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ABSTRACT

Estimating the mean is a key aspect of statistical analysis. Doing such an esti-
mation on Riemannian manifolds is complex due to lacking a closed form solu-
tion. The gradient descent algorithm is commonly used to approximate the Fréchet
mean across various applications. Although generally effective, it can be problem-
atic when the dataset is large as each computation of the gradient can be costly or
when the mean is not uniquely defined as in positively curved manifolds. This pa-
per introduces a tree-based, recursive Fréchet mean estimator (RFME), designed
for data on the hypersphere. We prove the weak consistency of the RFME with
the true mean and demonstrate its computational efficiency and accuracy through
two simulations and two real-world case studies. We compare our algorithm to the
standard gradient descent approach and to the incremental Fréchet mean estima-
tor (iFME), a state of the art algorithm that efficiently estimates the mean. Lastly,
our algorithm is a generalization of the iFME and thus our algorithm has more
flexibility.

1 INTRODUCTION

In statistical inference, the center of a dataset is often of interest as it is a fundamental measure of
the location of the data. The mean is a cornerstone of many statistical methods such as regression,
principle geodesic analysis, and convex analysis. Under the scheme of Euclidean spaces, the sample
mean is canonically defined as x̄n :=

∑n
i=1 xi/n. This definition is consistent with other terms

such as barycentres, centroid, and expectation (in probability measures). This definition, however,
assumes a linear space and well-defined addition and multiplication operations which are not always
reasonable.

With advancements in measurement techniques, manifold-valued data has become increasingly
common in many research fields. Unlike data in a vector spaces (e.g., Euclidean space, Rn),
manifold-valued data typically comes from spaces without an additive structure, meaning that the
traditional method of calculating the mean by dividing the sum by the number of observations is
no longer applicable. Given a space equipped with a metric, the distance between points can be
determined. The Fréchet mean, which identifies the mean as the point that minimizes the total
squared-distance to all observations, provides an alternative approach. The common way for esti-
mating the Fréchet mean (FM) is through the gradient descent method, presented by Karcher (1977)
and Pennec (1999). Le (2001) and Le (2004) then demonstrated the applicability of this method on
complete, simply connected manifolds.

Given the computational time and storage usage requirements of the gradient descent method, many
studies have proposed incremental mean estimation techniques to address this issue. In Euclidean
space, the mean can computed in an iterative manner as

x̄n =
n− 1

n
x̄n−1 +

1

n
xn. (1)

This method has been generalized to manifolds with non-linear structure. Sturm (2003) first in-
troduced an inductive mean estimator, and proved its existence and uniqueness, on the spaces of
non-positive definite curvature (NPC). Later, Arnaudon et al. (2012) presented a stochastic ver-
sion of the algorithm, and Lim & Pálfia (2014b) extended the method as the weighted inductive
mean on the cone of positive-definite Hermitian matrices. Properties of the inductive mean has
also been analyzed on specific manifolds such as the hypersphere (Salehian et al. (2015)), Sym-
metric Positive-Definite (SPD) matrices equipped with the affine invariant Riemannian metric (Ho
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et al. (2013)), SPD matrices equipped with the Stein metric (Salehian et al. (2013a)), CAT(0) spaces
(Feragen et al. (2011)), Grassmannian manifolds (Chakraborty & Vemuri (2015)), and the Stiefel
manifold (Chakraborty & Vemuri (2019)). The convergence of the inductive mean has been well-
established on manifolds due to its stochastic nature. Lim & Pálfia (2014a) and Holbrook (2012)
also provided deterministic proofs in terms of the practical application. With the inductive mean
estimator, a variety of algorithms can be extended to learning with manifold-valued data, such as
Convolution Neural Networks (Chakraborty et al. (2022)), Recurrent Neural Networks (Chakraborty
et al. (2018)), nonlinear regression (Banerjee et al. (2016)), and movement primitive learning (Daab
et al. (2023)).

