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Abstract

Preference-based Pure Exploration (PrePEx) aims to identify with a given confi-
dence level the set of Pareto optimal arms in a vector-valued (aka multi-objective)
bandit, where the reward vectors are ordered via a (given) preference cone C.
Though PrePEx and its variants are well-studied, there does not exist a computa-
tionally efficient algorithm that can optimally track the existing lower bound (Shukla
and Basu, 2024) for arbitrary preference cones. We successfully fill this gap by
efficiently solving the minimisation and maximisation problems in the lower bound.
First, we derive three structural properties of the lower bound that yield a com-
putationally tractable reduction of the minimisation problem. Then, we deploy a
Frank-Wolfe optimiser to accelerate the maximisation problem in the lower bound.
Together, these techniques solve the maxmin optimisation problem in O(K L?)
time for a bandit instance with X arms and L dimensional reward, which is a
significant acceleration over the literature. We further prove that our proposed
PrePEx algorithm, FraPPE, asymptotically achieves the optimal sample complex-
ity. Finally, we perform numerical experiments across synthetic and real datasets
demonstrating that FraPPE achieves the lowest sample complexities to identify
the exact Pareto set among the existing algorithms.

1 Introduction

Randomised experiments are at the core of statistically sound evaluation and selection of public
policies (Banerjee et al., 2020), clinical trials (Altman and Dore, 1990), material discovery (Raccuglia
et al., 2016), and advertising strategies (Kohavi and Longbotham, 2015). They allocate a set of
participants to different available choices, observe corresponding outcomes, and choose the optimal
one with statistical significance. As these static and randomised experimental designs demand high
number of samples, it has invoked a rich line of research in adaptive experiment design (Hu and
Rosenberger, 2006; Foster et al., 2021), also known as active (sequential) testing (Yu et al., 2006;
Naghshvar and Javidi, 2013; Kossen et al., 2021) or pure exploration problem (Even-Dar et al.,
2006; Bubeck et al., 2009; Carlsson et al., 2024). Pure exploration problems sequentially allocate
participants to different available choices while looking into past allocations and outcomes. The aim
is to leverage the previous information gain and structure of the experiments and observations to
identify the optimal choice with as few number of interactions as possible. Even in this age of data,
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pure exploration draws significant attention in diverse settings, such as material design (Gopakumar
et al., 2018), clinical trials (Villar et al., 2018), medical treatments (Murphy, 2005), where each
observation involves a human participant or is costly due to the involved experimental infrastructure.

In this paper, we focus on multi-armed bandit formulation of pure exploration (Thompson, 1933;
Lattimore and Szepesvari, 2020), which is a theoretically-sound and popular framework for sequential
decision-making under uncertainty, and the archetypal setup of Reinforcement Learning (RL) (Sutton
et al.,, 1998). In bandits, a learner encounters an instance of K decisions (or arms). At each time step
t, a learner chooses one of these K -arms A;, and obtains a noisy feedback R; (or reward or outcome)
from the reward distribution corresponding to that arm, i.e. v4,. Note that each reward distribution
has a fixed mean g, which is unknown to the learner. The goal of the learner is to adaptively select
the arms in order to identify the arm with the highest mean reward with a statistical confidence level
and the least number of interactions. This is popularly known as the fixed-confidence Best Arm
Identification (BAI) problem (Jamieson and Nowak, 2014; Garivier and Kaufmann, 2016; Soare et al.,
2014; Degenne et al., 2020; Wang et al., 2021), which is a special case of pure exploration.

PrePEx: Motivation. The classical BAI and pure exploration literature, like most of the traditional
RL literature, focuses on scalar reward, i.e. a single or scalarised objective. But this does not reflect
the reality as often decisions have multiple and often conflicting outcomes (Gopakumar et al., 2018;
Wei et al., 2023), and we might need to consider all of them before selecting the ‘optimal” one. For
example, in clinical trial, the goal is not only to choose the most effective dosage of a drug but
also to ensure it is below a certain toxicity level (Réda et al., 2020). Another example is a phase II
vaccine clinical trial, known as COV-BOOST (Munro et al., 2021), that measures the immunogenicity
indicators (e.g. cellular response, anti-spike IgG and NT50) of different Covid-19 vaccines while
applied as a booster (third dose). It is hard for a computer scientist to design a scalarised reward out
of these indicators (known as the reward design problem), and different experts might have different
preferences over them. Even in high-data regimes, proper reward modelling has emerged as a hard
problem in Reinforcement Learning under Human Feedback (RLHF) literature (Scheid et al., 2024).

These evidences motivates us to study a multi-objective (aka vector-valued) bandit problem, where
the reward feedback at every step is an L-dimensional vector corresponding to L-objectives of the
learner. Additionally, the learner has access to a set of incomplete preferences over these objectives
that together form a preference cone C (Jahn et al., 2009; Lohne, 2011). For example, polyhedral
cones, positive orthant cone (Ri), and customised asymmetric cones are used in aircraft design
optimisation (Mavrotas, 2009), portfolio optimization balancing return, risk, and liquidity (Ehrgott,
2005), and climate policy optimization with multiple national goals (Keeney and Raiffa, 1993),
respectively. In these cases, there might not exist an optimal arm but a set of Pareto optimal arms
P* C {1, ... ,K} (Drugan and Nowe, 2013; Auer et al., 2016).

Given the preference cone C and sampling access to the bandit instance, the learner aims to exactly
identify the whole Pareto optimal set of arms with a confidence level at least 1 — § € [0,1) while
hoping to use as less samples as possible. This problem is known as the Preference-based Pure
Exploration (PrePEX) (Shukla and Basu, 2024), or Pareto set identification (Auer et al., 2016) or
vector optimisation with bandit feedback (Ararat and Tekin, 2023).

PrePEx: Related Works. There are mainly three types of algorithms proposed for PrePEx: suc-
cessive arm elimination, lower bound tracking, and posterior sampling-based. Successive arm
elimination algorithms use allocations to collect samples from arms and eliminate them one by
one when enough evidence regarding their suboptimality is gathered (Auer et al., 2016; Ararat and
Tekin, 2023; Korkmaz et al., 2023; Karagozlii et al., 2024). But all of them can identify only an
approximation of the Pareto optimal set. The same limitation applies for confidence bound based
algorithms (Kone et al., 2023a). In contrast, the lower bound tracking algorithms first derive a lower
bound on the number of samples required to solve PrePEx as a max-min optimisation problem. Then
following the Track-and-Stop framework (Kaufmann et al., 2016), at every step, these algorithms
plug in the empirical estimates of means of the objectives (obtained via previous samples) in the
lower bound optimisation problem and obtains a candidate allocation policy. The allocation leads
to a choice of the arm at every step till the algorithm is confident enough to identify the correct set
of arms. But this optimisation problem is challenging, and only recently, Shukla and Basu (2024)
proposed an explicit lower bound for any arbitrary preference cone. Since their lower bound contains
optimisation over a non-convex set, they construct a convex hull of the non-convex variables and use
it to propose a Track-and-Stop algorithm, PreTS. But it is computationally infeasible to run PreTS for



Methods Computational Complexity'  Preference Cone Beyond Gaussian

Crepon et al. (2024) o (KL+1L3) Positive orthant X
Kone et al. (2024) O (KQL min{ K, L}) Positive orthant X
Shukla and Basu (2024) Intractable Arbitrary cone v’
FraPPE (This paper) O (KLmin{K,L}) Arbitrary cone v’

Table 1: Comparison of asymptotically optimal algorithms for solving PrePEx.

the benchmarks in the literature. Crepon et al. (2024) focuses only on the right-orthant as the cone
and propose a specific optimization method by adding and removing points from the Pareto set. Still,
it is computationally inefficient (O(K ) runtime) to run it on existing benchmarks Kone et al. (2024).
The complexity of this optimisation problem has motivated Kone et al. (2024) to avoid it and propose
a posterior sampling-based algorithm. Further discussion on related works is in Appendix A.1.

Contributions. We affirmatively address (Table 1) an extension of the open problem (Crepon et al.,
2024): Can we design a computationally efficient (polynomial in both K and L) and statistically
optimal PrePEx algorithms beyond Gaussian rewards and independent objectives, and for arbitrary
preference cones?

(1) Tractable Optimisation: We leverage the structure of the PrePEx problem to reduce the in-
tractable sup — inf — inf — inf optimisation problem in the existing lower bound to a tractable
max — min — min — min problem. This shows the redundancy of the convex hull approach of PreTS
and solve the inner minimisation problems in O(K L min{ XK, L}) time. In practice, K > L, and
thus, this is a significant improvement over the existing optimisation-based (Crepon et al., 2024)
algorithms exhibiting O(K ) computational complexity. (2) Asymptotically Optimal and Efficient
Algorithm: We further leverage the Frank-Wolfe algorithm (Wang et al., 2021) to solve the outer
maximisation problem for exponential family distributions and a relaxed stopping criterion to propose
FraPPE. We prove a non-asymptotic sample complexity upper bound for FraPPE and shows it to
be asymptotically optimal as 6 — 0. (3) Empirical Performance Gain: We conduct numerical
experiments across synthetic datasets with varying correlations between objectives and a real-life
dataset (COV-BOOST). The results show that FraPPE enjoys the lowest empirical stopping time
(~5-6X lower) and the lowest empirical error uniformly over time among all the baselines.

In brief, we propose the first computationally efficient and asymptotically optimal algorithm, FraPPE,
that works for arbitrary preference cones and exponential family distributions while achieving the
lowest sample complexity and probability of error for identifying the exact set of Pareto optimal arms.

2 Problem Formulation: Preference-based Pure Exploration (PrePEXx)

First, we formally state the preference based pure exploration problem under the fixed-confidence
setting and elaborate the relevant notations.

Notations. For any n € N, [n] denotes the set {1,2,...,n}. z refers to the /! component of a
vector z. We use | - ||, to denote the £,-norm of a vector. vect(A) is the vectorized version of matrix
A. Ak represents the simplex on [K] and Dgy, (P || Q) refers to the KL-divergence between two
absolutely continuous distributions P and Q. ch { X} means convex hull of a set X.

Problem Formulation. In PrePEx, we deal with a multi-objective bandit problem. A bandit
environment consists of K arms and each arm yields L-dimensional reward corresponding to the L
objectives. Specifically, each arm a € [K] has a reward distribution v, over R” with unknown mean
., € RE. Thus, a bandit environment is represented by the vectors of mean rewards {p,;}% |, or
alternatively, a matrix M € RZ*K such that its a*® column is p,,.

At each time ¢ € N, the learner pulls an arm A; € [K] and observes an L-dimensional reward
vector I?; sampled from v 4,. In the simplest setting of pure exploration, i.e. Best Arm Identification
(BAI), we have L = 1 and the learner focuses on finding the best arm, i.e. the arm with highest
mean (Garivier and Kaufmann, 2016). In more general settings with L = 1, the learner aims to find
a policy m € Ak indicating the proportion to choose the arms to maximize the expected reward
obtained from the environment (Carlsson et al., 2024).

'We ommit the complexity of calculating Pareto set, i.e. O(K (log K )™ax{1.L=2})

method (Kung et al., 1975).

, as it is same for every



Pareto Optimality and Preference Cones. Since we have mean vectors (L > 1), we need a set of
preferences over the objectives to compare the means rewards of arms or policies. Thus, following
the vector optimization literature (Jahn et al., 2009; Lohne, 2011; Ararat and Tekin, 2023), we assume
that the learner has access to an ordering cone C.

Definition 1 (Ordering Cone). A set C C R” is a cone if v € C implies that av € C for all « > 0. A
solid cone has a non-empty interior, i.e. int(C) # (). A pointed cone contains the origin. A closed
convex cone that is both pointed and solid is called an ordering cone (aka a proper cone).

Following PrePEx literature (Ararat and Tekin, 2023; Karagozlii et al., 2024; Shukla and Basu, 2024),
we focus on the polyhedral ordering cone that induces a set of partial orders on vectors in R”.

Definition 2 (Polyhedral Ordering Cone). A cone C is a polyhedral ordering cone if C = {x ¢
RE [Wx > 0}, where W € REXE with row-transposes W, representing rays spanning the cone.

