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Abstract

We address two-player general-sum stochastic Stackelberg games (SSGs), where the leader’s
policy is optimized considering the best-response follower whose policy is optimal for its
reward under the leader. Existing policy gradient and value iteration approaches for SSGs
do not guarantee monotone improvement in the leader’s policy under the best-response
follower. Consequently, their performance is not guaranteed when their limits are not
stationary Stackelberg equilibria (SSEs), which do not necessarily exist. In this paper, we
derive a policy improvement theorem for SSGs under the best-response follower and propose
a novel policy iteration algorithm that guarantees monotone improvement in the leader’s
performance. Additionally, we introduce Pareto-optimality as an extended optimality of
the SSE and prove that our method converges to the Pareto front when the leader is myopic.
Keywords: Stochastic Stackelberg Games; Policy Iteration; Convergence Analysis.

1. Introduction

A Markov decision process (MDP) is a mathematical framework that models the decision-
making of agents in dynamic environments, which serves as the foundation of reinforcement
learning (RL). The performance of the agent’s policy is evaluated by assessing the state-
action sequences it produces with the reward function. This performance is quantified by
the expected cumulative discounted reward. An optimal policy is one that maximizes this
expected return.

One extension of MDPs for multi-agent systems is a stochastic game, also known as
a Markov game, where multiple agents with individual reward functions simultaneously
attempt to develop policies that maximize their expected cumulative discounted rewards
within a single environment. Stochastic games were initially proposed in game theory, and
the solution is defined as a tuple of policies that form a specific type of equilibrium, such as
a Nash equilibrium. The problem setting is also characterized by the relationship between
the reward functions, such as the zero-sum (i.e., competitive) and fully cooperative settings.

In this study, we addressed the problem of determining stationary Stackelberg equilibria
(SSEs) in 2-player stochastic games with general relationships in the rewards. An SSE is
defined as a tuple of stationary policies of two types of agents, leader and follower, such that
the leader’s policy maximizes the leader’s payoff when the follower takes the policy that is
the best response to the leader’s policy with respect to the follower’s payoff. We assume that
the follower always takes the best response to any leader’s policy. We refer to such a follower
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as a best-response follower. Additionally, we assume that the follower’s best responses are
always computable to the leader and that the environment is known. No other assumptions
are made on the follower’s algorithm.

This situation arises, for example, in the design of e-commerce platforms aimed at the
maximization of the site owner’s profit. The site user (follower) repeatedly makes purchasing
decisions based on their preferences. In contrast, the site owner (leader) can configure various
elements of the platform, such as page transitions, advertisements, and an incentive bonus.
Leveraging knowledge of the user’s past behavior, the owner seeks to maximize long-term
profit by anticipating the user’s responses. Assuming the user’s responses are always optimal
for their preferences and the owner’s prediction is accurate enough, the resulting owner’s
problem can then be formulated as an SSG with a known best-response follower.

As an SSE does not always exist in the general-sum setting (Bucarey et al., 2022), the
algorithm should converge a leader’s policy to the SSE if it exists; otherwise, it must converge
to a policy that achieves reasonably satisfactory performance. However, existing methods
based on dynamic programming operators (Bucarey et al., 2022; Zhang et al., 2020a) and
policy gradient methods with total derivatives (Zheng et al., 2022; Vu et al., 2022) do not
guarantee the convergence to the SSEs in our setting, even if they exist. Moreover, these
algorithms may converge leaders’ policies to low-quality ones because they do not guarantee
monotone improvement of the leaders’ performance under the best-response follower. In this
work, we focus on policy improvement methods and develop an algorithm that satisfies the
above requirements.

1.1. Main Contributions

Our contributions are summarized as follows. First, we explicitly derive the fixed point of
the dynamic programming operator used in Bucarey et al. (2022); Zhang et al. (2020a).
This result reveals that the fixed point does not necessarily bring a reasonable leader policy
when it is not guaranteed to be an SSE (Section 5). Second, a policy improvement theo-
rem for general-sum stochastic Stackelberg games with the best-response follower is derived
(Section 6.2), based on which a novel policy iteration algorithm is proposed (Section 6.3).
Finally, we introduce the concept of Pareto-optimality as an extended optimality of the
SSE. Policies that realize the Pareto-optimal value functions or their neighborhood with
arbitrary precision always exist. Moreover, Pareto-optimality agrees with the SSE it exists
(Section 6.1). Then, we prove that the proposed method monotonically improves the state
values toward the Pareto front and converges to the front when the leader is myopic (Sec-
tion 6.3). To the best of our knowledge, this is the first theoretical guarantee in general-sum
myopic-leader SSGs.

