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Abstract

Traditional recommender systems have relied heavily on positive feedback for learn-
ing user preferences, while the abundance of negative feedback in real-world scenar-
ios remains underutilized. To address this limitation, recent years have witnessed
increasing attention on leveraging negative feedback in recommender systems to
enhance recommendation performance. However, existing methods face three
major challenges: limited model compatibility, ineffective information exchange,
and computational inefficiency. To overcome these challenges, we propose a model-
agnostic Signed Dual-Channel Graph Contrastive Learning (SDCGCL) framework
that can be seamlessly integrated with existing graph contrastive learning methods.
The framework features three key components: (1) a Dual-Channel Graph Embed-
ding that separately processes positive and negative graphs, (2) a Cross-Channel
Distribution Calibration mechanism to maintain structural consistency, and (3) an
Adaptive Prediction Strategy that effectively combines signals from both channels.
Building upon this framework, we further propose a Dual-channel Feedback Fusion
(DualFuse) model and develop a two-stage optimization strategy to ensure efficient
training. Extensive experiments on four public datasets demonstrate that our ap-
proach consistently outperforms state-of-the-art baselines by substantial margins
while exhibiting minimal computational complexity. Our source code and data are
released at https://github.com/LQgdwind/nips25-sdcgcl.

1 Introduction

Recommender systems have become integral components of modern digital platforms, significantly
influencing user engagement and satisfaction across diverse domains such as e-commerce, social
media, and content streaming services. While substantial progress has been made in leveraging
positive feedback (e.g., likes, high ratings) for recommendation, the effective utilization of negative
feedback (e.g., dislikes, low ratings) remains a critical yet underexplored avenue for enhancing
recommendation performance [21, 34, 7, 6].

This disparity is particularly noteworthy given that negative feedback often provides explicit sig-
nals about users’ preferences and can potentially offer more precise guidance for recommendation
refinement than positive feedback alone [22, 52, 43]. As shown in Figure 1, traditional unsigned
graphs only capture the existence of positive interactions, whereas sign-aware graphs preserve
the polarity of feedback through different edge types, enabling more comprehensive modeling
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of user preferences. Therefore, the recent research [34, 29, 6, 43] has increasingly focused on
negative feedback in recommender systems. However, these studies face three major challenges:

Figure 1: Comparison between unsigned
graph and sign-aware graph in recommender
systems. Left: User-item interactions with
explicit ratings showing both positive (4-5)
and negative (1-3) feedback. Right: Un-
like unsigned graphs (top), sign-aware graphs
(bottom) preserve feedback polarity through
different edge types.

(1) Limited Model Compatibility: Most existing meth-
ods design specialized models for processing signed feed-
back [49, 43], making them incompatible with recent ad-
vances in graph-based recommendation models. This spe-
cialization prevents them from benefiting from state-of-the-
art techniques like graph contrastive learning, which have
demonstrated remarkable success in unsigned recommen-
dation scenarios. (2) Limited Information Exchange:
Most existing methods treat negative feedback as auxiliary
signals, failing to fully exploit its potential [34, 6]. These
methods primarily focus on positive feedback while only
partially utilizing negative feedback, resulting in an incom-
plete understanding of user preferences and suboptimal
recommendations. (3) Limited Training Strategy: Ex-
isting methods either process the full signed graph during
training or rely solely on sampled feedback [49, 6], failing
to strike a balance between comprehensive learning and
training efficiency.

Motivated by the aforementioned issues, we propose a novel Signed Dual-Channel Graph Contrastive
Learning (SDCGCL) framework that revolutionizes the integration of negative feedback in recom-
mendation systems. The framework consists of three key components: (1) a Dual-Channel Graph
Embedding that separately processes positive and negative graphs, (2) a Cross-Channel Distribution
Calibration mechanism to maintain structural consistency between channels, and (3) an Adaptive
Prediction Strategy that effectively combines signals from both channels. To further enhance the
framework’s effectiveness, we present the Dual-channel Feedback Fusion (DualFuse) model, which
implements a dual-channel graph encoder and cross-channel graph fusion, enabling simultaneous
processing of positive and negative feedback patterns. To address training efficiency, we also propose
a two-stage optimization strategy that combines comprehensive learning on full graphs with effi-
cient training on strategically sampled subgraphs. This approach is theoretically proven to preserve
recommendation quality.

The main contributions of this work are summarized as follows:

• Model-Agnostic Framework: We propose SDCGCL, a model-agnostic framework that can
be seamlessly incorporated into existing graph contrastive learning methods, overcoming the
compatibility limitation of current signed recommendation approaches (Section 2.1).

• Cross-Channel Information Fusion: We design DualFuse, a novel model featuring dual-
channel encoding and cross-channel fusion mechanisms to enable effective information ex-
change between positive and negative feedback patterns while preserving channel-specific
characteristics (Section 2.2).

• Two-Stage Training Strategy: We develop a two-stage optimization strategy combining
comprehensive learning on full graphs with efficient training on strategically sampled subgraphs,
with theoretical guarantees for both training effectiveness and efficiency (Section 3).

• Experimental Validation: Extensive experiments on four public datasets demonstrate that our
approach consistently outperforms the state-of-the-art baselines by substantial margins, while
achieving the superior computational efficiency with faster convergence (Section 4).

2 Model Design

In this section, we propose two key novel techniques: (1) a model-agnostic Signed Dual-Channel
Graph Contrastive Learning (SDCGCL) framework (Section 2.1), and (2) a Dual-Channel Feed-
back Fusion (DualFuse) model specifically designed to complement this framework (Section 2.2).
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Figure 2: Overview of the SDCGCL framework. The framework consists of three main components: (1)
Dual-Channel Graph Embedding, (2) Cross-Channel Distribution Calibration, and (3) Adaptive Prediction
Strategy. A negative graph sampling pool (bottom left) enables efficient training optimization.

2.1 Model-agnostic SDCGCL Framework

In this subsection, we propose our model-agnostic Signed Dual-Channel Graph Contrastive Learn-
ing (SDCGCL) framework, which effectively leverages both positive and negative user feedback for
recommendation tasks. The SDCGCL framework consists of three key components: dual-channel
graph embedding, cross-channel distribution calibration, and an adaptive prediction strategy, as
illustrated in Figure 2.

2.1.1 Dual-Channel Graph Embedding

To effectively leverage both positive and negative feedback, our SDCGCL framework independently
propagates the positive and negative interaction graphs using graph contrastive learning techniques.

For each channel, we independently encode the user and item embeddings through a message
propagation function f(·) and a dropout strategy function p(·), which can be instantiated with any
suitable GNN backbone. The embeddings are updated over L layers:

e+u,l = f
(
p(Â+), e+i,l−1

)
, e−u,l = f

(
p(Â−), e−i,l−1

)
(1)

where e+u,l, e
−
u,l denote layer l embeddings, e+i,l−1, e−i,l−1 represent layer l−1 item embeddings,

and Â+, Â− are normalized adjacency matrices in positive/negative channels. After L layers of
propagation, we obtain the final graph embeddings:

E+
u = AGG

(
{e+u,l : l ≤ L}

)
, E−

u = AGG
(
{e−u,l : l ≤ L}

)
(2)

where E+
u and E−

u denote final graph embeddings in positive/negative channels, and AGG(·) denotes
a function that aggregates embeddings from different layers, such as mean pooling or concatenation.

