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ABSTRACT

Complex distribution shifts are the main obstacle to achieving accurate long-term
time series forecasting. Several efforts have been conducted to capture the distri-
bution characteristics and propose adaptive normalization techniques to alleviate
the influence of distribution shifts. However, these methods neglect the intricate
distribution dynamics observed from various scales and the evolving functions
of distribution dynamics and normalized mapping relationships. To this end, we
propose a novel model-agnostic Evolving Multi-Scale Normalization (EvoMSN)
framework to tackle the distribution shift problem. Flexible normalization and
denormalization are proposed based on the multi-scale statistics prediction mod-
ule and adaptive ensembling. An evolving optimization strategy is designed to
update the forecasting model and statistics prediction module collaboratively to
track the shifting distributions. We evaluate the effectiveness of EvoMSN in
improving the performance of five mainstream forecasting methods on bench-
mark datasets and also show its superiority compared to existing advanced nor-
malization and online learning approaches. The code is publicly available at
https://anonymous.4open.science/r/EvoMSN-4E53/.

1 INTRODUCTION

Time series forecasting can provide valuable future information and thus plays an important role in
many real-world applications (Lim & Zohren, 2021; Sezer et al., 2020; Qin et al., 2023; Karevan
& Suykens, 2020). Abundant studies have been carried out for accurate time series forecasting,
ranging from traditional statistics-based methods (Contreras et al., 2003; Holt, 2004; Theodosiou,
2011; Qiu et al., 2017) to recent deep learning-based methods (Wen et al., 2022). However, accurate
forecasting of time series under distribution shifts is still a challenging and under-resolved problem.

Figure 1: The marginal distribution P (Y ) of a
time series viewed from different scales will show
diverse dynamics, while the conditional distribu-
tion P (Y |X) also evolves across time.

Recently, several pioneering studies have been
proposed for time series forecasting under dis-
tribution shifts by adaptive normalization ap-
proaches (Kim et al., 2021; Fan et al., 2023; Liu
et al., 2024b). These approaches first remove
the dynamic distribution information from the
original series, enabling the model to learn from
normalized data, and then predict the future
distribution and recover this information to the
model’s output by denormalization. However,
two limitations of these approaches can be iden-
tified. Firstly, existing methods model the dy-
namic of distribution P (Y ) merely from an in-
stance level, neglecting the intricate dynamics
spanning various scales. Real-world time se-
ries present diverse variations at different tem-
poral scales, such as the electricity load ex-
hibits unique patterns spanning hourly, daily,
and weekly scales. The dynamic distribution
from a larger scale will show the general trend of the series, while the distribution on a smaller
scale presents the local variations. The visualization of distribution dynamics from a multi-scale
perspective is shown in Fig. 5 in the appendix. To this end, the modeling of statistical distribution
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dynamics from a multi-scale perspective is needed but still lacking. Secondly, even though current
normalization methods can help alleviate the influence of non-stationarity, they are incapable of
handling changing input-output relationships caused by gradual distribution shifts, where the con-
ditional distribution P (Y |X) is not static. In this circumstance, an online approach is required for
model updates with continuous data to adapt to the changing distribution over time. The problem
can be illustrated by Fig. 1, where the distribution of a time series that is viewed from different
scales will show diverse dynamics, and the input-output mapping function will also evolve across
time.

To overcome the above limitations, we propose an Evolving Multi-Scale Normalization (EvoMSN)
framework for time series forecasting under complex distribution shifts. Specifically, we first pro-
pose to divide the input sequence into slices of different sizes according to their periodicity char-
acteristics, forming views of diverse temporal scales to be normalized by the slice statistics. The
backbone forecasting model can thus process the normalized series that are viewed from different
scales to generate multiple outputs. Then, we propose a multi-scale statistic prediction module to
capture the dynamics of statistics and predict the distributions of future slices. Consequently, we
denormalize the outputs of the backbone forecasting model with the predicted distribution statistics
and propose an adaptive ensemble method to aggregate the multi-scale outputs. With the proposed
MSN approach, the dynamics of the distribution can be well modeled to address the non-stationarity
issue. Finally, we tackle the challenge of gradual distribution shifts by proposing an evolving bi-
level optimization strategy to update the statistics prediction module and the backbone forecasting
model online.

In summary, our contributions are as follows:
• We propose EvoMSN, a general online normalization framework that is model-agnostic

to enhance arbitrary backbone forecasting models under distribution shifts by adaptively
removing and recovering the dynamical distribution information.

• We propose a multi-scale statistics prediction module to model the complex distribution
dynamics and enable the estimation of future distributions. An adaptive ensembling strat-
egy is designed in the denormalization stage to aggregate the multiple forecasting outputs
and realize multi-scale modeling of time series.

• We propose an evolving bi-level optimization strategy, including offline two-stage pre-
training and online alternating learning to update the statistics prediction module and the
backbone forecasting model collaboratively.

• We conduct comprehensive experiments on widely used real-world benchmark datasets
with various advanced forecasting methods as the backbone. Experimental results demon-
strate the effectiveness of the proposed method in boosting the forecasting performance
under distribution shifts and the superiority compared to other state-of-the-art normaliza-
tion methods and online learning strategies.

2 RELATED WORKS

2.1 TIME SERIES FORECASTING

Traditionally, time series forecasting is carried out by utilizing statistical methods, such as the auto-
regressive moving average model (Contreras et al., 2003), the exponential smoothing method (Holt,
2004), and decomposition-based methods (Theodosiou, 2011; Qiu et al., 2017). Recent decades
have witnessed the fast development of deep learning-based methods to achieve accurate time series
forecasting. The family of transformer models has shown great effectiveness in capturing both
temporal dependency and variable dependency by applying the self-attention mechanism (Wen et al.,
2022), where successful examples include Informer (Zhou et al., 2021), Autoformer (Wu et al.,
2021), FEDformer (Zhou et al., 2022), Pyraformer (Liu et al., 2021), and so on. However, some
recent research questions the effectiveness of transformers in time series forecasting and shows
a simple linear model can achieve comparable or even superior performance (Zeng et al., 2023; Li
et al., 2023; 2022). Such concerns are responded by the latest studies on transformers, which propose
constructing transformers with patching approaches and showcase that transformer architecture still
has its advantages in time series forecasting (Nie et al., 2022; Zhang & Yan, 2022; Chen et al., 2024).
In addition to transformers, convolutional neural networks also achieve state-of-the-art performance
in time series forecasting by extracting variation information along the temporal dimension (Bai
et al., 2018). Multi-scale isometric convolution network (Wang et al., 2022) is proposed to learn
both the local features and global correlations from time series. TimesNet (Wu et al., 2022) and
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Figure 2: The proposed evolving multi-scale normalization framework. The overall structure
includes periodicity extraction, multi-scale distribution dynamics modeling, and normalization-
denormalization with adaptive ensembling. The learning strategy is designed with offline two-stage
pretraining and online alternate updating to facilitate models to capture the evolving distribution.

PDF (Dai et al., 2023) propose to transform the 1D time series into 2D tensors based on the intrinsic
periodicity characteristics, which enables the convolutional neural network to model both the intra-
period and inter-period variations from a multi-scale perspective.

2.2 TIME SERIES FORECASTING UNDER DISTRIBUTION SHIFTS

Even though the above-mentioned methods are well-designed, they may still suffer from the complex
distribution shifts problem. The inevitable temporal non-stationarity and the discrepancy between
the training and testing data caused by long-term continuous distribution shifts will largely influ-
ence the forecasting model’s performance and generalizability. Adaptive normalization approaches
have been investigated in recent research to account for the non-stationarity issue. The deep input
normalization method is proposed for time series forecasting with adaptive shifting, scaling, and
shifting (Passalis et al., 2019). Kim et al. suggest an instance-level normalization and design a
symmetric structure to remove and recover the distribution information according to the statistics of
the instance’s input window (Kim et al., 2021). Fan et al. summarize the distribution shifts problem
in time series forecasting into two categories, namely intra-space shift and inter-space shift (Fan
et al., 2023). They propose Dish-TS with learnable distribution coefficients for normalization and
denormalization. Liu et al. further point out that the distribution shift may also happen within the
window, especially in long-term tasks, and propose a finer-grained slice-based normalization strat-
egy (Liu et al., 2024b). Liu et al. investigate the non-stationarity issue, especially for transformer
models, and propose a de-stationary attention mechanism to alleviate the over-stationarization prob-
lem (Liu et al., 2022). Another class of studies mainly focuses on online learning to address the
evolving distribution problem (Anava et al., 2013; Liu et al., 2016; Aydore et al., 2019), where the
model will be updated with the continuous streaming data. Most recent advanced online learning
approaches enhance the model adaptability under distribution shifts by complementary continual
learning (Pham et al., 2022) and combining strategy (Zhang et al., 2024).

