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Abstract. Deep Learning (DL), which involves powerful “black box”
predictors, has achieved state-of-the-art performance in medical image
analysis. However, these methods lack transparency and interpretability
of point predictions without assessing the quality of their outputs. Know-
ing how much confidence there is in a prediction is essential for gaining
clinicians’ trust in the technology and its use in medical decision-making.
In this paper, we explore the use of Conformal Prediction (CP) methods
to recommend statistically rigorous reliable prediction sets to a clini-
cian, using multi-modal imaging for the genetic diagnosis of the 36 most
common molecular causes of inherited retinal diseases (IRDs). These are
monogenic conditions that represent a leading cause of blindness in chil-
dren and working-age adults and require a costly and time-consuming
genetic test for diagnosis. Three methods of CP were assessed: Least Am-
biguous Adaptive Prediction Sets (LAPS), Adaptative Prediction Sets
(APS), and Regularized Adaptive Prediction Sets (RAPS). Our IRD
classifier (Eye2Gene), in combination with the three conformal predic-
tors, was evaluated on an internal holdout subset and datasets from four
external clinical centres. RAPS proved to be the best-performing method
with single-digit set sizes and coverage above 90% at a confidence level
of 80%. Implementing adaptive CP methods has the potential to reduce
waiting time and costs of genetic diagnosis of IRDs by improving upon
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the current gene prioritisation systems, while simultaneously enabling
safety-critical clinical environments by flagging clinicians for a second
opinion.

Keywords: Deep Learning · Uncertainty · Conformal Prediction · IRD.

1 Introduction

While the application of Deep Learning (DL) to medical imaging has achieved
impressive performance standards, its focus on obtaining continuously higher
point-prediction accuracy is not typically balanced with an evaluation of these
predictions in safety critical automated medical decision-making. DL models
generally lack uncertainty estimation or are not well calibrated which can lead
to overconfident prediction [9]. Instead of overwhelming the accuracy of point
prediction of the model, providing ordered estimates of outcomes that cover
the true value with a statistical confidence guarantee, called uncertainty-aware
conformal prediction set, is fundamental for the adoption of Artificial Intelligence
(AI) into the clinical diagnosis pipeline [6].

The safe implementation of black-box models in medical diagnosis demands
prediction of plausible diagnoses to be associated with uncertainty quantification
in order to prevent consequential model failures. Epistemic uncertainty in deep
learning is also referred to as model uncertainty, and is due to limited training
data. There are multiple approaches to measure model uncertainty, which en-
compasses different methods to approximating full Bayesian neural networks [5,
7, 8]. A limitation of this approach is lack of any standard or intuitive meaning
to aid clinicians in their decision making.

Conformal Prediction (CP) is a distribution-free uncertainty measurement
framework for producing predictive sets with finite-sample, guaranteed predic-
tive coverage without any model assumptions [2, 4, 16, 19–21]. Vovk (2015) and
Barber et al. (2021) further improved statistical efficiency by reusing data for
both training and calibration. The advantages of conformal prediction for uncer-
tainty measurement are that it has a low computational cost, is compatible with
any deep learning model, and provides a clinically-intuitive coverage guarantee
[12].

This study uses three Conformal Prediction (CP) methods - Least Ambiguous
Adaptive Prediction Sets (LAPS), Adaptive Prediction Sets (APS), and Regu-
larized Adaptive Prediction Sets (RAPS) - to quantify the uncertainty for a
large-scale, real-world inherited retinal diseases (IRDs) detection problem. IRDs
are challenging to diagnose genetically and represent a leading cause of blindness
in children and working-age adults worldwide. Clinicians learn to recognize phe-
notypic features of IRDs using high resolution retinal imaging technology such as
fundus autofluorescence (FAF), infrared reflectance (IR) imaging, and spectral-
domain optical coherence tomography (SD-OCT). Consequently, we trained our
IRD classifier, Eye2Gene, on multimodal scans acquired from patients with IRDs
seen at Moorfields Eye Hospital (MEH) who had undergone genetic testing and
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where a confirmed genetic cause had been identified by an accredited diagnostic
laboratory.