W is called the half-space representation of C. An example of polyhedral cone is Cy 4 =
{(rcosf,rsinf) € R? | r > 0 A6 € [0,7/4]}, i.e., all the 2-dimensional vectors that makes
an angle less than 7 /4 with the z-axis. The commonly used cone in the Pareto set identification
literature (Kone et al., 2023a,b; Crepon et al., 2024) is the positive orthant Rf_, ie. CW/Q.

To avoid any redundancy (Ararat and Tekin, 2023; Shukla and Basu, 2024), we assume that W is
full row-rank and normalized, i.e. |W;||2 = 1. Hereafter, we call them preference cones, and the
vectors in the cone as the preferences. For simplicity, in this paper, we consider that the preferences
are normalised, i.e. z € C N B(1) = C. We now define the partial orders w.r.t. a preference cone C.

Definition 3 (Partial Order). For every p,p’ € RE pu <o p/ ifp € p' +C and p < p' if
p € p' +int(C). Alternatively, p < p' is equivalent toz' (u — p') < 0,Vz € C*. Here, C" is
the dual cone of C.

The partial order induced by C induces further order over the set of arms [K|. Specifically, given any
two arms 4, j € [K|: (i) arm j weakly dominates arm i iff p; <z j, (ii) arm j dominates arm i iff
Hi =<¢&\foy Mj. (iil) arm j strongly dominates arm ¢ iff p; <¢ p;.

Definition 4 (Pareto Optimal Set and Policies). An arm i € [K] is Pareto optimal if it is not
dominated by any other arm w.r.t. the cone C. The Pareto optimal set P* is the set of all Pareto
optimal arms. The set of Pareto optimal policies (also known as Pareto front) 11" C Ak is the set of
non-dominated distributions having support on subsets of Pareto optimal arms.

In Figure 1, we show the Pareto optimal arms for the SNW dataset with K = 256 and L = 2 (Zuluaga
etal., 2012a). For the preference cone C 2, the blue points represent the mean rewards of the Pareto
optimal arms, whereas for Cy /3, the Pareto optimal arms correspond to points (the blue and
red lines show respective Pareto fronts). This shows how preference cones affect Pareto optimality.

NW Data: . Generally, PrePEx aims to identify all the distributions
ata: Pareto optimal arms and Pareto Fronts . L. .

T Cone 90t over the arms, i.e. the policies w € Ag, lying on the

14 . . . ~

.\’\\)\' % Cone-120° Pareto optimal policy set. Given a preference cone C

and the bandit instance M, a learner can solve a vector

o~
Lo * . optimization problem to exactly identify a policy on the
o, » Pareto front, i.e. a policy whose mean reward is non-
= N dominated by any other policy w.r.t. C. Mathematically,
o, . * P:

\ a policy 7* belongs to the Pareto front IT" if

T € argmax,, M with respect to c. ()

* " Objective 1

In PrePEx, we address the problem in Equation (1),

Figure 1. Effect of preference cones on when the mean matrix M is unknown a priori but

Pareto optimal arms in SNW dataset. bounded, i.e. |M ||OC’OO € [~ Mmax; Miay]. We de-

note all such instances by M. Our goal is to exactly

identify with as few samples as possible, all the policies lying on the Pareto front using the L-
dimensional reward feedback from the arms pulled.

Definition 5 ((1 — 0)-correct PrePEX). An algorithm for Preference-based Pure Exploration (PrePEx)
is said to be (1 — &) correct if with probability at least 1 — 8, it returns the Pareto front TI7.



Lower Bound. Shukla and Basu (2024) quantify the minimum number of samples that an (1 — §)-
correct PrePEx algorithm requires to identify the Pareto front as an optimisation problem.

Theorem 1 (Lower Bound (Shukla and Basu, 2024)). Given a bandit model M € M, a preference
cone C, and a confidence level § € (0,1), the expected stopping time of any (1 — §)-correct PrePEx
algorithm, to identify the Pareto optimal policy set is E[75] > Ty ¢ log (Tié) , where the expectation
is taken over the stochasticity of both the algorithm and the bandit instance. Here, Ty ¢ is called the
characteristic time and is expressed as

-1 a T T

T e = su inf inf  inf wiD z' M, Hz My ). 2

( M’C> weApK mEAR\{m*},m*ell’(M,C) McoA M)ZECZ FERL ( i k) @

Here, ON (M) £ Unen o\ (=} {M e M\ {M}:3zeC*, (vect (z(m —m*)T),vect(M)) = 0}.
7 ell’ (M,C)

The lower bound tests how hard it is to distinguish a given instance M and another instance M ¢
M\ {M} in the direction of a preference z € C* that makes them the most indistinguishable.
M is called an alternative instance and the set of alternative instances A (M) is called the Alt-set.
Specifically, Alt-set consists of all such instances in M which has at least one Pareto optimal policy
different than that of M. We aim to find out the allocation w that allows us to maximise their
KL-divergences and render them as distinguishable as possible.

From Lower Bound to Optimal Algorithms. A common approach to design asymptotically optimal
pure exploration algorithms (e.g. Track-and-Stop (Kaufmann et al., 2016)) is to solve the sup — inf
optimisation problem (Eq. (2)) at every step with empirical estlmates of the means M obtained
through bandit interaction, and stop only when one is confident about correctness. In this context, we
derive three structural observations regarding the optimisation problem and Alt-set that allows us to
design the first efficient and asymptotically optimal PrePEx algorithm for generic preference cones.

3 Structural Reduction of the Optimisation Problem

We observe that the optimisation problem in the lower bound (Equation (2)) is a combination of three
inf and one sup problems. It is easy to observe that since A and C* are convex and compact sets.
Thus, the optimisation problem reduces to

max inf J inf min wr Dk, ( TMk H TMk) 3)
wEAK ﬂeﬁl.ﬁ}ij ci NMEeON(M) z€CH £ Z

L f(w,m*,w| M)
The outer maximisation problem with respect to w, called allocation, is a linear programming (LP)
problem solvable by any off-the-shelf LP-solver (e.g. CPLEX (Manual, 1987), HIGHS (Huangfu and
Hall, 2018)), if all the inner inf problems can be reduced to min problems. The inner minimisation
problem with respect to the preference z can be solved using an off-the-shelf conic programming
solver (e.g. CVXOPT (Vandenberghe, 2010), CLARABEL (Towsley et al., 2022)). In the following
sections, we further reduce the two inf problems into min problems.

3.1 Structure of the Pareto Optimal Policy Set

We first observe that the inf problem over the set of Pareto optimal policies IT” and the complementary
set of any other policies Ag \ {7} } is costly as the sets are continuous and possibly non-convex. It
leaves two possibilities: (a) optimising over the convex hull of II* or (b) reducing the optimisation
problem to a tractable smaller set. Constructing the convex hull is computationally expensive and
might lead to a looser minimum. Thus, we aim to reduce the inf problem to a well-behaved subset of
IIP. First, we observe that IT* is a compact set consisting of stationary policies from A . Secondly,
we prove that ITP is spanned by p pure policies corresponding to the p Pareto optimal arms.

Theorem 2 (Basis of II?). Pareto optimal policy set II¥ is spanned by p pure policies corresponding
to p Pareto optimal arms, i.e. {w}}._,. Here, 7} is the pure policy with support on only arm i.

Detailed proof is in Appendix B.1. Thus, II” has finite number of extreme points. Given IIF is
compact and f(w, 7*, 7| M) is continuous in 7, inf .« cre is equal to Min . ¢ e+ yr_, (Fact 7). Now,
we define the notion of neighbouring pure policies.



Definition 6 (Neighbouring Pure Policies). w; € {m;}[, is a neighbouring pure policy of
w* € {wf}._, if any mixed policy (distribution over actwns) with support Supp (w) = {i,j}
is not dommated by any other policy. Formally, nbd (w}) £ {m; € {m } \ {n}} : Vm €
A, m;; with Supp (mi5) = {i,j}, M "mij 4 M Tx}.

By Carathéodory’s theorem (Leonard and Lewis, 2015), any Pareto optimal pure policy can have up
to min{ K, L} such neighbouring pure policies. For example, neighbouring pure policies of any +
Pareto optimal arm in Figure | are the 4+ arms connected by the Pareto front (blue line). We also
observe that since SNW dataset’ has two objectives, each pure Pareto optimal policy (or arm) has
two neighbouring pure policies (or arms). With this structure, we obtain that inf epr\ (-} is equal

tomin__ . d(x:) 8 f(w,w*, 7| M) is continuous in 7 and the minimum is achieved at one of the

extreme points of the polyhedra. Thus, the optlmlsatlon problem in Equation (3) reduces to

max MmNy ey inf  min wiD (Z M, ZTM) , 4
wEAK o g{i%(}z’ )Mer)\(\[)z€C+Z RO g g @
£fij(w|M)
while A (M) £ Unr, enba(n?) {M e M\{M}:3zeCt, (vect (z(m; —7})T) ,vect(M)) = 0}

mre{n }_,
is a subset of the Alt-set 8A(M ) considered in Equation (2). Thus, these observations together yield
a significant reduction in the complexity of the inf problem over the set of Pareto optimal policies
and their neighbours to O(K min{ K, L}) evaluation problems of f;;(w|M).

Remark 1 (Connection to Construction of Alt-set by Crepon et al. (2024)). Crepon et al. (2024)
optimise the f(w,n* 7, M) by constructing a function from the Pareto set to [L] that computes
the minimum cost of adding and removing any Pareto optimal point of M. This is a combinatorial
mapping with O(KT) realisations. We accelerate it significantly by leveraging the structure of I
and evaluate O(K min{ K, L}) functions of Pareto optimal points and their neighbours.

3.2 Structure of the Alternative Set

Now, the only demanding optimisation problem left is finding the infimum over the
Alternative instance M in the reduced Alt-set ON(M). We observe that for each
Pareto optimal pure policy =} and its neighbouring pure policy =;, A;;(M) =

{M € M\ {M}:3z e C*, (vect (z(m; — )T, vect(M)) = 0} is a convex set. Hence, the
reduced Alt-set DA (M) is a union of O(K min{K, L}) convex sets {A;;(M)}; ;.

This observation removes the need of constructing a convex hull around the original Alt-set defined
by Shukla and Basu (2024), and searching for the infimum in it. This procedure is prohibitively
expensive. But reducing the Alt-set to a union of convex sets completely eliminates this step and we
can reduce the optimisation problem (Fact 8) further:

max My enpd(?) _ MiN mankaKL (ZTMk H zTMk) , o)
wWEAK mre{nr }p AIGA”( )ZGC

Since both the innermost minimisation problems are over con-
vex sets, the minimisation problem in the lower bound can be
solved using O(K min{K, L}) calls to a convex optimisation
oracle. For well-behaved distributions, e.g. multi-variate Gaus-
sians, we have closed form solutions and can avoid the min-
imisation over the Alternative instances M (Appendix B.3).

Remark 2 (Connection to Pure Exploration with Multiple
Answers). The idea of constructing Alt-set as a union of convex
sets was first introduced by Degenne and Koolen (2019) for
pure exploration with multiple correct answers and further
Figure 2: Preference & polar cones. elaborated in (Wang et al., 2021).

ZSNW dataset (K = 206, L = 2) is derived from the domain of computational hardware design, specifically
concerning the optimization of sorting network configurations (Zuluaga et al., 2012b).



3.3 Structure of the Alternative Instance and Polar Cone

Though we have a tractable max-min optimization problem at hand, the elegant structure of the
preference cones allow us to reduce the computational complexity further.

Proposition 1 (Polar Cone Representation of Alternative Instances). For all M € M and given
wf € II” and 7; € nbd(w}), the set of Alternative instances takes the explicit form A;; (M) =
{M € M\ {M} : 3y € bd(C®) such that M7; = Mw} +y} where'y are defined with the polar
cone of Ct,i.e. C° = {y e RE 5.t (z,y) <0,Vz € Ct}.

