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Abstract

With the recent rise of generative Artificial Intel-
ligence (AI), the need of selecting high-quality
dataset to improve machine learning models has
garnered increasing attention. However, some part
of this topic remains underexplored, even for sim-
ple prediction models. In this work, we study the
problem of developing practical algorithms that
select appropriate dataset to minimize population
loss of our prediction model with high probability.
Broadly speaking, we investigate when datasets
from different sources can be effectively merged
to enhance the predictive model’s performance,
and propose a practical algorithm with theoreti-
cal guarantees. By leveraging an oracle inequal-
ity and data-driven estimators, the algorithm re-
duces population loss with high probability. Nu-
merical experiments demonstrate its effectiveness
in both standard linear regression and broader ma-
chine learning applications. Code is available at
https://github.com/kkrokii/colla
borative_prediction.

1 INTRODUCTION

In the era of big data and AI, it is widely believed that more
data will always help downstream performance even if the
data could potentially introduce noise or even adversarial
effects. However, such an approach is applicable to machine
learning models that are not susceptible to overfitting as
in Breiman [2001], Chen and Guestrin [2016]. Meanwhile,
classical methods such as linear regression and classifica-
tion still serve as alternatives for prediction tasks and are
still widely used in AI-related pipelines. For instance, linear
probing is frequently used for large language models and
other machine learning models [Alain and Bengio, 2016,
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Zhang et al., 2022]. With the rise of generative AI, there has
been a shift in the approach to better utilize data. For ex-
ample, the fine-tuning and alignment stages [Ouyang et al.,
2022] increasingly emphasize the need for higher-quality
datasets to achieve better performance.

In this work, we investigate methods for selecting higher-
quality data to enhance predictive performance. As modern
AI architectures become increasingly complex, systemat-
ically studying the impact of improved data selection on
performance remains a challenging task. Henceforth, we
aim to study the data refinement problem for linear regres-
sion and classification problems, which are well studied in
the theoretical statistics/machine learning community, while
also relevant with current development of AI.

Combining multiple datasets to train machine learning mod-
els is a common practice as increasing the number of sam-
ples usually leads to an improvement of performance of
the model. However, it is not always granted that a model
trained on diverse datasets would perform better, compared
to separate models fitted on each dataset respectively. As
datasets may or may not be similar to each other, this prac-
tice raises the question of when they can be safely merged.

Given a collection of datasets, a natural way to deal with
the problem would be to combine only the datasets that are
relevant. By sharing information across several datasets, a
model could benefit from a larger sample size. Meanwhile,
the model can enhance its overall performance and pro-
vide a more accurate forecast on each task if the underlying
datasets are related. This procedure of joint training among
selectively chosen datasets is referred to as collaborative
prediction. In collaborative prediction, the collection of as-
sorted datasets is divided into several partitions and the same
model is trained on each partition.

Research on multi-task learning [Evgeniou and Pontil, 2004]
and data integration [Merkouris, 2010] also aims to address
this problem by utilizing information from other datasets.
The majority of the studies on multi-task learning are cen-
tered around regularization of tasks. Various studies present
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Table 1: Out-of-Sample Error Reduction of Our Algorithm
vs Other Regression Based Multi-task Algorithms [Muruge-
san et al., 2017]. Notice that these multi-task settings are
not designed to specifically reduce the out-of-sample error.

Datasets RSS SSF CFGSF

Multi-task Learning 12% 37% 18%
Our Algorithm 87% 64% 71%

different objective functions, optimization methods, and
convergence analyses. Although optimization methods are
proved to converge and have been empirically demonstrated
to perform well on numerical experiments, the formula-
tion of the objectives or regularization is less grounded by
theory. Table 1 showcases the performance advantage of
our algorithm over the regression-based multi-task learning
algorithms. We also note that our problem setting differs
from federated learning [Kairouz et al., 2021], as we do
not consider issues of data heterogeneity or exchangeabil-
ity constraints. For a discussion of related work, we refer
readers to Appendix A.

In this context, we propose an algorithm with provable guar-
antees to determine whether to combine datasets for predic-
tive models. Our approach leverages data-driven estimations
and high-probability concentration bounds. The proposed
algorithm is highly versatile, applicable to both simple pre-
dictive models, such as linear regression, and more complex
deep neural network architectures.

The contributions of this study are threefold:

• First, we investigate the problem of combining multiple
datasets for predictive modeling. We characterize the
limitations of different models and provide theoretical
insights.

• Second, we establish theoretical conditions for deter-
mining whether to combine datasets, ensuring a high-
probability reduction in population loss, and develop
practical algorithms applicable to predictive models.

• Third, we empirically demonstrate the effectiveness of
our algorithm across various real-world datasets. Addi-
tionally, we highlight its applicability to both classical
and modern predictive models, such as neural networks,
and show its effectiveness in improving performance.

2 COLLABORATIVE PREDICTION

Let us begin with a motivating example. Denote by X the
space of features and Y the space of predictors. Suppose we
are given two datasets, D1 = {(x(1)i , y

(1)
i )}n1

i=1 and D2 =

{(x(2)i , y
(2)
i )}n2

i=1, drawn from distributions P1 and P2, re-
spectively. Our goal is to train a predictive model fθ(·) from
the hypothesis class H = {fθ | fθ(·) : X → Y, θ ∈ Θ},

Table 2: Accuracy of Algorithm 3 and Direct Comparison.

d Merge? Our Algorithm Direct Comparison

0 Yes 82.7% 17.3%
0.1 Yes 79.4% 20.5%
0.3 No 73.1% 80.5%

which may range from simple linear functions to complex
deep neural networks. One approach is to train different
models for each dataset, that is, we get fθ1 after training on
dataset D1, and fθ2 after training on dataset D2. Another
approach is to train the model fθc on combined dataset
D1 ∪D2. Given a loss function ℓ : Y × Y → R, the deci-
sion to combine the datasets or use them separately depends
on comparing the population loss of the combined model
with that of the models trained on individual datasets. That
is, we need to compare

R(fθc , fθc)

:= E(x,y)∼P1
[ℓ(fθc(x), y)] + E(x,y)∼P2

[ℓ(fθc(x), y)]

with

R(fθ1 , fθ2)

:= E(x,y)∼P1
[ℓ(fθ1(x), y)] + E(x,y)∼P2

[ℓ(fθ2(x), y)].

