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ABSTRACT

Large Language Models (LLMs) excel at multi-step reasoning problems with ex-
plicit chain-of-thought (CoT), but verbose traces incur significant computational
costs and memory overhead, and often carry redundant, stylistic artifacts. Latent
reasoning has emerged as an efficient alternative that internalizes the thought pro-
cess, but it suffers from a critical lack of supervision, limiting its effectiveness
on complex, natural-language reasoning traces. In this work we propose KAVA,
the first framework that bridges this gap by distilling knowledge directly from
a compressed KV-cache of the teacher into a latent-reasoning student via self-
distillation, leveraging the representational flexibility of continuous latent tokens
to align stepwise KV trajectories. We show that the abstract, unstructured knowl-
edge within compressed KV-cache, which lacks direct token correspondence, can
serve as a rich supervisory signal for a latent reasoning student. Empirically,
the approach consistently outperforms strong latent baselines, exhibits markedly
smaller degradation from equation-only to natural-language traces, and scales to
larger backbones while preserving efficiency. These results establish compressed
KV-cache distillation as a scalable supervision signal for latent reasoning, com-
bining the accuracy of CoT-trained teachers with the efficiency and deployability
of latent inference.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) have demonstrated remarkable capabil-
ities in solving complex problems across domains such as mathematics (Zhang et al., |2025), sci-
ence (Phan et al., 2025)), and code generation (Hui et al., [2024). A key driver of this progress is
“chain-of-thought” (CoT) training that elicits intermediate steps before the final answer, improving
accuracy on long-horizon inference problems (DeepSeek-Al et al.L[2025)). Yet, explicit CoT often in-
curs substantial inference cost due to long, verbose traces and the associated key—value (KV) cache
growth, making deployment on memory- and compute-constrained devices difficult. Furthermore,
CoT traces, especially those distilled from larger models, can inherit and amplify biases or contain
plausible-sounding but fallacious logic, limiting their reliability.

Recent studies show that the KV-caches underlying CoT are highly redundant and can be aggres-
sively compressed with little to no loss in accuracy (Cai et al.| 2025} [Park et al., |2025)), indicating
that much of CoT’s signal resides in compressible structure rather than indispensable text. This
observation suggests an alternative supervisory path: if the essential dynamics of reasoning live in
the cache, perhaps models can be trained to internalize those dynamics without verbose traces at
inference time. However, this compressed KV-cache presents a significant challenge for knowledge
distillation. As pruning decisions are often made independently per layer and attention head, the re-
sulting compressed KV vectors lose their direct correspondence to specific input tokens, rendering
conventional distillation schemes that match token activations or layer-wise hidden states ill-posed
and non-trivial.
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Figure 1: We propose KAVA , a latent reasoning model with KV-cache distillation loss. (a) Overview
of our proposed compressed KV-cache distilled latent reasoning framework. (b) Teacher builds full
KV-cache from a ground-truth CoT trace; a compression module produces a compressed cache to
match the length of the latent trace; (c) a latent-reasoning student generates continuous thoughts z;
and is trained to match compressed teacher KV at each layer/step via KV distillation.

Latent reasoning is a nascent but promising direction in which reasoning occurs within the model’s
continuous latent space rather than being explicitly externalized (Hao et al., [2024; Su et al., [2025).
Latent approaches promise efficiency by reducing token generation and KV-cache footprint, po-
tentially closing the gap between strong reasoning performance and deployability in constrained
settings. However, current latent reasoning methods struggle with the absence of direct supervision
for internal thoughts, and successes are often reported in restricted setups; performance can degrade
when training data contain long, natural-language-style traces that better reflect real-world reason-
ing workloads. In particular, compared to shorter, template-like traces, models trained on longer,
natural-language reasoning sequences exhibit more fragile internal readouts and weaker generaliza-
tion (Shen et al.| 2025 [Wu et al., 2025]).

In this work, we bridge these gaps by introducing a novel framework that, for the first time, suc-
cessfully distills the rich, abstract knowledge from a compressed teacher KV-cache into a latent rea-
soning student. We posit that the continuous, high-dimensional nature of latent thoughts provides a
unique representational power that can absorb abstract cache structure that cannot be aligned at the
token level. Concretely, our method is composed of three components: (i) the backbone that alter-
nates between a teacher mode that consumes a full CoT to build per-layer, per-head KV-caches and
a student mode that generates continuous latent thoughts; (ii) a redundancy- and importance-aware
eviction module that compresses the teacher cache to the latent budget; (iii) and a KV-matching
loss aligns the student’s per-step latent K and V to the compressed target throughout the stack. This
yields a strong, stepwise internal supervision signal that teaches the student to “think like” a compact
cache of its own explicit reasoning while preserving the inference-time efficiency of latent reason-
ing. By supervising the latent trajectory directly in KV space, the approach bridges the gap between
template-like latent traces and natural-language reasoning, yielding strong gains on natural-language
datasets and scaling smoothly to larger backbones while retaining the efficiency benefits of latent
inference. Our primary contributions are:

* We are the first to demonstrate that knowledge can be successfully distilled from a com-
pressed KV-cache via self-distillation, despite the cache’s head-wise, layer-wise eviction
that destroys token correspondence.

* We show that existing KV-cache compression methods can be used to construct a rich,
step-by-step supervision signal for latent reasoning. Our method trains a latent student to
directly generate this compressed KV-cache at inference time

* Through empirical evaluations, we show that our approach consistently outperforms strong
latent baselines on natural language settings, exhibits smaller degradation when moving
from equation-only to natural-language traces, and scales to larger backbones.
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2 BACKGROUND AND RELATED WORKS

Latent Reasoning. Traditional reasoning LLMs often rely on generating explicit intermediate
steps in language to solve complex reasoning tasks. Recent work shifts reasoning from discrete
text tokens to latent continuous tokens, where models perform iterative computation internally with-
out generating external text (Chen et al., 2025} [Zhu et al.| 2025). Early work validated the benefit of
extra computation through unstructured means, such as learnable pause tokens (Goyal et al., [2024)
or even semantically meaningless filler tokens (Pfau et al., [2024), which improved performance
on reasoning tasks by implicitly extending the model’s processing time. Building on this implicit-
compute view, iCoT moves from explicit to implicit CoT via distillation (Deng et al., 2023)) and
curriculum (Deng et al} [2024), progressively removing CoT while aligning internal states around
answer prediction. This allows the model to internalize reasoning without generating text rationales
at inference. Coconut (Hao et al., 2024) introduces “continuous thought” by feeding the last hidden
state directly as the next input embedding, showing breadth-first search—like parallel exploration
and fewer thinking tokens versus CoT on logical reasoning tasks. Follow-ups refine supervision and
training dynamics: CODI (Shen et al., 2025)) compresses CoT into continuous representations via
self-distillation that supervises endpoints rather than full trajectories, while PCCoT (Wu et al.| 2025
parallelizes latent updates with Jacobi-style iterations to refine multiple continuous thoughts in tan-
dem. In contrast to endpoint- or token-level supervision, our proposed approach distills a teacher’s
compressed KV-cache into the student’s latent trajectory, providing stepwise internal guidance that
bridges the supervision gap in continuous-token reasoning without relying on explicit CoT text.