However, the above studies can only tackle one of the forms of distribution shifts but neglect sce-
narios where non-stationarity and evolving distribution shifts happen simultaneously, especially for
online long-term time series forecasting. Besides, most existing methods incomprehensively model
distribution dynamics, which only considers the statistics of the input window for normalization
and denormalization. Even Liu et al. (Liu et al., 2024b) predict the distribution and carry out nor-
malization from a finer-grained slice perspective, which is most relevant to our approach, it merely
considers a static scale to model the distribution dynamics and the effectiveness is subjected to the
predefined slice length. Unlike the existing methods, we propose a more comprehensive normaliza-
tion framework to tackle the complex distribution shifts problem by modeling distribution dynamics
in a multi-scale perspective.

3 PROPOSED METHOD

Given a set of N multivariate time series samples with looking back windows X = {xn}Nn=1 and
corresponding target horizon windows Y = {yn}Nn=1, we aim to forecast yn ∈ RH×C given input
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xn ∈ RL×C , where C is the number of channels, L and H is the length of input and output window
respectively.

The proposed overall framework is given as Fig. 2. Firstly, we model the distribution dynamics
by periodicity extraction, multi-scale slice-based statistics calculation, and prediction. Secondly,
we integrate distribution dynamics for normalization, denormalization, and adaptive ensembling of
model forecasting outputs. Besides, we consider the learning procedure of the statistic prediction
module and the backbone forecasting model as a bi-level optimization problem and propose a train-
ing strategy for the overall framework. Details of the proposed method are given in the following
subsections.

3.1 MULTI-SCALE DISTRIBUTION DYNAMICS MODELING
The dynamics of distribution may exhibit diverse patterns according to different scales. For example,
the daily electricity load data distribution will evolve differently from that of hourly data, where the
latter distribution reflects short-term fluctuations and presents a more transient dynamic than the
previous one. Considering that multi-scale modeling is usually intertwined with multi-periodicity
modeling (Wu et al., 2022), we model the dynamics of distribution according to the time series
periodicity properties.
Global Periodicity Extraction We first analyze the time series in the frequency domain and dis-
cover the global periodicity by Fast Fourier Transform (FFT) as follows:

A = Avg (Amp (FFT (X))) , {f1, · · · , fk} = argTopk
f∗∈{1,··· ,[ t2 ]}

(A), pi =

⌈
t

fi

⌉
, i ∈ {1, · · · , k},

(1)
where Amp(·) denotes the calculation of amplitude. The operation Avg(·) calculates the averaged
amplitude over all M channels and N samples to obtain A ∈ Rt, where Aj represents the intensity
of the frequency-j periodic basis function. arg Topk(·) is there to select the most prominent fre-
quencies {f1, · · · , fk} with top-k amplitudes {Af1 , · · · ,Afk} to represent the global periodicity

with period lengths {p1, · · · , pk} (pi =
⌈
t
fi

⌉
).

Multi-Scale Slice-based Statistics Calculation and Prediction Based on the discovered global
periodicity, we propose to split looking back windows and horizon windows into non-overlapping
slices with respect to different period lengths {p1, · · · , pk} as follows:

X(i) = Slicingpi (Padding (X)) ,Y(i) = Slicingpi (Padding (Y )) , i ∈ {1, · · · , k} , (2)

where Padding(·) is to first extend the time series by copying a segment of itself from the end
to make it compatible for Slicingpi(·) with length pi. Then, the slicing process will transform
the original windows into a set of sliced windows

{
X(1), · · · ,X(k)

}
and

{
Y(1), · · · ,Y(k)

}
with

respect to different periods, where X(i) =

{{
xj(i),n

} L
pi

j=1

}N
n=1

, X(i) ∈ RN× L
pi

×pi×C and Y(i) ={{
yj(i),n

} H
pi

j=1

}N
n=1

, Y(i) ∈ RN× H
pi

×pi×C . Then, the mean and standard deviation for each slice

are computed as:

µj(i),n =
1

pi

pi∑
t=1

xj,t(i),n,
(
σj(i),n

)2

=
1

pi

pi∑
t=1

(
xj,t(i),n − µj(i),n

)2

, (3)

ϕj(i),n =
1

pi

pi∑
t=1

yj,t(i),n,
(
ξj(i),n

)2

=
1

pi

pi∑
t=1

(
yj,t(i),n − ϕj(i),n

)2

, (4)

where µj(i),n, σ
j
(i),n, ϕ

j
(i),n, ξ

j
(i),n ∈ R1×M , µj(i),n, σj(i),n are mean and standard deviation of slice

xj(i),n, and ϕj(i),n, ξj(i),n are statistics of yj(i),n.

Considering the multi-scale characteristics of time series data with corresponding evolving distribu-
tion, we propose a multi-scale prediction module to capture the dynamics of statistics and predict the
distributions of future slices. Concretely, the dynamics of mean and standard deviation are modeled
separately, and specific models for each periodicity are constructed:

ϕ̂(i) = fωi

(
µ(i),x

)
, ξ̂(i) = fθi

(
σ(i),x

)
, (5)
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where fωi
(·) and fθi (·) are prediction models parameterized by ωi and θi for modeling mean and

standard deviation statistics under periodicity-i. Each prediction model is designed to be lightweight
and consists of a two-layer perceptron network with Relu() and Identity() as final activations for
standard deviation and mean statistics, respectively.

3.2 NORMALIZATION WITH ADAPTIVE ENSEMBLE

Our proposed method alleviates the influence of non-stationarity on the forecasting model by fol-
lowing the logic of ”normalization - backbone model forecasting - denormalization” as existing
normalization methods (Kim et al., 2021; Fan et al., 2023; Liu et al., 2024b). Moreover, the pro-
posed multi-scale statistics prediction module can provide more comprehensive information about
how data statistics are evolving. To this end, our method will tackle the distribution shift challenge
from a multi-scale perspective and further improve forecasting by adaptive ensembling.

Normalization Firstly, we consider the periodicity with intricate distribution shifts of a given
series xn and normalize it with slice statistics:

x̃j(i),n =
1

σj(i),n + ε
∗
(
xj(i),n − µj(i),n

)
, (6)

where x̃j(i),n is the normalized series corresponding to slicing with periodicity-i, ε is a small constant
value to prevent calculation instability. The operation * denotes the per-element product. To this end,
a set of k normalized series can be obtained x̃n =

{
x̃(i),n

}k
i=1

, which ensures each period of series
has a similar statistics and thus to be easier analyzed by the backbone forecasting model.

Denormalization Subsequently, the set of normalized series will be processed by an arbitrary
backbone forecasting model fψ (·):

ỹn =
{
ỹ(i),n

}k
i=1

= fψ (x̃n) , (7)
where ỹn is a set of k normalized output generated by the backbone model with the same set of
parameter ψ. These outputs will then be split into slices and denormalized by the predicted slice
statistics given by the multi-period statistics prediction module to recover the non-stationary infor-
mation of different periodicities:

ŷj(i),n = ỹj(i),n ∗
(
ξ̂j(i),n + ε

)
+ ϕ̂j(i),n. (8)

By concatenating the denormalized slices in their chronological order, we can obtain a set of output
series

{
ŷ(i),n

}k
i=1

.