Proposition 1 shows that though an Alternative instance is a K x L-dimensional matrix, it can be
represented by an L-dimensional vector y at the boundary of the polar cone. We illustrate the geometry
of this transformation in Figure 2. If an off-the-shelf convex optimiser is used to minimise over
Alternative instances and the optimiser is not dimension-free (e.g. mirror descent (Beck and Teboulle,
2003), Vaidya’s algorithm (Vaidya, 1996)), then this transformation reduces the computational
expense significantly (For most of the real data, /' > L). For multivariate Gaussians with covariance
matrix 3, we derive the closed form of the polar vector corresponding to the Alternative instance (ref.
Lemma 4). Please refer to Appendix B.2 for detailed proof.

4 Algorithm Design: Frugal and Fast PrePEx with Frank-Wolfe

Enabled by the structural reductions in Section 3, we are now ready to describe the FraPPE algorithm,
which is the first computationally efficient, optimisation-driven algorithm for exact detection of the
Pareto optimal set. We begin by stating the required assumption to build FraPPE.

Assumption 1 (L-Parameter Exponential Family). Let X = (X1,, X1,) be a L-dimensional random
vector with a distribution Py,0 € © and mean p € M C RE. Suppose X1, ..., Xy, are jointly
continuous. Then, the family of distributions {Py,0 € ©} belongs to the L parameter exponential
family if its density of X can be represented as f(X|0) = h(X)exp (n(0)T(X) —¢(0)). n:© —
R? is the natural parametrization for some s > L. T : Rl — R?® is the sufficient statistic for
the natural parameter. h(X) is the base density such that h : RL — [0,00). Finally, 1(0) =
log ([ h(X) exp ((n(0), T(X))dx)) is the log-normaliser or log-partition function. Additionally,
we assume that the exponential family is non-singular, i.e. V1p(0) > 8 for some 3 > 0 and for all 6.

Note that the natural parameter can have dimension s greater than L but in our case, only the L-
dimensional mean is unknown. To highlight this, we call the above an L-parameter exponential family
rather than s-parameter. This is a common assumption in BAI for L = 1 (Kaufmann et al., 2016;
Garivier and Kaufmann, 2016; Degenne and Koolen, 2019). Rather, the Pareto front identification
literature has been limited to Gaussians and extending to exponential families has been an open
question (Crepon et al., 2024). The non-singular curvature is also a mild assumption for keeping the
problem well-defined. For example, this holds true for any Gaussian with non-singular covariance
matrix (See Example 1) and Bernoullis with probability of success not equal to zero or one.

4.1 Fast Optimisation of Allocations with Frank-Wolfe

The outer optimisation problem in Equation (5) is Linear Program (LP) over a polyhedra with respect
to w. Any PrePEx algorithm solves this LP trying to estimate allocation per step. Unlike typical LP
solvers, projection-free methods, like Frank-Wolfe (FW) (Jaggi, 2013), solve this smooth convex
program more efficiently (Chandrasekaran et al., 2012). The necessary conditions for FW to converge
towards the optimal allocation w* (M) are 1. the LP under study must be smooth, 2. the gradient and
curvature of the function to be maximised should not blow up at the boundary of the polyhedra.

1. Smoothness: For a fixed 7} € {mw}}!_,, the function f;;(w | M) is smooth only at the minima
T; € arg minﬂjeHbd(ﬂ) fij(w | M). As suggested by Wang et al. (2021), we can adapt FW to cope

with non-smooth objective function by constructing r-sub-differential set close to the non-smooth
points. We define the r-sub-differential set as

Hy(w,r) 2 ch{waij(w|M) : fij(w|M) < min fi;(w|M) 4 7,V7] € I1°, 7r; € nbd (71':)} . (6)
T,



Algorithm 1 FraPPE- Frugal and Fast Preference-Based Pure Exploration

1: Input: Confidence level § and sequence {r;};>1 =t %9/K

2: Initialise: For ¢ € [K], sample each arm once s.t. wx = (1/K, - - -,1/K), mean estimate M
3. while Equation (8) is FALSE do

4 if \/t/K € Nor M; ¢ M then

5 Forced Exploration: w; + (1/K,---,1/K)

6: else .
7: Estimate Pareto Indices: Calculate Pareto indices P; based on current estimate M.
8 Estimate Set of Pareto Policies: 17 consisting pure policies with i; € P; as basis.
9 Set of Neighbours: II \ TI7¢, where II is the set of all pure policies.

0 Construct Sub-Differential Set: H i (w¢, 7¢) using Equation (6)

1

FW-Update: x;; < argmax min  (x — w(t),h), w1
WEAK hGHMt(“’tﬂ‘t)

10:

11: TTXer1 +

t+1 t+1

12:  endif
13:  C-tracking: Play A; € argmin N, ; — ZZJ:I wy (ties broken arbitrarily)
14:  Feedback and Parameter Update: Get feedback R, € R” and update M; to M, with R,

15: end while
16: Recommendation Rule: Recommend P; as the Pareto optimal set

As computing gradient in the neighbourhood of w is expensive, FW further simplifies the outer
maximisation and calculates the allocation in two simple steps by linearising as follows

N . t 1
X;p1 = argmax  min (X —wg, h), w + — . 7
t+1 xgeAK heHM(w7T)< ¢, h) t+1 = t+1 Wit S Xt )

We further prove (Appendix D) that w — Hjs(w, ) is continuous and continuously differentiable.

2. Gradient and Curvature. For FW to converge, boundedness of the gradient and curvature constant

is necessary. Lemma | ensures that the FW converges to the optimal allocation (ref. Appendix D).
Lemma 1. If Assumption [ holds true, then for all M € M: 1. Bounded gradients:
Ve fij(wIM)|, < D forall w;,7;, and w € Ag. 2. Bounded curvature: Cy, (. a)(Ax-) <

8Da~* foralli, j, v € (0,1/K), and some o > 0. Here, C(A) is curvature constant of concave
differentiable function f in set A (Definition 8) and A, = {w € A : ming wy, > v}

Lemma 1 allows us to further accelerate the linearised optimisation in Equation (7) in O (i) instead
of standard FW complexity O (£;) (Jaggi, 2013), where tol is the tolerable error margin for the
optimisation. Thus, we propose the first PrePEX algorithm for general exponential family whereas
existing literature is restricted to Gaussian or Bernoulli (Crepon et al., 2024).

4.2 FraPPE: Frugal and Fast PrePEx

We propose FraPPE for efficient (Frugal and Fast) identification of all the Pareto optimal arms in
PrePEx. FraPPE follows the three component-based design from pure exploration literature (Kauf-
mann et al., 2016; Degenne and Koolen, 2019; Wang et al., 2021).

Component 1. The first component of FraPPE is a hypothesis testing scheme based on a
sample statistic (Line 3 in Algorithm 1) that decides whether the algorithm should stop sam-
pling and recommend the estimated Pareto optimal set as the optimal one. This is called
the “Stopping Rule”. We revisit the stopping rule described by Shukla and Basu (2024):

minMech(aA(Mt)) min, e+ Zle N+ Dxr, (ZTMM zT]\ka> > ¢(t,0). We note that construct-

ing convex hull around the Alt-set per iteration is computationally expensive and not really tractable.
Instead, we take advantage of Equation (5) to deploy a tractable and efficient stopping rule:

K .
mln min inf min g N +Dxr, (ZTM;”
w;, €07t g enbd(w; )MGA”(Mt)zeC‘*' k=1

2 My) = clt0) ()

where c(t,§) = Zk 1 3In(1+1In(Nyy)) + KG ( n( )> For explicit expression of G(-) : RT —

R, refer to Theorem 13 (Kaufmann and Koolen, 2021). The intuition behind this stopping rule



stems from the Sticky Track-and-Stop strategy for multiple correct answers setting (Degenne and
Koolen, 2019) that stops as soon as it can identify any one of the correct answers (Pareto arms in our
case). Though in our setting, we need to rule out the possibility of choosing a confusing instance for
all the correct answers, i.e. the Pareto arms. Hence, we take minimum over the finite set of Pareto
optimal policies {7} }7_,. Note that, (8) is the first Chernoff-type stopping rule that encapsulates the
effect of C that has been unresolved in the literature (Crepon et al., 2024).

Component 2. The next component of FraPPE is a “Sampling Rule”. It chooses the action to play
based on the allocation w; estimated via Equation (7) (cf. Section 4.1). We use “C-tracking” (Line
13, Algorithm 1) as the other variant “D-tracking” fails to converge to w* (M) for multiple correct
answers (Degenne and Koolen, 2019). We refer to Appendix H for convergence and other results.

Component 3: Once the stopping rule is fired i.e., flag is TRUE, FraPPE recommends the estimated
Pareto arms as the set of correct answers. The stopping rule ensures that the Pareto arms given by
“Recommendation rule” are correct with probability at least (1 — ) (Theorem 13).

Sample Complexity. Now, we show that FraPPE is an asymptotically optimal PrePEx algorithm.

Lemma 2 (Sample Complexity Upper Bound). For any M € M, é € (0, 1), and preference cone C,

expected stopping time satisfies limsups_, % <Tue-

1 ;
Thus, FraPPE achieves asymptotic optimality. We also prove correctness (Theorem 6) and derive a
non-asymptotic sample complexity bound (Lemma 6 in Appendix E.4), which we omit for brevity.

Computational Complexity. First, Line 7 suffers worst-case complexity for estimating Pareto set
using the algorithm of Kung et al. (1975) is O (K log(K)™®{1.L=2}) (Kone et al., 2024). Then,

for each {w}}_, and {m; }lfff = Component 1 and Frank-Wolfe step (Line 11) enjoys time

complexity O (L) due to K-independent bound over curvature and gradients (Lemma 1 (Jaggi, 2013)).
Thus, FraPPE has the total time complexity O (max { K (log K)™®{1L=2} KT min{K, L}}).
Note that, for L > 5 and K > 19, runtime of FraPPE is O (K(log K)max{l’L*Q}), i.e. the Pareto
set computation becomes the dominant component. We refer to Appendix G.1 for detailed discussion.

S Experimental Analysis

We perform empirical evaluation of FraPPE on a real-life dataset as well as synthetic environment.

Benchmark algorithms. We compare our algorithm with PSIPS (Posterior concentration based
Bayesian algorithm (Kone et al., 2024)), APE (Approximate Pareto set identification (Kone et al.,
2023a)), Oracle that pulls arms according to w* (M), i.e., the optimal allocation, Uniform sampler,

and also TnS (Gradient based algorithm in (Crepon et al., 2024)). We consider ¢(t, ) = ln(%n(t)).

Experiment 1: Cov-Boost Trial Dataset. This real-lide inspired data set contains tabulated entries
of phase-2 booster trial for Covid-19 (Munro et al., 2021). Cov-Boost has been used as a benchmark
dataset for evaluating algorithms for Pareto Set Identification (PSI). It consists bandit instance with
20 vaccines, i.e. arms, and 3 immune responses as objectives, i.e., K = 20 and L = 3.

Observation. (a) Lower and Stable Sample Complexity. In Figure 3, we plot the stopping times for
0 = 0.01 that validates the frugality of FraPPE in terms of median sample complexity. Additionally,
we observe very less variability compared to PSIPS which leverages posterior sampling, which makes
FraPPE a more stable strategy. For 6 = 0.1, Kone et al. (2024) states that PSIPS has an average
sample complexity of 20456, while TnS of Crepon et al. (2024) reports it to be 17909. FraPPE
exhibits an average sample complexity of 3523 (~5-6X less) over 100 independent experiments.

(b) Low Error probability. In Figure 5, we visualise the evolution of averag error 1(P; # P*) for
FraPPE against PSIPS and Uniform explorer. FraPPE reduces the error rate significantly faster.

Experiment 2: Effect of Correlated Objectives. We also test FraPPE on the Gaussian instance
of Kone et al. (2024) used with 5 arms, 2 objectives, and the covariance matrix with unit variances.
Correlation coefficients are varied from —1 to 1 with grid size 0.1. We fix § = 0.01. We compare the
empirical performance with PSIPS as it is the only algorithm tackling correlated objectives.