Complementary directions emphasize soft or hybrid traces: SoftCoT (Xu et al.| 2025) injects soft
thought tokens projected into the backbone’s representation space to improve reasoning without
altering hard-token generation, and Token Assorted (Su et al.l 2025) mixes latent discrete tokens
produced by a VQ-VAE with text tokens to shorten traces while maintaining accuracy. System1.5
(Wang et al.| 2025)) relies on a two-stage pipeline: first, a student model is aligned with a teacher
model and subsequently a router is learned to encourage early exit via depth-wise and stepwise
shortcuts. Our method is orthogonal, addressing the core challenge in latent reasoning, the absence
of a direct supervision signal for these internal thoughts.

KV-cache Compression. KV-cache compression for reasoning focuses on trimming long, redun-
dant thinking while preserving accuracy and throughput. R-KV (Cai et al.| |2025) compresses on-
the-fly by jointly scoring importance and redundancy to retain near-full performance with roughly
10-30% of the KV-cache on math reasoning, while KeyDiff (Park et al., 2025) offers a key-
similarity—based eviction rule that preserves salient semantics under tight budgets. Other strate-
gies such as HeadKV (Fu et al.l [2025), PyramidKV (Cai et al., [2024)), LESS (Dong et al.| [2024),
and Eigen Attention (Saxena et al., [2024)), provide complementary reductions via head selection,
hierarchical/pyramidal retention, importance-aware mixed-precision, and low-rank attention, yield-
ing robust long-context and reasoning behavior. KV-Distill (Chari et al., [2025) instead learns a
lightweight adaptor that compresses long-context KV-caches and trains a compressed-cache student
to match a full-cache teacher via output-level KL alignment. In contrast, our proposed approach
uses existing learning-free compression methods and treats the teacher’s compressed KV-cache as
supervision targets and distills them directly into the student’s latent reasoning steps. As a result,
the student model can directly generate the compressed KV-cache at inference time, bypassing an
expensive step of generating the full CoT traces.

3 KAVA: KV-CACHE DISTILLATION FOR LATENT REASONING

3.1 OVERVIEW

We will split the common chat template into three parts named question Q, reasoning trace C and
answer A, with Ng, Nc and N4 token correspondingly. Consider an autoregressive generative
model (LLM) that predicts each subsequent token conditioned on all preceding tokens. Latent rea-
soning introduces a set of unobserved intermediate steps, Z = {z;}}£,, which act as a substitute
for the explicit reasoning trace C (see Fig.[2). The latent reasoning sequence begins with a special
token <bot>, continues with M continuous tokens, and terminates with <eot>, marking the end
of the reasoning stage. During inference, these continuous latent tokens are generated by the same
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Figure 2: Graphical model of the latent °

reasoning generative model. The ques-

tion prompt is used to generate continu- Figure 3: During training the student predicts the an-
ous latent thought Z. The answer tokens swer using latent tokens, teacher has the access to the
are generated from the question and la- full reasoning trace, and KV matching distills the in-
tent reasoning trace. formation from the full to the latent CoT.

autoregressive model, bypassing the mapping of the embeddings to hard tokens. Instead, a (train-
able) projection layer maps these continuous embeddings to the input embeddings that are used to
predict the next token. We use the terms latent CoT and Continuous CoT (CCoT) interchangeably
throughout the paper to refer to the tokens from Z.

Training Objective. Unlike chain-of-thought (CoT) reasoning traces, latent reasoning lacks direct
supervision because latent traces are unobserved during training. Consequently, its performance
is typically inferior to models trained with full CoT supervision (Deng et al. |2023; 2024). To
address this, we leverage the observed reasoning traces C to guide latent reasoning during training, as
illustrated in Fig. [3] This guidance is realized through distillation from teacher to student. Following
Shen et al.| (2025), we adopt a self-supervised framework in which the same model learns from
explicit reasoning traces (as the teacher) as well as latent tokens (as the student).

We introduce KAVA, model with a novel objective, KV-cache distillation, to transfer relevant infor-
mation from the teacher’s reasoning trace to the student. An overview of this approach is depicted
in Figure[I] with details provided in Section[3.2]

Our proposed KV-cache distillation loss is complementary to the CODI distillation loss introduced
by [Shen et al| (2025). CODI uses a single distillation token and matches its hidden activations
between the teacher and the student models:

L
1 ! !
Lcopr = 7 ; ‘Sg[ht] —hyl, (1

where L is the total number of layers in the model, sg is a stop-gradient operator and h' are model’s
hidden activation from layer {. The distillation token is chosen as the one preceding the answer. For
example, if the answer is formatted as "The answer is:5", the semicolon ":" is used as the
distillation token.

We combine KV-cache distillation with the CODI self-distillation to add a richer supervision signal
to the latent reasoning trace. The total training objective is the following:

log p(A, C|Q) + a1 Lcopr + a2 Lky, )

CODI and KV distillation

1 1
Lxava = — —log p(A|Z, Q) — ————
Kav Na gp(AlZ,Q) N+ Nc

Student loss Teacher loss

where log p(-) stands for cross-entropy loss, o and ay are the hyperparameters that are used to
balance the distillation terms, N4 and N denote number of tokens in the answer and CoT trace.