2. Preliminaries

2.1. Markov Decision Process

An MDP is a stochastic process with rewards in which the state transitions depend on the
actions of an agent. An MDP is defined as a tuple (S, A, p, p,r,7): a finite state space S, a
finite action space A, a transition function p : § x A — A(S), an initial state distribution
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p € A(S), a bounded reward function r : S x A — R, a discount rate v € [0, 1), where A(S)
is a set of probability distributions on §.

The agent determines its action following its Markov policy. Let W :={f : S — A(A)}
be a set of (stochastic) decision rules. Then, at the time step ¢ € N, the agent has the
decision rule f; € W and selects the action a; € A in the current state s; € S as ay ~ fi(s¢).
The conditional probability is denoted as f;(a¢|s;). If the decision rule is invariant over time
(ft = f), the Markov policy is called a stationary policy and is simply denoted by f € W.

The next state s,y is stochastically determined as s;y1 ~ p(si+1]S¢, a;) when the agent
selects its action a; in the state s;. Repeating such transitions with one stationary policy
f € W generates the state-action sequence {(s¢, a¢)}°, under f. Then, the performance of
f can be defined by evaluating the state-action sequence with the reward function, and the
optimal policies are defined as policies with the highest performance. Optimal policies are
defined as stationary policies that maximize the expectation of the cumulative discounted
reward under f € Wy conditioned by an initial state s € S, which is given by

o
ZWtT‘(St, at)|so = 8] )

t=0
for all s € S, where E/ [-|sy = s] is the expectation over {(s;, a;)}32, generated under (f,p)
given initial state s. V7 (s) is called a state value function of stationary policy f. Hereafter,
we consider only stationary policies and refer to them simply as policies.
There always exists a deterministic optimal policy (Sutton and Barto, 2018) such that

VIi(s) :=E'

*(s) € argmax < r(s,a) + VEg s max V7 (s 1
f() l%E.AX{ ( ) Vs’ ~p(s'|s,a) fEV{/( ( ) ()
for all s € §. The main algorithms used to determine the optimal policy are value iteration
and policy iteration when the transition and reward functions are known, and RL when they
are unknown (Sutton and Barto, 2018).

2.2. Stochastic Game and Stackelberg Game

Stochastic games (Shapley, 1953; Solan, 2022), also known as Markov games, are an exten-
sion of MDPs for multi-agent settings. When there are two agents, A and B, they have finite
action spaces A and B, bounded reward functions r4 : SXAxB — Randrg : SxAxB — R,
discount rates y4 € [0,1) and vp € [0,1) and sets of policies W4 := {f : S — A(A)} and
Wp :={g:S — A(B)}, respectively. The state s € S is shared among the agents, and the
transition function is defined as p : § x A x B — A(S); that is, the transition probability
depends on the actions of all the agents.

The expectation of the cumulative discounted reward under stationary policies f € Way
and g € Wp is defined for r4 and rp, respectively. Then, equilibrium policies, such as Nash
equilibrium, can be identified as solutions to the problem by considering each cumulative
reward as the agents’ payoff.

The relationship of the reward functions between agents characterizes the game. In game
theory, a game where r4 = —rp is called a zero-sum game, and the others are called non-
zero-sum games. Both are called general-sum games. In the context of a multi-agent RL,
situations where r4 o< —rp and r4  rp are called competitive and cooperative, respectively.
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The Stackelberg game is a game model in which a leader selects its strategy first, and
then a follower selects its strategy that maximizes the follower’s payoff against the leader’s
strategy. This follower’s strategy is called the best response strategy against the leader’s
strategy. When the leader’s strategy maximizes the leader’s payoff under the follower’s best
response, the pair of strategies is called a Stackelberg equilibrium. In this study, we consider
the extension of Stackelberg games to stochastic games, such as the stochastic Stackelberg
game (SSG). Unlike the single-agent MDP, the optimal policy, SSE policy defined below, is
not guaranteed to exist, and even if it does, it is not necessarily deterministic. An example
scenario where the SSE policy does not exist is provided in the next section.

3. Problem Setting

A general-sum SSG is represented by (S, (A, B), p, p, (Fa,7B), (74,7B)), where the subscripts
A and B indicate the leader and follower, respectively. The sets of policies are defined by

Wya={f:S—>AA)}, Wp:={g9:5—>AB)},
and the sets of deterministic policies are defined by
Wh={f:8— A}, WE:={g:5— B}

Let Fs := {v: S — R} be the set of real-valued functions with a state as input.
For conciseness, we define the marginalization of # and p over the leader’s action a € A
under an action distribution fs € A(A) as

ri(s, fo,0) ==Y _ fula)Pi(s,a,b), (Vi € {A, B})

acA

p(s']s, fs,b) == Z Is(a)p(s'|s, a,b),

acA

where s € § is a state and b € B is a follower’s action. Hereafter, the players are indexed
by i € {A, B}.
The state value functions of the leader and the follower are defined as follows.