To generate contrastive views for contrastive learning, we apply the base model’s augmentation
mechanism to obtain augmented embeddings at a designated layer l∗:

z+u,l∗ = ϕ
(
Â+, e+u,l,X,θ

)
, z−u,l∗ = ϕ

(
Â−, e−u,l,X,θ

)
(3)

where ϕ(·) represents the base model’s specific augmentation mechanism, X denotes optional node
features, and θ contains augmentation-specific parameters (e.g., dropout rates). The final contrastive
embeddings are then obtained by aggregating the augmented embeddings:

Z+
u = AGG*

(
{z+u,l∗}

)
, Z−

u = AGG*
(
{z−u,l∗}

)
(4)

where AGG*(·) is the contrastive view aggregator. Similar notations apply to items with embeddings
E+

i , E−
i , Z+

i and Z−
i .
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2.1.2 Cross-Channel Distribution Calibration.

To effectively integrate information from both positive and negative feedback channels, our frame-
work employs a cross-channel distribution calibration mechanism, which achieves the information
integration through two components: intra-channel contrastive learning and inter-channel distribution
alignment.

Intra-Channel Contrastive Learning. Given that user preferences exhibit inherent structure
within both positive and negative interactions, we first employ channel-specific contrastive learning
to capture these underlying patterns. For the positive channel, we optimize:

min
(u,i)∈G+

−{f∗(E+
u ,Z

+
u ) + f∗(E+

i ,Z
+
i )−

∑
(u′,i′)∈G+

u′ ̸=u,i′ ̸=i

(
f∗(E+

u ,Z
+
u′)

||U|| − 1
+

f∗(E+
i ,Z

+
i′ )

||I|| − 1
)} (5)

Here, the first two terms f∗(E+
u ,Z

+
u ) and f∗(E+

i ,Z
+
i ) maximize agreement between original em-

beddings and their augmented views, encouraging robustness to perturbations. Similarly, for the
negative channel:

min
(u,i)∈G−

−{f∗(E−
u ,Z

−
u ) + f∗(E−

i ,Z
−
i )−

∑
(u′,i′)∈G−

u′ ̸=u,i′ ̸=i

(
f∗(E−

u ,Z
−
u′)

||U|| − 1
+

f∗(E−
i ,Z

−
i′ )

||I|| − 1
)} (6)

Inter-Channel Distribution Alignment While maintaining channel-specific information is impor-
tant, the excessive divergence between positive and negative embedding spaces can hinder effective
integration. We propose an inter-channel distribution alignment mechanism that enforces structural
consistency while preserving distinctive features:

min{
∑
u∈U

g∗(
∑

(u,i)∈G+

E+
u ◦E+⊺

i

||N+
u ||

,
∑

(u,j)∈G−

E−
u ◦E−⊺

j

||N−
u ||

)},min{
∑
i∈I

g∗(
∑

(u,i)∈G+

E+
u ◦E+⊺

i

||N+
i ||

,
∑

(v,i)∈G−

E−
v ◦E−⊺

i

||N−
i ||

)}

(7)

where g∗(·, ·) represents a distribution difference measure between positive and negative channels.
The first equation aligns user-centric patterns, while the second addresses item-centric alignments,
with normalized interaction scores reflecting neighborhood aggregations.

2.1.3 Adaptive Prediction Strategy

After obtaining the calibrated embeddings from both channels, we adopt an adaptive prediction
strategy to combine them for final recommendation. The predicted preference score ŷu,i for user u
and item i is computed by balancing the contributions from the positive and negative embeddings:

ŷu,i = (1 + k)E+
u ◦E+⊺

i − kE−
u ◦E−⊺

i , (8)

where k ∈ [0, 1] is a hyperparameter controlling the influence of negative feedback.

2.1.4 Theoretical Analysis

Theorem 1 (Distribution Instability). For each node, the negative neighbors N− have an unstable
degree of scale. For users, some only give positive ratings and refrain from commenting on items they
dislike, while others are more direct and express their negative ratings openly. Therefore, in signed
recommendation graphs, the negative feedback distribution exhibits higher variance than positive
feedback, with embedding distributions satisfying:

E[E+
u ◦E+⊺

i ] = µ, E[E−
u ◦E−⊺

i ] = δ1 + µ

Var[E+
u ◦E+⊺

i ] = σ2, Var[E−
u ◦E−⊺

i ] = δ2σ
2

(9)

where δ2 ≥ 1 represents the inherent instability of negative feedback.
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Proof Sketch. We show that without distribution alignment, the prediction expectation contains a
bias term −kδ1 and inflated variance dependent on δ2. Distribution alignment (Eq. 7) ensures
δ1 → 0, δ2 → 1, normalizing the prediction expectation to E[ŷu,i] = µ and simplifying variance to
(2k2 + 2k + 1) · σ2. The complete proof is provided in Appendix A.1.

2.2 DualFuse Model

SDCGCL is model-agnostic and can integrate with various graph contrastive learning models like
SGL, XSimGCL, and LightGCL [46, 57, 2]. However, these models lack negative feedback utilization,
limiting their ability to fully exploit the potential of our framework. To address this inadequate
utilization, we propose DualFuse, which implements dual-channel graph encoding and cross-channel
fusion of positive and negative graphs, enabling simultaneous learning of both interaction patterns to
maximize SDCGCL’s effectiveness.

2.2.1 Dual-Channel Graph Encoder

DualFuse employs a dual-channel graph encoder based on LightGCN, with distinct embedding spaces
for each channel. Embeddings evolve through layer-wise message propagation within channels, and
the final representations are computed via multi-hop connectivity aggregation:

E+
u =

∑L
l=0

∑
i∈N+

u

e+
i,l−1√

|N+
u |·|N+

i |

L+ 1
,E−

u =

∑L
l=0

∑
i∈N−

u

e−
i,l−1√

|N−
u |·|N−

i |

L+ 1
(10)

where E+
u and E−

u denote final graph embeddings in two channels. Similarly, for item i, we can
obtain E+

i and E−
i .

2.2.2 Cross-Channel Graph Fusion

DualFuse leverages an innovative cross-channel graph fusion mechanism where embeddings from
each channel create perturbations for the other, enriching representations while preserving channel-
specific patterns, as shown in Figure 3.

Figure 3: Graph fusion mechanism: Original
embeddings from positive (orange) and neg-
ative (purple) channels are normalized and
fused to generate contrastive views.

At a designated layer l∗, we generate contrastive views
by introducing structured perturbations derived from the
opposite channel. This contrastive views implements the
data augmentation function ϕ(·) from Equation 4 through
cross-channel fusion:

Z+
u =

1

L+ 1

L∑
l=0

(e+u,l∗ +
e−u,l∗

||e−u,l∗ ||
),

Z−
u =

1

L+ 1

L∑
l=0

(e−u,l∗ +
e+u,l∗

||e+u,l∗ ||
)

(11)

where Z+
u and Z−

u denote final contrastive embeddings in two channels. Similarly, for item i, we can
obtain Z+

i and Z−
i .