In this study, we demonstrate how we applied Conformal Prediction to our
underlying model, Eye2Gene, to select a set of potential causative genes from
multimodal scans of patients with IRD with a confidence guarantee. We expect
this approach to reduce costs and waiting time of genetic tests for IRDs by util-
ising personalised gene panels or by prioritising candidate genetic variants from
whole genome sequencing based on the integrated output from the Eye2Gene AI
model and the interpretation of the multidisciplinary diagnostic team.

Fig. 1: Overview of clinical workflow. Conformal Prediction (CP) selects a
set of potential predictions from the underlying model. The clinician receives the
recommended subset, together with the multi-modal images, and determines the
most likely causative gene according to a significance level.

2 Methods

We investigate the effectiveness of multi-modal imaging and selection of a sub-
set of causal genes in the diagnosis of Inherited Retinal Diseases (IRD) from
multiple clinical centres by using three methods of Conformal Prediction: Least
Ambiguous Adaptive Prediction Sets (LAPS) [18, 3], Adaptive Prediction Sets
(APS) [17], and Regularized Adaptive Prediction Sets (RAPS) [2].

2.1 Dataset and Underlying Model

The MEH IRD dataset comprises the most extensive collection of retinal scans
from patients with a confirmed molecular diagnosis of IRD. Information on the
genetic diagnosis, age of presentation, and mode of inheritance for each patient
was collated from the MEH electronic health record (OpenEyes), while their
scans were obtained from the MEH Heidelberg Imaging (Heyex) database. As
this project only utilised data previously collected and anonymised, informed
consent was not sought from participants.

The Eye2Gene model was trained on a total of 44,817 scans from 1,907 pa-
tients (3749 eyes, 6397 appointments), from Moorfields Eye Hospital, split into
three different modalities: FAF (N=13,509), IR (N=20,098) and OCT volumes
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(N=11,344) and a calibration set of 13,012 scans. Currently, the development
set contains 36 causative genes, which collectively, cover over 80% of molecu-
larly characterized IRD cases in the European population [10, 14, 15, 22]. Test
sets were assembled from a holdout set of retinal scans from MEH, and retinal
scans from patients with IRDs from four external clinical centers: Oxford Eye
Hospital (UK), Liverpool University Hospital (UK), University Hospital Bonn
(Germany), and the Federal University of São Paulo (Brazil).

For each of the three modalities, five distinct Inception V3 deep deep convo-
lutional neural networks (CNN) were trained, resulting in a total of fifteen neu-
ral networks with identical architecture but different network weights. For each
modality these five networks are then combined into three modality-specific mod-
els via ensembling. The combination of these three models constitutes Eye2Gene.
Each CNN was initialised with pre-trained ImageNet weights and the final layer
was replaced by a liner layer with 36 outputs, followed by Softmax. These were
trained for 100 epochs, with a batch size of 128, learning rate of 0.0001, and with
the default Keras parameters for the Adam optimiser (β1 = 0.9, β2 = 0.999).

Given a single input scan of one of the three supported modalities, Eye2Gene
applies the ensemble model corresponding to the modality of the scan to obtain a
single scan-level prediction. Given multiple scans from a single patient, Eye2Gene
is applied to each scan in turn and the resulting predictions are combined to
produce a single prediction for the patient, by taking the average over individual
(post-softmax) scan-level predictions [11, 13].

Training Sets Test Sets
Imaging
Modality

Deep Neural Network
Training Set (n = 44,817)

Conformal Prediction
Calibration Set (n = 13,012) Moorfields (n = 1900) Oxford (n = 346) Liverpool (n=210) Bonn (n = 473) São Paulo (n = 104)

FAF 13,509 4,124 733 106 70 241 16
IR 20,098 5,898 692 120 70 0 36

OCT 11,344 2,990 475 120 70 232 52

Table 1: Description of IRD dataset used for training of the underlying model
and CP, as well as the test sets used for multi-site validation.

2.2 Conformal Prediction Methods

Given a test image xi and a user-specified confidence level ϵ ∈ (0, 1), a conformal
predictor outputs a prediction set Γ ϵ

i ⊆ Y that contains the true class label yi ∈
Y with probability 1− ϵ. In deep learning classification, the Softmax function is
used to generate predictive probabilities. Conformal Predictors are implemented
as an additional layer to deep learning algorithms and use a separate calibration
step after training to predict confidence sets of classes. This framework as shown
in Fig. 2 was developed in Python (v 3.10.12) with TensorFlow (v 2.12.0) and
the Keras API, using a T4 GPU.