Multi-Scale Adaptive Ensemble Even though the periodicity is analyzed from a global perspec-
tive where the dominant periodicities are determined by the average amplitude as equation 1, each
individual series and channel may show different degrees of these periodicities. With this consider-
ation, we analyze the periodicity from a local perspective by calculating the local amplitude of the
global periodicity for a given input series xn as:

An = Amp
{f1,··· ,fk}

(FFT (xn)) , (9)

where An ∈ Rk×C . As the amplitudes can reflect the relative importance of the periodicity, we
adaptively ensemble the denormalized outputs based on the weights of the local amplitude as:

ŷn =
∑

w(i),n ∗ ŷ(i),n, w(i),n =
A(i),n∑k
i=1A(i),n

(10)

3.3 EVOLVING BI-LEVEL OPTIMIZATION

The performance of the backbone forecasting model is subject to the output given by the statistics
prediction module. To this end, the training of these models is formulated as a bi-level optimization
problem as follows:

min
ψ

∑N

n=1
L ((xn,yn) , ψ|ω∗,θ∗)

s.t. ω∗,θ∗ = argminω,θ
∑N

n=1

∑k

i=1
Lstati ((xn,yn) , ψ,ωi,θi),

(11)

where the upper objective is to optimize the backbone forecasting model with the normal MSE
loss function L and the lower objective is to minimize the distribution discrepancy between the
denormalized output ŷ(i) = f(xn, ψ, ωi, θi) and true distribution of yn in views of different scales.
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To solve such a bi-level optimization problem, we design a training strategy including offline decou-
pled pretraining and online alternate updating. In the offline pretraining stage, we first decoupled
the optimization into two separate processes to enable the multi-scale statistics prediction module to
focus on estimating the future distributions and let the backbone model focus on learning from nor-
malized series generated by statistics of different scales. Concretely, the statistics prediction module
is trained by optimizing ω∗,θ∗ = argminω,θ

∑N
n=1

∑k
i=1 Lstat

i ((xn,yn) , ωi, θi), which mainly
focuses on estimating future statistics information regardless of the backbone forecasting model.
With such simplification, the original challenging task of minimizing the distribution discrepancy
between two series is transformed to minimize the difference between the estimated slice-based
statistics and the corresponding ground truth. To this end, The statistics prediction module corre-
sponding to periodicity-i can be trained with the loss function calculated by the mean squared error
ℓ((ϕ̂(i), ξ̂(i)), (ϕ(i), ξ(i))). After the statistics prediction module is trained to converge, the back-
bone forecasting model is optimized to minimize the loss between the ensembled multi-scale output
and the ground truth value ℓ(ŷn,yn).

Considering the evolving characteristics of both distribution dynamics and the forecasting model’s
input-output relationship, an alternate updating strategy is then designed to enable the model to learn
from continuous data samples online. In the online learning stage, the forecasting loss between the
denormalized series and the ground truth is set as the overall optimization target for both the back-
bone model and the multi-scale statistics prediction module, which enables a tighter collaboration
between these components. We first freeze the backbone forecasting model and update the multi-
scale statistics prediction module by descending ∇ω,θL ((xn,yn) , ψ,ω,θ). For the next coming
data, we freeze the statistics prediction module as the condition for updating the backbone forecast-
ing model with gradient ∇ψL ((xn,yn) , ψ,ω,θ). We repeat such alternating updates with online
streaming data to enable both the statistics prediction module and the backbone model to track the
evolving distribution.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We evaluate our methods on five large-scale real-world time-series datasets: (1) Elec-
tricity transformer temperature (ETT) 1 records of oil temperature and electricity transform-
ers’ power load from July 2016 to July 2018. We choose the hourly ETTh1 data and 15-minute-
resolution Ettm1 data for our experiments. (2) Electricity 2 contains hourly electricity load data of
321 clients from July 2016 to July 2019. (3) Exchange 3 collects the panel data of daily exchange
rates from 8 countries from 1990 to 2016. (4) Traffic4 contains hourly traffic load recorded by 862
sensors from January 2015 to December 2016. (5) Weather5 contains meteorological time series
with 21 weather indicators collected every 10 minutes in 2020.

Backbone Models We evaluate the proposed model-agnostic EvoMSN framework with various
mainstream time series models as the backbone under both online and offline multivariate forecast-
ing settings. We selected backbone models including linear model DLinear (Zeng et al., 2023),
transformers Autoformer (Wu et al., 2021), FEDformer (Zhou et al., 2022), PatchTST (Nie et al.,
2022), and convolutional model TimesNet (Wu et al., 2022).

Implementation Settings We evaluate the effectiveness of the proposed method in tackling the
distribution shifts problem under two scenarios, including online and offline forecasting. For online
forecasting, we split the data into warm-up pretraining and online learning phases by the ratio of
20:75. We follow the optimization details in (Pham et al., 2022) by optimizing the l2 (MSE) loss
with the AdamW optimizer (Loshchilov & Hutter, 2017). According to the widely applied online
setting, the forecasts will be made as each test data sample arrives, and the model will be updated
by one epoch according to the online forecasting loss. For offline forecasting, we split the training
and testing data with the ratio of 70:20 and follow the implementation details in (Liu et al., 2024b).
The hyperparameter tuning is conducted based on the performance of a separate validation set. We
utilize the mean squared error (MSE) and mean absolute error (MAE) as the metrics to evaluate

1https://github.com/zhouhaoyi/ETDataset
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://github.com/laiguokun/multivariate-time-series-data
4http://pems.dot.ca.gov
5https://www.bgc-jena.mpg.de/wetter/
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forecasting performance. All the experiments are conducted with PyTorch (Paszke et al., 2019) on
a single NVIDIA GeForce RTX 3080 Ti 12GB GPU.

4.2 MAIN RESULTS

Table 1: Online multivariate forecasting results. The bold values indicate better performance when
the backbone model is equipped with the proposed EvoMSN method.
Methods Autoformer +EvoMSN FEDformer +EvoMSN Dlinear +EvoMSN PatchTST +EvoMSN TimesNet +EvoMSN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
xc

ha
ng

e 96 0.193 0.261 0.136 0.223 0.171 0.248 0.080 0.162 0.131 0.252 0.119 0.224 0.110 0.213 0.093 0.202 0.050 0.129 0.054 0.143

192 0.282 0.293 0.181 0.249 0.205 0.267 0.124 0.189 0.225 0.334 0.160 0.270 0.148 0.255 0.125 0.237 0.067 0.159 0.043 0.133
336 0.291 0.340 0.227 0.296 0.267 0.311 0.120 0.212 0.373 0.428 0.220 0.320 0.197 0.296 0.169 0.273 0.096 0.195 0.091 0.181

Tr
af

fic

96 0.621 0.478 0.219 0.249 0.573 0.447 0.228 0.244 0.659 0.395 0.380 0.288 0.353 0.304 0.317 0.269 0.301 0.274 0.219 0.240
192 0.617 0.471 0.253 0.256 0.324 0.346 0.226 0.245 0.604 0.370 0.396 0.294 0.344 0.301 0.326 0.275 0.234 0.235 0.230 0.240

336 0.553 0.436 0.269 0.259 0.283 0.315 0.227 0.243 0.581 0.395 0.413 0.304 0.357 0.300 0.337 0.280 0.291 0.258 0.272 0.263

E
le

ct
ri

ci
ty 96 3.007 0.401 1.358 0.286 2.533 0.762 1.608 0.279 3.702 0.372 6.840 0.389 4.451 0.548 3.701 0.405 2.038 0.282 1.684 0.280

192 3.575 0.429 2.096 0.319 2.034 0.635 1.662 0.274 4.787 0.401 7.518 0.414 4.550 0.571 4.710 0.435 2.485 0.305 1.599 0.288

336 4.110 0.430 2.390 0.321 1.945 0.589 1.962 0.282 10.692 0.449 8.533 0.437 5.371 0.601 5.941 0.494 3.488 0.343 2.186 0.312

W
ea

th
er 96 1.702 0.459 0.973 0.530 0.533 0.345 0.586 0.353 1.001 0.470 0.669 0.395 0.796 0.427 0.728 0.414 0.699 0.359 0.407 0.237

192 1.481 0.497 1.013 0.562 0.518 0.346 0.738 0.434 1.141 0.528 0.744 0.437 0.691 0.421 0.661 0.411 0.831 0.403 0.413 0.247
336 1.473 0.548 1.005 0.566 0.487 0.352 0.771 0.448 1.276 0.582 0.819 0.473 0.708 0.438 0.687 0.424 1.158 0.441 0.387 0.237

E
T

T
h1

96 0.534 0.476 0.291 0.360 0.416 0.454 0.379 0.418 0.777 0.558 0.640 0.533 0.512 0.509 0.487 0.481 0.469 0.435 0.314 0.372
192 0.556 0.485 0.475 0.457 0.416 0.453 0.397 0.427 0.869 0.598 0.659 0.554 0.526 0.516 0.562 0.515 0.419 0.412 0.403 0.424

336 0.634 0.525 0.528 0.494 0.400 0.435 0.397 0.437 0.930 0.628 0.757 0.595 0.541 0.527 0.588 0.526 0.497 0.451 0.274 0.353

E
T

T
m

1 96 0.256 0.351 0.172 0.300 0.185 0.317 0.169 0.288 0.391 0.449 0.268 0.379 0.272 0.364 0.199 0.329 0.122 0.250 0.109 0.236
192 0.300 0.377 0.193 0.323 0.231 0.313 0.153 0.276 0.455 0.482 0.320 0.410 0.265 0.365 0.204 0.334 0.120 0.248 0.101 0.227
336 0.292 0.393 0.267 0.379 0.211 0.329 0.255 0.362 0.544 0.523 0.386 0.446 0.284 0.376 0.237 0.350 0.114 0.239 0.102 0.230

We report the online multivariate forecasting results in Table 1. The length of the online long-
term forecasting window is set as Lout ∈ {96, 192, 336}. We set the length of the input sequence
according to the original setting of the backbone forecasting model as Lin = 96 for Autoformer,
FEDformer, TimesNet, and Lin = 336 for DLinear and PatchTST.