In this paper, we introduce the Recursive Fréchet mean estimator (RFME), a tree-based inductive
algorithm to approximate the mean of a dataset. This is akin to constructing a binary tree where
the leaves are the data, intermediate parents are the means of their children, and thus the root of the
tree represents the mean estimator of the entire dataset. This can be viewed as a generalization of
incremental Fréchet mean estimator (iFME, Salehian et al., 2015), and the estimator is computed in
pairs of the point at each step, rather than following an order. We show that RFME is a consistent
estimator of the FM and that it is more computationally efficient than the gradient descent approach.
Additionally, our simulations on synthetic data and real-world cases suggest our approach is compa-
rable to iFME in terms of time consumption and convergence rate, with additional benefit of being
parallelizable.

The rest of the paper is organized as follows. Section 2 covers the preliminaries of Riemannian
manifolds, geodesics, and inductive means, which are foundational for our presented algorithm.
Section 3 provides our algorithm and the theoretical guarantee for the convergence of RFME to the
true Fréchet mean. Section 4 presents experiments on both synthetic and real data, and Section 5
concludes the paper.

2 BACKGROUND

2.1 RIEMANNIAN MANIFOLDS

Here we present a brief introduction into Riemannian manifolds and the necessary backgrounds and
notations. For a more thorough handling of manifolds and differential geometry we refer to Absil
et al. (2008), Do Carmo (1992), and Lee (2018).

Let M denote a d-dimensional complete, smooth Riemannian manifold. At each point p ∈ M we
have an associated tangent space, TpM. Each tangent space is a vector space and consists of all
elements tangent to the manifold M at p. The collection of all tangent spaces is referred to as the
tangent bundle, TM = {TpM|p ∈ M}. Each tangent space has an associated inner product, ⟨·, ·⟩p,
and the collection of all such inner products is the Riemannian metric tensor, {⟨·, ·⟩p|p ∈ M}. This
inner product, in turn, allows us to consider geometric properties of the manifold such as angles and
lengths. The length L(·) of a path α : [0, 1] → M is L(α) =

∫ 1

0
∥α̇(t)∥1/2α(t)dt, where ∥ · ∥2p = ⟨·, ·⟩p

and α̇(t) = d
dtα(t). The distance between two points p, q on the manifold is the length of the shortest

path between them and denoted d(p, q) := infα L(α). The path of minimal length is referred to as
a geodesic.

Geodesics are not always unique, e.g. the antipodal point on a sphere, however all such geodesics
have the same length. The set of such points, where the uniqueness fails, is known as the cut
locus. Given a geodesic α starting at p and initial velocity α̇(0) = v, the exponential map at p,
denoted as expp : TpM → M, is defined by expp v = α(1). The map is a diffeomorphism in
a sufficiently small neighborhood of p, bounded by the cut locus. Within this neighborhood, the
inverse of exponential map, called the inverse exponential map or log map, is given by logp q = v,
where q = α(1). The Riemannian distance then can also be given by d(p, q) = ∥ logp q∥p =
∥ logq p∥q .

2.2 FRÉCHET AND KARCHER MEAN

Arguably, the most fundamental statistic of a dataset is the average or mean. On a manifold we do
not use the typical definition of the mean x̄ = 1/n

∑
xi as there is no guarantee this estimate will
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lie on the manifold. Further, the addition and multiplication operations are not well-defined. This
estimate is hence referred to as the extrinsic mean. The classical intrinsic extension of this definition
is the Fréchet mean defined as

µ = argminx∈M
1

2

∑
d2(x, xi).

The Fréchet mean is thus the point on the manifold which minimizes the sum of square dis-
tances from the data (i.e., the variance) (Fréchet, 1948). This is sometimes referred to as the
Karcher mean after Hermann Karcher who did extensive theoretical work on its convergence
(Karcher, 1977). Estimating this mean is typically done using a gradient descent approach. Letting
E(x) = 1

2

∑n
i=1 d

2(x, xi) be the variance energy, the gradient is ∇xE(x) = −
∑n

i=1 logx xi where
log is the log map. We then update the estimate with exponential map as x̂ = expx(−η∇xE(x))
where η is a tuning parameter, the step size, and proceed to the next iteration. This optimization
requires computing n many log maps per iteration which can be costly; for instance, on the space
of symmetric positive-definite matrices with the affine Riemannian metric, the log map requires ma-
trix inversion which is inherently costly. Note that some refer to the set of local minimizers of the
variance function as the Karcher Means, we assume we have a unique global optimizer.