Definition 1 (State value function) Let s € S be a state and f € Wy,g € Wpg be
stationary policies of the leader and the follower. The state value functions Vifg € Fs of
player i € {A, B} for a pair (f,g) are given by

S0 — S] N

where B19 [-|sg = s] is the expectation over the state-action sequence {(s¢, ar, b)};2, generated
under (f,g,p) given initial state s.

o
Z’Yf’fi(st,at,bt)

t=0

V;fg(s) .— RS9

The follower’s best response is defined by employing the state value functions.
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Definition 2 (Follower’s best response) Let s € S be a state and f € Wy a leader’s
policy. The set of the follower’s best responses Ry (f) C Wjé against the leader’s policy f is
defined as

Ry(f) :=={g € W5 | g(s) € Ri(s, f) Vs € S},

where the best response action at state s is defined as

R = b By o Vi | .
B(s f) ar%érllgaxrs(saf(s), )+ VBE g p(s']5,£(5),b) Lfg% B (s )]

As the optimal policies in single-agent MDPs are represented as in Equation (1), we can
observe that the set of best responses R};(f) with fixed leader’s stationary policy f is the
set of the optimal policies in terms of single-agent MDPs. It is also shown that R} (f) is
non-empty for all f € Wj4.

We assume that the follower is a best-response follower, meaning that it always adopts
the best response to the leader’s policy. If the leader adopts a stationary policy f € Wy,
the best-response follower adopts the stationary policy g € Ri(f) € W%. This setup is
essentially equivalent to a situation where we can only control the leader’s policy, and the
follower independently learns its policy with the ability to find the best responses in a finite
amount of time for any leader’s policy. No other assumptions are made about the follower’s
learning process.

We assume that the set of the follower’s best responses, R} (s, f), is a singleton for each
s € § and for each f € W,. Otherwise, we break ties deterministically. It follows that
R3(f) is also a singleton for all f € Wy; thus, the follower’s best response against f is

unique. For simplicity, let R;(f) be the best response. This enables us to define a state

value function VXR*B(D of f under the best-response follower. For simplicity, we denote

Vit IR0,

We aim to determine an SSE policy, which is defined as the leader’s stationary policy that
maximizes the leader’s state value function for all states under the best-response follower.
This policy and the SE value function are defined below.

Definition 3 (SE value function) Let s € S be a state. An SE value function is defined
as

Vi(s) :== sup VIZ;T(S).
fEWA

Definition 4 (SSE policy) If a leader’s stationary policy f* € Wa satisfies Vj;*T(s) =
Vi(s) for all s € S, then f* is an SSE policy.

Game without SSEs We provide an example game where SSEs do not exist. This
example is first introduced by Jean-Marie in his seminar talk (Jean-Marie et al., 2022)
related to Bucarey et al. (2022). We consider a game with two states S = {s1, s2}, two
leader’s actions A = {a1,a2}, and two follower’s actions B = {b1,b2}. The dynamics and
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Table 1: The follower’s best response and the leader’s value under the best response follower.

Case Ri(s1..0), Ry(s2, 1) V{T(s1), V{'(s2)
VBVE(Sl) >+ "YBVé(SZ) bl, b2 1*p’YA’ 1@,?14
BV (s2) >z +v8VE(s1) ba, b1 A,
[Vi(s1) — Vi(s2)| < x/vB b2, ba 0,0

<a1,b1>/<1,o>c@ — @:3<a1,b1>/<1,0>

(a2, *) / (0, —y)

Figure 1: An example of a game without SSEs. Transitions are deterministic and repre-
sented by arrows. Each label shows (leader’s action, follower’s action) / (leader’s
reward, follower’s reward), where z > 0 and y > 0.

the reward signals are deterministic and represented in Figure 1. Let the leader’s policy be
denoted as fs, (a1) = p € [0,1] and fs,(a1) = ¢q € [0,1].