Parallel Decoding. Since latent tokens are generated sequentially, they do not allow for parallel
decoding during training, which limits scalability. To mitigate this issue, we use Jacobi iteration
over latent tokens to improve training and inference efficiency as proposed by Wu et al.| (2025).
Instead of generating latent tokens one by one during training PCCoT performs iterative updates of
all tokens simultaneously for a predefined number of iterations 7. PCCoT uses 7' < M, so that total
number of forward passes is reduced from the number of latent tokens M to the number of iterations
T. For T = M the method recovers the CODI explicitly and for 7" = 0 it corresponds to the Pause
Token (Goyal et al.| 2024).
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3.2 KV-CACHE DISTILLATION

To provide an additional supervision signal from the full chain-of-thought (CoT) trace to the la-
tent reasoning process, KAVA uses a distillation method based on matching the respective key-
value (KV) caches (last term in Eq. [Z). We apply redundancy-aware KV-cache compression to the
teacher’s cache prior to distillation. This encourages the student to generate compressed and abstract
representations, while preserving crucial reasoning information from the CoT trace.

We first extract the KV-cache for both the explicit reasoning trace (teacher) and the latent thought

(student). Each cache consists of key and value tensors for every token i, layer [ € (1,..., L), and
attention head h € (1,..., H) of the transformer:
Kt ‘/t ERNCXHXLXd K.V 6]R]\/[><H><L><d (3)

where ¢ stands for teacher and s for the student.We use the last Jacobi iteration 1" to extract the
KV-cache of the student.

Addressing the Length Mismatch. The teacher cache (K3, V;) and student cache (K, V;) dif-
fer in sequence length, since M < N¢. To align them while enforcing compression, we apply
redundancy-aware KV eviction (Park et al.l 2025} |Cai et al.,[2025) and obtain a compressed teacher
cache K,,V, € RMxHxLxd  gpecifically, we adapt R-KV (Cai et al., 2025) to select the top M
KV-pairs (see App. @) based on a combined redundancy—importance score S; p, ;:

Sini =X Ling +(1=X) Ring, , Ae€l0,1], 4
~—~—~ ——
Importance Redundancy

where ) is a hyperparameter controlling the balance between redundancy and importance. The evic-
tion method is only applied during training, since the student is distilled to generate the compressed
KV-cache. Since eviction method is not applied during inference, we leverage the answer tokens
from the training data for the importance score computation. For each layer and head, we compute
the attention score using the teacher’s keys K ,;’h’l € RNe*d and queries corresponding to the answer
tokens tokens Q"' € RNaxd.

Aohil — softmax(Q"h’l . (Ki’h’l)T)/\/g) e RNaxNc (5)
The importance score is then aggregated over all answer tokensﬂ
1 .
I - Adhl 2 pNe 6
il =N Z (6)

Note that this computation incurs negligible overhead, since the attention scores were computed
during the teacher’s forward pass. Following R-K we compute a redundancy score IR; 5, ; as the
average pairwise cosine similarity among all key vectors and normalize via softmax.

Finally, we use the score values S; 1, ; (Eq. Ef[) to select top-M keys (and their corresponding values)
for each head and layer in the teacher’s KV-cache. Full details and pseudocode are provided in

App.[Al

KV Matching. Independent KV-pair eviction across layers and heads alters the cache’s structure
and contents, yet it remains usable by the original model (see Figure[Tp). However, there no longer
exists a correspondence between the resulting cache and hard tokens. For that reason, we cannot ap-
ply standard ways of distillation, matching the activations of the teacher and student model. Instead,
we propose distilling the keys and values directly.

To this end, we distill the latent reasoning cache to match the compressed teacher’s cache, effectively
guiding the latent model to approximate the full reasoning process in a more efficient and abstract
form. We combine the loss for the keys and values in equal weights to get the final term of Eq.

o ~
Lv = 5z (el el = K+ selVi] - Vi) @

"For the group-query attention setting multiple queries are sharing the same key-value pair. In this case we
apply MaxPool operation over the group before computing the importance score.
20Official R-KV implementation is available at https://github.com/Zefan-Cai/R-KV.
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where || - ||, denotes an LP-norm. That is, we have Ly loss for p = 1 and MSE loss for p = 2.
Note, that we first generate the whole student sequence with Jacobi iterations and then perform the
distillation.

4 EXPERIMENTS

4.1 SETUP

We follow the experimental setup of [Shen et al.[(2025) and|Wu et al.| (2025) and extend the evaluation
to more LLM families. Below we discuss the setup in more detail.

Model. We conduct experiments using the pretrained LLaMA3.2-1b-Instruct,
LLaMA3.2-3b-Instruct and Qwen2.5-0.5b-Instruct (Grattafiori et all [2024;
Team), 2024) models and fine-tune them using LoRA (Hu et al.|[2022). We follow Shen et al.|(2025])
and [Wu et al.| (2025) by using the same LoRA setup (rank 128 with alpha value 32 and dropout 0.1)
for all the experiments. We employ PCCoT, the approach proposed by Wu et al.| (2025), to generate
latent thoughts; where 24 continuous latent tokens are generated in parallel with 3 iterations.

We fine-tune the models on GSM8k-AUG, GSM8k-AUG-NL (Deng et al, 22023), and
MetaMathQA (Yu et al| 2024). The first two datasets are augmented versions GSMS8k (Cobbe
et al.,|2021), containing 385k training examples, with traces generated by GPT-4. GSM8k—-AUG is
then further processed by keeping only equations and removing all natural language from the traces.
MetaMathQA contains 395k training examples augmented from GSM8k and MATH (Hendrycks
et al.), with traces generated by GPT-3.5-Turbo. We provide a detailed description of the datasets
in Appendix [B| For in-distribution evaluation, we assess all models on the test split of the origi-
nal GSMS8k dataset (Cobbe et al., [2021). For zero-shot evaluation, we assess model generalization
on two benchmarks: GSM8k-Hard (Gao et al.l [2023), SVAMP (Patel et al., 2021). We evaluate
the model trained on MetaMathQA on in-distribution MATH500 (Hendrycks et al.) and out-of-
distribution multiArith (Roy & Rothl|[2015)) and DeepMind-Mathematics (Saxton et al., 2019).

Hyperparameters. For our method, we conduct a hyperameter sweep over the learning rate, KV-
cache distillation loss coefficient (a2), LP norm of the loss and the normalization method (layer-wise
loss normalization or none). We choose the best-performing model on validation and run this setting
with three random seeds. We report all hyperparameters in Appendix [C]

We report the results of baseline approaches from [Shen et al.| (2025) and Wu et al.| (2025) where
possible. For the models not used in prior work, we take the hyperparameters from LLaMA3.2-1b,
sweep over learning rates and report the result for the best performing model. We compare our
method to CODI (Shen et al., [2025), PCCoT (Wu et al.| 2025), Implicit CoT (iCoT) (Deng et al.,
2024) and Coconut (Hao et al., 2024). We report the Full CoT performance as an upper bound and
No-CoT as a lower bound.