2.3 INCREMENTAL FRÉCHET MEAN ESTIMATOR

Computing the empirical Fréchet mean using gradient descent has a time complexity of O(nk), with
sample size n and number of iterations k. This can be computationally demanding, as it requires
processing the entire dataset during each iteration. To address this issue, particularly in the context
of streaming and incoming data, Salehian et al. (2013b) proposed the following generalized form of
an incremental algorithm:

µ1 = x1

µk = argminx∈M(ωkd
2(µk−1, x) + (1− ωk)d

2(xk, x)),

where µk−1 is the (k − 1)th mean estimator with weight ωk. The weight ωk allows a weighted
average to be computed given the importance of the datapoint xk. Here µn can be interpreted as an
estimate of the empirical FM of n datapoints. This estimation is consistent but sacrifices accuracy
for small sample sizes while benefiting from not needing to recompute the FM every time new data
is introduced. Further, for one to recompute the FM the server needs to store the entire dataset, so
this algorithm alleviates such a burden.

In Euclidean space, the mean of two points always lies along the line segment connecting them;
the analogous idea on Riemannian manifolds is that the mean of two points always lies along the
geodesic between them. Moving along a geodesic from an estimate of the mean in the direction of
a new datapoint is the idea behind the incremental Fréchet mean estimator (iFME, Salehian et al.,
2015). It is, thus, useful to characterize a general midpoint of a geodesic. Let α be a geodesic from
p ∈ M to q ∈ M, we further denote αt(p, q) = α(t)(p, q), where t ∈ [0, 1].

The iFME is an algorithm to efficiently estimate the mean for streaming data and can be formulated
for an equally weighted dataset as follows:

µ̂1 = x1

µ̂k = α 1
k
(µ̂k−1, xk).

This is a generalization of equation 1 to Riemannian manifolds. The estimator updates along the
geodesic, that is, for each iteration, µ̂k−1 moves 1/k of the distance along the geodesic connecting
µ̂k−1 to the new data point xk. Theoretical results on non-positive curvature manifolds (NPC, Sturm
(2003)) and on the sphere (Salehian et al. (2015)) provide guarantees that such a inductive estimator
is both consistent and efficient on certain manifolds.

3 RECURSIVE MEAN ALGORITHM

Suppose we have a dataset D ⊂ M with D = {x1, x2, . . . , xn}. We aim to combine elements of the
dataset in a binary sort of fashion, thus it makes sense to consider n = 2k+1+r where 0 ≤ r < 2k.
This notation is typical in number theory where r refers to the remainder.
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We organize the dataset as the leaves of a binary tree, with each internal node representing the
weighted mean of its two children. Then the recursive relationship is defined as

µ̂
(ω1+ω2)
a,b = ατ (µ̂

(ω1)
a+1,2b−1, µ̂

(ω2)
a+1,2b)

with τ = ω2

ω1+ω2
being a weighted midpoint on the geodesic. The indices may be a bit cumbersome,

but the first subscript index refers to the layer from bottom to top, the second index is the element
index of that level. Generally, we have a ∈ {0, 1, 2, . . . , k+1}, k+2 layers in total, and max(b) ≤ 2a

for each layer. The superscript is a weight with the leaves having unit weight (unless specify).

We wish to consider all the data so the total weight of our estimate will be n, hence we have our
recursive Fréchet mean estimator (RFME) to be µ̂

(n)
0,1 . In our setting, the bottom layers is the data,

µ̂
(1)
k+1,i = xi for i ∈ {1, . . . , n}, and we arrange them from left to right, so that for each nodes with

two children, the left one always comes from a complete binary tree. Typically, if r is even, then
µ̂
(1)
k,max(b) = µ̂

(1)
k+1,n = xn, that is, we keep the single data to the parent layer. This rule applies

to any layer with odd number of nodes. A detailed description of the algorithm can be found in
Algorithm 1.

This organization is a generalization of iFME as we can set the tree to have n + 1 many layers, the
bottom layer being x1 and each subsequent layer including one datapoint. As opposed to the iFME,
this algorithm can take advantage of parallel programming as, at any layer, each node is independent
of every other node.