Observation: Uniformly Better Performance across Correlations. We plot the average sample
complexity (averaged over 1000 runs for each correlation coefficient) in Figure 4. It shows that
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Figure 5: Error probability evolution for Cov-Boost Trial.

FraPPE achieves better sample frugality than PSIPS across all the values of correlation coefficients.
Notably, the standard deviation of FraPPE is also narrower indicating its stability across instances.

Summary. Thus, based on the results from Experiments 1 and 2 and computational complexity
guaranty, we conclude that FraPPE is the PrePEx algorithm with the lowest empirical stopping time
(5X lower), better true positive rate, and lower computational complexity among the optimisation-
based baselines. Further results on runtime analysis of FraPPE are provided in Appendix J.

6 Discussions and Future Works

We study the problem of preference based pure exploration with fixed confidence (PrePEx) that aims
to identify all the Pareto optimal arms (and policies) for a multi-objective (aka vector-valued) bandit
problem with an arbitrary preference cone. We study the existing lower bound for this problem and
through three structural observations regarding the Pareto optimal policies, alternating instances,
and the Alt-set, we reduce it to a tractable optimisation problem. We further apply Frank-Wolfe
based optimisation method and a relaxed stopping rule to propose FraPPE. FraPPE is the first
PrePEx algorithm that is asymptotically optimal, can handle generic exponential family distributions,
and thus, resolving most of the open questions in (Crepon et al., 2024). Experiments show that
FraPPE achieves around 5X less sample complexity to identify the exact set of Pareto optimal arms
across instances.

Throughout this work, we have assumed to know the exact cone C. Thus, learning the cone simulta-
neously while solving PrePEx is an interesting future direction of research. Another future work is
to scale FraPPE to practical applications of PrePEx, e.g. aligning large language models with RL
under Human Feedback (RLHF) (Ji et al., 2023). It would be also interesting to extend our algorithm
design from independent arms to structured bandits (e.g, linear, contextual).
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A Notations and Extended Related Works

Notation Description

C,<¢ Given convex cone and induced partial order

C £ CNB(1) where B(1) is an unit ball

ct Dual cone of C

ce Polar cone of a cone C*

K, L Number of arms and objectives

P, P, Ground truth Pareto set and estimated Pareto set

M € REXL matrix with mean reward of K arms

w Allocation vector

mnr Family of Pareto optimal policies

[0 ,(fi; pgf) Estimated and true of mean rewards

A (M) Set of alternating instances of M for fixed 7w} € II¥ and 7 nbd (7})
int(X) Interior of a set X

ch{X} Convex Hull of a set X

S; S; & {MeM,3ze€C:z"Mn} >z Mm,Vr € nbd (7})}
1 Confidence parameter

c(t, 9) Stopping threshold

c1(M) and c2(M)  Constants such that V¢ > ¢1 (M), c(¢,9) < log (W)
Hy(w,r) r-subdifferential set (Equation (6))

M Confusing instance w.r.t M

tol Error tolerance in linear optimisation

Ng Number of pulls of arm a at time ¢t € N

z Preference vector from the cone C

T Pareto optimal policy

™ Neighbour of the Pareto optimal policy 7}

Ak K -dimensional simplex

Ak~ {w € Ak : ming wg, > v}

w Preference Matrix

TS (1 — é)-correct Stopping time

y Vector from polar cone C°

D Upper bound on infinite norm of gradient V,, fi;(w | M)
M Parameter space of mean matrix

P Number of Pareto optimal arms, i.e cardinality of the set P*
ek K -dimensional vector with 1 at k-th index, and O elsewhere
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A.1 Extended Related Works

Pure exploration in multi-armed bandits (MAB) has been extensively studied, particularly in the
context of best-arm identification (BAI) under fixed-confidence (Kaufmann et al., 2016; Garivier
and Kaufmann, 2016) and fixed-budget (Even-Dar et al., 20006) settings. In this paper we restrict
ourselves to fixed-confidence setting where the goal is to recommend the arm with highest mean
reward with probability at least (1 — §) for a given confidence parameter § € (0, 1). Specially, in
the last decade we have witnessed emergence of several algorithmic strategies to tackle the problem
of BAI in fixed-confidence setting. To name a few, these include action elimination based approach
in (Even-Dar et al., 2006; Kone et al., 2023a), LUCB strategies introduced in (Audibert and Bubeck,
2010), further in (Jamieson et al., 2014), tracking a information theoretic lower bound (Track-and-
Stop) (Kaufmann et al., 2016), extended by gamification of the lower bound (Degenne et al., 2020)
or acceleration by leveraging projection-free convergence towards optimal allocation (Wang et al.,
2021).

Pure exploration with vector feedback. Traditionally, pure exploration in BAI focuses on scalarised
rewards (Carlsson et al., 2024). In contrast, we consider the problem of preference-based pure explo-
ration (PrePEx), where the agent receives a vector reward upon playing an arm of dimension equal to
the number of objectives (L) under study partially ordered by a preference cone. Recently, Shukla and
Basu (2024) tackle this problem by deriving a novel information-theoretic lower bound on expected
sample complexity that captures the influence of the preference cone’s geometry. They proposed
the Preference-based Track-and-Stop (PreTS) algorithm, which leverages a convex relaxation of the
lower bound and demonstrates asymptotic optimality through new concentration inequalities for
vector-valued rewards. Kone et al. (2024), on the other hand leverages concentration on priors over
reward vectors by posterior sampling to recommend the exact Pareto optimal arms. Other notable
works include Auer et al. (2016), who explored Pareto Set Identification (PSI) in MABs, and Ararat
and Tekin (2023), who provided gap-based sample complexity bounds under cone-based preferences.
Korkmaz et al. (2023) extended these ideas to Gaussian process bandits, while Karagozlii et al.
(2024) developed adaptive elimination algorithms for learning the Pareto front under incomplete
preferences. Crepon et al. (2024) proposed a gradient-based track-and-stop strategy for exact Pareto
front identification with known preference cones.

Pure exploration with multiple correct answers. We further connect the premise of PrePEx problem
with the literature on pure exploration with multiple correct answers (Degenne and Koolen, 2019;
Wang et al., 2021). Unlike standard BAI, this setting assumes existence of multiple optimal answers,
though proceeds to identify any one of them. The philosophy of top- K type strategies (Jourdan, 2024;
Jourdan et al., 2022; Chen et al., 2017; You et al., 2023) extend this setting by efficiently identifying
the top-k optimal answers. On the contrary, in PrePEx we aim to find not k, but all of the correct
answers (Pareto optimal arms), being as frugal as possible.

Duelling bandits. Preference-based bandit problems have traditionally been studied in the dueling
bandit framework, that is limited to pairwise comparisons between arms (Zoghi et al., 2015; Busa-
Fekete et al., 2014; Szorényi et al., 2015; Chen and Frazier, 2017). These models focus on learning a
global ranking or identifying a Condorcet or Copeland winner based on binary preference outcomes.
While such frameworks capture relative preference information effectively, they typically assume
a fixed, often discrete preference structure and are studied under regret minimization. In contrast,
PrePEx generalises this idea by considering vector-valued feedback and encoding preferences via
convex cones, which enables us to extend towards more complex, continuous, and possibly incomplete
preference structures. Unlike dueling bandits, PrePEx targets pure exploration with statistical
guarantees, hoping to identify all the Pareto optimal arms with high confidence under a richer
preference model.

Connection to constrained pure exploration and safe RL. PrePEx also generalises the setting
of pure exploration under known linear constraints (Carlsson et al., 2024) though the notion of
preference cone over objective is redundant for single objective bandit instances. In Safe RL, we
consider presence of different risk constraints (e.g., on fairness, resource allocation etc.) (Achiam
etal., 2017; Gu et al., 2024). This setting resonates with PrePEx as these constraints can be modelled
as conflicting objectives while performing optimisation. The preference cone in PrePEx can also
encode these constraint if they are implicit (one objective must not worsen).
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B Structures of Confusing Instance

In this section, we will first define the Pareto policy set and prove some of its useful properties in B.1.
Then, in B.2 we will introduce the novel polar cone characterisation of the alternating instances and
finally in B.3 we will show the closed form of the alternating instance under multivariate Gaussian
reward vectors with non-diagonal variance-covariance matrix.

B.1 Pareto Optimal Policies to Pareto Optimal Arms

Definition 7 (Pareto Policies). The set of Pareto policies is given by IIF £
{m:MTx 2 MTnV&eAg\{n}}

We now have some useful results regarding the set of Pareto policies.

Lemma 3 (Compactness of Pareto Policy set). The set of Pareto policies TI¥ is a compact set.

Proof. To prove compactness of II¥, we leverage Heine-Borel theorem (refer Theorem 14). It is
evident that IT” is an subspace of the Euclidean space R*. Since complement of II” is an open set,
then II” is closed. It is also bounded because all elements in II” are policies which consist of entries
bounded in the interval [0, 1]. Thus, according to Heine-Borel theorem we can equivalently state that
II? is compact, or in other words every open cover of IIF has a finite sub-cover. [

Theorem 2 (Basis of II). Pareto optimal policy set II¥ is spanned by p pure policies corresponding

to p Pareto optimal arms, i.e. {w}}._,. Here, m} is the pure policy with support on only arm i.

Proof. Consider the set of pure policies whose support lies on the Pareto front. For each ¢ € P*
define the pure policy 7} € [0, 1]% associated with arm i as:

will = {0

0, otherwise

Further, since i € P*, M "7 <z M T7;, V& € II\ II”. With this construction, viewing each policy
as a vector in [0, 1]%, we have that the set of pure policies is linearly independent, i.e.,

Clﬁ’1+62ﬁ'2+...+c‘fp*‘ﬁ"p*‘:O — 61262:...:C|p*|20

Let w € TIP \ IIP** where ITP*%s is the set of pure Pareto strategies. Since 7 is a randomized
policy (Lemma 3) there exists constants p; > 0, Zj p; = 1, suchthat w = py7y + pa7ma +
..+ pyp~|T|p~|. By linearity of dot product, M'rn=p M 7, +psM 7y, .. +p|7)*‘MT7}|73*|.
Since each 7; € IIF and p; >0, leTﬁ'l + ngTﬁ'z + ...+ p|p*‘MTﬁ'|7;*| ﬁ@ M T ' for all
' eI\ IIP.

Thus, any policy 7 € II? can be expressed as a linear combination of the Pareto pure strategies
m; € IIPPss 4 ¢ P* Hence, proved. O

B.2 Polar Cone Characterization of Alternative Instances

Proposition 1 (Polar Cone Representation of Alternating Instances). For all M € M and given
€ II” and 7; € nbd(mw}), the set of alternating instances takes the explicit form A;; (M) =
(M € M\ {M} : 3y € bd(C°) such that Mm; = M=} +y} where y are defined with the polar
cone of C, i.e. C° = {y :y € R s.t. (z,y) <0,Vz e CH}.

Proof. Let us remind the definition of the set of confusing instances

Ay (M) 2 {M e M\ {M}:3zeCt, (vect (z(m; — w}) ), vect(M)) = o} :

which implies that M (7; — 7}) € bd(C°). We characterize the polar cone, using Farkas’ lemma.