MetaMathQA contains reasoning traces that are, on average, three times longer than those in the
GSMB8K-Aug-NL dataset, making it a significantly more challenging benchmark for latent reason-
ing. To illustrate the trade-off between efficiency and accuracy, we train models with varying the
proportion of CoT tokens (from 20% to 100%) replaced by 24 latent thoughts. The remaining CoT
tokens are incorporated into the student’s loss function (Eq. [2) together with the answer tokens. We
observed that the CODI distillation loss frequently introduces training instabilities in this configu-
ration and therefore set a; = 0 when training KaVa. For CODI and PCCoT baselines, we improve
stability by removing the final sentence from the original CoT traces, following the recommended
practice for GSM8K-Aug. All other hyperparameters are kept fixed and identical across KaVa and
all baselines. Further details of the experimental setup are provided in Appendix

4.2 RESULTS

We report the average performance with standard error in Table [l KAVA consistently outperforms
the baselines. Importantly, we observe that KAVA has a lower drop in performance when switch-
ing from artificial GSM8k~AUG to a more realistic GSM8k-AUG-NL dataset. In the latter scenario,
compression of the Full CoT trace would be more substantial as the traces are considerably longer,
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Table 1: Test accuracy on in-distribution test dataset and zero-shot evaluation on out-of-distribution
datasets. We use T to denote results copied from|Shen et al.|(2025) and|Wu et al.|(2025). We consider
full CoT as an upper bound on the performance and denote best latent reasoning method in bold
and second-best with the line. We denote out method as KAVA .

GSMS8k-AUG GSM8k-AUG-NL
Method
GSMS8k \ GSMS8k-Hard SVAMP GSMSk GSMS8k-Hard SVAMP
QWEN2.5 - 0.5B - INSTRUCT
FuLL CoT 50.6 12.6 54.3 48.5 12.6 57.3
No-CoT 31.5 7.4 34.5 31.5 7.4 34.5
CODI 37.5 8.1 47 20.2 4.9 333
PCCoT 20.5 4.1 33 19.1 42 30.2
KAVA (ours) 46.9 +1.4 10.8 +0.1 50.6 +-0.4 44.4 +1.8 10.2 04 46.5 +0.1
LLAMA3.2 - 1B - INSTRUCT
FuLL CoT 63.4 14.8 67.9 53.2 13.3 62.9
No-CoT 33.2 7.4 41.4 33.1 7.7 41.4
1CoT 19.0f 4.4F 40.91 15.21 - -
COCONUT 45.3F 9.9t 48.8f 27.21 - -
CODI 53.9 £0.5 (55.6") | 12.6 £0.3 (12.8") 59.0 £0.5 (61.17) || 50.1 +0.1 (49.7") 11.5 402 56.2 +£0.2
PCCOT 54.2 +2.3 (53.35%) 12.9 +0.1 57.7 +0.4 51.1 (50.721) 123 56.2
KAVA (ours) 56.5 £0.4 12.7 4£0.1 58.9 +0.5 55.7 +0.4 12.8 +0.2 58.6 £0.3
LLAMA3.2 - 3B - INSTRUCT
FuLL CoT 732 21.6 78.0 68.4 20.5 77.6
No-CoT 41.7 10.5 56.9 41.7 10.5 56.9
CODI 61.0 15.0 72.4 559 13.6 70.1
PCCoT 54.7 13.5 69.5 47.6 11.0 65.2
KAVA (ours) 65.7 15.2 72.7 60.0 14.8 66.1

Table 2: We measure the efficiency of different reasoning model by the average number of forward
passes required to generate the reasoning trace and answer. We use t to denote results copied from
Shen et al.[(2025) and [Wu et al.| (2025). We report the improvement in efficiency compared to the
Full CoT in (parentheses).

Method GSMS8k-AUG GSM8k-AUG-NL
GSMS8k ‘ GSM8k-Hard SVAMP GSMS8k | GSM8k-Hard SVAMP
QWEN2.5 - 0.5B - INSTRUCT
FuLL CoT 40.4 59.6 233 82.4 105.2 44.9
No-CoT/1COoT 7.4 10.1 7.0 74 10.1 7.0
CODI/ CocoNuT 14.4 20.7 14.1 14.0 19.0 13.4

KAVA (ours) / PCCoT 9.5 (-76%) | 13.3 (-78%) 8.9 (-62%) || 9.2 (-89%) | 13.5 (-87%) 9.0 (-80%)
LLAMA3.2 - 1B - INSTRUCT

FuLL CoT 31.9 413 17.8 71.9 80.2 40.6
NO-COT / 1ICOT 6.2 7.3 6.2 6.2 7.3 6.2
CODI / COCONUT 11.9 13.9 115 11.8 13.9 11.3
KAVA (ours) / PCCoT 6.9 (-78%) 9.1 (-78%) 6.5 (-63%) 7 (-90%) 10 (-88%) 6.4 (-86%)
LLAMA3.2 - 3B - INSTRUCT
FULL COT 31.6 40.3 17.0 752 32.9 383
NO0-COT / ICOT 6.1 7.4 6.1 6.1 7.4 6.1
CODI / COCONUT 11.5 14.2 11.0 11.1 13.1 10.7

KAVA (ours) / PCCoT 6.4 (-80%) 8.2 (-80%) 6 (-65%) 6 (-92%) 7.9 (-76%) 5.7 (-85%)

while questions are kept the same. This demonstrates the better scalability of our approach. We ad-
ditionally present these result in the form of Accuracy-Efficiency Pareto frontier in the Appendix [F

We also measure the efficiency of the method by the number of forward passes a model makes to
generate the reasoning trace and the answer, reported in Table 2] We group the methods based on
their inference behavior. For example, No-CoT and iCoT do not produce reasoning tokens, while
CODI and Coconut rely on the same number of latent steps. KAVA builds on top of PCCoT, where
we only use T' = 3 iterations (forward passes) to generate all the latent tokens. For that reason, we
group PCCoT with KaVA. Our method achieves better efficiency than CoT, requiring between 62%
and 92% fewer forward passes per question compared to Full CoT.
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Figure 4: Llama-1b performance on MetaMathQA with varying latent reasoning ratios. During
training, between 20% and 100% of reasoning tokens are replaced with 24 latent tokens; each point
represents a model trained with a different replacement ratio. Retained tokens are split 10% before
and 90% after the latent step.