For the online forecasting, we set the baseline as letting the backbone models pretrain on the training
data set and adopt simple online learning strategies to train and test continuously on the testing data.
The proposed EvoMSN framework enables the fine-grained modeling of distribution dynamics and
time series evolving patterns, which greatly enhances the forecasting performance of most bench-
mark models across various forecasting horizons. Taking TimesNet as an example, EvoMSN can
achieve an average reduction in MSE by 11.30% on the Exchange dataset, 12.77% on the Traffic
dataset, 31.74% on the Electricity dataset, 55.09% on the Weather dataset, 28.41% on the ETTh1
dataset, and 12.12% on the ETTm1 dataset. The results also demonstrate that the proposed method
can improve the performance of transformers and linear model across different forecasting horizons.
It should be noted that even though PatchTST and TimesNet involve similar concepts of slicing and
multi-scale modeling in their model design, these methods still benefit from the proposed normal-
ization framework because the decoupled and explicit modeling of distribution dynamics enables
these backbones to better learn from a stationarized series. For a better visualization, we show the
online long-term forecasting results with the output window length of 336 in Figure 3. The re-
sults are given by setting DLinear as the backbone model, where the vanilla online learning strategy
and the proposed EvoMSN method are compared. We can observe that the model is struggling to
track the complex evolving distributions with the vanilla online learning strategy, while the proposed
EvoMSN method adaptively adjusts the distribution of forecasting outputs to align with the ground
truth. More visualization results can be found in Appendix A.1.

To further validate the efficacy of the proposed method, we have analyzed its performance on large-
scale data, low-frequency data, and computation efficiency, where detailed results can be found in
Appendix A.2. We have also conducted comprehensive experiments to showcase the effectiveness
of the proposed method in enhancing offline long-term non-stationary time series forecasting, where
the results are provided in Appendix A.5. The results show that the proposed method can also help
tackle the distribution shift problem without the online learning process.
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Figure 3: Visualization of online long-term forecasting results with the output window length of
336.

4.3 COMPARISON WITH ONLINE LEARNING STRATEGIES
In order to showcase the effectiveness of the proposed method, we also compare it with other ad-
vanced online learning strategies that all use Temporal Convolution Network (TCN) (Bai et al.,
2018) as the backbone. First, the Online-TCN adopts the vanilla online learning strategy to train
continuously with the streaming data. Then, we consider the Experience Replay (ER) strategy
(Chaudhry et al., 2019) that employs a buffer to store previous data and update with new coming
data. DER++ (Buzzega et al., 2020) is the variant of ER, which augments the standard ER with
a knowledge distillation strategy (Hinton et al., 2015). Lastly, we consider the previous state-of-
the-art online learning method FSNet (Pham et al., 2022), which adopts a complementary continual
learning strategy. We use the same setting for these methods for a fair comparison, where the input
window length is 96, and the learning rate is 0.001. We equip the proposed EvoMSN method to
TCN (denoted as EvoMSN-TCN) and report the comparison results with existing online strategies
in Table 2. We can observe that ER, DER++, and FSNet are strong competitors and can effectively

Table 2: Comparison between EvoMSN and existing online learning strategies. The best and second
best results are in bold and underline.

Methods EvoMSN-TCN Online-TCN FSNet ER DER++
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exchange 0.095 0.176 0.244 0.319 0.259 0.333 0.224 0.311 0.230 0.318
Traffic 0.486 0.374 0.849 0.513 0.944 0.562 0.837 0.508 0.842 0.508

Electricity 4.122 0.397 15.721 1.215 14.109 1.025 14.790 1.207 14.926 1.146
Weather 0.734 0.421 0.822 0.484 0.923 0.544 0.760 0.452 0.773 0.459
ETTh1 0.669 0.555 0.776 0.589 0.675 0.571 0.766 0.588 0.721 0.570
ETTm1 0.323 0.423 0.447 0.507 0.473 0.521 0.430 0.496 0.430 0.495

improve the online forecasting performance compared to the vanilla method. However, such meth-
ods do not model the dynamics of distribution and cannot fully address the complex distribution
shift problem in the presence of both non-stationarity and gradual distribution shifts. Especially for
FSNet, which performs well in the original work that focuses on short-term forecasting but degrades
with a longer forecasting horizon. In comparison, the proposed EvoMSN method largely improves
the capability of the TCN model in the online setting and shows promising results on all datasets
that outperform the strong baselines. The EvoMSN-TCN can achieve a performance improvement
that is measured on all datasets across all forecasting horizons by 65.90% compared to Online-TCN,
63.89% compared to ER, 64.12% compared to DER++, and 63.01% compared to FSNet. To inves-
tigate the model performance during the online forecasting process, we plot the cumulative average
MSE loss of different online methods in Fig 4. With such visualization, the distribution shifts are
likely to happen when the cumulative loss increases or shows peaks. The results clearly show the
EvoMSN-TCN has a much lower and smoother cumulative loss curve, especially for challenging
Electricity, Exchange, and Traffic datasets that are highly non-stationary. The above observations
validate that the proposed EvoMSN method can effectively enhance the model for online forecast-
ing, where comprehensive results are provided in Appendix A.3.

4.4 COMPARISON WITH NORMALIZATION METHODS
Subsequently, we compare EvoMSN with three state-of-the-art normalization methods for time se-
ries forecasting under distribution shifts: SAN (Liu et al., 2024b), RevIN (Kim et al., 2021), and
Dish-TS (Fan et al., 2023). As these normalization methods were originally proposed for the of-
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Figure 4: Evolution of the cumulative average MSE loss during online forecasting.

Table 3: Comparison between EvoMSN and existing normalization approaches for online forecast-
ing.

Methods
Autoformer TimesNet

+EvoMSN +SAN +RevIN +Dish-TS +EvoMSN +SAN +RevIN +Dish-TS
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exchange 0.181 0.256 0.219 0.265 0.193 0.236 0.231 0.248 0.063 0.153 0.114 0.184 0.071 0.161 0.065 0.164
Traffic 0.247 0.255 0.304 0.287 0.351 0.309 0.342 0.307 0.240 0.248 0.255 0.254 0.275 0.256 0.379 0.313

Electricity 1.948 0.308 2.965 0.341 3.179 0.380 3.536 0.411 1.823 0.293 2.480 0.313 2.670 0.310 3.315 0.384
Weather 0.997 0.553 1.187 0.502 1.154 0.560 1.062 0.539 0.402 0.240 0.719 0.385 0.896 0.401 0.737 0.420
ETTh1 0.431 0.437 0.529 0.481 0.484 0.464 0.517 0.482 0.330 0.383 0.379 0.410 0.462 0.433 0.448 0.439
ETTm1 0.211 0.334 0.247 0.362 0.315 0.414 0.257 0.375 0.104 0.231 0.138 0.269 0.119 0.246 0.169 0.299

fline forecasting setting, we apply them to online forecasting by updating the backbone model with
streaming data. The comparison of normalization approaches for online forecasting based on Auto-
former and TimesNet backbones are presented in Table 3. It can be concluded that EvoMSN achieves
the best performance among existing normalization methods. The RevIN and Dish-TS mainly uti-
lize statistics of the whole input window for normalization and denormalization; such a coarse way
causes them a relatively inferior performance. SAN adopts a finer slice-based approach for nor-
malization and explicitly models the distribution dynamics to predict future distribution for denor-
malization. To this end, SAN achieves a better performance than RevIN and Dish-TS. However,
SAN only considers a single scale to model the distribution dynamics but neglects the difference
in distribution dynamics across various scales. Besides, SAN only considers the offline two-stage
training scheme but is not tailored for online forecasting. Distinct from these methods, the proposed
EvoMSN adopts a more comprehensive multi-scale approach to capture the evolving distribution
and consequently achieves the best performance, where detailed results across various forecasting
horizons are provided in Appendix A.4. In addition, we compare forecasting performance when dif-
ferent normalization approaches are combined with the SOTA continual learning approach (FSNet)
and show the consistent advantage of EvoMSN in Appendix A.4. The superiority of the proposed
method versus other normalization methods is also validated for offline long-term forecasting, where
results are provided in Appendix A.6.