Forx € C,x = Z{;laiwi,ai > O0Vi € [L], where WEXL = {wy,ws,...,wr}, w;’s being the
basis rays of the cone C.
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R% satisfies (z, W' p) < 0,Vz € C}. Therefore, by Projection Lemma, M (7; — ;) =W p €
bd(C®). Thus, we can write

Using Farkas’ lemma, the polar cone can be characterized as C° = {W'p : p €
)

Aij (M) 2 {M e M\ {M}:3W 7 p € bd(C°) such that M, = Ma: + W' }
Defining y = W T p concludes the proof. O

B.3 Characterisation of Confusing Instances for Multivariate Gaussians

Lemma 4 (Confusing instances for Multivariate Gaussian rewards). Let the reward vectors follow
Multi-variate Gaussian distributions with diagonal covariance matrix Y with non-zero diagonal
entries. Under the polar cone characterisation of the alternating instance, the polar vector has
the closed form expression’y = MA(i,j) —z' MA(i, j)(zz" )z, where A(i,j) £ (7} — m;),
Yo £ z' Yz for given wf € I” and w; € nbd (7}). Also, At denotes the pseudo-inverse of matrix
A. The inverse characteristic time is then given by

L2
S . . (2" MAG, )
5 = Inax min min min 3
wEAK wrellf ﬂjEnbd( )zeC+ 220”A(Z ]>HDiag(l/wk)

Proof. First, for afixed 7w} € II¥ and 7; € nbd (7)) we proceed by looking at the main optimisation
problem under correlated Gaussian assumption

min  min ZkaKL (z M;, H TMk)
MeA;; (M) 2ECT 1=

TMk — ZTMk)
= min min E wk -
N2 N (m}—m;)=02€C £ 2z Yz

where the last line holds due to the definition of Alt-set 9A;;(M). Thus, we incorporate the boundary
constraint and write the Lagrangian dual with Lagrangian multiplier v > 0 as

K ~
(wk (ZTMk — Z—r]\fk)2

L(M,~) = min

zcC+

TM * _ .
5a TSy +yz My(m] — 7))k ©

k=1
We differentiate (9) with respect to M;, and equate it to zero to get the minima
Vi, L(M,~) =0

ZTMk - ZTMk

— Wi
b ADY}/

=y(m; — )k

y(mr — )z Yz

— ZTMk = ZTMk —

Wi

We plug back the value of z Mj, in (9) to get
K

Ly =Y (VZTMk(ﬂ'f — )k —

k=1

72(77 — 7T])k:ZTX]Z> (10)

2wk

We again differentiate (10) with respect to v and equate it to zero to get closed form of -,
\Y E( ) =

K
— 1)z Xz
=>’yz i)k :ZZTMk T — Tk
1

k=
Zk:l z' My (7} — 7))k
273y ZkK:1 (mr—m;)%

Wi

:}’y:
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We define A(4, j) £ (w} — ;) and £ £ z " ¥z and lastly Diag(1/wy,) as a K x K diagonal matrix

. : 1 o 2z MA(i,j5)
with k-th entry as o Then v = A By Thus, we finally have
~ TMA(G, j A(i, j
2 My, =z M, — Z. ks U¥)) (4, 9)k
AG D Diag1/wy — @r
~ TMA(G, j
:>ZTM:ZTM* Z. i Q(Zﬁj) Au
||A(l’])||Diag(l/wk)
_ TMA . .
— M=M-——2 5 (i) (zz")TzA,
||A(Zv.7)HDiag(1/wk)
where A, is a K -dimensional vectors with k-th component being ( t and A denotes the pseudo-

inverse of matrix A. Now, from the polar cone characterisation dlscussed in Appendix B.2 we know
MA(i,7) =y € bd(C®). Thus we derive the closed form of the polar cone vector as

y = MA(i,j) — 2" MA(i, j) (22" )z,

since <Aw7A(Za])> = HA(iaj)HzDiag(l/uk)'

Therefore, we also get the closed form of the inverse characteristic time for Multivariate Gaussian
rewards as well.

2T MA(, §))
T/\jtc = max min  min  min (A (2 7) z' (zz)'z
wEAK wrell ﬂ-jenbd( ) zeCt+ 220” (Z j) ||Diag(1/wk)

Note that zz " is a rank-1 matrix and its pseudo-inverse satisfies all four Moore-Penrose conditions.
Thus we can use the identity (zz")" = 72z ". Therefore 27 (2z")'z = 1. Hence, the final

expression of the inverse characteristic time is given by

T-'.= max min min min ( TMA(i ]))2
M weli mielt® nyennd(n;) seCt 280l A ) Biag(r i)

Hence, we conclude the proof. O
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C Continuity Results

First, we remind the lower bound on the expected sample complexity of any (1 — ¢)-correct PrePEx
algorithm,

Theorem 1 (Lower Bound (Shukla and Basu, 2024)). Given a bandit model M € M, a preference
cone C, and a confidence level § € |0, 1), the expected stopping time of any (1 — 8)-correct PrePEx
algorithm, to identify the Pareto Optimal Set is

1
E[rs] > 7;»1,@ log (246) ) (1)

where, the expectation is taken over the stochasticity of both the algorithm and the bandit instance.
Here, Ty ¢ is called the characteristic time of the PrePEx instance (M, C) and is expressed as

K
-1 . . . ~
(7}wg) £ max min _ min  min E wi Dk, (ZTMk H zTMk.), (12)
' wEAK mi€nbd(n]) MeA,;(M)zeCt
« ~17P k=1
w;ell
fij(w,M|M)
fij(w|M)
F(w|M)

where for a fixed 7w} € 11" and 7; € nbd (7}),
Ayj(M) 2 {M e M\ {M}:3z€C, (vect (z(m; — mt)T),vect(M)) = o} .

Useful Notations: For maintaining brevity, we state the useful notations related to functions under
continuity analysis which are followed throughout this section and beyond.

1. First, we define the following functions. For a fixed M € A;;(M),

K
fij(w7M\M) £ min ZkaKL (z—'—M;C H zT]\ZIk)
k=1

zeC+

2. Again we define for fixed 7w} € II? and 7; € nbd (i),

fii(@|M) % min fi;(w, M|M)
MeA; (M)
3. Finally, F(w | M) & Milly cupa(re) fij (@ | M)
wrell’
Fact 1. Due to convexity of KL divergence with respect to z € C™ and convexity of the solid cone C,
fij(w|M) is convex in z and M, but concave with respect to w (Minimum over concave functions).

Fact 2. As a consequence of Fact 1, F(w | M), being minimum among finite concave function,
is concave in w, but a non-smooth function. This function is smooth only at the points where the
minimum is reached for 7} and ;.

In C.1, we state and prove continuity results of the peeled objective functions with respect to
alternating instance and the preference vector.

C.1 Continuity w.r.t. Preferences and Alternating Instances: f;;(w, M|M) and f;;(w|M)

Proposition 2. Let S; C M be the set of mean matrices for which 7} is the Pareto optimal policy.
For given w} € II” ; € nbd(w}), then for all (w, M) € Ak x S;,

(a) For a given M € M\ M, there exists a unique z; € int(Ct) such that

Zint = arg min E wi Dk, (zTMk H zTMk)
z€int(CH) by
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ifz" My, # 0andz" My, # 0 forall k = [1, K].
(D) there exists a unique Minf such that

Y A . T T 77
My 2 argmin > wiDxe (zinka. zinka)

MeA;;(M) p—1

(c) As fr is continuously differentiable on A X S;, the gradient is expressed as

5 ZTMk) (&7

K
Vofii(w|M)= min D (ZTM
wf]( | ) AI,ZEC_+; KL k

where, ey, is a K-dimensional vector with 1 in k-th index, 0 elsewhere.

Proof. Proof of Part (a). We do this proof in two parts. First we prove the existence of z;,s and then
its uniqueness.

Existence. We refer to Theorem 11 to prove the first part. We define X = A xS;, Y £ int(Ct), ® £
int(C*) and u(w, M) 2 S5 wiDxkr, (zTMk H zT]\Z/k) Now @ : (Ag x S;) = int(CT)isa
constant correspondence (as it is defined before computing w and M) and u : A x.5; X int(Ct) - R
is a continuous mapping. Thus f;;(w, M|M) is continuous. Hence, zint exists.

Uniqueness. Now if we can prove that the KL-divergence is strictly convex in int(C"), then ziys
is unique. For strict convexity, we need to show that the second derivative (Hessian) of the KL
divergence w.r.t. z is positive, which can be tricky if the function has flat regions or degenerate
directions (which could arise at the boundary of the polyhedral cone). Here, we leverage Lemma 5
that shows that if z" M, # 0 and z " M, = 0 for all k = [1, K], then KL is strictly convex on z.
That means as zi,¢ € int(C*), for any k € [K], My and My, cannot lie in int(C°). Thus, z,¢ exists
and it is unique. Hence, proved.

Proof of Part (b). We again leverage Theorem 11 to prove existence of a unique Mine. We define
X 2 Mg x S Y = Mgy (M), @ = Ay(M) and u(w, M) 2 51 wrDict, (2, Mo H 2 ).
Now @ : (Ag x S;) = A;;(M) is a constant correspondence (as we already fix w} € II” and
7; € nbd(w}), A;j(M) does not depend on 7}, 7;) and u : Ag x S; x Aj;(M) — Ris a
continuous mapping. Therefore, M;,s is upper-hemicontinuous and f;;(w|M) is continuous on
A;;(M). Again, the KL-divergence follows strict convexity in A;; (M), therefore proving uniqueness

of Minf.

Proof of Part (c). We leverage Lemma |1 with the following definitions X £ A;; (M) xint(C*),Y
Ak x Si,x*(w, M) £ 2zl (Minf)k and u(x*,w, M) £ Zszl wi Dk, (zglka H Zinf(Minf)k

inf

\./ ||>

This simply proves u(x*, w, M) is continuously differentiable by the virtue of continuity of
O

Lemma 5. Forall (w, M) € Ag x S;, Dk, (ZTM H ZTM) is strictly convex on z iﬁ‘zTJ\Z/k #0
and z" My, # OVk = [1, K.

Proof. The KL-divergence has the following form

~ K L ZL Mklzl
DKL (ZTM H ZTM> = ZZ(Mk’lzl)log sl=17 8

=
—11=1 Yo Myaz
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Partially differentiating the KL with respect to z; we get

T T 17 K ~ ~
0Dk, (z M H V/ M) _ Z {Mk log <ZlL—1 Mk,lzl> n My Zlel My zp — My, Zlel Mk,lzl}

L "~ L "~
Oz 1=1 My1z1 > i1 Mz

k=1

The components of Hessian are expressed as
82DKL (ZTM H ZTM)
8Zlazl/

K L
M : M
_ 9 § My log | 2i=1 Mz +Mk,l—Mkl721 e
Ozy lele,lzl Zl 1Mklzl

L "~ L = =
B Z Ez V My gz My >0 Mz — My Elzl My, 12
L 2 2
k=1 = 1Mklzl (> My,zy)
~ L
~ My 21:1 Myzi — My 352, Mz

k,l 57 ~
(21:1 My, 121)?
K

K
1 ~ - 1

= My My ——— — (Mk-,le,l/ + Mk,le,l’> —_—

2 ity Mz ; Yy Mz

H =

i = My My s (Mk,le,w + Mk,le,l') My, | My,
= 7lZl . 2 - = + ’ ~ :
(Cr Migz)? (S Miaz) () Miaz) (X, Miz)?

Thus, the Hessian of KL is positive definite iff for any non-zero x € RE,

xHz >0
K ~
(x " My,)? (x"Mp)(x" M) Ag, 1.2
E— -2 a + —(x' M, >0
kz::l ( A, i Ai( k)

—— 7(XTM]€)2 —|— A TMk) > 2(X Mk)( TMk)

/ A
I:XTMk >0

This statement is always true if A = Zlel My, 12; # 0 and Ay = Mk,lzl = 0. Hence, we conclude
the proof. O
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D Convergence of FW Algorithms

Fact 3. Frank-Wolfe is a second order method. For it to converge, we must ensure the gradient of the
objective with respect to w is bounded around the non-smooth points and also the curvature constant
must be bounded.

In this section, we first derive upper bounds on gradient and curvature constant in D.1. Then we
move on the state and prove continuity properties of the sub-differential set defined in (6) in D.2.
Finally, unifying continuity results from C and results derived in this section, we elaborate on the
convergence of Frank-Wolfe in D.3.

D.1 Boundedness of Gradient and Curvature of Sub-Differentials

Before jumping into the proof of Lemma |, we first define the curvature constant and a subset of
simplex that ensures the minimum index of w does not fall on the boundary of the simplex.

Definition 8. For w,w’ € Ak~ 00 € (0, 1] and given the bandit instance M € M, the curvature
constant is expressed as,

Cromn(Br) = sup  —fi(e) = ¥(y) + (v — @ V(@)L
éee(o,ll(]w

y=z+a(z—x)
Definition 9. For any v € (0,1/K), we define a subset of the simplex Ak as
Ag~ 2lweAg: mkinwk >~}

With these definitions in hand, now we show that the space of f;;(w|M) had bounded gradient and
curvature w.r.t. w.