Least Ambiguous Adaptive Prediction Sets (LAPS): By sorting the class
scores for an example and selecting the classes in the prediction set that exceed
a predetermined confidence threshold, we employ a naive method of generating
prediction sets [18, 3].

1. Train a deep learning model f(x) : RW×H×C → (0, 1)36 on Dtrain
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Fig. 2: Study Design. The study was divided into four experiments of three
imaging modality and 36 gene class. Model generalization was evaluated in ex-
ternal test sets from four clinical centres: Oxford, Liverpool, Bonn, and São
Paulo.

2. Define s(x, y) = 1 − f(x)ytrue
where f(x)ytrue

is the softmax output of the
true class

3. Compute s1, s2, ..., sncal
on the calibration set Dcal

4. Compute q̂ as the ⌈(ncal+1)(1−α)⌉
ncal

quantile of the calibration scores.
5. Prediction sets with 1− α confidence as:

C(xtest) = {y : f(xtest)y ≥ 1− q̂} (1)

.

Adaptive Prediction Sets (APS): The prediction sets produced by the above
naive method have a smaller average set size, but often undercover harder gene
classes and overcover easier ones. We apply the Adaptive prediction sets (APS)
method to compensate for this [17].

1. Suppose π(x) a permutation of f(x) that orders the softmax output in de-
scending order, i.e., from the most likely class to the less likely.

2. Select s(x, y) =
∑k

i=1 π(x)y where k is the minimum number of class labels
to go through until reach the true class.

3. s(x, y) =
∑k

i=1 π̂(x)yi , where k is the minimum number of classes used until
to find the true class.

4. Compute q̂ as the ⌈(ncal+1)(1−α)⌉
ncal

quantile of the calibration scores s1 =

s(x1, y1), ..., sn = s(xncal
, yncal

) on the calibration dataset.
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5. Prediction sets with 1− α confidence as:

C(xtest) = {y :

k∑
i=1

π(x)y ≥ q̂}. (2)

Regularized Adaptive Prediction Sets (RAPS): The APS method yields
predictive sets with exact coverage, but these tend to have the largest average
size. However, Regularized Adaptive Prediction Sets (RAPS) often delivers much
smaller sets in practice [2].

1. Suppose π(x) a permutation of f(x) that orders the softmax output in de-
scending order, i.e., from the most likely class to the less likely.

2. Choose s(x, y) =
∑k

i=1 π(x)y where k is the minimum number of classes we
have to go through until reach the true class.

3. s(x, y) =
∑k

i=1(π̂î(xj) + λ[̂i ≥ kreg]), where where k is the model’s ranking
of the true class yi and π̂î(xj) is î the largest score for the ĵth image.

4. Compute q̂ as the ⌈(ncal+1)(1−α)⌉
ncal

quantile of the calibration scores s1 =

s(x1, y1), ..., sn = s(xncal
, yncal

) on the calibration dataset.
5. Prediction sets k̂ highest-score classes with 1− α confidence as:

C(xtest) = {y :

k̂∑
i=1

(π̂i(x(n+1) + λ[j ≥ kreg]) ≥ q̂}. (3)

Every class beyond the kreg most likely classes is subject to a constant regular-
ization penalty factor λ which deselects in the predictive set. APS is a special
case of RAPS with λ = 0.

3 Results

We applied the CP framework for the prediction of causal inherited retinal dis-
ease genes from multi-modal imaging using deep learning. We assessed the per-
formance of CP in diagnosing IRDs for each imaging modality and gene class by
evaluating the coverage and average prediction set size at different confidence
levels.

3.1 Analysis of Holdout dataset

We performed a baseline evaluation to investigate the performance of the AI
model and Conformal Predictor on scans by using a holdout subset of the MEH
dataset. Eye2Gene was trained on the three most common imaging modalities
for IRD diagnosis: FAF, IR, and OCT. Analysis of Table 2 and Figure 3 shows
that LAPS and RAPS return predictive sets with higher coverage for FAF scans
across confidence intervals, however, the coverage across modalities converges
at the higher confidence levels for each CP method. OCT sets are significantly
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smaller than other imaging modalities for both LAPS and RAPS, while APS has
similar sizes across modalities at all confidence levels. Classification with FAF
scan shows the best improvement with CP, as it constitutes the modality with
the lowest accuracy with point prediction.