4.5 ABALTION STUDY

This section investigates the impact of the multi-scale modeling approach and the proposed evolv-
ing optimization strategy, where the DLinear model is utilized as the backbone. First, we vary the
number of scales in modeling multi-scale distribution dynamics and report results in Table 4. We
find an overall trend that the model performance is better when more scales are considered to model
the distribution dynamics, where K = 4 achieves the best performance and is set as default in our
experiments. Compared to considering a single scale, multi-scale modeling approaches can reduce
the average MSE loss by 23.82% on Exchange and 12.64% on ETTm1, which validates the ne-
cessity of the proposed multi-scale modeling strategy. Then, we investigate the proposed evolving
updation strategy with different ablation settings in Table 5: W/O online means only carrying out
offline two-stage pretraining without an online updating of both the backbone model and statistics
prediction module. W/O stat and W/O backbone mean online learning without an update of the
backbone model and statistics prediction module, respectively. We can find that only modeling the
distribution dynamics in the offline pretraining process is inadequate to tackle the online forecasting
challenges, where the functions of both distribution dynamics and normalized input-output relation-
ship will evolve over time. To this end, the online updation of the statistics prediction module and
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Table 4: Sensitivity study. The online prediction accuracy varies with the number of multi-scalesK.
Number of Scales K = 1 K = 2 K = 3 K = 4

Metric MSE MAE MSE MAE MSE MAE MSE MAE

Exchange
96 0.159 0.261 0.148 0.249 0.131 0.237 0.119 0.224
192 0.198 0.302 0.241 0.324 0.190 0.290 0.160 0.270
336 0.298 0.384 0.310 0.379 0.246 0.343 0.220 0.320

ETTm1
96 0.283 0.387 0.298 0.399 0.282 0.389 0.268 0.379
192 0.360 0.437 0.334 0.421 0.322 0.412 0.320 0.410
336 0.473 0.501 0.401 0.457 0.421 0.468 0.386 0.446

Table 5: Ablation study. W/O online, W/O stat, and W/O backbone represent forecasting without
online updating of both the backbone forecasting model and the statistics prediction module, without
online updating of the statistics prediction module, and without online updating of the backbone
forecasting model, respectively.

Models W/O online W/O stat W/O backbone EvoMSN
Metric MSE MAE MSE MAE MSE MAE MSE MAE

Exchange
96 0.413 0.390 0.355 0.361 0.305 0.356 0.119 0.224
192 0.741 0.529 0.632 0.491 0.531 0.483 0.160 0.270
336 1.203 0.693 1.110 0.663 0.898 0.628 0.220 0.320

ETTm1
96 0.561 0.539 0.508 0.501 0.528 0.527 0.268 0.379
192 0.660 0.576 0.598 0.533 0.623 0.565 0.320 0.410
336 0.798 0.623 0.725 0.582 0.750 0.611 0.386 0.446

backbone forecasting model are both important to address the distribution shifts problem, where the
proposed online alternating updation strategy provides a promising solution.

5 CONCLUSION
In this paper, we propose an evolving multi-scale normalization framework for time series fore-
casting under complex distribution shifts, which enables a more comprehensive way to model the
distribution dynamics and facilitates the forecasting model to better track the evolving distributions.
As a model-agnostic framework with arbitrary backbones, the proposed method effectively boosts
mainstream forecasting techniques to achieve state-of-the-art performance on real-world time-series
datasets by a significant margin. Extensive experiments have been conducted to examine the supe-
riority of the proposed method in tackling distribution shift challenges compared to other advanced
normalization and online learning strategies. As our future direction, we will further investigate a
more general normalization framework that takes into account more detailed distribution informa-
tion beyond mean and variance.
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A SUPPLEMENTARY EXPERIMENTS

A.1 FULL VISUALIZATION RESULTS

The methodology designed in this work is motivated by the fact that time series data distribution
shows diverse dynamics across different scales. We plot the statistics (mean and standard deviation)
of windows that have different scales in Fig. 5. We can see from the figure that a larger scale shows
the general trend of how the distribution is evolving while a smaller scale presents more detailed
local variations.

(a) Window length 96 (b) Window length 48 (c) Window length 24

Figure 5: Visualization of statistics of windows. The blue line represents the mean of each window.
Red dots represent the window mean plus/minus the window standard deviation, and the gray dash
line represents the deviation range of the window. (a), (b), (c) plots the statistics of each window
when the window length equals to 96, 48, and 24, respectively.

The visualization results in comparing the forecasting with and without the proposed EvoMSN
method are shown in Fig. 6, which reports the performance of the Dlinear backbone on Electric-
ity, Exchange, Traffic, Weather, ETTh1, and ETTm1 data. It shows clearly that the vanilla online
learning strategy is inadequate to address the complex distribution shift problem, where the pro-
posed EvoMSN approach is of great necessity to enable the model to generate outputs with a more
reasonable distribution.

(a) Electricity (b) Exchange (c) Traffic

(d) Weather (e) ETTh1 (f) ETTm1

Figure 6: Visualization of online long-term forecasting results with the output window length of 336.
The results are given by setting DLinear as the backbone model, where the vanilla online learning
strategy and the proposed EvoMSN method are compared.
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A.2 EXTENDED EXPERIMENTS RESULTS

We conduct experiments on a larger traffic dataset (Liu et al., 2024a) to online forecast hourly traffic
flow with 716 sensors in San Diego county in 2019. The proposed EvoMSN method is applied to
three competing backbone forecasting models in the reference, including LSTM (Hochreiter, 1997),
STGCN (Yu et al., 2017), and GWNET (Wu et al., 2019). The results are shown in Table 6, where
EvoMSN can achieve an average reduction in RMSE by 18.94% with LSTM, 10.08% with STGCN,
and 7.3% with GWNET compared to the vanilla online approach.

Table 6: Online forecasting results on large traffic dataset.
Pred len 48 Pred len 72 Pred len 96 Avg

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Online LSTM 52.146 76.754 52.538 77.442 53.347 78.312 52.677 77.503
+EvoMSN 41.653 60.503 44.845 65.159 42.769 62.799 43.089 62.820

Online STGCN 41.191 61.269 41.649 62.393 40.417 61.378 41.086 61.680
+EvoMSN 37.592 55.033 38.236 56.421 36.626 54.943 37.485 55.466

Online GWNET 38.001 54.350 38.330 55.565 39.085 56.332 38.472 55.416
+EvoMSN 35.593 51.525 35.637 51.710 34.511 50.881 35.247 51.372

In order to evaluate the proposed method on low-frequency data, we have included M5 competition
data (Makridakis et al., 2022) for the experiment. Specifically, we conduct multivariate forecasting
of aggregated daily sales of each state, each product category, each store, and each department (a
total of 23 variables). We utilize the DLinear model as the forecasting backbone for both online and
offline forecasting (all experiments are repeated 3 times). We compare the offline forecasting per-
formance with/without the proposed MSN method and online forecasting performance with/without
the proposed EvoMSN method in Table 7. The results show the proposed method can boost the per-
formance on low-frequency data for both online forecasting (average reduction in MSE by 19.12%)
and offline forecasting (average reduction in MSE by 21.81%).

Table 7: Online and Offline forecasting results on M5 dataset.
Method Online DLinear +EvoMSN Offline Dlinear +MSN
Metric MSE MAE MSE MAE MSE MAE MSE MAE

M5

24 0.625±0.000 0.528±0.000 0.514±0.002 0.482±0.001 0.648±0.007 0.570±0.004 0.526±0.015 0.503±0.009
48 0.658±0.000 0.545±0.000 0.537±0.001 0.492±0.001 0.717±0.003 0.605±0.002 0.542±0.009 0.508±0.006
72 0.694±0.000 0.561±0.000 0.560±0.004 0.509±0.000 0.805±0.004 0.651±0.002 0.641±0.005 0.562±0.003
96 0.727±0.000 0.575±0.000 0.576±0.003 0.515±0.002 0.875±0.001 0.679±0.001 0.672±0.016 0.574±0.010