Figure 1a illustrates an example of the recursive estimation process. In this case n = 2k, and we have
that every τ = 1

2 which greatly simplifies the notation. Figure 1b compares the empirical Fréchet
mean estimator using gradient descent method, incremental estimator and recursive estimator. The
samples are generated uniformly on the hemisphere of S2, as discussed in 4.1.

Algorithm 1 Recursive Fréchet mean estimator

1: Given a set of data points {xi}ni=1 with corresponding weights {wi}ni=1 (default 1).
2: Assign µ̂

(wi)
t,i = xi, where t = ⌈log2 n⌉.

3: Compute µ̂
(w′

j)

t−1,j = ατ (µ̂
(w2j−1)
t,2j−1 , µ̂

(w2j)
t,2j ), where τ =

w2j

w2j+1+w2j
and w′

j = w2j + w2j+1, for

j = 1, ..., ⌊M
2 ⌋, M = |{µ̂(wi)

t,i }|.

4: If M is odd, µ̂
(w′

⌊M
2

⌋+1
)

t−1,⌊M
2 ⌋+1

= µ̂
(wM )
t,M .

5: If t ̸= 0, set t = t− 1, and return to step 3.
6: Output µ̂(

∑n
i=1 wi)

0,1 .

3.1 THEORETICAL GUARANTEES

Here we show that µ̂(n)
0,1 , as defined earlier, is an unbiased and consistent estimator of E[x]. Let us

first consider the hypersphere. Since the recursive mean is defined on the geodesic, we want to con-
vert it into a probability space. Let η be any point on the manifold, and denote µ̃1 = logη(µ̂

(ω1)
a+1,2b−1)

and µ̃2 = logη(µ̂
(ω1)
a+1,2b). Here the logarithm (or log) is the mapping from the manifold M to the

tangent spaces of η, thus µ̃1, µ̃2 ∈ TηM. Therefore, we can get the midpoint on the tangent space,
as it is a vector space, simply by the general formula of a weighted mean

µ̃ =
ω1

ω1 + ω2
µ̃1 +

ω2

ω1 + ω2
µ̃2.

Then the recursive mean on M is µ̂(ω1+ω2)
a,b = expη(µ̃).

Theorem 3.1 (Unbiasedness). Let (σ, ω) be a measurable space with probability measure ω, and
let x denote a measurable function on σ taking values in Rk, where k ∈ N. The expectation of x
can be defined as E(X) =

∫
σ
xdω. Let {xi}i∈N be a set of n i.i.d. samples from distribution of x,

then the recursive mean estimator µ̂(n)
0,1 of the samples is an unbiased estimator of E(x).

4
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(a) Mean estimation

(b) Comparison of estimators

Figure 1: Left: Illustration of recursive mean estimation with a sample size 2k. Right: Comparison
of the Fréchet mean via gradient descent method (red), iFME (green) and RFME (blue), using
uniformly distributed data on hemisphere.

Proof. Let µ̃ be the recursive mean and µ̃1, µ̃2 be the left and right children (on the tangent space).

The conclusion is clear for n = 1.

If n = 2, then recursive mean is the average of two data µ̃ = 1
2x1 +

1
2x2, hence E(µ̃) = 1

2E(x1) +
1
2E(x2) = E(X)

If n = 3, then µ̃ = 2
3 µ̃1 + 1

3 µ̃2, where µ̃1 is the mean in n = 2 case and µ̃2 = x3, hence
E(µ̃) = 2

3E(X) + 1
3E(x3) = E(X)

By induction assumption, we have E(µ̃) = E(X) for n ≤ m−1, then for n = m, the binary tree has
depth ⌈logm2 ⌉+1. µ̃1 has weight 2⌈log

m
2 ⌉−1

m , and µ̃2 has weight m−2⌈log
m
2 ⌉−1

m . Since both of the child
come from a subtree, which are cases for n ≤ m−1, we can conclude that E(µ̃1) = E(µ̃2) = E(X),
hence E(µ̃) = 2⌈log

m
2 ⌉−1

m E(µ̃1) +
m−2⌈log

m
2 ⌉−1

m E(µ̃2) = E(X)

Therefore, we have E(µ̃) = E(X) for n ∈ N. The recursive mean µ̃ is unbiased on the tangent
space TηM, thus µ̃0,1 = expη(µ̃) is unbiased on the manifold M.