Table 3: Test accuracy on GSM8k dataset without pro-
jection layer and distillation loss (c; = 0).

Table 4: Test accuracy on GSM8k dataset
when the teacher is trained on all the steps.

Lxp PrI. GSMS8k ‘ GSM-Hard SVAMP Lxp Lgv DropLast All Steps
v v 56.5 +0.4 12.7 +01 589405 v 56.5+04 512408
X v 52.8 +0.1 12.2 40.1 56.2 +0.2 v X 53.354+0.18 47.2429
v X 52.2 +0.6 123402  58.3 +0.3

MetaMathQA results  Figure [ illustrates the accuracy—efficiency trade-off for models trained on
MetaMathQA across different replacement ratios. The leftmost dot at each curve corresponds to the
model where 100% of the CoT tokens are replaced with the latent tokens, while subsequent points
represent 60%, 50%, 40%, 30% and 20% replacement. In all cases, we replace tokens from the
middle of the CoT trace, placing 10% of the retained tokens before the latent reasoning step. We
provide additional results where beginning of the reasoning trace is replaced with the latent tokens in
Appendix [G] These curves highlight that KaVa consistently outperforms CODI and PCCoT across
the entire Pareto frontier, offering superior accuracy at different efficiency levels.

4.3 ABLATION STUDIES

We select LLAMA3.2-1B-INSTRUCT to conduct ablation studies for our method. We run each
experiment with three random seeds and report average test accuracy.

Model Components. First, we study how different modeling choices influence the final perfor-
mance. In Table [3| we report benchmark performance when trained without the distillation loss
(Shen et al., 2025) or without projection layer. As can be seen, both components are quite crucial,
but even without them the method considerably outperforms the no-CoT baseline.

Removing Last Step of the Trace. Following|Shen et al.| (2025); Wu et al.| (2025) we remove the
last step from the teacher’s reasoning trace. CODI demonstrates that this step is crucial for model
performance, since otherwise the token that CODI chooses for distillation tends to be less informa-
tive. In Table ] we train our model (using both KV matching and distillation) and PCCoT (only
distillation) on all steps. Performance of our method drops much lower, indicating that KV-cache
distillation loss compensates for the lack of usefulness of a distillation token in a fully automatic
manner.

KV Loss Sensitivity. Matching keys and values of the KV-cache is a non-standard way of dis-
tillation. Therefore, we study the model sensitivity to the distillation loss type and coefficient. In
Figure [5] we plot the test accuracy for two losses and three different coefficients. The model per-
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forms consistently better with L; loss when trained on GSM8k-AUG and with Llama-1b. However,
we observed that better performance may be achieved when using MSE loss on other datasets (see
Appendix [C] for the detailed hyperparameters used for all models and datasets).

KYV Eviction. We follow |Cai et al.| (2025) in using A = 0.1 (see Eq. {4) in R-KV eviction for all
the experiments. As an ablation study we consider the two extremes: cosine-only (A = 0) and
attention-only (A = 1). These cases correspond to choosing the keys and values based on diversity
or importance only. Furthermore, we use a simple baseline of cropping the full CoT trace from the
right, that is we only keep first M tokens of the teacher’s cache for distillation. We report the results
in Figure[6] We observe that combining both attention-based and similarity-based criteria enhances
the performance for both datasets.

Number of Tokens and Iterations. Similarly to|Wu et al.| (2025), we observe that the number of
iterations can have a different impact on accuracy depending on the number of latent tokens (Fig. [7)).
For larger numbers of latents (12, 24) we observe reduced performance beyond a certain number of
iterations.

Amount of Training Data. We measure the impact of data scaling by training the Llama-1b on
the GSM8k-Aug subsampled to 50% and 25% of the original size, finding that the amount of the
training data is crucial for our method’s performance (see App. [H).

5 INTERPRETABILITY OF LATENT REASONING TRACES

5.1 DECODING THE LATENT TRACE

Although the latent CoT is not directly interpretable, one can still attempt to decode the reasoning
trace from latent tokens. A straightforward approach is to project the final hidden state of the latent
tokens via the language modeling head. An example of a decoded trace is shown in Table [5] More
examples of the decoded traces are given in the Appendix [E] Interestingly, the decoded latent trace
is often identical to the trace generated by the teacher model, underlining the importance of the
teacher guidance. In particular cases, as shown in the table, a reasoning step can be expressed in
two equivalent forms (e.g. <<650x2=1300>> and <<2%650=1300>>). In regular CoT, this
ambiguity is resolved after sampling a unique prefix of one of the variants, however, there is no
explicit mechanism allowing for such resolution in a latent CoT. Nevertheless, the student arrives at
the correct answer.

Models trained on the GSM8k-AUG dataset tend to produce latent CoT’s that are easily inter-
pretable. In contrast, models trained on the GSM8k-AUG-NL dataset resist this straightforward
read-out method. We hypothesize that this is caused by the KV-cache distillation employed by
KAVA —in a dataset with shorter traces, such as GSM8k-AUG, most of the time the KV-cache re-
tains all of its content after eviction. On longer traces, such as the ones found in GSM8k-AUG-NL,
not all content of the KV-cache is preserved, and, furthermore, each latent thought’s distillation tar-
get may consist of keys and values originating from different tokens of the teacher’s CoT. This can
prevent latent thought to hard token correspondence from arising.

5.2 TEACHER-STUDENT KV-CACHE CORRESPONDENCE

We compute the cosine similarity of the keys and values in the latent CoT with (1) the ground truth
KV-cache, and (2) the ground truth KV-cache after eviction. The results, averaged over attention
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Table 5: Decoding the latent thoughts. A validation prompt is used: “Mrs. Taylor bought
two smart televisions that cost $650 each. If the total sales price had a 25% discount, how
much did Mrs. Taylor pay for the two televisions?”. Latent thoughts 16-24 are not shown
due to their limited semantic value. 3 tokens with the highest logits are shown for each
latent thought. Tokens T1, T2, T3, T4, T5, T6, T7 stand for _total, _cost,
_dollars, _discount, _original, _gross, and _price respectively. Following
CODI, the teacher is trained on traces omitting the last step.