To evaluate the computational efficiency of the proposed method, we have measured the computa-
tion time in seconds for each training epoch and testing batch, the time of each process in online
forecasting and offline forecasting is reported in Table 8 and Table 9, respectively. The proposed
method will cause extra computational complexity and running time from two perspectives. First,
the proposed method requires training multi-scale statistics prediction modules, where the complex-
ity is the number of considered periodicities times the complexity of an individual prediction module
for a single periodicity. The computational complexity of this part is independent of the complexity
of the forecasting backbone model and we have designed this part to be lightweight with two-layer
perception networks to avoid a large computation burden. Second, the backbone forecasting model
will handle the time series from multi-scale perspectives, where the complexity is the number of con-
sidered periodicities times the complexity of the backbone forecasting model. This part becomes the
main computation burden when the backbone model is much more complex than the statistics pre-
diction module. There are two possible approaches to accelerate the computation process, one is to
let the multi-scale analysis in parallel (our experiment is conducted in series); another approach is to
consider an attentive updation strategy in the online learning process, which is to update the model
only when server distribution shift is detected instead of updating for every sample. Overall, the
computational complexity of the proposed method is acceptable in many real-world applications,
especially for low-frequency forecasting scenarios, such as day-ahead electricity load forecasting.
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Table 8: Computation Time for Online Forecasting with EvoMSN.
Method Online DLinear +EvoMSN

Time Train Test Stat Train Backbone Train Test

M5

24 0.029±0.039 0.002±0.000 0.058±0.001 0.083±0.001 0.019±0.001
48 0.027±0.038 0.002±0.000 0.050±0.001 0.071±0.001 0.019±0.000
72 0.026±0.039 0.002±0.000 0.048±0.002 0.064±0.001 0.020±0.003
96 0.023±0.038 0.002±0.000 0.034±0.001 0.048±0.001 0.019±0.000

Table 9: Computation Time for Offline Forecasting with MSN.
Method Offline Dlinear +MSN

Time Train Test Stat Train Backbone Train Test

M5

24 0.086±0.039 0.001±0.000 0.247±0.003 0.334±0.002 0.004±0.000
48 0.084±0.038 0.001±0.000 0.284±0.005 0.363±0.003 0.004±0.000
72 0.084±0.037 0.001±0.000 0.277±0.003 0.357±0.005 0.004±0.000
96 0.086±0.039 0.001±0.000 0.266±0.004 0.345±0.003 0.004±0.000

A.3 FULL RESULTS OF COMPARISON OF ONLINE LEARNING STRATEGIES

This section provides comprehensive results of comparison between the proposed EvoMSN method
with other online learning strategies, where the performance of forecasting horizons {96, 192, 336}
are reported in Table 10. It shows the advantage of EvoMSN in enhancing online forecasting per-
formance across all horizons. The full visualization results of online cumulative average MSE loss
are shown in Fig. 7, which showcases the efficacy of EvoMSN to enable backbone models to better
adapt to shifting distribution.

Table 10: Comparison between EvoMSN and existing online learning strategies. The best and
second best results are in bold and underline.

Methods EvoMSN-TCN Online-TCN FSNet ER DER++

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exchange
96 0.076 0.157 0.191 0.287 0.195 0.296 0.165 0.275 0.162 0.276

192 0.101 0.178 0.255 0.325 0.244 0.327 0.220 0.310 0.226 0.318
336 0.109 0.193 0.286 0.345 0.337 0.378 0.287 0.348 0.301 0.361

Traffic
96 0.480 0.374 0.851 0.516 0.941 0.561 0.838 0.510 0.842 0.510

192 0.483 0.372 0.842 0.511 0.941 0.561 0.831 0.506 0.836 0.506
336 0.497 0.377 0.854 0.514 0.951 0.565 0.842 0.509 0.847 0.509

Electricity
96 3.847 0.392 14.581 1.172 12.781 0.987 13.280 1.170 13.160 1.126

192 4.166 0.395 15.279 1.210 14.486 1.024 15.190 1.209 15.234 1.139
336 4.353 0.403 17.302 1.263 15.061 1.062 15.899 1.241 16.384 1.174

Weather
96 0.678 0.389 0.834 0.492 0.777 0.491 0.806 0.480 0.812 0.482

192 0.737 0.422 0.774 0.462 0.913 0.540 0.697 0.419 0.709 0.426
336 0.789 0.451 0.859 0.499 1.078 0.602 0.775 0.457 0.797 0.468

ETTh1
96 0.600 0.525 0.748 0.579 0.614 0.550 0.741 0.580 0.684 0.558

192 0.755 0.589 0.787 0.592 0.719 0.588 0.775 0.592 0.732 0.574
336 0.651 0.552 0.792 0.594 0.692 0.575 0.783 0.593 0.747 0.578

ETTm1
96 0.285 0.396 0.372 0.466 0.664 0.629 0.357 0.456 0.356 0.455

192 0.326 0.423 0.536 0.553 0.341 0.444 0.535 0.552 0.540 0.555
336 0.358 0.449 0.432 0.501 0.412 0.490 0.397 0.479 0.393 0.476

A.4 FULL RESULTS OF NORMALIZATION COMPARISON IN ONLINE FORECASTING

We provide comprehensive results of comparison between the proposed EvoMSN method with other
normalization strategies for online forecasting in Table 11. It can be observed that EvoMSN can
achieve the best performance in most cases and its effectiveness is prominent when the forecasting
horizon is long. The slice-based SAN method also shows a better performance than the instance-
level normalization approaches (RevIN and DishTS), which showcases the necessity of modeling the
distribution dynamics in a finer-grained manner. However, better performance can also be achieved
by the instance-level normalization approaches in some cases, which shows that a coarser-grained
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Figure 7: Evolution of the cumulative average MSE loss during online forecasting.

modeling of distribution dynamics that helps models to capture a general trend is also important.
To this end, the proposed multi-scale modeling approach is a more comprehensive solution that
integrates the advantages of both approaches.

Table 11: Comparison between EvoMSN and existing normalization approaches for online forecast-
ing. The best and second best results are in bold and underline.

Methods
Autoformer TimesNet

+EvoMSN +SAN +RevIN +Dish-TS +EvoMSN +SAN +RevIN +Dish-TS

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
xc

ha
ng

e 96 0.136 0.223 0.140 0.217 0.196 0.202 0.133 0.200 0.054 0.143 0.069 0.143 0.050 0.129 0.055 0.150
192 0.181 0.249 0.228 0.267 0.151 0.218 0.222 0.240 0.043 0.133 0.110 0.184 0.067 0.159 0.058 0.158

336 0.227 0.296 0.289 0.310 0.233 0.286 0.339 0.303 0.091 0.181 0.163 0.225 0.096 0.195 0.080 0.182

Tr
af

fic

96 0.219 0.249 0.256 0.269 0.357 0.319 0.356 0.319 0.219 0.240 0.246 0.250 0.301 0.274 0.405 0.332
192 0.253 0.256 0.320 0.295 0.337 0.300 0.326 0.298 0.230 0.240 0.255 0.258 0.234 0.235 0.397 0.325
336 0.269 0.259 0.337 0.298 0.359 0.307 0.344 0.303 0.272 0.263 0.263 0.255 0.291 0.258 0.335 0.281

E
le

ct
ri

ci
ty 96 1.358 0.286 2.211 0.323 2.782 0.365 3.123 0.397 1.684 0.280 2.221 0.301 2.038 0.282 3.420 0.364

192 2.096 0.319 2.884 0.337 2.679 0.359 3.484 0.414 1.599 0.288 2.225 0.301 2.485 0.305 2.806 0.376

336 2.390 0.321 3.801 0.362 4.077 0.416 4.000 0.421 2.186 0.312 2.994 0.336 3.488 0.343 3.718 0.412

W
ea

th
er 96 0.973 0.530 1.026 0.424 0.984 0.496 0.920 0.478 0.407 0.237 0.648 0.350 0.699 0.359 0.748 0.407

192 1.013 0.562 1.185 0.513 1.212 0.577 1.130 0.561 0.413 0.247 0.717 0.383 0.831 0.403 0.767 0.430
336 1.005 0.566 1.350 0.570 1.267 0.606 1.135 0.579 0.387 0.237 0.793 0.421 1.158 0.441 0.697 0.422

E
T

T
h1

96 0.291 0.360 0.482 0.455 0.471 0.455 0.501 0.471 0.314 0.372 0.335 0.386 0.469 0.435 0.450 0.433
192 0.475 0.457 0.515 0.474 0.439 0.444 0.489 0.472 0.403 0.424 0.421 0.432 0.419 0.412 0.472 0.453
336 0.528 0.494 0.591 0.516 0.543 0.493 0.559 0.504 0.274 0.353 0.380 0.411 0.497 0.451 0.423 0.431

E
T

T
m

1 96 0.172 0.300 0.209 0.332 0.314 0.413 0.217 0.342 0.109 0.236 0.127 0.258 0.122 0.250 0.194 0.324
192 0.193 0.323 0.244 0.361 0.303 0.406 0.279 0.393 0.101 0.227 0.133 0.265 0.120 0.248 0.182 0.312
336 0.267 0.379 0.287 0.394 0.327 0.423 0.276 0.389 0.102 0.230 0.153 0.285 0.114 0.239 0.131 0.262

We conduct experiments to investigate combining continual learning with different normalization
methods. Specifically, we utilize FSNet (Pham et al., 2022) as the backbone and compare the vanilla
FSNet, FSNet equipped with the proposed EvoMSN, with RevIN, and with DishTS in Table 12.
As shown in Table 10 the proposed EvoMSN can already enable the TCN model to outperform FS-
Net. Table 12 shows that the combination of EvoMSN and the continual learning strategy can further
improve online forecasting performance. This is because the backbone model with a continual learn-
ing strategy can better deal with the stability-plasticity dilemma. The above results demonstrate the
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compatibility of the proposed method with the continual learning strategy, and superior performance
compared to other normalization methods also validates the strength of the proposed method.