Given the leader’s policy, it reduces to a standard MDP for the follower. The optimal
value function for the follower is the solution to

Vp(s1) = max{ygVz(s1),z +v8Vz(s2)} -p+ (—y + v8VE(s2)) - (1 — p);
VE(s2) = max{ypVg(s2),z + v8VE(s1)} - ¢+ (—y +v8VE(s1)) - (1 — @)

There are three cases depending on the leader’s policy f, summarized in Table 1. If ygy > =,
we know that (p,q) = (1,0) leads to the case of vgVj(s1) > x4+ vgV}j5(s2). Then, the

maximum value of the leader’s value at state s; is obtained as Vlé{ T(sl) = ﬁ. Similarly,
we can check that (p,q) = (0,1) leads to the case of ygV}(s2) > x + vgV3(s1). Then, the
maximum value of the leader’s value at state sy is obtained as Vj; T(32) = ﬁ. We can see

that there is a tradeoff between the values at s; and sy and two Pareto optimal points exist:
(VIL{T(sl), VA']CT(SQ)) = (17.1“., 11‘%) and (J‘j‘m, 171%4). That is, there dpes th exist a single
optimal policy that maximizes the values at all states simultaneously, implying that an SSE

does not exist.

4. Related Work

Bucarey et al. (2022) proposed an algorithm for computing strong SSEs in the 2-player
general-sum stochastic games, where strong SSEs are introduced to break ties for the fol-
lower’s best response, which corresponds to a specific tie-breaking mechanism for the fol-
lower’s best response in our setting. They provide sufficient conditions for their algorithm
to converge to the SSEs. However, there is little assurance of the leader’s performance of
the obtained policy when it does not converge to the SSEs or when there is no SSE. This
problem is because the fixed point of the dynamic programming operator used in Bucarey
et al. (2022) is different from the SE value function. We discuss this in detail in Section 5.
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A primary case where the algorithm of Bucarey et al. (2022) converges and the fixed
point coincides with the SE values is when the follower is myopic, i.e., when the follower
maximizes its immediate rewards. This setting is adopted in some existing SSG studies. For
example, Zhao et al. (2023) derived the upper bound of the regret of the leader’s payoff in the
cooperative tasks, where the reward function is shared between the leader and the follower,
with information asymmetry under the myopic follower. Zhong et al. (2023) proposed an
algorithm in the SSG where the group of myopic followers forms a Nash equilibrium among
them with analyses on the upper bound of the regret and suboptimality of performance. In
contrast to these studies, we focus on the situation where the follower is not myopic.

Zhang et al. (2020a) also considered a similar problem setting, where the reward setting is
general-sum and the follower is not myopic. The differences are that the transition function is
unknown (i.e., in the RL setting), the follower’s policy takes the leader’s action as input, and
only deterministic stationary policies are considered for the leader’s policies. The algorithm
proposed by Zhang et al. (2020) shares its principal foundation with that of Bucarey et al.
(2022) (see Appendix I). This means that they use the same operator, implying that the
limitation of the method of Bucarey et al. (2022) applies to that of Zhang et al. (2020).

Policy gradient methods have been proposed for SSGs with non-myopic followers (Zheng
et al., 2022; Vu et al., 2022) based on the implicit function theorem (Fiez et al., 2020).
They guarantee the convergence to differential SEs (DSEs), which are subsets of local SEs.
However, these methods are not applicable in our setting, except when using the surrogate
model of the follower, due to their centralized nature of learning. Moreover, the leader’s
policy obtained by these algorithms does not necessarily form the DSEs under the best-
response follower because the follower’s strategies in DSEs are not always the best response.

Several studies concentrate on the cooperative setting. Kao et al. (2022) and Zhao et al.
(2023) analyzed the cooperative tasks with information asymmetry, where the leader cannot
observe the follower’s action (Kao et al., 2022) and the reward functions are known only
to the follower (Zhao et al., 2023). Kononen (2004) and Zhang et al. (2020a) point out
Pareto efficiency and uniqueness as advantages of Stackelberg equilibria to Nash equilibria
in cooperative tasks.

We proposed a novel algorithm for general-sum SSGs with the non-myopic best-response
follower under the assumptions that the transition function is known and that the follower’s
best response is computable in a reasonable time. Unlike the previous methods, iterative
methods by the operator (Bucarey et al., 2022; Zhang et al., 2020a) and policy gradient
methods (Zheng et al., 2022; Vu et al., 2022), our algorithm guarantees monotone improve-
ment of the leader’s state values under the best-response follower. Furthermore, we give a
convergence guarantee even when no SSE policy exists.

5. Analysis on DP Operators

Dynamic programming operators are the core of the solutions of single-agent MDPs and the
foundation of RL algorithms (Sutton and Barto, 2018). For stochastic games, the operator
is extended as an operation of solving a one-step game by multiple players, and methods for
Nash equilibria are proposed with convergence guarantees (Hu and Wellman, 2003).