Confidence 85% 80% 75%
Class Coverage Test Size Class Coverage Test Size Class Coverage Test Size

Imaging
Modality Accuracy LAPS APS RAPS LAPS APS RAPS LAPS APS RAPS LAPS APS RAPS LAPS APS RAPS LAPS APS RAPS

FAF 0.443 0.970 0.986 0.903 14 24 11 0.955 0.977 0.898 11 21 8 0.926 0.952 0.888 8 18 7
IR 0.458 0.968 0.974 0.923 15 24 12 0.944 0.96 0.908 12 21 9 0.912 0.945 0.902 9 18 8

OCT 0.516 0.960 0.981 0.922 13 24 9 0.926 0.968 0.909 8 21 7 0.886 0.958 0.888 6 19 6

Table 2: Coverage and set size of LAPS, APS, and RAPS conformal methods
at different levels of confidence for three imaging modalities. Prediction set sizes
from FAF scans have the highest average coverage for both LAPS and APS, how-
ever with RAPS, it is the lowest at these confidence levels. FAF scans show the
best improvement in performance with CP when compared to its point prediction
accuracy of 44.3%. Set sizes from OCT are the lowest for the three confidence
levels for both LAPS and RAPS, while APS have similar sizes for all modalities.
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Fig. 3: Performance across imaging modalities. LAPS and RAPS yield higher
coverage for FAF scans. APS has similar coverage for all imaging modalities
across confidence levels.

3.2 Analysis per Gene Class

Due to the large variety of IRD genes and their rarity, it is essential that the
model meets sufficient performance for all classes. In Table 3, we report the
coverage and set size of each CP method for the five most prevalent IRD genes
in our cohort: ABCA4, BEST1, PRPH2, RPGR and USH2A. Table 4 repre-
sents the same metrics for three of the rarest genes in the MEH cohort: CDH23,
KCNV2 and MTLL1. From the prevalent gene group, we notice that the model
accuracy for PRPH2 and RPGR is substantially lower when compared to other
genes in the group. This can be partially explained by phenotypic similarities
to other IRD gene variants. PRPH2 is the most common phenocopy of ABCA4
(Stargardt’s disease), as it mimics the phenotype of disease caused by the latter
[1]. Both RPGR and USH2A are associated with Retinitis Pigmentosa, leading
to similar clinical presentations. The classifier, therefore, has difficulty differenti-
ating these two sets of genes based on their similar retinal scan features, leading
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to lower accuracy. From the rare group, we note that the classifier was unable
to predict KCNV2 scans correctly in the holdout test set. Despite LAPS and
RAPS providing lower coverage for the under-performing genes when compared
to others in their group, CP improves classification over their point prediction
accuracy while maintaining a similar set size.

Confidence 90% 80% 67%
Class Coverage Set Size Class Coverage Set Size Class Coverage Set Size

Gene Accuracy LAPS APS RAPS LAPS APS RAPS LAPS APS RAPS LAPS APS RAPS LAPS APS RAPS LAPS APS RAPS
ABCA4 0.950 1.000 1.000 0.997 13 21 15 0.993 1.000 0.988 7 13 7 0.983 0.993 0.980 3 8 3
BEST1 0.846 0.989 1.000 0.989 13 21 15 0.989 1.000 0.967 7 13 7 0.978 0.989 0.957 3 8 3
PRPH2 0.412 0.991 1.000 0.948 17 25 15 0.914 0.991 0.905 10 17 8 0.776 0.948 0.759 5 11 4
RPGR 0.353 0.994 1.000 0.975 24 32 15 0.969 0.994 0.869 15 24 9 0.769 0.988 0.744 8 17 6
USH2A 0.800 1.000 1.000 0.995 22 31 15 0.990 1.000 0.970 12 22 8 0.959 0.995 0.939 6 14 5

Table 3: Coverage and set size of conformal methods at different levels of confi-
dence values for the five most prevalent gene classes.