TopK | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Answer
GSMS8K-Aug

1 650 * 2 = 130 0 >> << _of 0 * * >> = =

2 2 + 650 * 650 >> The . * B P = * 325 975

3 65 - 0 =5 125 00 | <<( _and k P 0 = 125

Teacher | <<650%2=1300>><<1300%25/100=325>> | 975

Golden ‘ <<650%2=1300>> <<1300%25/100=325>><<1300-325=975>> ‘ 975

GSMS8K-Aug-NL

1 T1 _of _of 0 S .S .S S .8 8 8 = . T4 T4

2 T2 T2 T2 T3 8 $ $ $ $ $ $ L8 T4 o - 975
3 T5 T7 _was T6 _was o o - o o - $ The

Teacher ‘ The total cost of the two televisions is 2 x $650 = $1300 [...] $1300 x 25/100 = $325. ‘ 975
Golden ‘ The total cost of the two smart televisions is [...] $975 for the two smart televisions. ‘ 975

Student vs GT Values Student vs GT Values After Eviction

e
~
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Figure 8: Cosine similarity between attention Values in the latent CoT and the ground truth CoT,
averaged across all heads and layers. We use the same prompt and ground truth CoT as in TableEl

heads and layers, are presented in Figures 8] 0] We observe that when comparing to the KV-cache
after eviction, the similarities near the diagonal tend to be higher, which is expected, as it is encour-
aged by the KV distillation. Furthermore, the values to the right of the diagonal are higher when
comparing with the full CoT, which is desired, as this represents the compression of the original
CoT (i.e. the key of a n-th latent token is similar to the key of an m-th hard token where n < m).
The full visualization of the similarities across layers and heads can be found in the App.

6 CONCLUSION AND DISCUSSION

We introduce KAVA, a novel framework that bridges the supervision gap in latent reasoning by
distilling knowledge from a teacher model’s compressed Key-Value (KV) cache. Our central con-
tribution is the demonstration that a compressed KV-cache, despite losing direct token correspon-
dence, can serve as a rich, stepwise supervisory signal for a latent reasoning student. By aligning the
student’s latent trajectory with the teacher’s internal reasoning dynamics in KV space, KAVA over-
comes the limitations of token-level distillation and the inefficiencies of verbose Chain-of-Thought
(CoT) traces. KAVA consistently outperforms strong latent reasoning baselines, scales effectively
to larger backbones, and shows robust performance on natural-language reasoning datasets where
prior methods often struggle. While the advancement of latent reasoning is linked to the availability
of large-scale training data to instill novel reasoning dynamics, our work establishes compressed
KV-cache distillation as a scalable and effective supervision technique for developing efficient and
powerful reasoning models.
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7 ETHICS AND REPRODUCIBILITY STATEMENTS

We adhere to the ICLR Code of Ethics. During the preparation of this manuscript, we utilized large
language models (LLMs) to assist with grammar correction and refinement of the writing.

Regarding the interpretability of reasoning traces, a gap exists between latent reasoning and CoT-
based reasoning. It should however be noted that in light of recent findings (Schoen et al., 2025),
even CoT should not be considered a fully interpretable method. Furthermore, an argument can be
made that due to the distillation used in our method and other latent approaches (Shen et al.| 2025;
Wu et al., [2025), the safety risk posed by current latent reasoners is, in fact, lesser than in the case
of more powerful CoT reasoners. We believe it is important that future work focus on explaining
the reasoning in both latent and non-latent approaches as well as on mitigating any threats posed by
increasingly capable models.

In this paper, we provide all the necessary details to ensure the reproducibility of the presented
method. We describe our method in Section [3]and provide pseudocode and method details in Ap-
pendix [A] We provide training protocols in Section 4] all the hyperparameters in the Appendix [C}
and data description in Appendix [B]
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A KV EVICTION DETAILS

We provide pseudocode to compute the 1-KV score in Listing [T, The function takes as input a
key-value pair and the attention scores between the CoT and and Answer tokens. There are several
implementation differences from the original R-KV method.

Padding Tokens First, we need to take into account padding tokens since we evict KV-cache
in a batch during training. We do that by always assigning the lowest possible redundancy and
importance score to the value-key pairs corresponding to the padding tokens

Importance Score To compute the importance score, we use the attention score that answer tokens
get when attending to the full CoT. We extract those value during the normal teacher forward pass
and reuse to compute the

Retention of Recent Tokens R-KV implementation adjust the redundancy score by always keep-
ing /3 the most recent tokens. This is important for a reliable model performance during generation.
We only use our method during training and apply it to the whole reasoning trace, therefore we skip
this adjustment and only rely on selecting the most diverse keys with high attention to the answer
tokens.

Listing 1: Pseudocode to implement the eviction score for a given key-value pair.

def r_kv_score(key: torch.tensor, attn: torch.tensor, lbd: float):

nwn

key: torch.tensor [bs, N_c, d] CoT keys for a single head and layer
attn: torch.tensor [bs, N_A, N_c] - attenton scores
lbd: float the weight of the importance score

nwn

# compute redundancy score

key_norm = key / (key.norm(dim=-1, keepdim=True) + le-8)

cosine_sim = torch.einsum("...id,...Jjd->...1i3", key_norm, key_norm)

for 1 in range(cosine_sim.shape[0]):
cosine_sim[i].fill_diagonal_ (0)

cos_score = torch.sum(-cosine_sim, dim=-2) / torch.sum/(
~pad_tokens, dim=-1, keepdim=True

)

# Normalize to 1

R = cos_score.softmax (dim=-1)

pad_tokens = key.sum(-1) == 0

R[pad_tokens] = 0

# compute importance score

# sofmax over CoT dimention and avrage over answer tokens

I = F.softmax(attn, dim=-1) .mean (-2)

# Assign the lowest score to the padding tokens

I[pad_tokens] = 0

S =1lbd » I + (1 - 1bd) * R
return S
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B DATASETS

Our models are trained using the GSMS8k-Aug and GSMB8k-Aug-NL datasets introduced by
Deng et al.| (2023), which augment the training set of the GSMS8k (Cobbe et al| [2021)
using GPT4 and provide a separate validation split. The golden traces in the datasets
are split into discrete steps. GSMS8k-Aug traces consist only of succinct statements such
as <<600x30/100=180>>; <<600%x10/100=60>>. The questions and answers in the
NL (Natural Language) subset are identical, however the steps are formulated in natural
language: 600 x 30/100 = 180 employees were promoted.; 600 x 10/100 =
60 employees received a bonus.