For SSGs, however, existing methods based on such a one-step game operator (Bucarey
et al., 2022; Zhang et al., 2020a) have problems in terms of the leader’s performance in our
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setting. This section describes it in detail. In summary, we analyze the fixed points of the

operator and show that, while the equilibrium formed by the fixed point holds under the

best-response follower, the obtained leader’s policy may perform poorly when the fixed point

is not the SSE, since monotone improvement in the leader’s performance is not guaranteed.
The one-step game operator T': Fs x Fs — Fs X Fs is defined for SSGs as

(Tw)i(s) :=ri(s, Ra(s,v), Rp(s, Ra(s,v),vR))
+ VB ()5, R (5,0), R (5, Ra(s.0).0m) [i(8))] (i € {A, B}), (2)

where v := (v4,vB) € Fs X Fs,

RA(Sv U) = E}rggti};: TA(Sa fsv RB(Sv fsv UB)) + 'YAES’Np(sﬂs,fs,RB(s,fs,”uB)) [UA(S,)] )
s€

which is assumed to exist for all s and v,' and

Rp(s, fs,vp) := argmax rB(5, f5:0) + VBEg ap(s/|sf..0) [vB(5)]
c

which is assumed to be a singleton for all s, fs, and vg.? Equation (2) is regarded as a

simplified version of the operator defined in Bucarey et al. (2022). The single update of
current values v with T as v}(s) = (Tv)i(s) can be seen as solving a normal-form (i.e.,
one-step) Stackelberg game for player i at given state s € S where the payoff functions are
given by current ) functions

qi(s, fs b) = 7",‘(8, fs b) + ’Vi]Es’Np(sﬂs,fs,b) [’UZ‘(S/)] (Z € {A, B})

for the leader’s mixed strategy fs; and the follower’s pure strategy b. In this context,
Rp(s, fs,vp) is the follower’s best response to fs, Ra(s,v) is the leader’s Stackelberg equi-
librium strategy, the pair (Ra(s,v), Rp(s, Ra(s,v),vp)) is the Stackelberg equilibrium, and
((Tv) a(s), (Tw)p(s)) is the equilibrium payoffs of the normal-form game for given s and v.

Bucarey et al. (2022) proposed a method to construct a stationary equilibrium policy
corresponding to the fixed point of the operator, which is called fized point equilibrium
(FPE). If there exists a fixed point V := (V4, V) of T, the pair of the value functions of
the FPE (f, g) defined as, for any s € S,

f_(S) S RA(S,V), g(S) GRB(Sv.]?(S)va)
coincides with V' (Bucarey et al., 2022). Since T is a contraction mapping for v4 under
certain conditions (Bucarey et al., 2022)3, we can obtain the fixed point asymptotically by
repeatedly applying T with arbitrary initial values.

1. This assumption is necessary to derive a policy corresponding to a value function, and Bucarey et al.
(2022) implicitly assumes it. However, it is not guaranteed in general because the inside of argmax is not
necessarily continuous with respect to fs, even though A(A) is compact. Conversely, Rp always exists
because B is finite.

2. Bucarey et al. (2022) defines the strong version of Rp similarly to the strong SSE. In this paper, we
assume that Rp is a singleton to simplify the discussion, in accordance with our goal of finding the SSE
policies. As the core of our analysis does not depend on the uniqueness of Rp, the result can be easily
extended to the method of Bucarey et al. (2022).

3. One example is a condition that r4 is an affine transformation of rp (i.e., cooperative or competitive with
rg). In general, T' does not always converge, which is empirically demonstrated for the aforementioned
example game (Figure 1) in Jean-Marie et al. (2022).
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Let us consider the characteristics of the fixed point (V4, Vp) of the operator T in general
situations where the fixed point exists. Theorem 5 reveals a general property of (Va, Vp).
The proof is in Appendix A. (Appendices are provided as supplementary material.)

Theorem 5 For V := (V4,Vp) € Fs X Fs, let Ro(V) € W4 be a stationary policy whose
action distribution on a state s € S is in Ra(s,V) and Rp(f,Vp) be a deterministic sta-

tionary policy under f € Wy whose action on a state s is in Rp(s, f(s),Vp). Then, if
(T'V)i(s) = Vi(s) holds for all i € {A, B} and for all s € S, it holds that

If V is the fixed point, because f = Rs(V) and g = Rg(f,Vs) , it holds that

Vi'(s) = Vis(s) = max Vi'(s), (3)
Vj;g(s) = Va(s) = frgs\/}i VIL{RB(f’VB)(s) (4)

for all s € S in light of Theorem 5. Equation (3) shows that the follower’s FPE g =
Rp(f, V) is the best response to the leader’s FPE f. However, Rg(f, Vz) is not the best
response to arbitrary f € Wa, except when Vp(s) = maxgew, VEJ;g(s) VseS.