Lemma 1. If Assumption [ holds true, then for all M € M: 1. Bounded gradients:
IV fij(w|M)|, < D forall wi,mj, and w € Ak. 2. Bounded curvature: Cy, (. a)(Ax,) <
8Da~! foralli,j, v € (0,1/K), and some o > 0. Here, C(A) is curvature constant of concave
differentiable function f in set A (Definition 8) and A, £ {w € Ak : ming wy, > v}

Proof. Proof of 1. We already have the expression for the gradient from Appendix C as

K
Vo fij(w|M) = min ZDKL (ZTM H ZTM> €k
M ,zeC =1

Therefore

Ve (IM) oo = (T M, 2T ) oo = max | Dice (a7 Mic | 27 301) |
We know for exponential families the KL-divergence can be expressed as the Bregman divergence
generated by the Cumulant Generating function or Cramer function i.e,

Dxr(pllp) = A(p') — A(p) = VA(p) (1" — p)
where A(.) is the CGF and p, ¢ belong to L-parameter exponential family according to Assumption
| with natural parameter 8,0’ € int(©). Dk, (p||p’) is bounded if support of 6 and 8’ are same,
which is true in our case.

Example 1 : Univariate Gaussian. Let, p(x) = N(u1,0?) and g(z) =
N(uz2,03). Any of these densities has the following canonical exponential form p(z) =

exp (Ui%x — 30%0% — o7 — %log(Qﬂa%)). Therefore for p(z) the natural parameter is 6; =
‘711 and for the ¢(z) the natural parameter is 05 = ‘721 and also the CGF is given

Lo ~33
y
6 1 ™
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for i = 1, 2. Now the KL is always finite, smooth and well-behaved as long as the natural parameters
belong to the same domain.

Example 2: Bernoulli. Let p(z) = Ber(p),p € (0, 1). Then the canonical exponential form can
be written as p(z) = exp (xlog 1 + log(1 — p) ). Therefore the natural parameter 6 = log 1>,

which is the log-odds and the CGF is A(f) = log(1 + €?). So KL-divergence between any two
Bernoulli random variable X and Y with mean parameters p; and ps is finite and well-behaved iff

P1,P2 € (07 1)

Therefore by the virtue of Assumption | we claim that 3D > 0 such that the gradient is upper
bounded i.e.,

||wa”(w\M)Hoo < DVLJ, and w € AK

Proof of 2. We observe from the proof of part 1, f;;(w | M) is D-smooth, meaning for any
w,w' e Ak,
| fi (@' | M) = fij(w | M) |< [V fij(w|M)

Then we start with the definition of the curvature constant

Cris 1) (Ak~) =% [fij (w|M) = fij(W"[M) + {w — ", V fij (w]|M))]

oo llo" —wlly < Do’ = wll;

<2 [fisleo | M) = (1= @) figleo | M) + iy | M)
IV fiy@ M) o = wll,]
2
<z loD e’ —wll +aD|jw —w],]

S
— W — W

!
Now, as w,w’ € Ak,
constant as

w’ — wl|; < 2. Therefore, we have the final upper bound on the curvature

8D

Cy . < =
Fusian) < —
Hence, proved. O

Interestingly, Wang et al. (2021) considered bounded gradients and bounded curvature as assumption.
On the other hand, in our PrePEx we get this necessary conditions for convergence automatically
leveraging Assumption 1, which is arguably a very generic assumption on the parametric family
of the reward vectors and standard in the literature. Additionally, leveraging Lemma 1, Wang et al.
(2021) could only show that boundedness of gradient and curvature constant is restricted towards
only Bernoulli and Gaussian. Instead, we claim that Lemma | holds for any generic exponential
family satisfying Assumption 1.

Now we move on the proving some good properties of the subdifferential set that handles the
non-smoothness of f;;(w | M).

D.2 Continuity of the Frank-Wolfe Iterates: Sub-Differentials
Let’s remind the definition of r-sub-differential set.
Hy(w,r) 2 ch {waij(w\M) : fig(wIM) < min fij(w|M) +r, V7] € I1°,7r; € nbd (71':)} . (13)
T

Corollary 1. The mapping w — Hps(w, ) is continuous.

Proof. Let {wy, My, r )22, — {w*(M),M,r} € Ag x 8 x (0,1) and Hy(w,r) =
. [nbd(7})|
ch { Ve fij(w | VD) |

i

, for some 7; € nbd (7}). We can write for any h € Hys(w,r),3

25



Inbd(x} )|

a sequence of {a; > 0}, such that h can be expressed as a convex combina-
tion of {V,fij(w | M )}I;ff ()l Further, leveraging continuity of fi;(- | M) for all

§ = [1,| nbd (w}) [J(ref. Appendix C), we claim that V, fi;(w; | M;) € Hy (we, 1) for some
t>N. ’

Lower Hemicontinuity of subdifferential. Lower Hemicontinuity follows from the continuity result
of V., fi; derived in Appendix C.

Upper Hemicontinuity of subdifferentials. We adapt similar proof structure as Wang et al. (2021)
by adding a e-radius (Minkowski addition) to H AL (w¢, ) to show it is still contained by the open
set containing H s (w* (M), r). Thus, the subdifferential set is lower and upper hemicontinuous with
respect to w, i.e continuous. Hence, proved. O

Now, we prove the convergence of the Frank-Wolfe iterates. Let us remind the Frank-Wolfe steps
once again for brevity,

A .
X;11 = argmax min (X —w, h 14
t+1 xgé‘AK hehy (w’r)< t > (14)
A T
vy 15
Wit t+IWt+t+1Xt+1 (15)

First, we define the following maps

1. ¢1: (w,r,M,x) > MilheH (w,r) (x —w,h),

2. ¢2 : (wa T, M) — maXxeA g ¢1~
Corollary 2. ¢, is continuous on A~ x (0,1) X S; x Ag.

Proof. We again leverage Theorem 11 with the following definitions, X 2 A K~y X (0,1) x S; x Ak,
Y £ RX, ®(w,r,M,x) £ Hy(w,r) and u(w,r, M,x,h) = (x — w, h). We are concerned only
about continuity of the correspondence ®, as w is a linear function, hence continuous. Though we
have already proven continuity of ® in Corollary 1. Thus, we conclude the proof. [

Corollary 3. ¢ is continuous on A, x (0,1) x S;.
Proof. We again apply Theorem 11 with the definitions X £ Ag, x (0,1) x S;, Y £ A,

O(w,r, M, x) £ Ak and u(w, 7, M, x, h) = ¢1(w,, M, x). As ® is a constant corresponding, we
claim continuity of ¢, and conclude the proof. [

Theorem 3. For any € > 0, 3 a constant §; > 0, such that if
M e S,

‘M — MH < &1, then for all

€
i —w,h) — i —w,h)| < =,V(w,r) € A, x (0,1) (16
AKX e pin - wh) - max | min -w >\ 37 Yw,r) € Ay (0,1) (16)

and

heH  (w,r) heHy (w,r)

min  (x —w,h) — min <x—w,h)‘ < %,V(w,r,x) € Agy x(0,1) x Ag  (17)

Proof. Proof of claim (16). We define for w € Ag, and r € (0,1), (M) 2
min{f | o (w,r, M) — ¢ho(w, r, M) |} If we apply Theorem 12 with the following
definitions (X) = S;, (Y) = Ag, x (0,1), ®(M) = Ag, x (0,1) and finally
w(M,w,r) = — | ¢o(w,r, M) — ¢o(w,r, M) |, we can claim that (M) is continuous on

A % (0,1). So, by definition of 1, 3¢ . > 0, such that () > —£ forall HM _ MH <&
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Hence, proved.

Proof of claim (17). This proof is analogous by leveraging Corollary 2.

O
Corollary 4. For any € > 0, 3 a constant {5 . > 0, such that if HM - MH < &, then

M € S; and |F(w|M) — F(w|M)| < ¢,Yw € A..
Proof. We define (X) = S;, (Y) = Ag, ®(M) = Ag and u(M,w) = — | F(w | M) — F(w |

M) |. We again leverage Theorem 12 to claim that (M) £ mingea,., — | F(w | M)—F(w | M) |

is continuous on the open set S;. Also, u(M) is continuous due to continuity results in Appendix C.
Then, by definition of 1, 3& . > 0, such that v(M) > —£ for all HM _ MH < &... Hence,

proved.

D.3 Final Convergence Proof
Due to virtue of Lemma | and continuity of f;; in A, (ref. C), we claim that

Fact 4. F(w|M) is L-Lipschitz on Ak .

Proof. This fact can be simply proved by applying min-value theorem with guarantees from Lemma
I to get for w,w’ € Ak,

Fw|M)= min fi(wM)> min (f;@[M)- Do —wl,)
7rj6nbd(7rf) ﬂjEnbd(‘rr;)
min fi(@'|M) = Dl - wll = F@/|M) - Do’ - w].,
Trj€nbd(7'r;‘)

Hence, proved. Additionally, Lipstchitzness of F' can be extended from A -, to A g due to continuity
properties proved in Appendix C.1. O

Fact 5. Let v € (0, %),w € Ak~ and x € Ag. Under Lemma 1, we have
8DJ

fis(@IM) +{y = w, Vfis (@|M)) = fig (yIM) < —=

where j € nbd (i) and y = w + B(x — w) for some 3 € (0, 3].

Proof.
fij(W|M) +(y —w, Vfij(w|M)) — fi;(y|M) <2[|Vfij(wIM)]  lly — wll;
SSDB
vy
where the last inequality holds due to the definition of 5, x € A K ~/2- Hence, proved. ]

We can extend Fact 5 to get similar result on F'(-|M) = min;eubaey fij (- | M) as well.

Fact 6. Lety € (0,1/K), 7 € (0,1), w € Ag,and x € Ak. Then if 3 < min {1, L}, then we
have

8D
F(y | M) > F(w | M) + i —w,h) — 2
(y| M) > F(w| M) heg;?w)w w, h) 5

where y = (1 — fw + fx
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Proof. Let there are two different neighbours of 7} as 7, and 7, € nbd (7}) such that F'(w |
M) = fij,(w [ M) < fij,(w | M)and F(y | M) = fij,(y | M) < fij, (y | M). Then

8Dg
F M)+ i —w,h)—F M) < —
(W[ M)+, min (y—wh) = Fy[M)=< 5
The last inequality holds due to Fact 5. Hence, proved. O

Theorem 4. Let 1, & F(w*(M) | M) — F(w; | M). Also, let t € N satisfying b / %J ¢ N, then

under the good events G1(t) N G2 (t) and Frank-Wolfe update step defined in Equation (14) and (15)
with try > D, we have

t—1 re—e 16DVK
Ny < ; 77t—1+tt + ;

1

Proof. Using Lemma 9 and Fact 6, we have v = W and

F(y | M) >F(w|M)+a<max min (x—w,h)—e)—l(iDﬁvtK
wEAK heHy (w,r)
>F(w | M)+ a(n-1—r—¢) —16DBVIK

The second inequality holds due to properties of Hjs(w,r). Refer Appendix L.2 of Wang et al.
(2021) for further details. Now subtracting F'(w* (M) | M) from both sides and putting 8 = tgl/z ,
we get the desired result. Hence, proved.

Therefore, for ¢ > 4K the optimality gap becomes very small and asymptotically it converges to
Zero.

Theorem 5. Let {r;},>1 be a sequence of positive numbers with the properties lim;_, «, % 22:1 Ty =

11

0 and limy_,  try = oo. Then for T' > max{(@)11 Iﬁ,, (4K + 1) } where 3T. p € N such

€

that if t > T, p then Zi:l rs < et and try > D for any € € (0,1).Then under the good events
defined in Equation (18) and (19) we have

F(w*(M) | M) — F(w;) < 5¢,Vt = h(T),h(T) + 1,...,T

where h(T) = min{t € N : ¢ > T*"y(T), /Lt € N}, and h(T) = min{t € N : ¢t >

T8/ 42,/ L € N}

Theorem 5 is a by product of Lemma 3 in Wang et al. (2021) with L = D.
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E Sample Complexity of FraPPE

In this section, we first derive the stopping criterion in E.I that makes FraPPE (1 — §)-correct.
Then we move on to the almost sure upper bound on sample complexity of FraPPE in E.2. Then
we respectively prove asymptotic and non-asymptotic upper bound guaranties on expected sample
complexity in E.3 and E.4.