GSMS8K-Aug GSMS8K-Aug-NL MetaMathQA
Huggingface Path whynlp/gsm8k-aug  whynlp/gsm8k-aug-nl meta-math/MetaMathQA
No. of Train Sample 385,620 395,000
No. of Valid. Samples 500 -
No. of Test Samples 1319 1319 + 500
Average CoT len 23.1 55.0 148.9
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C HYPERPARAMETERS

Table 6: All the hyperparameters used for our method.

Hyperparameter | GSM8k-AUG || GSM8k-AUG-NL || MetaMathQA

LLAMA3.2 - 1B - INSTRUCT

ay (CODI) 10 10 0
KV loss Smooth L1 MSE L1
Layer-wise std True True False
as (KV) 1 1 1
r-kv A 0.1 0.1 0.1
Use Projection True True True
learning rate 8e-4 8e-4 8e-4
Ir scheduler Cosine Cosine Cosine
optimizer AdamW AdamW AdamW
batch size 128 128 64
weight decay 0.1 0.1 0.1
gradient clipping 2 2 2
epochs 10 10 5
QWEN2.5 - 0.5B - INSTRUCT
a1 (CODI) 10 10
KV loss MSE MSE
Layer-wise std False True
ag (KV) 1 1
r-kv A 0.1 0.1
Use Projection True True
learning rate Se-4 8e-4
Ir scheduler Cosine Cosine
optimizer AdamW AdamW
batch size 128 128
weight decay 0.01 0.1
gradient clipping 2 2
epochs 10 10
LLAMA3.2 - 3B - INSTRUCT
a1 (CODI) 20 20
KV loss Smooth L1 Smooth L1
Layer-wise std False False
as (KV) 2 2
r-kv A 0.1 0.0
Use Projection True False
learning rate 2e-4 2e-4
Ir scheduler Cosine Cosine
optimizer AdamW AdamW
batch size 128 128
weight decay 0.1 0.1
gradient clipping 2 2
epochs 5 5
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D KV-CACHE COSINE SIMILARITY BETWEEN THE LATENT COT AND THE
GROUND-TRUTH COT

We investigate the similarity between the KV-cache representing the latent CoT and the KV-cache
of the ground-truth CoT. Figures [8] and [0] present the similarities averaged over layers and heads,
while figures [I0} [TT} [T2] and [I3]show the similarities in individual heads and layers.
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Figure 9: Cosine similarity of Keys in the latent CoT with Keys of the ground truth averaged across
heads and layers. We use the same prompt and ground truth CoT as in TableEl
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Figure 10: Cosine similarity between Keys in the latent CoT and Keys of the ground truth across
layers.
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Figure 11: Cosine similarity between Values in the latent CoT and Values of the ground truth across
layers.
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Figure 12: Cosine similarity between Keys in the latent CoT and Keys of the ground truth after
eviction across layers.
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Figure 13: Cosine similarity between Values in the latent CoT and Values of the ground truth after
eviction across layers.
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E DECODED LATENT TRACES

In this section we present two additional examples of traces decoded in the same manner as described
in section 511

Topk | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Answer
GSMSK-Aug

1 24 * 50 = 120 0 >> << 120 * 0 0 0 = =

2 50 * . 0 * 150 >> . The 0 *. * . 10 >> >> 0 3600

3 *( 30 *. 600 00 << << ( . 0 * 00 00 0 >>

Teacher ‘ <<50%0.10=5>><<5%24=120>> ‘ 3600

Golden | <<50%.10=5>><<5%24=120>><<120%30=3600>> | 3600

GSMS8K-Aug-NL

1 T6 = 50 T9 * * = = = = ’ , ’ , 0
2 7 T6 0 0 - = * . * , T11  T10 T10 T10  _per 3600
3 T8 La * * T11 T11 T11 T11 , * o _per _per - 00
Teacher ‘ He gets 0.10%50=5 dollars a hour ‘ 1800
Golden ‘ He makes 50%$.10=$5 per hour [...] $120%«30=5$3600 a month ‘ 3600

Table 7: Prompt: “Jon runs a website where he gets paid for every person who visits. He gets paid
$0.10 for every person who visits. Each hour he gets 50 visits. His website operates 24 hours a
day. How many dollars does he make in a 30 day month?”. T6 — T11 stand for _,gets, makes,
_operates, _visits, _hourly, and _hour respectively. Tokens 16-24 are omitted due to
low semantic content.

TopK | 1 2 3 4 5 6 7 8 9 10 11 12 13 14| Answer
GSMSK-Aug

1 150 * 2 = 300 >> The _as _as _as _as _as .as Las

2 2 + 1 * 150 . << T15 T15 T15 T15 T15 T15 T15 1500

3 300 * 5 o= 30 > T1l6 _of _of _of _of _of _of _of

Teacher ‘ <<150%2=300>> ‘ 1500

Golden | <<150%2=300>><<300%5=1500>> | 1500

GSMB8K-Aug-NL

1 T13 T11 T11 T17 T11 T11 T11 T11 T11 T11 T11 T11 T11 T11

2 T11  _to T4 T12  _to Tl4 Ti4 B . . B T14  T14 1500
3 T14 T18 _to TI1 T4 _to T4 T14 T14 T14 T4 ,

Teacher ‘ Raine takes 150 x 2 = 300 steps walking to and from school in one day. ‘ 1500
Golden ‘ Raine takes 150 x 2 = 300 steps walking [...] her 300 x 5 = 1500 steps in five days. ‘ 1500

Table 8: Prompt: “Raine’s house is just a walking distance from her school. It takes her 150 steps
to walk to the school. How many steps does she take walking to and from school in five days?”.
T11 - T18 stand for _walking, footsteps, walks, walk, but,This, ,steps, and
_going respectively.
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F ACCURACY-EFFICIENCY TRADE-OFF

In Figures we plot results from the Tables in the form of the Pareto frontier, where the
closer model us to the top left corner, the better. In most cases KAVA exhibit the best accuracy-
efficiency trade-off. Note that some baseline approaches do not report number of generated tokens
or forward passes, making it impossible to add them to this plots. In this case, we only compare in
term of accuracy in Table[l]

GSM8k GSM8k-Hard SVAMP

Accuracy
Llama-1b

Llama-3b
g o g a3

IS
o
s

124

10+

554

501

45+

40+

354

o
o
s

o
o
s

13.2 4
13.0
12.8
12.6
12.4
12.2

62

614

60 1

594

58

574

56 1

® Full CoT

® noCoT
CODI
PCCoT
KaVa

10

22

20 1

184

16 4

14+

124

754

70+

65

60 1

T
10

T
20

T
30

T
40

T
50

T
60

T
10

T
20

T
30

T
40

T
50

T
60

T
10

T T
15 20

Number of forward passes
Figure 14: Accuracy-Efficiency trade-off of KAVA and baseline approaches trained on GSM8k-Aug

dataset for three different model architectures. KAVA consistently demonstrates better trade-off, by
being closer to the top-left corner.
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Figure 15: Accuracy-Efficiency trade-off of KAVA and baseline approaches trained on
GSM8k—-Aug—-NL dataset for three different model architectures. KAVA consistently demonstrates
better trade-off, by being closer to the top-left corner.