The results of Theorem 5 illuminate that the leader’s performance V4 of FPEs is the
maximum of the leader’s state value on f € W4 under Rp(f,Vp), but not the maximum
under the follower’s best responses Rp(f) like SE value functions. Therefore, the leader’s
performance of FPEs at each state can be less than the SE value, which is empirically
demonstrated in Bucarey et al. (2019). In addition, it is difficult to determine any meaning
from Rp(f,Vp) for arbitrary f € W4, which makes the performance of FPEs unpredictable.

Although Bucarey et al. (2022) derives the sufficient condition for SSEs to exist and for
FPEs to coincide with the SSEs, this condition is not compatible with our problem setting
or can be a strong assumption. The sufficient condition is equivalent to the union of two
conditions (Bucarey et al., 2022). The first is that the follower’s discount rate yg = 0, which
is a condition on the follower’s learning algorithm, but we admit no other assumptions on
the follower than the best responsivity. The second is that the transition function does not
depend on the follower’s actions, which can limit the applications of their approach. In the
end, finding FPEs does not guarantee the leader’s performance in our setting.

To overcome the problem of SSGs that SSEs do not always exist, in the next section, we
propose an algorithm that guarantees monotone improvement in the leader’s performance
toward alternative equilibria, Pareto-optimal policies.

6. Pareto-Optimal Policy Iteration

SSE policies do not always exist in general-sum stochastic games. Therefore, it is desired
that an algorithm converges to an SSE policy if it exists and to a policy that is “reasonable”
provided an SSE policy does not exist. First, we introduce the notion of Pareto-optimality as
the reasonable target. A policy that approximates a Pareto-optimal value function with an
arbitrary precision always exists, and it admits an SSE policy if an SSE policy exists. Then,
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we derive a policy improvement theorem for SSGs under best-response followers. Based on
the policy improvement theorem, we design an algorithm that monotonically improves the
policy toward Pareto-optimal policies.

Notation We introduce the notation for the dominance relation. Let v,v' € Fs. If
v(s) = v/(s) for all s € S, we express v = v'. If v(s) > v/(s) for all s € S, then v weakly
dominates v’ and v 3= v'. If v 3= v/ and v # v/, v strictly dominates v’ and v = v'.

6.1. Pareto-Optimal Policy

SSE policies exist if and only if there exists f € W, that maximizes Vf(s) for all s € S.
We consider VAf T(s) as |S| objective functions with f € Wy as a common input. From this
multi-objective optimization viewpoint, we define the Pareto-optimal policies. Hereafter, we
view a value function v as a vector in RIS and apply topological argument in the standard
sense in RIS

Definition 6 (Pareto Optimality) Let V = {v € Fs:v = V/J;T 3f € Wa} be the set of
a reachable value function. Let OV be the boundary of V and clV = V U IV be the closure
of V. A Pareto-optimal (PO) value function v* € clV is such that there exists no v € clV
satisfying v = v*. The set of PO wvalue functions is denoted as PV. A stationary policy
f € Wy satisfying VXT € PV is a PO policy.

There always exists PV # (). Moreover, PV C 9V. A PO policy exists if and only if
PY NV # (. For any PO value function v* € PV, there always exists a policy whose value
function is arbitrarily close to v*. Meanwhile, there is no stationary policy that realizes a
value function better than a PO value function. Moreover, an arbitrary PO policy is an SSE
policy if there exist SSE policies, as shown in Theorem 7. Therefore, PO value functions are
a reasonable alternative to the SE value function. The proof is presented in Appendix B.

Proposition 7 The SE value function Vi € PV if and only if PV is a singleton. Conse-
quently, the SSE policies exist if and only if PV is a singleton and PV C V.

6.2. Policy Improvement Theorem

We derive three important lemmas based on which we design the proposed approach.

Theorem 8 is an extension of the policy improvement theorem (Sutton and Barto, 2018)
in single-agent MDPs. With this theorem, we can confirm if a policy f is better than a
baseline f’ without computing the value function for f. The proof is shown in Appendix C.
The key idea behind its proof is to express the follower’s best response in terms of the
leader’s policy and then apply reasoning analogous to the policy improvement theorem for
single-agent MDPs.