E.1 Stopping Criterion

Theorem 6. Given any bandit instance M € M and a preference cone C, the Chernoff stopping rule
to ensure (1 — 0)-correctness in identifying the set of Pareto optimal arms is given by

K N
min min ~inf  min E N+ Dk, (ZTMk7t
w;terﬂ’t ﬂ._]enbd(ﬂ-: ) MeA;; (M) zeCt k=1

it

zTMk) > ¢(t, )

where ¢(t,6) £ 371, 3In (1+In (Nio)) + KG (WK>>

Proof. We begin this proof in two parts. First, we show that the stopping time 75 € N is finite
i.e. 75 < oo and then apply concentration on the carefully chosen stochastic process by mixture
martingale technique (Kaufmann and Koolen, 2021) to achieve (1 — §)-correctness.

Finiteness of 75. We claim that 75 < oo, if the parameters in the model converges in finite time.
Specifically, for FraPPE , we say it stops when the good events defined in E.3 holds with certainty,
and additionally the allocation w; has converged to the optimal allocation w* (M ). While finiteness
of the first event follows directly from tracking results in Appendix H (For ¢ > 4K, each arm
has been played enough number of times for M; to M; finiteness of the second event is due to
convergence guaranties of the Frank-Wolfe iterates proven in Appendix D.

Stopping threshold. We define the following stochastic process Xj(t) =
zTMk,) ~ 3In(1 +

In Ny, ;) }. Now as M belongs to an exponential family of distributions, z; M}, also belongs to
the exponential distribution with linearly projected scalar mean. Thus, we can directly apply the
mixture of martingale technique i.e. Theorem 7 of (Kaufmann and Koolen, 2021) (Refer Theorem
13) with our definition of X} (t) to conclude the proof.

K . . . T
> kg max{0, Mil s g (rryr Mil enbd(re) Milyeet Ni DKL (z M,

iJi=

O

E.2 Almost Sure Upper Bound on Sample Complexity

Theorem 7. For any M € M, and 6 € (0, 1), stopping time of the algorithm FraPPE satisfies

lim sup

~ < Tme and 75 <0,
§—0 IOg(S)

almost surely.

Proof. This proof structure closely follows Appendix I of (Wang et al., 2021) with adaptations
necessary due to vector valued rewards ordered via given preference cone C.

We start the proof defining the event

(1]

2 (F(w, | M) — F(w*(M))ast — oo}

We claim that = is a sure event following Theorem 5 and periodic forced exploration used in
FraPPE (So every arm is pulled infinite times, thus we leverage theory of large number). Since

we have proved continuity of F'(w | M;) with respect to M, we can further claim F(w; | M) —
F(w*(M) | M) ast — oco. We again assume existence of a tg € N such that for ¢t > ¢,
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F(w; | M) > (1 — e)F(w*(M) | M) for e € (0,1). We also assume existence of constants
c1(M),ca(M) > 0 such that if V¢ > ¢ (M), 5(t,0) < log (%) Therefore the stopping time

75 =inf{t € NU {oo} : tF(w; | My) > B(t, )
<inf{t > to : t(1 — €)F(w*(M) | M) > B(

d)}
log(ca (M)t
G e

e g () e (425

}
t,

<inf {t. max{tg,c1 (M)} : ¢t >

where the last inequality holds due to Lemma 12.

This result ensures asymptotic optimality of FraPPE, i.e, for all § € (0, 1), limsup;_, log‘rfl)
B

I IA

T c and also 75 < oo almost surely.

E.3 Expected Upper Bound on Sample Complexity

Lemma 2 (Sample Complexity Upper Bound). Forany M € M, ¢,é € (0,1) and § € (0,1), and
1

preference cone C, expected stopping time satisfies lim supy_,, lfg[ﬁ]) <(1+¢ (7}}15 - 6€> -
3 :

Proof. Definition of Good Event. We define our good events as G1(T) = ﬂ?:h(t) G1(t) and
Go(T) & Ny Ga(t), where

Gi(t) 2 i w1, h) — e > i ~w,_1,h
1() {xrgg); heHF(-lrl\IAfltl)r(lwt—1,rt)<x wr > ‘ xrgg}; hEHF(.\IEI)I(l“t—LTt)<X we >}
(18)
Go(t) 2 {Mt € Si A |F(W|N) — F(w|M)| < ¢, Yw € AKV} (19)

We start by declaring existence of some constants. Let 37, p € N such that if ¢ > T, p then
S rs <etandtr, > D foranye € (0,1).

Following the concentration results in Appendix F, we can show that G (¢) N Gz (t) holds true, and
thus, by Theorem 5, for ¢ > h(T) :
F(w*(M)|M) — F(wt| M) < 5e.

Here, h(T) = min{t € N : ¢t > T?UNT),,/Lt € N}, h(T) = min{t € N : ¢t >

T8/ 42 [L e N} and T > max{(32)" T35 (4K + 1) ¥}

Now, given G (t) N Ga(t) holds true, we have min(r,T) < h(T) + ZtT:ﬁ(T) 1{r > T}, where 7
is the stopping time of FraPPE. Thus,

T
min(r, T) < A(T) + Y 1{tF(ws | My) < c(t,6)}.
t=h(T)

Now, for t > h(T), F(wy | My) < F(wy | M) — € < F(w*(M)|M) — 6e.
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Therefore, we have,

T
min(7,T) < A(T)+ Y L{t(F(w*(M)|M) - 6€) < c(t,8)} < h(T) + Fw(cﬁfﬁ% ~6e
t=h(T)

Finally, we define a constant

e(T, 6)

To(8) £ inf{T € N : h(T) + F(wt*(M)|M)—66§T}'

Now, we introduce a small constant € € (0, 1), such that T — B(T) > 1+ ,when T > ( ) " This
choice of € is reflected in non-asymptotic sample complexity upper bound (Lemma 6 in Appendix
E.3).

Now, following the algebra in (Wang et al., 2021), we get

E[rs] < (

oo

) FTE LUK DY D0+ S PUGT)NGM)Y) o)
T=N-+1

35D

€

11
where N = max { (22) s T T, (AK + 1)%} and Ty (6) satisfies the following inequality

Ty (6) < max { (i) : ,cl(/\/l)}

+ FGan [ {IOg (<15> *loglog <15)
w1 (Graean) oy 59

“"gl‘)g(( <(1<+€>)C|2z§4ﬂ>4)— )”

Thus, the asymptotic sample complexity is then given by,

lim su ]E[Ta] < 1+¢
50" log(L) = F(w(M) | M) — 6e

Optimality follows if € and € are arbitrarily small, that is lim sups_,, lfg?i]) < Flo (%\4)| M= Tmc.
8

Hence, proved. O

E.4 Non-Asymptotic Sample Complexity Upper Bound

Lemma 6. Forany M € M, e,é € (0,1) and § € (0,1), and given preference cone C stopping time
of the algorithm FraPPE satisfies

K 1 1

+
19/4 . 19/4
k=1 DKL ( maka ~ 92D ’ Zr—rrlaka) / DKL (Zr—rrlaka + 2D H ZI—IrlaXMk) /
35D 11 2 11
+ () + (4K +1)% +max{<~) ,e1(M)
€ €

1+¢€ (14 €&)ca(M)e (14 &)ca(M)
T Fwr (M) | M) — 6¢ {k’g <6<F<w*<M> e 6e>> +loglog <6<F<w*<M> E 6@)}

Proof. We combine Equation (20) and Lemma 7 to write the expression of expected sample com-
plexity and conclude the proof.

E[rs] < 34eX

O
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F Concentration Result

Lemma 7. Under the good events defined in (18) and (19),
P ((G1(T) N Ga(T))°) < oo

Proof. We first remind the definition of the good events

A . .
G1(t) =< max min (x —wi—1,h) —e> max min (x —wi_1,h)
XEAK WEH (51, ) (wy_1,m0) XEAK h€EHF( | M)(wy_q,m¢)

Gaolt) 2 {Mt € Si A F(W|N) — F(w|M)| < e, Yw € AK,Y}

We have G (t) C {|M — M;_1]|ooco < €1.c} and also Go(t) C {|M — My|loo.0o < 2.}, if we
apply Theorem 3 and Corollary 4 respectively.

Then we have

T
P ((G1(T) N Go(T))") < > PIM — Mil|oo 00 > &)
h(T)

where & = max(&1,¢,§2,¢). Now | M — Mt”mm = Max, o+ MaXpe(K] z' (M — Mt) Therefore

]P’((Gl( YN Ge(T ) IP’ (max max |z" (M — My)| > &)
h(t) zeCt ke[K

< ZZP max |z (My — M) > &)

o=

From tracking results (Lemma 9) we have at any time ¢ > 4K and Vk € [K], N¢j > % - K,

ensuring that each arm, is played enough till time ¢ € [T] to bring M, k¢ close to Mj,. Now we choose
Zimax = arg max, s+ |z" My, — Mj, 4|. Therefore

P((GH( ) N Ga(T > ZZP( Zanae (M = V)| > €.) @1
h(t) k=1
Then applying Chernoff inequality on the probability on the R.H.S of the inequality (21), we get
i (|ZT(Mk — Myy)| > ge) <e¥ [exp(_\/iA,;) + exp(_\/EA;)]

DKL (Zax M —Ee

Mk) Dk (Zlaxﬂkarﬁs

VK

Zmax Zipax M)

where A, = and A',: = . We leverage this

NG
upper bound the bad event to get

]P’((Gl( )N Gy (T > Kii[exp —VtA;) + exp(— \[AJ“)}
h(t) k=1
K

= 1
= P((Gl( )N Go(T) ) < 34eX
’1;\/ Z1 Dk, (zr—;aka - gé || Zr—xrlaxM )19/4

1
DKL (ZI—;B,XMk) + EG || ZdeM )

19/4 (22)

Where the last line is implied by leveraging Lemma 13 withaw = £, 8 = 1 and A = 4] = A
respectively. O
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Now using Theorem 8 and 9 of Wang et al. (2021), we also get stricter versions of Theorem 3 and
Corollary 4 as
Corollary 5. (Stricter version of Corollary 4) For any M € M and ¢ < (0,kD) where k =
inf, inf,cer infr cnba(m,) 2’ M(mw; — 7;), then if | M — M||o,00 < 55, then

|F(w|M) — F(w|M)| <€, Yw € A,
Theorem 8. (Stricter version of Theorem 3) Let M € M and € € (0, kD). For any r € (0,1), and
W€ A, if M € S; that is ||M — M| s,00 < 5%, then we get

max min (x—w,h)— max min (x-— w,h>’ < %,V(w,r) € Ak~ x(0,1)

xE€EAK heH ; (w,r) xE€EAK heHy (w,r)
and
€
min (x—w,h)— min (x—w,h)| < =,V(w,r,x) € Ak, x(0,1) x A
LG < i (x| < M) € A % (0.1) % A

Therefore putting {c = 57 in Equation (22) to get the final non-asymptotic bound on the bad event
probabilities as

1
P((Gl(T) N GQ( ) < 34€K 1
kzl DL (2o Mi — 55 || Zohax M) 1o/

max

7
DKL( max Mk = 35 || ZiaxMr) 19/4
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G Algorithmic Complexity

G.1 Time Complexity

1. Pareto Set Estimation. Our proposed algorithm FraPPE first computes the set of Pareto arms
based on current estimates of the means. We refer to Kone et al. (2024) to state that worst-case
complexity for estimating Pareto set is given by O (K log(K )ma"{l’L”}).