Confidence 90% 80% 67%
Coverage Set Size Coverage Set Size Coverage Set Size

Gene Accuracy LAPS APS RAPS LAPS APS RAPS LAPS APS RAPS LAPS APS RAPS LAPS APS RAPS LAPS APS RAPS
CDH23 0.500 0.964 1.000 0.857 25 34 15 0.857 0.964 0.786 14 25 9 0.786 0.893 0.786 7 16 6
KCNV2 0.000 1.000 1.000 1.000 23 31 15 0.846 1.000 0.769 13 23 8 0.615 0.923 0.615 8 14 6
MTTL1 0.667 1.000 1.000 0.875 23 33 14 0.813 1.000 0.813 11 23 8 0.750 0.875 0.750 5 13 5

Table 4: Coverage and set size of conformal methods at different levels of confi-
dence values for the three rarest gene classes.

3.3 Multi-Site Analysis

Our model was externally validated on test sets obtained from four clinical cen-
tres. Large variation in the performance of the underlying classifier across ex-
ternal test sets is seen in Table 5. This can be partially attributed to significant
differences in the distribution of genes between datasets, with the number of
unique genes per set ranging from 3 (São Paulo) to 29 (Oxford). Note that in
Figure 4, coverage for the IR modality is absent from the Bonn dataset and,
thus, is not reported here.
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Fig. 4: Illustration of coverage of conformal prediction sets in test sets divided per
imaging modality. This figure demonstrates that conformal prediction allows the
successful generalisation of our classifier to external datasets for all three imaging
modalities.

Confidence 85% 80% 75%
Class Coverage Set Size Class Coverage Set Size Class Coverage Set Size

Hospital Accuracy Num of
Unique Genes LAPS APS RAPS LAPS APS RAPS LAPS APS RAPS LAPS APS RAPS LAPS APS RAPS LAPS APS RAPS

Moorfields 0.667 32 0.966 0.980 0.916 14 24 11 0.942 0.968 0.905 10 21 8 0.908 0.952 0.893 8 18 7
Bonn 0.701 11 0.971 0.972 0.929 12 23 10 0.935 0.959 0.919 9 20 8 0.906 0.947 0.906 6 17 6

Liverpool 0.571 15 0.957 0.976 0.819 17 27 11 0.890 0.976 0.814 12 24 9 0.833 0.967 0.795 9 21 8
Oxford 0.542 29 0.960 0.947 0.900 15 25 11 0.923 0.932 0.888 11 22 9 0.874 0.916 0.865 8 19 7

Sao Paulo 0.867 3 0.970 0.954 0.933 13 22 10 0.943 0.929 0.933 9 19 7 0.900 0.913 0.897 7 17 6

Table 5: Coverage and set size at different levels of confidence values for one
internal and four external test sets. A substantial variation in accuracy can be
observed between the clinical centres, especially between Oxford and Sao Paulo
where the disparity in accuracy is 32.5%. The Oxford dataset has the highest
number of unique genes from the external centres, whereas Sao Paulo has the
lowest. On the other hand, class coverage from these two datasets has a much
smaller difference, e.g. for RAPS at 80% the difference is 4.5%.

4 Discussion

We demonstrated that RAPS provides suitable coverage and produces the small-
est prediction sets out of the three CP methods, therefore being the most clini-
cally informative method. Furthermore, we report that despite coverage varying
for each imaging modality, it converges at confidence levels of around 80% and,
therefore, CP can be implemented with any of the three modalities. However, we
note that predictive set sizes for OCT are smaller with both LAPS and RAPS.

CP has the potential to reduce the disparity in performance between gene
classes, as it can produce substantial improvements in the classification of genes,
such as PRPH2, which have similar phenotypes to more prevalent classes. We
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further explored this feature by validating our approach on external test sets
that possess vastly different gene distributions. For the test sets in which the
underlying model showed the greatest variation in point prediction accuracy (Sao
Paulo and Oxford), RAPS was shown to provide prediction sets with similar
coverage and size. Therefore, we can conclude that Conformal Prediction can
improve Eye2Gene’s capacity to generalize across real-world datasets. To further
improve our classifier, we plan to measure dissimilarity between patients’ scans
and classes in the predictive set, as well as introduce class balancing to the
calibration set.
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