Theorem 8 Let f € Wa, f' € Wy be stationary policies, and a Q-function QQIT(S,f) :
S X Wa — R is expressed as

QL (s, £) 1= rals, £(s). Bi(s. 1) + 7By [VI()]
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A v(sz)

PV

Figure 2: Pareto optimal value functions in the two-state value function space. Thick blue
line: Pareto optimal value functions. Red shaded area (the upper right of the dot
in the box): the area of value functions dominating the value function represented
by the black dot, which is empty for PO value functions.

where Ey is considered under p(s'|s, f(s), Ri(s, f)). Then, the following conditions hold:

(@ QYN =V = V== VT,
’ y s ’ — s ’ :
b QQT f V,L{T V,L(T VILJ;T
() QYN = VT = VI =VIT =By VI - VIT()].
A necessary condition for PO policies is given below, which shows that no further per-

formance improvement can be made by Theorem 8 (a) from PO policies. This proof is in
Appendix D.

Theorem 9 (Necessary condition for PO policies) If f' € Wy is a PO policy, it holds
that for any f € Wa
Wen=vit = vt =yl (5)

The following result shows a sufficient condition for PO policies. This proof is presented
in Appendix E.

Theorem 10 (Sufficient condition for PO policies) f' € Wy is a PO policy if, for
any f € Wa, either of the following two conditions hold:
i) Q4't.n=vit

(i) 35 €8.Q4M. ) < V{(6) = 2007 1),

where 0(f, f') 1= max By (|5, 1(5), Ry (5.1) s -vi T(8')] -
When v4 = 0, Theorem 10 implies that no further policy update by Theorem 8 (a) with

strict improvement is a sufficient condition for PO policies. Combined with Theorem 9, f’
is a PO policy if and only if there is no room for policy improvement when v4 = 0.
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6.3. Policy Iteration for PO Policies

We propose an approach that monotonically improves policy toward PO policies and is
guaranteed to converge.

PO value functions are not always unique. To guide the algorithm, we introduce scalar-
ization. Given a stationary policy f € W4, we maximize a Pareto-compliant scalariza-
tion £ of the state value on f, namely, E[VIZT], where the Pareto-compliant scalariza-
tion* £ : clV — R is a continuous function such that v = v = L[v] > L[v/]. Then,
the maximum of the scalarized value in clV is obtained by a PO value function, namely,
argmax, .y £ [v] C PV.

Directly maximizing L’[Vf{ T] is, however, intractable. This is because the computation of
V/J;T for each f € Wy requires repeatedly applying the Bellman expectation operator under

f and Rp(f),

Ry x
(T£ B(f) V)(s) = TA(S’ f(S), RB(S, f)) + PVAES/NP(SI‘S,]C(S),R*B(Svf)) [V(Sl)} ’

to an initial function Vy € Fs until it converges, where the convergence is guaranteed as in
a single-agent MDP.

To alleviate this difficulty and obtain a sequence { f;}72, satisfying E[Vf{”ﬁ] > E[Vf{”],
we employ the policy improvement theorem, as in the policy iteration in single-agent MDPs.
Rather than computing VIL{T for each f, we calculate QQT(-, f), requiring only Vj;”. Then,
we construct the set W (f;) of policies satisfying the policy improvement condition from f;,
namely,

We(f) = {f e Wal Q.1 = VT, ©)

Selecting the next policy fi+1 from Wy (f:) guarantees L[Vj{””] > E[Vj;”] in light of The-
orem 8 (a). Ideally,” the proposed algorithm selects f;y1 from the set of policies that
maximizes the scalarized value, namely,

frrr € W) = argmax £ Q%1 )] ®)
fews(ft)

Theorem 11 guarantees that the proposed algorithm always converges and that the limit
satisfies the necessary condition for PO policies (i.e., voo € 9V). The proof is shown in
Appendix F.

4. For example, a weighted sum scalarization L[v] = > _gasv(s) is a Pareto-compliant scalarization for
a = {as € Ro}ses such that 3 s as = 1. If we choose « such that as = p(s) for all s € S, then L[v]
coincides with the expected return under the initial state distribution p.

5. In practice, argmax is not necessary, and sometimes it does not exist or is not computable. An alternative
approach is to select a policy fi4+1 from a set Wi_c(f¢) of e-optimal policies in terms of £, such as

Wieeli = {7 e Wa (0 1 £ [@416n)] - £ [vf]
-9 s (clefien]-cvif)} @

for some € € [0,1). Notably, W(f:) = Wi(f:). Therefore, the update in Equation (8) is a special case of
Equation (7). If it is still intractable, selecting fir1 € Wi (fe) s.t. QUT(-, fey1) = VI*T ensures that (a)
and (b) in Theorem 11 hold.
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Algorithm 1 Pareto-Optimal Policy Iteration
Input: Maximum number of iterations M.
1: Randomly initialize fy € Wa.
2: fort=0to M —1do §
3:  Compute Vj;ﬁ by repeatedly applying T/J:RB
4:  Compute W.(f;) in Equation (6)
5. if QT (s, f) = VI for all f € W.(f;) then
6: return f* + f;
7. else
8
9