G METAMATHQA EXPERIMENTS

In our initial experiments, we observed that latent reasoning methods only slightly outperform the
no CoT baseline when the entire CoT trace is replaced by latent reasoning (see the bottom-left points
in Figures[I6]and d). We hypothesize two main reasons for this: (1) distilling a long reasoning trace
into a short latent trajectory is challenging because the number of latent tokens remains fixed, and
(2) each question in the MetaMathQA dataset (unlike in GSM8k-Aug) is associated with multiple
reasoning traces, reducing the effective number of unique questions compared to the dataset size.

Hybrid Reasoning To address this limitation, we introduce hybrid reasoning, where a portion of
the original reasoning trace is retained as hard tokens. This approach alleviates both constraints:
(1) fewer tokens are replaced, and (2) the student model retains part of the original trace in its
objective, increasing training data diversity.

We report results for varying proportions of the original trace being replaced
(20%, 30%, 40%, 50%, 60%) in a form of a Pareto curve. The leftmost point on each curve
represents the non-hybrid setting, where all hard tokens are replaced. We only report results for
non-diverged runs for CODI and PCCoT.

Location of the latent tokens We evaluated two strategies for positioning latent tokens: at the
beginning of the reasoning process and in the middle. Results for the beginning placement are
shown in Figure and for the middle placement in Figure 4| In both settings, KAVA consistently
outperforms all baselines.

We trained KAVA with KV-distillation only, setting CODI distillation loss coefficient to 0 (a; = 0).
This way KAVA trianing remained stable when scaling to longer reasoning traces or using a hybrid
approach, unlike CODI and PCCoT, which often diverged, especially when replacing the beginning
of the reasoning trace. Removing the final CoT sentence (per CODI’s recommendation) improved
but did not fully resolve instability, so we report only non-diverged runs.
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Figure 16: Test results for Llama-1b model trained on MetaMathQA dataset. During training, be-
tween 20% and 100% of reasoning tokens are replaced with 24 latent tokens; each point represents a
model trained with a different replacement ratio. When non-replaced tokens remain, they are placed
after the latent reasoning step.

H TRAINING DATASET SI1ZE

We performed an assessment of the impact of the size of the dataset on the performance of our
method. We find that the size of the training dataset plays a crucial role for KaVa — when trained on
a fraction of the dataset, the performance suffers and cannot be recovered even if the number of total
training steps is matched with training on the full dataset. In fact, we see 10 epochs is the optimal
amount of training epochs (among the candidate values), regardless of the dataset size.

As shown in the bottom plots of Figure[T7] PCCoT exhibits a more pronounced decline in accuracy
than KaVa when the amount of training data is reduced. While this degradation can be partially
mitigated by increasing the number of training epochs, KaVa consistently outperforms PCCoT even

when the total number of training iterations is matched to the original setting.
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Figure 17: The impact of the size of the dataset on the performance of KaVa (top) and PCCoT (bot-
tom). 10 epochs matches the number of epochs in all the experiments, whereas 20 and 40 epochs
match the total number of training steps when training on 50 and 25 of the dataset respectively. The
ablations were performed with Llama-1b trained on GSM8K-Aug dataset and reusing the hyperpa-
rameters from Table 6}
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I INFLUENCE OF GROUND TRUTH TRACES

To assess the effect of ground-truth CoT traces on latent reasoning performance, we used questions
from the GSM8k—-Aug—-NL dataset and generated new CoT traces using Qwen3-32B |Yang et al.
(2025)) and Ministral-8B (Mistral Al team), [2024]).

For Qwen3-32B, we provided two random examples from the GSM8k training set as few-shot
prompts for the model to mimic the style of the traces and disabled the thinking mode. The data was
cleaned by removing entries without answers, resulting in 1,165 fewer examples. Qwen3 is known
to be verbose, and even with thinking mode disabled, we observed that the generated traces were
longer than those produced by GPT-4. The average CoT length increased from 55.0 tokens in the
original dataset to 73.5 tokens in the Qwen3-generated version, making it a more challenging task
for the latent reasoning model.

In the case of Ministral-8B, we provided three random examples from the GSM8k training set for
each generation and generated traces for five questions within one generation. The model was
given the correct answer (lacking the ground truth trace) within the prompt. We only preserved
generations for which the result and the result of the final equation agreed with the GPT4-generated
ground truth, carrying out the procedure up to five times if needed (due to relatively high error rates
in this less capable model). If, after five attempts, the generated trace still yielded a different answer
than the ground truth or finished in an incorrect equation, we preserved the original, GPT4-generated
trace. Furthermore, we removed duplicate (question, answer) pairs from the dataset, preserving only
one datapoint for each such pair. The resulting dataset contains 335,126 new (Ministral-generated)
datapoints and 50,412 traces from the original dataset. The average CoT length in this dataset version
is 44.8 tokens.
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Figure 18: Test accuracies when trained on the original GSM8k-Aug dataset (traces generated by
GPT-4) compared to the traces we produces with Qwen3-32B and Ministral-8B model.

To ensure a fair comparison, we use the same hyperparameters as for the original dataset and train
KaVa, along with the Full CoT, No CoT, and PCCoT baselines. Test accuracies are reported in
Figure We observe that both new datasets generally yield better performance for Full CoT
and KaVa. Ministral-generated data differs from the original dataset (GPT-4) only in the reasoning
traces, making the No CoT results identical for the two. We hypothesize that shorter traces make the
student task slightly easier. For Qwen3, we observe a slight drop in No CoT performance, which
suggests that the generated answers may be less accurate than those of GPT-4. Meanwhile, Full
CoT performance improves, which may be partially attributed to longer reasoning traces. With this
new dataset, KaVa performs slightly better than on GPT-4—generated data across all benchmarks.
Notably, unlike Full CoT, we did not adjust the number of latent tokens, thereby maintaining the
same level of efficiency.
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