2.2.3 Theoretical Analysis

Theorem 2 (Cross-Channel Information Preservation). The cross-channel fusion mechanism pre-
serves essential information while maintaining stable gradient flow. For any node v ∈ U ∪ I, at
convergence:

∥∇e+
v
L∥ ≈ ∥∇e−

v
L∥ (12)

Proof Sketch. By analyzing gradient propagation through the fusion mechanism, we establish that
at convergence, when ∥ ∂L

∂Z+
v
∥ ≈ ∥ ∂L

∂Z−
v
∥ and ∥e+v ∥ ≈ ∥e−v ∥, the gradients in both channels maintain

similar magnitudes, ensuring balanced information flow. The detailed derivation is available in
Appendix A.2.
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3 Optimization Design

To effectively train our framework while managing computational complexity, we propose a two-stage
optimization strategy that combines comprehensive learning on the full graph with efficient training
on strategically sampled subgraphs.

3.1 Two-Stage Optimization Strategy.

Full-Graph Learning Stage The first stage operates on the complete signed user-item interaction
graph G, processing all positive edges E+ and negative edges E− simultaneously. The full-graph
learning stage is crucial for capturing the complete structure of user preferences and ensuring that no
valuable negative feedback information is overlooked during the initial training period.

Sampled-Graph Learning Stage. To address the computational challenges posed by large-scale
negative interaction graphs while maintaining learning effectiveness, we propose a popularity-guided
random walk sampling strategy that is formally presented in Algorithm 1. This strategy carefully
constructs subgraphs that preserve the most informative negative feedback patterns.

Algorithm 1: Popularity-Guided Random Walk Sampling
Input :Original negative graph G−, sample rate ρ, walk length l, temperature τ
Output :Sampled negative graph Gs−
Initialize node degrees dv for all v ∈ V;
Compute importance distribution P (v)← exp(dv/τ)∑

u∈V exp(du/τ)
;

S ← Sample ρ|V| nodes according to P (v);
Initialize importance scores sv ← 0 for all v ∈ V;
for each starting node v0 ∈ S do

vt ← v0;
for t = 1 to l do

Compute transition probabilities P (vj |vt)←
dvj∑

vk∈N(vt)
dvk

;

Sample vt fromN (vt) according to P (vj |vt);
Update importance: svt ← svt + dvt · l−t

l
;

end
end
Compute edge importance wij ← si+sj

2
for each edge (i, j);

Construct Gs− with edges where wij > θ;
return Gs−

Theoretical Analysis. The effectiveness of our two-stage sampling strategy can be theoretically
justified through embedding stability bounds:

Theorem 3 (Two-Stage Stability Bound). For any node v ∈ U∪I , the expected embedding difference
satisfies:

E
∥∥∥e(t)v − e(t−1)

v

∥∥∥2
2
≤
{
C1/t, t ≤ Twarm

C2(ρ)/t+ ϵ(ρ)/
√
t, t > Twarm

(13)

where C1 := η20L
2D integrates the initial learning rate (η0), the Lipschitz constant (L) of loss

gradients in dense interaction regions (∥eu − ei∥2 ≥ δ), and the maximum node distance (D);

C2(ρ) := η20

(
L2 +

σ2
0+κ/ρ

ρ

)
combines gradient smoothness (L2), base variance (σ2

0) from full-

graph training, and sparse sampling penalty (κ/ρ2); ϵ(ρ) := η0
√
ν(ρ) encodes information loss

where ν(ρ) measures divergence between true and sampled negative feedback distributions.

Proof Sketch. We analyze each optimization stage separately. In the warm-up phase, embedding
differences decay as O(1/t). In the sampling phase, the decay follows O(1/t)+O(1/

√
t), reflecting

the trade-off between sampling efficiency (ρ) and variance control (κ, ν). The full derivation is
provided in Appendix A.3.
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Table 1: The performance comparison across the methods on four datasets. Baseline best results in bold,
SDCGCL best results in bold*, second-best underlined. Relative improvement (%) shows the performance gain
of SDCGCL-DualFuse over the strongest baseline. * indicates statistical significance (p < 0.01).

Group Datasets ML-1M Yelp Amazon ML-10M

Models Recall NDCG Recall NDCG Recall NDCG Recall NDCG

U-RS

MF 0.1329 0.1988 0.0334 0.0217 0.0489 0.0364 0.1667 0.2046
NCF 0.1501 0.2102 0.0359 0.0237 0.0578 0.0427 0.1926 0.2441
NGCF 0.1630 0.2185 0.0566 0.0475 0.0614 0.0463 0.2162 0.2718
LightGCN 0.1993 0.2632 0.0662 0.0539 0.0728 0.0631 0.2597 0.3091
DGCF 0.1768 0.2104 0.0629 0.0504 0.0695 0.0613 0.2241 0.2859
HyRec 0.1805 0.2181 0.0606 0.0550 0.0658 0.0596 0.2304 0.2805
GFormer 0.2272 0.2407 0.0597 0.0542 0.0758 0.0672 0.2460 0.3011
SelfGNN 0.2565 0.2810 0.0791 0.0672 0.0806 0.0724 0.2742 0.3111
NCL 0.2627 0.2782 0.0699 0.0615 0.0746 0.0676 0.2972 0.3183
SGL 0.2798 0.3037 0.0746 0.0729 0.0958 0.0694 0.3056 0.3299
LightGCL 0.2730 0.3035 0.0697 0.0675 0.0967 0.0728 0.3098 0.3231
XSimGCL 0.2729 0.3087 0.0867 0.0758 0.0963 0.0707 0.3109 0.3371
IGCL 0.2747 0.3016 0.0692 0.0660 0.0796 0.0661 0.2956 0.3212

S-RS

SiReN 0.3093 0.3338 0.0873 0.0635 0.1017 0.0924 0.3490 0.3583
SiGRec 0.1937 0.2583 0.0594 0.0499 0.0741 0.0678 0.2302 0.2918
DFGNN 0.2538 0.3030 0.0728 0.0609 0.0768 0.0705 0.2721 0.3113
SignGT 0.1635 0.2225 0.0607 0.0536 0.0736 0.0644 0.2366 0.2970
SBGNN 0.1527 0.2113 0.0621 0.0479 0.0612 0.0548 0.2237 0.2773
SLGNN 0.1740 0.2370 0.0658 0.0498 0.0617 0.0556 0.2269 0.2912
SGFormer 0.1877 0.2680 0.0601 0.0459 0.0792 0.0648 0.2344 0.2908
SIGFormer 0.2995 0.3380 0.0856 0.0777 0.1006 0.0997 0.3217 0.3549
NFARec 0.2840 0.3212 0.0971 0.0808 0.1136 0.1020 0.3316 0.3442

Ours

SDCGCL-SGL 0.2879 0.3300 0.1136 0.0907 0.1108 0.1001 0.3768 0.3716
SDCGCL-LightGCL 0.2945 0.3423 0.1069 0.0826 0.1057 0.0890 0.3810 0.3760
SDCGCL-XSimGCL 0.3050 0.3401 0.1112 0.0881 0.1142 0.1014 0.3791 0.3726
SDCGCL-DualFuse 0.3282* 0.3693* 0.1243* 0.0959* 0.1342* 0.1113* 0.3900* 0.3860*

Relative improvement (%) 6.110% 9.260% 28.012% 18.689% 18.133% 9.118% 11.748% 7.731%

3.2 Multi-Objective Loss Integration

Our training approach integrates three key loss components to effectively capture both positive and
negative feedback patterns: (1) recommendation loss based on Bayesian Personalized Ranking for
supervision, (2) contrastive learning loss to enhance embedding quality within each channel, and (3)
distribution alignment loss to maintain consistent structural information between channels. The final
objective function combines these components with balanced weighting parameters:

L = Lrec + λ(Lcl + γLdist) + η||Θ||22 (14)

where λ controls the overall contribution of the auxiliary objectives, γ weights the distribution
alignment constraint, and η is the L2 regularization coefficient applied to model parameters Θ. A
comprehensive description of each loss component and their mathematical formulations is provided
in Appendix B.