(ft)

Compute W(f:) in Equation (8) or Equation (7)
Randomly sample fiy1 from W(f;)

10:  end if

11: end for

12: return f* « fu

Output: A stationary policy f*

Theorem 11 Let fo € Wy be an arbitrary initial policy and a policy sequence {f; €
W(fi—1)}52, be obtained by Equation (7). Let {v; = Vj;ﬁ}fio be the corresponding value
functions. Then, the following statements hold:

. . . S
(a) {ve}i2, monotonically increases in the sense that viy1 = ve and converges to Voo =
limy 00 vt

(b) vir1 = vg if and only if vy = veo;
(¢) Voo € OV and minges v(s) — Voo (s) < y4 (Maxses v(S) — Voo (S)) for allv € V;
(d) voo € PV if y4 = 0.

As shown in the proof (Appendix F), the algorithm ceases to improve if and only if
QQT(, f) = Vj;ﬁ for all f € W.(fi). The algorithm terminates when it holds and returns
ft. The entire proposed algorithm is shown in Algorithm 1.

The convergence guarantee and the monotone improvement of Algorithm 1 (Statements
(a) and (b) in Theorem 11) show the advantages of the proposed approach. However,
compared with the policy iteration approach in single-agent MDPs, where the convergence
to the optimal policy is guaranteed, the fixed point of Algorithm 1 is not assured to be PO
value functions. Rather, Theorem 11 (c) guarantees that the limit is at the boundary 9V,
including all the PO value functions. In a special case of v4 = 0, the limit is guaranteed to
be a PO value function (Theorem 11 (d)). The visualization of (c) and (d) is in Figure 3.

This condition, the leader’s discount rate v4 = 0, is a condition on the leader’s learning
process, meaning Algorithm 1 does not need any assumptions on the follower’s learning pro-
cess to guarantee the convergence and the leader’s “reasonable” performance. This property
allows us to apply this algorithm to various applications modeled by decentralized SSGs in
which we are the leader. We give an example of such applications in Appendix J.

There is another algorithmic difference from the policy iteration for the single-agent
MDP. In single-agent MDPs, a state-wise maximization of the action value function of fi,
as € argmax,c 4 Q' (s, a) is performed to construct the next (deterministic) policy. This is
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Figure 3: Visualization of Theorem 11 (c) and (d). For ve, there must not exist a value
function in the red-shaded cone representing the area of v violating the inequality
in (¢). The upper and lower slopes of the cone are 1/v4 and 74, respectively. voo
can be on the non-Pareto boundary (grey solid line) when 4 > 0 (left), but ve is
on PV when 4 = 0 (right) because the cone equals the area of dominating value
functions.

invalid in SSGs because such a policy does not necessarily satisfy the condition of Theo-
rem 8 (a) and may not improve the values. Moreover, the optimal policy is not necessarily
a deterministic one. Because of these differences, Equation (8) cannot be simplified to the
state-wise maximization. This can be a limitation from a practical viewpoint when Equa-
tion (8) (or Equation (7)) is intractable due to the large search space of W4. We propose
a practical strategy of splitting the policy space to find the next policy efficiently, avoiding
exhaustive search over the entire space Wy. Its details are provided in Appendix G

7. Limitation and Future Work

This study proposed a novel algorithm with a convergence guarantee in two-player general-
sum SSGs under best-response followers. We introduced the notion of the Pareto-optimal
value function to target it even if there are no SSEs, and developed an algorithm that mono-
tonically improves the policy toward the Pareto front. While existing methods have little
guarantee under best-response followers, especially in games where the SSEs do not exist,
our proposed approach can monotonically improve the leader’s performance and guarantees
its limit to be Pareto optimal in state values when the leader is myopic. To the best of our
knowledge, this is the first theoretical guarantee in general-sum myopic-leader SSGs.
However, there is room for improvement both from theoretical and practical viewpoints.
Further research must focus on addressing the limitations of the current work listed below.
First, the Pareto-optimality of the proposed algorithm is not guaranteed. A necessary and
sufficient condition for the Pareto-optimality of the algorithm must be derived. The de-
velopment of a restart strategy to satisfy such a sufficient condition is desired. Second, a
computationally efficient update rule to select the next policy (cf. Equation (8) or Equa-
tion (7)) is required. Practically, a state-wise update similar to the policy iteration in
single-agent MDPs is desired. Finally, our approach requires knowledge of the follower’s
best response and transition probability, as in the previous studies. A sample approxima-
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tion of the algorithm by reinforcement learning is desired to widen the applicability of the
proposed approach.
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