) is a meta-dataset, that consists of 2000 hyperparameter configurations of703

a funnel-shaped neural net on 35 datasets. To meet the AS setup, we choose a subset of size 170 of these704

configurations using a Latin Hypercube design. Presuming, that hyperparameters change the inductive bias of705

a model, we conceive for the purpose of our analysis these configurations as independent algorithms. Notably706

because of this, the hyperparameter optimization usually resorts to assuming similarity of performance w.r.t.707

hyperparameters. By extension, we expect that we can assume some similarity in the learning behaviors708

encoded in their learning curves, that MASIF should be able to exploit. This meta-dataset provides dataset709

meta-features.710

Inspired by Multi-LCNet, which uses LCBench as its sole benchmark, we also computed our experiments on711

LCBench. The results of these experiments are depicted in Figure 5. Overall on top-1 the results follow those712

tendencies described in Section 4.4. Considering the wide and overlapping confidence bounds centred around713

the already very small regret of 0.02 and the fact that all of the meta-aware selectors do not require additional714

fidelity information to adjust their prior suggests, that LCBench is not a strong Benchmark for this new data715

setup. This is strongly supported by the relatively steep regret-decay and strong final performances of SH and716

the parametric learning curve baseline. An interesting observation here lies in IMFAS’s slightly deteriorating717

performance. We attribute this behaviour to its autoregressive interpretation of the learning curves.718

Figure 5: Average test-set top-1 (left) and top-3 (right) regret over ten meta-dataset folds in the slice
evaluation protocol for LCBench. Available fidelity is expressed in the share of the target fidelity’s budget.
The standard deviation originates from five repetitions for each fold.
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A.3 Top-3 results719

Figure 6: Average test-set top-3 regret over ten meta-dataset folds in the slice evaluation protocol. Available
fidelity is expressed in the share of the target fidelity’s budget. The standard deviation originates from five
repetitions for each fold. Scikit-CC18 exhibits dataset meta-features, while Synthetic and Task-set do not.

As increasing k in top-k is a hedge, the overall regret is reduced compared to those results of top-1, because it720

is more likely to pick the best performer in this enlarged set. The overall tendencies in Figure 6 are however721

exactly the same as described in Section 4.4722

A.4 Ablations723

Figure 7: Ablation of MASIF w.r.t. whether or not meta-features are available on Scikit-CC18 (Left) and
LCBench (Right) benchmarks. ’NoM’ indicates that the subsequently detailed meta-feature information is
hidden to the model. In particular, ’D’ stands for dataset meta-features, ’A’ for algorithm meta-features.

The results in Figure 7 indicate that the regret difference in whether or not the meta-features are present have724

– if any – only negligible effect for the Scikit-CC18 and LCBench dataset, once the scale of this difference725

is considered. On the other hand, the results in Figure 8 detail, the regret gap, when using a secondary726

transformer over the sequence of algorithms rather than an MLP, supporting our design choice for the former.727

The vector representation of the learning curves as output to the first transformer holds positional information728

since an algorithm is presented always in the same order irrespective of the dataset. The secondary transformer729

picks up on this positional information more easily than an MLP.730

A.5 Discussion on Multi-LCNet731

As it is conceptually the closest to our model, we will discuss the differences summarized in 5 more thoroughly.732

First, their method considers hyperparameters, which allows exploiting the similarities in that space to733

interpolate between algorithms - which eases our assumption of a discrete and rigidly observed A in the734

meta-training set and therefore is rather hyperparameter optimization than AS. Second, they leverage735
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Figure 8: Ablation of MASIF on Task-set benchmark, switching out the second transformer for a simple
MLP on the reduced output as joint interpretation module.

multi-modal data; i.e. multiple auxiliary curves such as e.g. the layer’s gradient information are tracked736

during training. These curves are only accessible for all configurations, because they limit themselves to a737

single class of algorithms, in their case funnel-shaped neural nets. These secondary curves are not necessarily738

available for all candidate algorithms considered in an AS model and as such, the method cannot be applied in739

our setting. Besides, considering SH’s almost oracle performance on LCBench in Appendix 5 with a sizeable740

subset of 170 algorithm configurations in our experiments, the multi-modal nature of their analysis may not741

be a driver for their performance on this particular dataset. Third, their focus is on explicitly extrapolating742

single learning curves at a higher fidelity in an auto-regressive manner based on the meta-learned weights of743

their Gated Recurrent Units (Cho et al., 2014) that only combine the information from the partial learning744

curves of the same algorithm observed from multiple modes of data. Instead, our method leverages the joint745

evidence of all invested computations in addition to the meta-knowledge and avoids explicit extrapolation.746

Fourth, their handcrafted loss metric is intended at fostering good predictions early on, which, despite working747

with rather small budgets, might yield suboptimal decisions. Similarly to the SH baseline, this seems to748

express and favour a particular budgetary preference over the resulting regret. In contrast, as mentioned749

several times, MASIF is much more flexible regarding the budget-regret trade-off.750

A.6 Reproducibility Statement751

• Where can the code be found? MASIF’s code is published on https://anonymous.4open.science/752

status/MASIF-824D753

• What hardware did we use for the experiments? All the experiments are executed on 4 Intel Xeon754

E5 cores with 8000MB RAM.755

• What hyperparameter settings did we use? How did we get to those? Where can they be found? Using756

Hydra (hydra.cc) as base package for all our experiment pipelines – including the preprocessing of757

dataset & algorithm meta-features as well as those for the learning curves, all of the configurations758

detailing the used models and their configurations can be found in the “configs” folder in the linked759

repository.760

• What are the requirements in terms of packages and version numbers? The packages & version761

numbers are available in the setups file of the linked repository.762

• Where can you download our benchmark datasets? We added the newly created Scikit-CC18763

benchmark as supplementary material. LCBench can be downloaded from https://github.764

com/automl/LCBench. Task-set can be obtained from https://github.com/google-research/765

google-research/tree/master/task_set. We provide the Synthetic and Scikit-CC18 benchmarks766

as supplementary.767

• How many seeds/splits etc. did we perform? We used five seeds and ten folds for each benchmark. A768

crucial detail regarding the split in the algorithms’ learning curves is described in the dataset section.769
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