4 Experiments

4.1 Experimental Setup

We evaluate our method on four publicly available recommendation datasets: Yelp, Amazon, and
MovieLens (ML-1M and ML-10M). Following established conventions, we binarize ratings (scores
≥ 4 as positive, < 4 as negative). For the performance evaluation, we adopt Recall@20 and
NDCG@20 as metrics. We benchmark against 22 state-of-the-art recommendation methods across
unsigned and sign-aware recommendation systems. Detailed descriptions of datasets, metrics,
baselines, and parameter settings are provided in Appendix C.

4.2 Overall Performance

Experimental evaluations demonstrate our approach’s superior performance. As shown in Table 1,
DualFuse consistently outperforms all baselines by substantial margins. Compared to the best
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unsigned baseline (XSimGCL), our model achieves 20.26% and 19.63% improvements in Recall@20
and NDCG@20 on ML-1M. Against sign-aware methods, DualFuse shows significant gains over
NFARec, with Recall@20 improvements of 6.11% (ML-1M), 28.01% (Yelp), and 18.13% (Amazon).
SDCGCL framework enhances all integrated methods (see Appendix D.2), validating our dual-
channel architecture’s effectiveness.

4.3 Ablation Study

4.3.1 Component Analysis
Table 2: Performance analysis with different component combinations

Variant Components Performance
Fusion CL Align Rec Recall NDCG

DualFuse ✓ ✓ ✓ ✓ 0.3282 0.3693
w/o Fusion ✗ ✓ ✓ ✓ 0.0860 0.0857
w/o CL ✓ ✗ ✓ ✓ 0.2983 0.3307
w/o Align ✓ ✓ ✗ ✓ 0.3231 0.3564
w/o Rec ✓ ✓ ✓ ✗ 0.2436 0.2586

We evaluate our framework
through ablation studies on key
components. Table 2 shows re-
moving fusion causes 73.80%
Recall@20 decrease, while CL
and alignment provide 10.45%
and 3.49% NDCG@20 improve-
ments respectively. Recommendation loss is critical, with its removal causing 69.94% NDCG@20
degradation and scattered embedding distributions (Details see Appendix D.3 and Figure 4).

4.3.2 Impact of Sampling Rate
Table 3: Analysis of sampling rate optimization

ρ Performance Efficiency
Recall NDCG Time/epoch Conv. Total

1.0 0.3226 0.3567 75.30s 23 28.9m
0.1 0.3268 0.3604 68.03s 21 23.8m
0.01 0.3282 0.3693 59.57s 21 20.8m

0.001 0.2025 0.2050 50.01s >50 >41.7m

Our sampling rate analysis em-
pirically validates the theoretical
bounds established in Theorem 3
through three critical regimes of
operation. The full-graph train-
ing setting (ρ = 1.0) corre-
sponds to the C1/t-dominated warm-up phase in our theoretical framework. While this configuration
achieves reasonable performance (0.3226 Recall@20), it requires 28.9 minutes total training time,
demonstrating the computational cost of unoptimized stability bounds. This setting serves as our
baseline for comparison with sampling-optimized approaches.

The optimal sampling configuration (ρ = 0.01) represents a critical balance point between the
competing terms in our theoretical model. This rate effectively balances the C2(ρ)/t term (where
κ/ρ2 is bounded at 104×κ) and the ϵ(ρ)/

√
t term from Theorem 3. The experimental results confirm

that this configuration delivers the peak performance (0.3282 Recall@20) while requiring only 20.8
minutes of training, a 28.0% efficiency gain compared to full-graph training. This empirical finding
aligns with the O(1/t) decay advantage predicted by our theoretical analysis.

4.4 Empirical Analysis

Robustness Analysis To evaluate the model robustness, we conduct experiments by randomly
corrupting 0%-20% of user-item interactions. SDCGCL-DualFuse demonstrates the superior stability,
maintaining 81.3% of its performance under 20% noise on MovieLens and 76.7% on Amazon.
As shown in Figure 5, all SDCGCL variants exhibit improved robustness compared to their base
counterparts, attributed to our dual-channel architecture and cross-channel calibration.

Parameter Sensitivity Our framework involves five key hyperparameters that control different
aspects of model behavior. Through extensive analysis, we observe that moderate values consistently
yield optimal performance: channel balancing parameter α (0.1-0.4), contrastive learning parameter
β (0.3-0.7), distribution alignment parameter γ (0.1-0.5), and negative feedback weight k (0.1-0.3).
The auxiliary loss parameter λ shows stability in the range of 0.1-0.2. Figure 6 visualizes these
effects across datasets. These findings confirm our theoretical analysis in Section 2.1.4, particularly
regarding the necessity of distribution alignment.
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Figure 4: t-SNE visualization of learned embeddings on four datasets across different ablation settings. Red/or-
ange: positive users/items; blue/green: negative users/items.
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Figure 5: Model robustness evaluation on two datasets showing superior performance stability of SDCGCL
variants under increasing noise ratios.
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Figure 6: Parameter sensitivity analysis showing impact on Recall@20 and NDCG@20 across four datasets.

4.5 More Detailed Experiments

We provide additional experimental results in the appendix, including efficiency analysis (Ap-
pendix D.1), performance improvement analysis (Appendix D.2), and extended ablation studies
(Appendix D.3) to supplement the main findings.

5 Related Work

5.1 GNNs for Recommendation

Deep learning[59, 37, 11, 26], especially GNN, has revolutionized recommender systems through
their capacity to model complex user-item relationships. Starting with foundational works [33, 35],
the field evolved through message passing innovations like GC-MC [36] and NGCF [40], reaching
a significant milestone with LightGCN [16] and GCCF [5]. Subsequent developments enhanced
theoretical foundations through pre-training [14], filtering mechanisms [58], and multi-view learning
[61], while temporal modeling advanced through architectures like SRGNN [48], GCE-GNN [44],
and TGSREC [10]. Dynamic patterns were captured by DGCF [41], TG-MC [1], DGSR [60], and
SURGE [3], while contrastive learning emerged as a promising direction [2, 27, 57, 55, 53, 65, 64],
further enhanced by transformer integrations [42, 51, 50]. However, these methods struggle with
heterogeneous feedback types.