Theorem 3.2 (Consistency). Let var(X) and var(µ̂
(n)
0,1 ) be the variance of distribution of x (defined

in 3.1) and the recursive mean estimator, then we have var(µ̂
(n)
0,1 ) =

1
nvar(X).

Proof. We follow the same idea in the proof of unbiasedness.

If n = 1, var(µ̃) = var(X).

If n = 2, var(µ̃) = var( 12x1 +
1
2x2) =

1
2var(X)

If n = 3, var(µ̃) = var( 23 µ̃1 +
1
3 µ̃2) =

4
9 ∗ 1

2var(X) + 1
9var(X) = 1

3var(X)

Note that nodes on the same layer come from different data, thus they are independent and covari-
ance is 0.

5
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By induction, assume we have var(µ̃) = 1
nvar(X) for n ≤ m− 1, then for n = m,

var(µ̃) = var(
2⌈log

m
2 ⌉−1

m
µ̃1 +

m− 2⌈log
m
2 ⌉−1

m
µ̃2)

= (
2⌈log

m
2 ⌉−1

m
)2var(µ̃1) + (

m− 2⌈log
m
2 ⌉−1

m
)2var(µ̃2)

= (
2⌈log

m
2 ⌉−1

m
)2 ∗ 1

2⌈log
m
2 ⌉−1

var(X) + (
m− 2⌈log

m
2 ⌉−1

m
)2 ∗ 1

m− 2⌈log
m
2 ⌉−1

var(X)

=
m

m2
var(X)

=
1

m
var(X)

Therefore, var(µ̃) = 1
nvar(X) holds for n ∈ N. We then have var(µ̂

(n)
0,1 ) =

1
nvar(X).

From theorems 3.1 and 3.2, we conclude that when n → ∞, Bias(µ̂
(n)
0,1 ) = 0, and var(µ̂

(n)
0,1 ) = 0.

This indicates the weak consistency and the recursive mean asymptotically converges to the true
mean.

Lastly, we consider the step size.
Theorem 3.3. Given two estimates of µ, µk and µk′ , and geodesic αt(µk, µk′), the minimizer of the
Fréchet variance is attained at t = k′

k+k′ .

Proof. Recall that E(x) = 1
2

∑n
i=1 d

2(x, xi) is variance energy which we aim to minimize. We

have that µk = argminx∈M
1
k

∑k
i=1 d

2(x, xi) and µk′ = argminx∈M
1
k

∑k′

i′=1 d
2(x, xi′). Let

α(t) be a geodesic such that α(0) = µk and α(1) = µk′ . We aim to minimize the energy along the
geodesic, i.e.,

E(α(t)) =
1

2(k + k′)

k+k′∑
i=1

d2(α(t), xi) =
1

2(k + k′)

 k∑
i=1

d2(α(t), xi) +

k′∑
i′=1

d2(α(t), xi′)

 .

The gradient with respect to the geodesic is

∇α(t)E(α(t)) = − 1

(k + k′)

 k∑
i=1

logα(t) xi +

k′∑
i′=1

logα(t) xi′

 .

Since µk is the minimizer of the first summand and µk′ is the minimizer of the second sum-
mand we thus have − 1

(k+k′)

[
k logα(t) µk + k′ logα(t) µk′

]
. Evaluating this at t = 0 we get

− k′

(k+k′) logµk
µk′ as logα(0) µk = logµk

µk = 0 as desired.

4 EXPERIMENTAL RESULTS

4.1 SIMULATION ON SPHERE S2

All experiments in this section were conducted on a 8GM RAM laptop, running Jupyter notebook
on Mac with an Apple M1 chip. We evaluate the performance of RFME by comparing with iFME
and empirical FM estimator with gradient descent method (eFM). As mentioned earlier, iFME is
an add-one-each-time approach and eFM estimator is calculated by minimizing the overall squared
distance to all data points.