Table 12: Performance comparison when different normalization methods combine with continual
learning strategy.

FSNet +EvoMSN +RevIN +Dish-TS

MSE MAE MSE MAE MSE MAE MSE MAE

Exchange
96 0.195 0.296 0.065 0.148 0.322 0.342 0.459 0.462

192 0.244 0.327 0.094 0.170 0.380 0.392 0.402 0.421
336 0.337 0.378 0.103 0.193 0.639 0.518 1.059 0.686

ETTh1
96 0.614 0.550 0.645 0.525 0.818 0.623 0.765 0.606

192 0.719 0.588 0.545 0.494 0.791 0.618 0.990 0.689
336 0.692 0.575 0.614 0.535 0.982 0.682 0.776 0.609

ETTm1
24 0.664 0.629 0.326 0.425 0.674 0.613 0.635 0.610
36 0.341 0.444 0.350 0.439 0.778 0.650 0.394 0.479
48 0.412 0.490 0.350 0.441 0.509 0.537 0.452 0.515

A.5 THE EFFECT OF MULTI-SCALE NORMALIZATION (MSN) FOR OFFLINE LONG-TERM
FORECASTING

We investigate the traditional offline long-term forecasting setting with the train-test ratio of 70:20.
This is a non-trivial task since the model will not be updated online and will suffer from the distribu-
tion discrepancy between training data and testing data. We investigate backbone models including
DLinear (Zeng et al., 2023), Autoformer (Wu et al., 2021), FEDformer (Zhou et al., 2022), PatchTST
(Nie et al., 2022), and TimesNet (Wu et al., 2022) on six benchmark datasets: (1) Electricity, (2)
Exchange, (3) Traffic, (4) Weather, (5) Etth2, and (6) ILI 6, which collects the ratio of illness pa-
tients versus the total patients in one week that reported weekly from 2002 and 2021. We follow
the same configuration as (Liu et al., 2024b) for the length of the input window and output window.
In this setting, we carry out the proposed multi-scale normalization (MSN) method without online
updation but only with offline two-stage training, where the results are reported in Table 13. By
applying MSN to the backbone models, we observe an average performance improvement on all
datasets across all forecasting ranges by 15.03% with DLinear, 25.60% with Autoformer, 22.62%
with FEDformer, 4.05% with PatchTST, and 7.77% with TimesNet. Such great improvements val-
idate the effectiveness of the proposed method in explicitly modeling the distribution dynamics and
removing the non-stationary factors for time series forecasting, which also shows that the proposed
method can help alleviate the effects of distribution discrepancy between training and testing data
to some extent. The efficacy of the proposed method is especially prominent on data that are highly
non-stationary, such as Exchange, ETTh2, and ILI.

A.6 THE COMPARISON OF MSN WITH ADVANCED NORMALIZATION BENCHMARKS FOR
OFFLINE LONG-TERM FORECASTING

We compare the proposed MSN with other stat-of-the-art normalization methods for offline long-
term forecasting, including SAN (Liu et al., 2024b), RevIN (Kim et al., 2021), and Dish-TS (Fan
et al., 2023). In addition, we also include Non-Stationary Transformers (NST) (Liu et al., 2022) as a
benchmark, which is designed especially for transformers to forecast non-stationary time series. We
utilize FEDformer and Autoformer as the backbones and report results in Table 14. We can find that
SAN performs better than the instance-level normalization methods (RevIN and Dish-TS) due to its
slice-based modeling of distribution dynamics. NST shows more promising results on Weather data
where other methods suffer from the over-stationarization problem. In comparison, the proposed
method achieves the best performance thanks to the multi-scale modeling and ensembling.

6https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 13: Offline multivariate forecasting results. The bold values indicate better performance when
the backbone model is equipped with the proposed MSN method.

Methods Dlinear +MSN Autoformer +MSN FEDformer +MSN PatchTST +MSN TimesNet +MSN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
xc

ha
ng

e 96 0.086 0.213 0.083 0.213 0.152 0.283 0.080 0.205 0.152 0.281 0.078 0.202 0.094 0.216 0.078 0.199 0.107 0.234 0.081 0.204
192 0.161 0.297 0.173 0.317 0.369 0.437 0.156 0.297 0.273 0.380 0.156 0.298 0.191 0.311 0.171 0.300 0.226 0.344 0.189 0.320
336 0.338 0.437 0.287 0.409 0.534 0.544 0.266 0.395 0.452 0.498 0.260 0.391 0.343 0.427 0.300 0.401 0.367 0.448 0.312 0.413
720 0.999 0.755 0.662 0.623 1.222 0.848 0.604 0.634 1.151 0.830 0.608 0.629 0.888 0.706 0.832 0.689 0.964 0.746 0.914 0.712

Tr
af

fic

96 0.411 0.283 0.412 0.280 0.654 0.403 0.538 0.332 0.579 0.363 0.518 0.314 0.492 0.324 0.452 0.331 0.593 0.321 0.502 0.307
192 0.423 0.289 0.430 0.286 0.654 0.410 0.548 0.338 0.608 0.376 0.541 0.326 0.487 0.303 0.464 0.325 0.617 0.336 0.532 0.324
336 0.437 0.297 0.452 0.300 0.629 0.391 0.560 0.343 0.620 0.385 0.554 0.337 0.505 0.317 0.500 0.346 0.629 0.336 0.548 0.328
720 0.467 0.316 0.484 0.313 0.657 0.402 0.605 0.363 0.630 0.387 0.579 0.342 0.542 0.337 0.540 0.365 0.640 0.350 0.574 0.335

E
le

ct
ri

ci
ty 96 0.140 0.237 0.133 0.230 0.195 0.309 0.165 0.272 0.185 0.300 0.160 0.269 0.180 0.264 0.135 0.235 0.168 0.272 0.161 0.268

192 0.153 0.250 0.148 0.245 0.215 0.325 0.175 0.282 0.196 0.310 0.175 0.284 0.188 0.275 0.153 0.255 0.184 0.289 0.170 0.277
336 0.168 0.267 0.164 0.264 0.237 0.344 0.191 0.303 0.215 0.330 0.188 0.299 0.206 0.291 0.166 0.269 0.198 0.300 0.180 0.288
720 0.203 0.301 0.200 0.299 0.292 0.375 0.226 0.332 0.244 0.352 0.206 0.315 0.247 0.328 0.203 0.302 0.220 0.320 0.201 0.306

W
ea

th
er

96 0.175 0.237 0.152 0.214 0.247 0.320 0.188 0.255 0.246 0.328 0.171 0.240 0.177 0.218 0.147 0.206 0.172 0.220 0.163 0.224
192 0.217 0.275 0.195 0.256 0.302 0.361 0.249 0.314 0.281 0.341 0.234 0.299 0.224 0.258 0.190 0.247 0.219 0.261 0.222 0.277
336 0.263 0.314 0.245 0.296 0.362 0.394 0.317 0.363 0.337 0.376 0.302 0.352 0.277 0.297 0.243 0.294 0.280 0.306 0.273 0.314
720 0.325 0.366 0.313 0.347 0.427 0.433 0.371 0.374 0.414 0.426 0.388 0.405 0.350 0.345 0.315 0.353 0.365 0.359 0.416 0.413

E
T

T
h2

96 0.292 0.356 0.276 0.339 0.384 0.420 0.308 0.356 0.341 0.382 0.297 0.349 0.294 0.343 0.284 0.344 0.340 0.374 0.296 0.350
192 0.383 0.418 0.334 0.379 0.457 0.454 0.391 0.408 0.426 0.436 0.379 0.399 0.378 0.394 0.343 0.385 0.402 0.414 0.401 0.416
336 0.473 0.477 0.347 0.397 0.468 0.473 0.431 0.444 0.481 0.479 0.416 0.433 0.382 0.410 0.360 0.403 0.452 0.452 0.413 0.435
720 0.708 0.599 0.394 0.436 0.473 0.485 0.461 0.468 0.458 0.477 0.441 0.458 0.412 0.433 0.399 0.438 0.462 0.468 0.428 0.461

IL
I

24 2.297 1.055 1.986 0.969 3.309 1.270 2.640 1.094 3.205 1.255 2.534 1.072 1.987 0.955 1.850 0.913 2.317 0.934 2.197 0.986
36 2.323 1.070 1.893 0.898 3.207 1.216 2.084 0.904 3.148 1.288 2.273 0.942 1.872 0.893 1.827 0.873 1.972 0.920 1.686 0.849
48 2.262 1.065 1.895 0.925 3.166 1.198 2.182 0.943 2.913 1.168 2.262 0.961 1.840 0.900 1.843 0.885 2.238 0.940 1.973 0.885
60 2.443 1.124 2.062 0.980 2.947 1.159 2.307 0.982 2.853 1.161 2.069 0.917 2.021 0.961 2.192 0.988 2.027 0.928 2.072 0.940

Table 14: Comparison between MSN and existing normalization approaches for offline forecasting.
The best and second best results are in bold and underline.