5.2 Sign-aware Recommendation

Sign-aware recommendation systems evolved from foundational explicit feedback methods like
user-based CF [63], PMF [30], and SVD++ [23]. Built upon theoretical foundations in spectral
analysis [18], matrix decomposition [19], and balance theory [17, 7], contemporary research has
deepened understanding of negative feedback [22, 52], leading to innovations in graph-based systems
[29, 34], sampling strategies [8, 9], interactive platforms [62], and sequential models [31, 32]. While
various approaches have interpreted different user behaviors as negative signals [39, 12, 45, 62],
many methods still struggle with effective integration, either excluding negative instances [54, 56]
or oversimplifying interactions. Our work addresses these limitations through a model-agnostic
framework that seamlessly integrates with existing methods while avoiding traditional balance theory
constraints [34].

6 Conclusion

In this paper, we propose SDCGCL, a novel model-agnostic framework for effectively leveraging
negative feedback in recommender systems, along with DualFuse, a specially designed model that
maximizes the framework’s capabilities. Through theoretical analysis and extensive experiments, we
demonstrate how our dual-channel architecture, cross-channel distribution calibration mechanism,
and adaptive prediction strategy successfully address the fundamental challenges of incorporating neg-
ative feedback while maintaining computational efficiency. The framework’s model-agnostic nature
enables seamless integration with existing graph contrastive learning methods, consistently yielding
substantial performance improvements across multiple datasets and baseline models. Our compre-
hensive empirical results validate that negative feedback indeed plays a crucial role in enhancing
recommendation performance when properly utilized through our proposed framework.
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A Detailed Proofs

A.1 Complete Proof of Theorem 2.1: Distribution Instability

Proof. We begin by establishing the distributional properties of embeddings derived from positive
and negative feedback channels. Given the assumptions stated in the theorem, we proceed as follows:
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Let us denote X+
ui = E+

u ◦ E+⊺
i and X−

ui = E−
u ◦ E−⊺

i as the interaction scores in positive and
negative channels, respectively. By assumption, these random variables follow distributions with

E[X+
ui] = µ, Var[X+

ui] = σ2

E[X−
ui] = µ+ δ1, Var[X−

ui] = δ2σ
2

(15)

where δ1 represents the mean shift and δ2 ≥ 1 captures the increased variance in negative feedback
distributions.

For the predicted preference score ŷu,i = (1 + k)X+
ui − kX−

ui, we derive its expectation:

E[ŷu,i] = E[(1 + k)X+
ui − kX−

ui]

= (1 + k)E[X+
ui]− kE[X−

ui]

= (1 + k)µ− k(µ+ δ1)

= (1 + k)µ− kµ− kδ1
= µ− kδ1

(16)

Assuming independence between channels, we derive the variance:

Var[ŷu,i] = Var[(1 + k)X+
ui − kX−

ui]

= (1 + k)2Var[X+
ui] + k2Var[X−

ui]

= (1 + k)2σ2 + k2δ2σ
2

= σ2[(1 + k)2 + k2δ2]

= σ2[1 + 2k + k2 + k2δ2]

= σ2[1 + 2k + k2(1 + δ2)]

(17)

This demonstrates that without distribution alignment, the prediction has a systematic bias of −kδ1
and inflated variance scaled by δ2 ≥ 1.

When applying our cross-channel distribution calibration mechanism (Equation 7), we enforce δ1 → 0
and δ2 → 1. Consequently:

E[ŷu,i] = µ

Var[ŷu,i] = σ2[1 + 2k + k2(1 + 1)]

= σ2(1 + 2k + 2k2)

(18)

Thus, the alignment mechanism eliminates the bias term −kδ1 from the prediction expectation and
normalizes the variance to a more stable form that depends solely on k rather than the instability
parameter δ2, completing the proof.

A.2 Complete Proof of Theorem 2.2: Cross-Channel Information Preservation

Proof. We analyze the gradient flow through the cross-channel fusion mechanism to demonstrate
that it maintains balanced information flow between positive and negative channels.

1. Gradient Analysis for Positive Channel:

For the positive channel fusion operation, the gradient with respect to the embedding e+v can be
expressed as:

∇e+
v
L =

∂L
∂e+v

=
∂L
∂Z+

v

∂Z+
v

∂e+v
+

∂L
∂Z−

v

∂Z−
v

∂e+v

(19)

The first term corresponds to the direct gradient flow within the positive channel, while the second
term captures the cross-channel influence through the fusion mechanism.
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From Equation 13 in the main paper, we have:

Z+
v =

1

L+ 1

L∑
l=0

(
e+v,l∗ +

e−v,l∗

∥e−v,l∗∥

)

Z−
v =

1

L+ 1

L∑
l=0

(
e−v,l∗ +

e+v,l∗

∥e+v,l∗∥

) (20)

Therefore:

∂Z+
v

∂e+v
=

1

L+ 1

∂Z−
v

∂e+v
=

1

L+ 1

∂

∂e+v

(
e+v
∥e+v ∥

) (21)

The derivative of the normalized vector can be expanded as:

∂

∂e+v

(
e+v
∥e+v ∥

)
=

∂

∂e+v

(
e+v√
e+v · e+v

)

=
1

∥e+v ∥
I− e+v e

+
v
T

∥e+v ∥3

(22)

where I is the identity matrix.

For simplicity and to understand the upper bound, we can establish:

∥∥∥∥ ∂

∂e+v

(
e+v
∥e+v ∥

)∥∥∥∥ ≤ 1

∥e+v ∥
(23)

2. Gradient Norm Bounds:

Using the above results, we can now bound the gradient norm:

∥∇e+
v
L∥ =

∥∥∥∥ ∂L
∂Z+

v

∂Z+
v

∂e+v
+

∂L
∂Z−

v

∂Z−
v

∂e+v

∥∥∥∥
≤
∥∥∥∥ ∂L
∂Z+

v

∂Z+
v

∂e+v

∥∥∥∥+ ∥∥∥∥ ∂L
∂Z−

v

∂Z−
v

∂e+v

∥∥∥∥
≤
∥∥∥∥ ∂L
∂Z+

v

∥∥∥∥ 1

L+ 1
+

∥∥∥∥ ∂L
∂Z−

v

∥∥∥∥ 1

L+ 1

1

∥e+v ∥

=
1

L+ 1

(∥∥∥∥ ∂L
∂Z+

v

∥∥∥∥+ ∥∥∥∥ ∂L
∂Z−

v

∥∥∥∥ 1

∥e+v ∥

)
(24)

Similarly, for the negative channel:

∥∇e−
v
L∥ ≤ 1

L+ 1

(∥∥∥∥ ∂L
∂Z−

v

∥∥∥∥+ ∥∥∥∥ ∂L
∂Z+

v

∥∥∥∥ 1

∥e−v ∥

)
(25)

3. Establishing Lower Bounds:

We can also establish lower bounds:
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∥∇e+
v
L∥ ≥ 1

L+ 1

(∥∥∥∥ ∂L
∂Z+

v

∥∥∥∥− ∥∥∥∥ ∂L
∂Z−

v

∥∥∥∥ 1

∥e+v ∥

)
∥∇e−

v
L∥ ≥ 1

L+ 1

(∥∥∥∥ ∂L
∂Z−

v

∥∥∥∥− ∥∥∥∥ ∂L
∂Z+

v

∥∥∥∥ 1

∥e−v ∥

) (26)

4. Convergence Analysis:

At convergence, several key conditions are satisfied:

1) The loss gradients with respect to contrastive embeddings from both channels become approxi-
mately equal:

∥∥∥ ∂L
∂Z+

v

∥∥∥ ≈
∥∥∥ ∂L
∂Z−

v

∥∥∥.