Uniform Distribution: We first employ the uniform spherical sampling method, which, as the name
suggests, selects points from a surface of a sphere such that each point has an equal probability of
being chosen. To guarantee the uniqueness of the mean, we bound our sample to one hemisphere.
The set up of the method includes picking up an azimuthal angle ϕ ∼ U(0, π) (hemisphere) and

6
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(a)

n = 10 n = 100 n = 1000
eFM 0.0013(4.9 × 10−4) 0.011(2.4 × 10−3) 0.10(2.5 ∗ 10−2)

iFME 0.0008(1.6 × 10−4) 0.0084(2.4 × 10−4) 0.085(4.3 ∗ 10−3)

RFME 0.0008(1.4 × 10−4) 0.0080(2.2 × 10−4) 0.078(2.2 ∗ 10−3)

(b)

Figure 2: (a) Time comparison among eFM, iFME and RFME. The time is averaged over 200
iterations, with sample sizes ranging from 50 to 500. (b) Stability analysis. The averaged time
(standard deviation) is reported over 200 iterations for sample size n=10, 100, 1000. To mitigate the
impact of system-related anomalies, 5% of most deviated data are excluded.

Figure 3: Error comparison among eFM, iFME and RFME, on samples drawn from uniform distri-
bution.

a polar angle θ ∼ arccosU(−1, 1), then convert into Cartesian coordinates (x, y, z) = (sin θ ∗
cosϕ, sin θ ∗ sinϕ, cos θ). This setting enables us to generate data with an expected mean of (0,1,0).

The performance of the eFM, iFME, and RFME is evaluated in terms of time consumption (Fig
2a) and distance from the expected mean (Fig 3). Simulation results show that all three methods
have similar accuracy, and their estimated converge towards to the expected value as the data size
gets larger. However, in terms of efficiency, RFME performs best, while eFM is the least efficiency.
Table 2b presents the stability of the algorithms, showing that eFM takes approximately 1.5 times
longer than the other two methods and also has the highest standard deviation. In contrast, RFME
demonstrates both the lowest time consumption and the smallest variability.

Von Mises-Fishers Distribution: We also want to evaluate the performance of the method under
different levels of data dispersion. The von Mises-Fishers distribution, a Gaussian-like probability
distribution on the (p−1)-sphere Sp−1 in Rp, has density function fp(x;µ, κ) = Cp(κ) exp(κµ

Tx),
where Cp(κ) is the normalizing constant. For p = 3, this constant is given by C3(κ) =

κ
4π sinh(κ)

(Watson (1982)). Here κ is the concentration parameter, with larger values indicating the stronger
concentration of data around the µ, the mean direction. We fix the sample size at 500 and repeat
the experiment 100 times, applying methods with various value of κ. As shown in Figure 4a, when
data is highly concentrated, the gradient descent algorithm performs best since the centroid of the
data can be approached quickly. In contrast, for more dispersed data, iFME and RFME outperform
eFM, as their performance only depends on the number of the points. Compared to iFME, RFME is
more efficient due to its lower iteration count. Additionally, the von Mises-Fishers distribution does
not constrain the samples to lie within a hemisphere, it is expected to see the estimation accuracy of
methods degrades when the data dispersion increases, as we can see from Figure 4b.

7
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(a) (b)

Figure 4: Time and error comparisons of eFM, iFME, and RFME. The x-axis represents 1/κ, where
the rightmost value corresponds to the most deviated dataset.

4.2 REAL CASES

In statistical shape analysis, the geometric shape of objects is typically studied independently of its
location, size and orientation. This motivates the idea of defining the group action on the manifold.
Given a Lie group G, the group action G ∗M → M is defined such that it satisfies both the identity
and compatibility properties. Under this action, each member of the group corresponds to a smooth
transformation of the manifold. For an element p ∈ M, the orbit of p under a group G, denoted [p],
is defined as [p] = {g ∗ p : g ∈ G}, and the quotient space M/G is the collection of all such orbits
on the manifold M/G = {[p] : p ∈ M}.

Using the translation group Rn, scaling group R+, and rotation group SO(n), Kendall (1984) intro-
duced the Kendall’s shape space as a quotient space

Ln,k/(Rn ⋊ (R+ × SO(n)),

where Ln,k = {X ∈ Rn×k|dim(span(X)) = n} and ⋊ is the semi-product of groups. In this
formulation, the objects geometric shape corresponds to a point in the shape space.