Methods
FEDformer Autoformer

+MSN +SAN +RevIN +NST +Dish-TS +MSN +SAN +RevIN +NST +Dish-TS

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
xc

ha
ng

e 96 0.078 0.202 0.079 0.205 0.148 0.279 0.145 0.275 0.131 0.263 0.080 0.205 0.082 0.208 0.166 0.295 0.177 0.304 0.225 0.341
192 0.156 0.298 0.156 0.295 0.266 0.377 0.274 0.383 0.538 0.523 0.156 0.297 0.157 0.296 0.299 0.404 0.275 0.385 0.760 0.610
336 0.260 0.391 0.260 0.384 0.428 0.484 0.437 0.488 0.667 0.591 0.266 0.395 0.262 0.385 0.448 0.496 0.442 0.490 0.707 0.628
720 0.608 0.629 0.697 0.633 1.056 0.789 1.064 0.787 1.480 0.954 0.604 0.634 0.689 0.629 1.068 0.791 1.049 0.784 2.341 1.063

Tr
af

fic

96 0.518 0.314 0.536 0.330 0.613 0.347 0.612 0.348 0.613 0.350 0.538 0.332 0.569 0.350 0.643 0.354 0.645 0.354 0.652 0.363
192 0.541 0.326 0.565 0.345 0.637 0.356 0.641 0.357 0.644 0.362 0.548 0.338 0.594 0.364 0.659 0.373 0.643 0.367 0.669 0.374
336 0.554 0.337 0.580 0.354 0.652 0.363 0.654 0.363 0.659 0.370 0.560 0.343 0.591 0.363 0.662 0.371 0.665 0.363 0.683 0.376
720 0.579 0.342 0.607 0.367 0.686 0.382 0.688 0.380 0.693 0.388 0.605 0.363 0.623 0.380 0.700 0.384 0.667 0.373 0.703 0.392

E
el

ec
tr

ic
ity

96 0.160 0.269 0.164 0.272 0.172 0.278 0.172 0.279 0.175 0.284 0.165 0.272 0.172 0.281 0.179 0.286 0.179 0.285 0.179 0.290
192 0.175 0.284 0.179 0.286 0.185 0.289 0.187 0.291 0.188 0.296 0.175 0.282 0.195 0.300 0.216 0.316 0.209 0.309 0.215 0.318
336 0.188 0.299 0.191 0.299 0.200 0.304 0.202 0.307 0.209 0.319 0.191 0.303 0.211 0.316 0.233 0.331 0.246 0.335 0.244 0.343
720 0.206 0.315 0.230 0.334 0.243 0.337 0.230 0.326 0.239 0.343 0.226 0.332 0.236 0.335 0.246 0.341 0.252 0.345 0.286 0.370

W
ea

th
er

96 0.171 0.240 0.179 0.239 0.187 0.234 0.187 0.234 0.244 0.317 0.188 0.255 0.194 0.256 0.212 0.257 0.211 0.254 0.268 0.338
192 0.234 0.299 0.234 0.296 0.235 0.272 0.235 0.272 0.320 0.380 0.249 0.314 0.258 0.316 0.264 0.300 0.265 0.301 0.376 0.421
336 0.302 0.352 0.304 0.348 0.287 0.307 0.289 0.308 0.424 0.452 0.317 0.363 0.329 0.367 0.309 0.329 0.303 0.324 0.476 0.486
720 0.388 0.405 0.400 0.404 0.361 0.353 0.359 0.352 0.604 0.553 0.371 0.374 0.440 0.438 0.377 0.367 0.366 0.357 0.612 0.560

E
T

T
h2

96 0.297 0.349 0.300 0.355 0.380 0.402 0.381 0.403 0.806 0.589 0.308 0.356 0.316 0.366 0.411 0.410 0.394 0.398 1.100 0.670
192 0.379 0.399 0.392 0.413 0.457 0.443 0.478 0.453 0.936 0.659 0.391 0.408 0.413 0.426 0.478 0.450 0.473 0.450 0.976 0.672
336 0.416 0.433 0.459 0.462 0.515 0.479 0.561 0.499 1.039 0.702 0.431 0.444 0.446 0.457 0.545 0.493 0.528 0.490 1.521 0.783
720 0.441 0.458 0.462 0.472 0.507 0.487 0.502 0.481 1.237 0.759 0.461 0.468 0.471 0.474 0.523 0.490 0.524 0.498 1.105 0.745

IL
I

24 2.534 1.072 2.614 1.119 3.218 1.172 3.302 1.281 2.883 1.102 2.640 1.094 2.777 1.157 3.780 1.270 3.482 1.207 3.636 1.249
36 2.273 0.942 2.537 1.079 3.055 1.135 3.193 1.240 2.865 1.077 2.084 0.904 2.649 1.104 3.114 1.157 3.423 1.289 3.284 1.178
48 2.262 0.961 2.416 1.032 2.734 1.055 2.936 1.171 2.759 1.033 2.182 0.943 2.420 1.029 2.865 1.099 3.163 1.217 2.942 1.086
60 2.069 0.917 2.299 1.003 2.841 1.095 2.904 1.173 2.878 1.075 2.307 0.982 2.401 1.021 2.846 1.104 2.871 1.140 2.856 1.083

B LIMITATION

Even though the proposed method can greatly improve the overall forecasting accuracy, it may
sometimes cause slight performance degradation. We conclude potential reasons for method failure
as follows: 1) In the online forecasting setting, the multi-scale statistics prediction module is up-
dated only once for each incoming new data, which may challenge the module in capturing some
fast-changing statistics and will result in bad performance. Besides, the global dominant periodicity
is determined according to the training data, where the relatively small training data split ratio in the
online setting may cause an inappropriate periodicity extraction and thus affect the effectiveness of
multi-scale slice-based analysis. 2) In the offline forecasting setting, the multi-scale statistics pre-
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diction module is only updated on the training data, where the distinct statistics evolving dynamics
of training data and testing data may cause a worse performance in the evaluation stage. Despite
the potential shortcomings identified above, it is essential to emphasize the overall strengths of the
proposed method.

Moreover, we point out two directions to further improve the proposed method. First, we only model
the distribution dynamics by investigating slice statistics including mean and deviation, where more
comprehensive characteristics of distribution, such as minimum and maximum value, are important
but neglected in the proposed framework. We will propose a more general approach to model data
distribution dynamics in our future work. Second, the proposed EvoMSN may suffer from the
stability-plasticity dilemma when the backbone model and statistics prediction module are updated
online, where incremental learning techniques could be further investigated and integrated into the
proposed framework to improve the online forecasting performance.

20


	Introduction
	Related Works
	Time Series Forecasting
	Time Series Forecasting under Distribution Shifts

	Proposed Method
	Multi-Scale Distribution Dynamics Modeling
	Normalization with Adaptive Ensemble
	Evolving Bi-Level Optimization

	Experiments
	Experimental Setup
	Main Results
	Comparison with Online Learning Strategies
	Comparison with Normalization Methods
	Abaltion Study

	Conclusion
	Supplementary Experiments
	Full Visualization Results
	Extended Experiments Results
	Full Results of Comparison of Online Learning Strategies
	Full Results of Normalization Comparison in Online Forecasting
	The Effect of Multi-Scale Normalization (MSN) for Offline Long-Term Forecasting
	The Comparison of MSN with Advanced Normalization Benchmarks for Offline Long-Term Forecasting

	Limitation