2) The embedding norms from both channels converge to similar magnitudes: ∥e+v ∥ ≈ ∥e−v ∥.

Substituting these conditions into our bounds:

1

L+ 1

(
1− 1

∥e+v ∥

)∥∥∥∥ ∂L
∂Z+

v

∥∥∥∥ ≤ ∥∇e+
v
L∥ ≤ 1

L+ 1

(
1 +

1

∥e+v ∥

)∥∥∥∥ ∂L
∂Z+

v

∥∥∥∥
1

L+ 1

(
1− 1

∥e−v ∥

)∥∥∥∥ ∂L
∂Z−

v

∥∥∥∥ ≤ ∥∇e−
v
L∥ ≤ 1

L+ 1

(
1 +

1

∥e−v ∥

)∥∥∥∥ ∂L
∂Z−

v

∥∥∥∥ (27)

Since
∥∥∥ ∂L
∂Z+

v

∥∥∥ ≈
∥∥∥ ∂L
∂Z−

v

∥∥∥ and ∥e+v ∥ ≈ ∥e−v ∥ at convergence, we can conclude that:

∥∇e+
v
L∥ ≈ ∥∇e−

v
L∥ (28)

This demonstrates that our cross-channel fusion mechanism maintains balanced gradient flow between
positive and negative channels, ensuring that both channels contribute roughly equally to the learning
process despite their potentially different initial characteristics.

A.3 Complete Proof of Theorem 3.1: Two-Stage Stability Bound

Proof. We’ll analyze each stage of our optimization process separately.

1. Warmup Stage Analysis (Full-Graph Learning):

During the warmup stage (t ≤ Twarm), we train on the complete graph without sampling. Under
standard assumptions for gradient-based optimization, the loss function L has L-Lipschitz gradients
in dense interaction regions where ∥eu − ei∥2 ≥ δ, the maximum distance between any node
embeddings is bounded by D and the learning rate is initialized as η0 and potentially follows a
schedule.

For gradient descent with these conditions, we have:

e(t)v − e(t−1)
v = −ηt−1∇ev

L(Θ(t−1))

∥e(t)v − e(t−1)
v ∥22 = η2t−1∥∇evL(Θ(t−1))∥22

(29)

By the Lipschitz gradient assumption in dense regions:

∥∇ev
L(Θ(t−1))∥22 ≤ L2D (30)

With learning rate schedule ηt = η0/
√
t+ 1, we get:

E∥e(t)v − e(t−1)
v ∥22 ≤ η2t−1L

2D

=
η20
t
L2D

=
C1

t

(31)
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where C1 = η20L
2D is our warmup stage constant.

2. Sampling Stage Analysis (Subgraph Learning):

After the warmup stage (t > Twarm), we transition to training on sampled subgraphs. This introduces
two additional sources of variance: Sampling Variance: Due to sampling a subset of the graph with
rate ρ and Distribution Divergence: Information loss from potentially missing important negative
feedback.

Let’s denote the true gradient as ∇L and the sampled gradient as ∇̃L. The variance of the sampled
gradient can be decomposed as:

Var(∇̃L) = E∥∇̃L −∇L∥22 + E∥∇L − E[∇L]∥22

=
σ2
0

ρ︸︷︷︸
base variance

+
κ

ρ2︸︷︷︸
sparsity penalty

+ ν(ρ)︸︷︷︸
information loss

, (32)

where σ2
0 is the base variance from full-graph training , κ is a constant that scales the variance inflation

from rare negative feedback and ν(ρ) measures the information loss due to potential systematic bias
in sampled graphs.

The embedding difference now satisfies:

E∥e(t)v − e(t−1)
v ∥22 = E∥ − ηt−1∇̃evL(Θ(t−1))∥22

= η2t−1E∥∇̃ev
L(Θ(t−1))∥22

(33)

The expected squared norm of the sampled gradient can be decomposed as:

E∥∇̃ev
L(Θ(t−1))∥22 = ∥E[∇̃ev

L(Θ(t−1))]∥22 + Var(∇̃ev
L(Θ(t−1)))

= ∥∇ev
L(Θ(t−1))− β(ρ)∥22 + Var(∇̃ev

L(Θ(t−1)))
(34)

where β(ρ) represents the bias introduced by sampling, which has magnitude proportional to
√

ν(ρ).

Combining these results:

E∥e(t)v − e(t−1)
v ∥22 ≤ η2t−1(L

2 +
σ2
0

ρ
+

κ

ρ2
) + ηt−1

√
ν(ρ)

=
η20
t
(L2 +

σ2
0

ρ
+

κ

ρ2
) +

η0√
t

√
ν(ρ)

=
C2(ρ)

t
+

ϵ(ρ)√
t

(35)

where C2(ρ) = η20(L
2 +

σ2
0+κ/ρ

ρ ) and ϵ(ρ) = η0
√
ν(ρ).

This demonstrates that the embedding differences decay as O(1/t) during the warmup phase and as
O(1/t) +O(1/

√
t) during the sampling phase. The additional O(1/

√
t) term reflects the trade-off

between sampling efficiency (parameter ρ) and approximation quality (parameters κ and ν).

B Detailed Multi-Objective Loss Integration

This section provides comprehensive details on our training approach that integrates recommendation
supervision, contrastive learning signals, and distribution alignment to effectively capture both types
of feedback patterns.
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Algorithm 2: SDCGCL Optimization Algorithm
Input :Positive graph G+, negative graph G−, total epochs T , warm-up epochs Twarm, hyperparameters

α, β, λ, γ, ηr , learning rate η
Output :Trained model parameters Θ
Initialize model parameters Θ randomly;

for t = 1 to T do
if t ≤ Twarm then
G−s ← G− ; /* Full negative graph for warm-up */

else
G−s ← PGRWSampling(G−, ρ) ; /* Algorithm 1 */

end
for each mini-batch B do

/* Dual-channel embedding generation */

E+,Z+ ← GraphEncoder(G+,B);
E−,Z− ← GraphEncoder(G−s ,B);
/* Multi-objective loss computation */

Lrec ← (1− α)L+
rec(E

+) + αL−
rec(E

−);
Lcl ← (1− β)L+

cl(E
+,Z+) + βL−

cl(E
−,Z−);

Ldist ← JS(E+,E−) ; /* Jensen-Shannon divergence */
/* Total loss with regularization */

L ← Lrec + λ(Lcl + γLdist) + ηr∥Θ∥22;
/* Parameter update */
Θ← Adam(Θ,∇ΘL, η);

end
end
return Θ

B.1 Recommendation Loss

We adopt Bayesian Personalized Ranking (BPR) loss across both channels. For positive channel:

L+
rec = −

∑
(u,i,j)∈O+

lnσ(ŷu,i − ŷu,j) (36)

where O+ contains positive triplets (u, i, j) with user u, observed item i, and unobserved item j.
Similarly, for the negative channel, we can obtain L−

rec, the overall recommendation loss combines
both channels:

Lrec = (1− α)Lrec+ + αL−
rec (37)