Let X ∈ Ln×k be an ordered k-tuple representing the contour of an object, equipped with Eu-
clidean metric. After centering and normalizing, we get an representative X̂ of its orbit [X̂] under
SO(n), where X̂ =

X−v1Tk
∥X−v1Tk ∥ and v is the column-wise mean. The orbit lies on a unit hypersphere

R(n−1)k−1, so that we can apply the spherical metric, e.g. the log map is given by

log[X̂1]([X̂2]) =
θ

sin(θ)
(O∗X̂2 − cos(θ)X̂1),

with θ = arccos(⟨X̂1, O
∗X̂2⟩), and O∗ = argmaxO∈SO(n)⟨X̂1, OX̂2⟩ is the optimal rotation align-

ing X̂2 to X̂1.

In this section, we use two data set to evaluate the models. The first one is the hammer contour data,
extracted from MPEG-7 image dataset (Thoum et al. (2008), Thourn & Kitjaidure (2009)). The
MPEG-7 dataset consists of 70 types of objects with 20 different shapes, and is widely used in area
of computer vision. Each contour in the dataset is represented by a ordered set of 100 landmarks
with dimension 2.

The second contains the corpus callosum shapes from the ADNI (Alzheimer’s Disease Neuroimag-
ing Initiative) database (Mueller et al. (2005)). The corpus callosum is a wide, thick bundle of nerve
fibers that connects the two hemispheres of the brain. It helps the transmission of neural signals
between the two sides and plays a key role in coordinating sensory perception, movement, and cog-
nitive functions of people. The samples are extracted from the magnetic resonance imaging(MRI)
scans, and also represented by an ordered set of 51 landmarks in a 2D plane.

Fig 5 presents some sample data, along with the estimators of Fréchet mean. we can find from the
plots that the shaded, dashed and dotted estimates are nearly identical, with only minor differences
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Figure 5: Three hammer samples (out of 9) and corpus callosum samples (out of 409), and mean
estiations from eFM (shaded), iFME (dashed line) and RFME(dotted line).

near the head region of the hammer data. To assess the accuracy, we adopt the sum-of-squared error
(SSE), as the truth Fréchet mean corresponds to the minimum SSE. For the hammer data, eFM has
an SSE of 4.58× 10−3, while the iFME and RFME has SSE of 4.54× 10−3. In the case of corpus
callosum data, eFM results in a SEE of 2.78× 10−3, while iFME and RFME achieve SSE of 2.77×
10−3. Compared to iFME, the RFME has slightly lower SSE, though the difference is negligible.
For eFM, the gradient stopping criterion is set to be 1 × 10−4; using a smaller threshold could
yield more accurate estimation but at the cost of increased computational time. Overall, both visual
and numerical results indicate that RFME is an effective and efficient alternative to the traditional
gradient descent methods in many situations.

5 CONCLUSION

This paper introduces a Recursive Fréchet Mean Estimator (RFME), a tree-based inductive algo-
rithm for approximating the barycenter of data on the hypersphere. We prove the RFME is unbiased
and converges asymptotically to the true Fréchet mean. Empirical results from simulations and
real-world case studies show that RFME is significantly more efficient than the traditional gradi-
ent descent approach. Conceptually, RFME is a generalization of iFME. While iFME can be seen
as a tree with only two nodes on each layer: one is mean estimator and the other is a data point;
RFME has more flexible structure. Although it requires more storage, it supports further accelera-
tion through advanced techniques such as parallel computing, and offering more potential in both
theory and application.

In modern data analysis and machine learning, online learning has become increasingly important,
as data often come in as a stream. This is because either the full dataset is too large to store or use
at once or the data are generated continuously over time. This calls for adaptive systems that can
update incrementally without revisiting the entire dataset. RFME fits into this setting well: it enables
the current estimator to be updated with incoming data only, thus reducing time, computational
resources, and storage requirements.

In addition, while this paper only focus on applying RFME on the hypersphere and Kendall’s shape
space, which has constant positive curvature, the estimator itself relies solely on the geodesic. As
such, it can be readily generalized to a boarder class of Riemannian manifolds. Future work may
explore extending the method to general positive curved spaces, which has more complex structure
than NPC spaces, as well as on analyzing the theoretical properties such as the error bound for finite
data sets.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLM)

We use a Large Language Model (ChatGPT) as an assistant to help rephrase and improve the clarity
of wording. The LLM only serves as a tool to enhance the expression while ensuring the original
meaning is preserved.
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