2. Now for each candidate pure Pareto policies and its neighbour,

(i) Frank-Wolfe Step. FraPPE again solves a linear optimisation as a part of Frank-Wolfe update
step in the sub-differential set. So, it also suffers complexity of O (ﬁ) due to K-independent upper
bound on curvature constant.

(ii) Stopping Criteria. To calculate the GLRT metric FraPPE solves another linear optimisation
with complexity O (%) , since z and y respectively come from a convex preference cone and its
polar form.

n{K,L}

Therefore Step 2 suffers from a total time complexity of O (K mi ol ) since in the worst case,

there can be K Pareto candidates and there can be min{ K, L} neighbours.
3. Parameter Update. Updating M, enjoys complexity of order O(L).

Total Time Complexity. Then combining Step 1, 2 and 3 we get the total worst-case time
complexity per iteration of FraPPE as O (K log(K)™>{1L.E=2}) 4 O (%I{KL}) +O(L) =
o (max {K log(K)™a{1.L=2} K min{K, L}})

In most real-life instances, the number of available options are greater than objectives, i.e K > L.
In that case FraPPE enjoys time complexity of O (K L2), which is a significant improvement over
existing literature. Notably, the complexity shows that the complexity for calculating the Pareto front
dominates the overall complexity when L > 5 and K > 19.

G.2 Space Complexity

We compute the space complexity of FraPPE in three steps,

1. Mean estimates. We need to maintain the estimate of M of dimension K X L per step, so space
complexity is of O(KL).

2. Estimated Pareto Set. This is of O(K) in the worst case.

3. Neighbour set. The space for maintaining the neighbour set is of O(K L).

Total Sample Complexity. Therefore the total space complexity of FraPPE is given by O(K L).
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H Tracking Results

We leverage similar tracking results as Wang et al. (2021). We reiterate the Tracking Lemmas again
with notations used in this paper.

Lemma 8. Let {zs}sen € Ak be a sequence of vectors such that xy, is ey, for k = [1, K. Then

t:KaNk,t = 17

¢
vt > K+1,A eargmaxzine [1, K], whereth—Z]l{A =k}
N1 pt

where the arg max breaks ties arbitrarily. Then for allt > K, and all k € [1, K]

t t
Zﬂ«”k,s — (K —1) <N < Zxk,s +1
s=1

s=1

Lemma 9. At anyt > 4K, the sampling rule of FraPPE satisfies ws € A _1

2VtK

Proof. By forced exploration enforced in FraPPE, we can write

tw; = Zxé > 11{355 = (1/K,1/K,...,1/K)}

\/7 [_12[

:>L«Jt_

2VtK
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I Additional Experimental Details

I.1 Implementation Details

Computational Resource. We run all the algorithms on a 64-bit 13th Gen Intel octa-Core i7-1370P
x 20 processor machine with 32GB RAM.

Dataset Description: Cov-Boost. This real-life inspired data set contains tabulated entries of phase-2
booster trial for Covid-19 (Munro et al., 2021). Cov-Boost has been used as a benchmark dataset for
evaluating algorithms for Pareto Set Identification (PSI). It consists bandit instance with 20 vaccines,
i.e. arms, and 3 immune responses as objectives, i.e., K = 20 and L = 3. Additionally, Kone et al.
(2024) provides detailed description of this dataset in Table 3 (empirical arithmetic mean of the
log-transformed immune response for three immunogenicity indicators) and 4 (pooled variances).
For entirety, we include the mean and pooled variance table here

Table 3: Mean matrix

Dose 1/Dose 2 Dose 3 (booster) Immune response
Anti-spike IgG  NTjg cellular response
ChAd 9.50 6.86  4.56
NVX 9.29 6.64  4.04
NVX Half 9.05 6.41 3.56
BNT 10.21 749 443
Prime BNT/BNT BNT Half 10.05 7.20  4.36
VLA 8.34 5.67 3.51
VLA Half 8.22 546  3.64
Ad26 9.75 727 471
ml1273 10.43 7.61 4.72
CVn 8.94 6.19 3.84
ChAd 7.81 526 397
NVX 8.85 6.59 473
NVX Half 8.44 6.15 4.59
BNT 9.93 739 475
Prime ChAd/ChAd BNT Half 8.71 720 491
VLA 7.51 5.31 3.96
VLA Half 7.27 499  4.02
Ad26 8.62 6.33 4.66
ml1273 10.35 7.77 5.00
CVn 8.29 592 387
Table 4: Pooled variances
Immune response
Anti-spike IgG  NT 59 cellular response
Pooled sample variance 0.70 0.83 1.54
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Code. The anonymous repository link for the implementations - code repository.

1.2 A Pseudocode of Accelerated PreTS

The algorithm PreTS provided in Shukla and Basu (2024) lacks tractability as discussed before. The
allocation computation involved constructing a convex hull over the Alt-set, which is very expensive
and makes it non-implementable. So, here we provide an accelerated version of PreTS (Algorithm
2) that can be implemented leveraging our observations of the optimisation problem. Note that,
this version of PreTS is still expensive to run. Roughly our Algorithm 2 runs 90 times faster than
Algorithm 2 when implemented in Python3 with identical resource environment.

Algorithm 2 Accelerated Preference-based Track-and-Stop (Accelerated PreTS)

N LA RN

10:
11:

Input: Confidence parameter §, preference cone C
Initialise: For ¢ € [K], sample each arm once s.t. wx = (1/K,- - -,1/K), mean estimate M
while Equation (8) is FALSE do
Estimate Pareto Indices: Calculate Pareto indices P; based on current estimate Mt.
Estimate Set of Pareto Policies: I1” consisting pure policies with i, € P; as basis.
Set of Neighbours: IT \ 17, where II is the set of all pure policies.

. . . . K - ~
Allocation: w; <— argmax  min min  min ) ;" wipDkr, (ZTMM zTMk)

wEAg m™;€Enbd(w) Meh,;(M)zeCt
me{mi i,
C-tracking: Play A; € argmin N, ; — Z;:l wy (ties broken arbitrarily)
Feedback and Parameter Update: Get feedback R; € R* and update M, to Mt+1 with R,
end while
Recommendation Rule: Recommend P; as the Pareto optimal set

t
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https://github.com/udvasdas/FraPPE_2025
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Figure 6: Runtime per iteration (in seconds) of FraPPE for varying number of arms K in the
Gaussian instance with L = 2 and correlation coefficient p = 0.9.

J Runtime Analysis of FraPPE

In this section, we provide runtime analysis of FraPPE with varying values of K and L.

I. Scaling with K. We consider synthetic environments consisting of L = 2, multivariate Gaussian
rewards, and positive right orthant as the preference cone. Additionally, we assume the two objectives
to be highly positively correlated with correlation coefficient p = 0.9. We set § = 0.01. Finally,
we vary the number of arms K = 5,10, 20, 30, 40, keeping the Pareto front same and report the
corresponding clock time per iteration for each of the instances. The final results are averaged over
10 experiments.

Observation. From Figure 6, the trend in runtime is sub-linear with respect to K, i.e. the clock
runtime complexity scales with at most O(K).

I. Scaling with L. To test the runtime of FraPPE with varying values of L, we fix K = 25. Keeping
all other parameters and Pareto front same, we set four environments with L = 2,6, 10, 14 to report
the runtimes per iterations. The final results are averaged over 10 experiments.

Observations: It is clear from Figure 7 that both mean and median runtime of FraPPE falls below
the rate O((log(K)™a*{1.L=2}) after . > 5. That means complexity of calculating Pareto front
dominates the complexity of lower bound optimisation.
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Figure 7: Runtime per iteration (in seconds) of FraPPE for varying number of arms L in the Gaussian
instance with iK' = 25 and correlation coefficient p = 0.9.
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K Auxiliary Definitions and Results

Theorem 9 (Berge’s Maximum Theorem). Let U and V be topological spaces, f : U XV —
Rand C : U — V be non-empty compact set for all w € U. Then, if C is continuous at u,
[ (u) = maxyec(u) f(u,v) is continuous and C*(u) = {v € C(u) : f*(u) = f(u,v)} is upper-
hemicontinuous.

Theorem 10 (Donsker-Vardhan Variational Formula). For mutual information K L(P||Q), we have
that:

dxL(P(|Q) = SI;P]EP [f] = InEq [exp(f)]

Lemma 10 (Peskun Ordering). For any two random variables X,Y on REL

equivalent:

the following are

1. X<, Y
2. Forallz € REL P[X > 2] <P[Y > 1]
3. For all non-negative functions f1, f2, ..., fx, we have that: IX | f; <TIE | #;

Theorem 11 (Berge (1877)). Let X and Y be Hausdor{f topological spaces. Assume that

1. ®: X = K(X) is continuous, where K(X) = {F € S(X) : F is compact.} (i.e. both upper
and lower hemiconituous),

2. u: X xY — Ris continuous.

Then the function v : X — R is continuous and the solution multifunction ®* : X — S(Y) is upper
hemicontinuous and compact valued, where S(Y) is the set of non-empty subsets of Y.

Theorem 12 (Feinberg et al. (2014)). Assume that
1. X'is compactly generated,
2. ©: X = S(Y) is lower hemicontinuous,

3. u: X x Y — Ris K-inf-compact and upper semi-continuous on Grx(®).
Then the function v : X — R is continuous and the solution multifunction ®* : X = S(Y) is upper
hemicontinuous and compact valued.

Lemma 11 (Combes et al. (2017)). Let X be a metric space and Y be a nonempty open subset in R¥ .
Letw:X xY — Rand g—Z exists and is continuous in X X Y. Foreach y € Y, let *(y) minimises

u(x,y) over x € X. Set

v(y) = u(z"(y), y)-
Assume that x* :' Y — X is a continuous function. Then v is continuously differentiable and

di‘lyv@ - ‘;—Z<x*<y>,y>.

Fact 7 (Existence and Continuity of Minimum). If X and Y are topological spaces and Y is compact.
Then for any continuous f : X X Y — R, the function g(x) £ inf ey f(z,y) is well-defined and
continuous. Additionally, infycy f(z,y) = mingey f(x,y).

Fact 8 (inf and min over Union of Sets). Let us consider an ordered universe S and a set A C S
which is union of |I| sets, i.e. A = U,;crA; and A; C S. If the following statements are true:

1. a £ inf A exists, and
2. a; £ inf A; exists for each i € I,

they imply that a = inf{a; : i € I}. The same holds true for min.
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Theorem 13 (Version of Theorem 7 in Kaufmann and Koolen (2021)). Let § > 0, v be independent
one-parameter exponential families with mean p and S C [K]. Then we have,

P, |3t eN: ZNt,adKL (Ht,as ta) > 23111 (1 +1n (Nt,a)) +|8|T <lnl‘g(|1§)>] <9.
a€sS

a€S

~ h=l(14a)+In( =
Here, G : RT — R is such that G(x) = 2hs» (W) with
Yu>1, h(u)=u—In(u)

Vz € [1,6],Vl‘ >0, iLZ(x) = exp (}fll(x)) hil(gj) lfx > h=t (In%z)) .
B z(x — ln(ln(z))) else

Theorem 14 (Grinberg (2017)). For a subset S in Euclidean space R", the statements S is compact,
i.e every open cover of S has a finite sub-cover <= S is closed and bounded.

Lemma 12 (Lemma 18 in (Garivier and Kaufmann, 2016)). For « € [1,e/2], any two constants

€1, C2,
1
r=— {log (czae> + log log <C§)]
c1 c§ §

is such that cyx > log (cox®).
Lemma 13 (Wang et al. (2021)). Let«, 8 € (0,1) and A > 0.

/OOO </w exp (—At") dt) dT = W

N BAast
Example 1. Multivariate Gaussian with mean p and covariance %

The density function is

We can rewrite it as

(%) = (27) % exp ((2_1u,x> n <Vec <_;z—1) vee (XXT)> - L fog =) + uTz—lu]) .

L -1
2

Thus, the base density is h(X) = (2r)~ 2. The natural parameter is n(0) = ( (E 1;71)). The
vec -3

X
vec(xx T

sufficient statistic is T (z) = (
1 [logdet(Z) + p = .

)). The log-normaliser or log-partition function is (0) =
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