B.2 Contrastive Loss

Following Equations 5 and 6, we apply InfoNCE loss within each channel. For positive channel:

L+
cl = −

∑
u∈U

ln
exp(sim(E+

u ,Z
+
u )/τ)∑

v∈U exp(sim(E+
u ,Z

+
v )/τ)

−
∑
i∈I

ln
exp(sim(E+

i ,Z
+
i )/τ)∑

j∈I exp(sim(E+
i ,Z

+
j )/τ)

(38)

where sim(·, ·) is dot product similarity and τ controls distribution sharpness. Similarly, for the
negative channel, we can obtain L−

cl, the combined loss is:

Lcl = (1− β)L+
cl + βL−

cl (39)

B.3 Distribution Alignment Loss

For Inter-Channel Distribution Alignment (Equations 7), we use Jensen-Shannon divergence:

Ldist =
∑
u∈U

JS(
∑

i∈N+
u

E+
u ◦E+⊺

i

||N+
u ||

,
∑

i∈N−
u

E−
u ◦E−⊺

i

||N−
u ||

) +
∑
i∈I

JS(
∑

u∈N+
i

E+
u ◦E+⊺

i

||N+
i ||

,
∑

u∈N−
i

E−
u ◦E−⊺

i

||N−
i ||

)

(40)
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where normalized interaction scores correspond to neighborhood aggregation terms and JS divergence
serves as g∗(·, ·).

B.4 Joint Training Objective

The final training objective combines all three components with balanced weighting parameters:

L = Lrec + λ(Lcl + γLdist) + η||Θ||22 (41)

where λ controls the overall contribution of the auxiliary objectives, γ weights the distribution
alignment constraint, and η is the L2 regularization coefficient applied to model parameters Θ.

During training, we implement a two-stage optimization strategy where the full negative graph G−

is used for the initial Twarm epochs (warm-up stage), followed by our efficient Popularity-Guided
Random Walk Sampling approach for subsequent epochs. This warm-up period establishes stable
initial representations while the sampling stage significantly reduces computational costs without
sacrificing model performance.

Empirically, we found that setting Twarm = 1 provides sufficient initialization while minimizing
overhead, enabling our model to achieve superior results with reduced training time. The sampling
rate ρ controls the subgraph size and directly affects the efficiency-quality trade-off as demonstrated
in Section 4.3. The complete optimization process is formally presented in Algorithm 2.

C Detailed Experimental Setup

C.1 Datasets

We evaluate our method on four publicly available recommendation datasets: Yelp (business reviews),
Amazon (book reviews), and MovieLens (movie ratings) with varying scales, as detailed in Table 4.
Following established conventions [42, 56, 43], we binarize all numerical ratings by considering
scores ≥ 4 as positive feedback and scores < 4 as negative feedback. Each dataset is rigorously
partitioned into training, validation, and test sets using a 7:1:2 ratio to prevent data leakage and ensure
reproducible evaluation.

Table 4: Statistics of datasets. #Pos/#Neg refers to the percentage of positive and negative samples.
Dataset #Users #Items #Interaction #Pos/#Neg
Yelp1 29,601 24,734 2,074,594 66.3%/33.7%
Amazon2 35,736 38,121 1,960,674 80.6%/19.4%
ML-1M3 6,040 3,706 1,000,209 57.5%/42.5%
ML-10M3 69,878 10,677 10,000,054 58.9%/41.1%

C.2 Metrics

For performance evaluation, we adopt two standard ranking metrics: Recall@K, which measures the
ratio of correctly recommended items over all ground truth items, and NDCG@K, which considers
both the hit ratio and position of correctly recommended items. Following previous studies on
graph-based recommendation [16, 2, 57, 6], we set K = 20 in our experiments.

C.3 Baselines

In our experimental evaluation, we benchmark our SDCGCL framework against a diverse set of 22
contemporary recommendation methods. These approaches can be divided into two main categories.

• Unsigned RS: Traditional methods like MF [23] and NCF [15] focus on basic collaborative
filtering. Graph-based approaches including NGCF [40], LightGCN [16], and DGCF

1https://business.yelp.com/data/resources/open-dataset/
2https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
3https://grouplens.org/datasets/movielens/

27

https://business.yelp.com/data/resources/open-dataset/
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://grouplens.org/datasets/movielens/


[41] leverage various graph neural architectures. Advanced frameworks such as HyRec
[38], GFormer [24], and SelfGNN [28] explore specialized structures. Recent contrastive
learning methods (NCL [27], SGL [46], LightGCL [2], XSimGCL [57], IGCL [13])
enhance representation learning through different augmentation strategies.

• Sign-aware RS: Early approaches (SiReN [34], SiGRec [21], DFGNN [49]) focus on
separate processing of positive and negative feedback. Transformer-based methods including
SignGT [4], SGFormer [47], and SIGformer [6] leverage attention mechanisms. Other
specialized architectures like SBGNN [20], SLGNN [25], and NFARec [43] explore unique
graph structures and operators for signed feedback.

C.4 Experiment Setting

For our SDCGCL, we adopt the Adam optimizer and employ grid search for hyperparameter op-
timization. Specifically, we set the hidden embedding dimension d to 64. The learning rate is set
to 10−3 with a batch size of 2048. The hyperparameter search ranges are α ∈ [0, 1], β ∈ [0, 1],
γ ∈ [0, 1], k ∈ [0, 1] and λ ∈ [0.05, 0.35]. For computational efficiency, Twarm is uniformly set to 1.
For other baseline models, we strictly follow their officially released code to ensure fair comparison.
All experiments in this paper are conducted on 8 RTX3090 GPUs.

D Additional Experiments

D.1 Computational Efficiency Analysis

Our SDCGCL framework introduces minimal computational overhead (3-8s per epoch) while signif-
icantly improving convergence speed across different base models. SDCGCL-DualFuse achieves
the best efficiency with the fastest convergence (21 epochs) and lowest total training time (20.8
minutes) on ML-1M dataset, benefiting from both the enhanced learning signals of negative feedback
and efficient architecture design. Compared to the base models (SGL, LightGCL, XSimGCL), our
framework consistently reduces the overall training time by improving convergence despite the slight
increase in per-epoch processing time.

We provide a detailed analysis of the time complexity for our framework and its comparison with
other methods.

Table 5: Runtime comparison across methods on ML-1M dataset.
Method Time/epoch Epochs Total time
SGL 81.09s 32 43.25m
SDCGCL-SGL 89.57s 27 40.31m
LightGCL 66.09s 23 25.3m
SDCGCL-LightGCL 69.57s 24 27.83m
XSimGCL 56.09s 25 23.3m
SDCGCL-XSimGCL 59.34s 23 22.74m
SDCGCL-DualFuse 59.57s 21 20.8m

Table 6: Detailed time complexity comparison across methods. q: preserved features in LightGCL SVD; a:
augmentation ratio in SGL; ρ0: the two-stage optimization weighting coefficient;M = |U|+ |I|: total nodes.

Method Augmentation Convolution BPR Contrast Align Time/Epoch
SGL O(2a|E+|) O(2|E+|Ld+ 4a|E+|Ld) O(2Md) O(Md) - 81.09s
SDCGCL-SGL O(2a|E+|+ 2aρ0|E−|) O((2 + 4a)(|E+|+ ρ0|E−|)Ld) O(2Md) O(Md) O(Md) 89.57s
LightGCL - O(2|E+|Ld+ 2qMLd) O(2Md) O(Md) - 66.09s
SDCGCL-LightGCL - O(2(|E+|+ ρ0|E−|)Ld+ 4qMLd) O(2Md) O(Md) O(Md) 69.57s
XSimGCL - O(2|E+|Ld) O(2Md) O(Md) - 56.09s
SDCGCL-XSimGCL - O(2|E+|Ld+ 2ρ0|E−|Ld) O(2Md) O(Md) O(Md) 59.34s
SDCGCL-DualFuse - O(2|E+|Ld+ 2ρ0|E−|Ld) O(2Md) O(Md) O(Md) 59.57s

As a preprocessing step, SDCGCL employs a negative graph sampling strategy with complexity
O(kρM), where k denotes the number of sampled neighbors and ρ represents the sampling ratio. We
define ρ0 as the two-stage optimization weighting coefficient, whose value is (epoch− Twarm)ρ+
Twarm. Since Twarm = 1 ≪ epoch, therefore ρ0 ≈ ρ.
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The additional computational overhead introduced by SDCGCL varies across different base models,
with complexity O(2ρ0|E−|Ld) for XSimGCL, O(2qMLd) for LightGCL, and O(2aρ0|E−|Ld)
for SGL. DualFuse, specifically designed for efficient implementation of the SDCGCL framework,
maintains the same simplified convolution complexity O(2|E+|Ld + 2ρ0|E−|Ld) as SDCGCL-
XSimGCL while avoiding additional operations like feature decomposition or augmentation required
by other variants.

The theoretical analysis of time complexity can only reveal the complexity of each epoch, while
the actual running time is also affected by factors such as convergence speed. Our empirical results
in Table 5 demonstrate that SDCGCL framework consistently improves training efficiency across
different base models by introducing minimal computational overhead while significantly accelerating
convergence in most cases.

D.2 Performance Gains Analysis

Table 7 presents a comprehensive analysis of performance enhancements achieved by the SDCGCL
framework when integrated with existing recommendation approaches. The empirical evidence
demonstrates consistent and substantial improvements across multiple datasets and baseline architec-
tures.

Table 7: Performance enhancement analysis of the SDCGCL framework relative to baseline models. Results are
reported as Recall@20/NDCG@20 pairs, with improvement percentages indicating relative performance gains
across metrics.

Dataset Base Model Original SDCGCL-Enhanced Improvement (%)

ML-1M
SGL 0.2798/0.3037 0.2879/0.3300 +2.89%/+8.66%
LightGCL 0.2730/0.3035 0.2945/0.3423 +7.88%/+12.78%
XSimGCL 0.2729/0.3087 0.3050/0.3401 +11.76%/+10.17%

Yelp
SGL 0.0746/0.0729 0.1136/0.0907 +52.28%/+24.42%
LightGCL 0.0697/0.0675 0.1069/0.0826 +53.37%/+22.37%
XSimGCL 0.0867/0.0758 0.1112/0.0881 +28.26%/+16.23%

Amazon
SGL 0.0958/0.0694 0.1108/0.1001 +15.66%/+44.24%
LightGCL 0.0967/0.0728 0.1057/0.0890 +9.31%/+22.25%
XSimGCL 0.0963/0.0707 0.1142/0.1014 +18.59%/+43.42%

ML-10M
SGL 0.3056/0.3299 0.3768/0.3716 +23.30%/+12.64%
LightGCL 0.3098/0.3231 0.3810/0.3760 +22.98%/+16.37%
XSimGCL 0.3109/0.3371 0.3791/0.3726 +21.94%/+10.53%

D.3 Extended Ablation Analysis

We evaluate the contribution of each key component by conducting ablation studies on: (1) cross-
channel fusion ("w/o Fusion") from the DualFuse base model, and three components from our
SDCGCL framework: (2) contrastive learning ("w/o CL"), (3) distribution alignment ("w/o Align"),
and (4) recommendation loss ("w/o Rec"). Figure 4 and Table 8 present the visualization and
quantitative results across all datasets. The experimental results reveal that cross-channel fusion

Table 8: Ablation study on different components of SDCGCL. The base model is the DualFuse. Best results are
highlighted in bold.

Variant ML-1M Yelp Amazon ML-10M
Recall NDCG Recall NDCG Recall NDCG Recall NDCG

DualFuse 0.3282 0.3693 0.1243 0.0959 0.1342 0.1113 0.3900 0.3860
w/o Fusion 0.0860 0.0857 0.1046 0.0894 0.1274 0.1063 0.1624 0.1494
w/o CL 0.2983 0.3307 0.0969 0.0835 0.1161 0.0950 0.3780 0.3699
w/o Align 0.3231 0.3564 0.1032 0.0896 0.1297 0.1086 0.3847 0.3751
w/o Rec 0.2436 0.2586 0.0793 0.0667 0.0680 0.0530 0.1535 0.1389

exhibits dataset-dependent impact. Its removal causes severe performance degradation on MovieLens
(73.80% decrease in Recall@20 on ML-1M, 58.36% decrease on ML-10M) but moderate impact
on Yelp (15.85% decrease) and minimal impact on Amazon (5.07% decrease). This suggests that
cross-channel fusion is particularly critical for datasets with dense user-item interaction patterns like
MovieLens.
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The contrastive learning component consistently contributes to model performance across all datasets,
with its removal causing 10.45% decrease in NDCG@20 on ML-1M, 12.93% on Yelp, 14.65% on
Amazon, and 4.17% on ML-10M. Similarly, distribution alignment shows moderate but consistent
impact across datasets, with performance drops of 3.49% on ML-1M, 6.57% on Yelp, 2.43% on
Amazon, and 2.82% on ML-10M when removed.

Most importantly, the recommendation loss proves essential for effective training across all datasets,
as its removal leads to randomly scattered embedding distributions (Figure 4(e)) and the most
substantial performance drops: 69.94% decrease in NDCG@20 on ML-1M, 30.45% on Yelp, 52.38%
on Amazon, and 64.02% on ML-10M. This demonstrates the fundamental role of supervised signals
in learning discriminative representations for different types of feedback, regardless of dataset
characteristics.

E Limitations and Future Work

While our proposed SDCGCL framework demonstrates significant improvements across multiple
benchmarks, there are several avenues for future exploration. The current implementation has been
validated on public benchmark datasets, but deployment in large-scale industrial recommender
systems might introduce additional complexities that deserve further investigation. Additionally,
the framework could be extended to capture dynamic evolution of user feedback patterns over time,
which might further enhance recommendation performance in dynamic environments. Future work
could also explore the integration of explicit explanation mechanisms to improve user experience
and trust, as well as adaptation strategies for extreme cold-start scenarios where both positive and
negative feedback signals are initially limited.

F Broader Impacts

Our work focuses on enhancing both the performance and efficiency of recommender systems
through effective utilization of negative feedback, thereby benefiting the overall development of
recommendation technologies. The proposed framework improves user experience across various
digital platforms including e-commerce, social media, and content streaming services. We do not
foresee any negative impacts resulting from our work.
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