In practice, we only have access to the empirical loss. One
simple approach is to compare the sample loss defined as

R̂(fθ1 , fθ2) =
1

n1

n1∑
i=1

ℓ(fθ1(x
(1)
i ), y

(1)
i )

+
1

n2

n2∑
i=1

ℓ(fθ2(x
(2)
i ), y

(2)
i ).

However, this could fall short in some simple settings. In Ta-
ble 2, we draw datasets fromP1 andP2 where x ∼ N(0, Ip),
ϵ ∼ N(0, 1), y = x⊤β + ϵ for some β for each P1 and P2,
and we control the distance between the two distributions by
setting different values of d = 1√

p ||β1 − β2||. The finding
is that directly comparing the empirical loss (the column
Direct in Table 3) would result in false decisions 80% of
the time, especially under the scenario that d is relatively
small. However, our proposed approach performs more con-
sistently.

It is also theoretically challenging to provide a tight theoret-
ical guarantee that supports the comparison of the empirical
loss directly. From generalization bound result, the excess
risk is bounded by

|R̂(fθ1 , fθ2)−R(fθ1 , fθ2)| ≤ O (RS(H)) +O

(√
log(1/δ)

n

)
,

where RS(H) is the empirical Rademacher complexity.
By re-arranging the terms and use the upper bound for



R(fθc , fθc) and lower bound for R(fθ1 , fθ2), we have
R(fθc , fθc) ≤ R(fθ1 , fθ2) if

R̂(fθc , fθc) +O (RS(H)) +O

(√
log(1/δ)

n

)

≤R̂(fθ1 , fθ2)−O (RS(H))−O

(√
log(1/δ)

n

)
.

The inequality above implies that to estimate the population
loss from the empirical loss, we must quantify RS(H) (or
VC dimension), which is challenging for many predictive
models. Moreover, the constants (denoted by the big-O no-
tation) in the standard generalization bounds often rely on
additional assumptions on the loss function and distribu-
tions, such as boundedness or sub-Gaussian tail behavior,
imposing further restrictions.

To summarize, the reasons not to compare the empirical loss
directly are, first, it sometimes performs badly in practice;
second, it is non-trivial to give tight theoretical guarantees
backing this approach. Therefore, we narrow our focus to
linear regression and classification for the following reasons:

• First, these models are relatively simple and well stud-
ied in the statistical learning literature, allowing us to
derive insights that may be generalized to practical
scenarios.

• Second, they serve as fundamental building blocks in
modern machine learning pipelines. We anticipate that
some of the inherent properties of the proposed algo-
rithm may extend to more complex machine learning
models.

Motivated by this, we develop theoretical guarantees for
population loss comparison in simpler models and propose
algorithms applicable to both fundamental tasks and modern
machine learning applications.

2.1 FORMULATION

We now formally introduce the collaborative prediction
problem. Let {Dk}Kk=1 be a collection of datasets, where
each dataset consists of pairs (x(k), y(k)) sampled from
X × Y according to some probability distribution {Pk}Kk=1

over the joint space. LetA(·) denote an algorithm that takes
a dataset as input and outputs a predictive model. Specifi-
cally, when trained on a dataset D, the algorithm produces
a function A(D) : X → Y .

To evaluate the model performance, we employ a loss func-
tion ℓ : Y × Y → [0, 1]. The population loss of the trained
model is defined as

L(D,P ) = E(x,y)∼P [ℓ(A(D)(x), y)], (1)

where P represents the true underlying distribution.

Suppose the algorithm is trained on each dataset Dk and
predicts models separately. The loss incurred by fitting
individual models is the sum of losses on each dataset∑K
k=1 L(Dk, Pk). If the algorithm is instead trained on all

the datasets Dall = ∪Kk=1Dk, the loss incurred by fitting
a unified model is

∑K
k=1 L(Dall, Pk). Generally speaking,

merging all the data would improve the estimation error (or
variance) as the number of samples on which the algorithm
is trained has increased, but it would deteriorate the approxi-
mation error (or bias) as the same model is applied to all the
datasets that are possibly different. The problem of interest
is to find a partition S of the collection of datasets {Dk}Kk=1

such that the algorithm, when trained on each partition,
minimizes the total loss. Formally, a partition S is defined
over the index set {1, 2, . . . ,K} as a collection of disjoint
subsets {Ii}Ni=1, where each Ii satisfies Ii ⊂ {1, 2, . . . ,K}
and ∪Ni=1Ii = {1, 2, . . . ,K}.We denote the partition cell to
which an index k belongs by S(k), which means S(k) = i
if k ∈ Ii. Our objective is to find a partition S ∈ S that
minimizes the total population loss:

min
S∈S

K∑
k=1

L(∪j:S(j)=S(k)Dj , Pk).

2.2 COLLABORATIVE PREDICTION FOR
REGRESSION

In this section, we establish theoretical results and data-
driven algorithms on the collaborative prediction problem
for regression. We first propose theoretical results on com-
bining two datasets, then we progressively develop practical
algorithms, extending from the combination of two datasets
to multiple datasets.

2.2.1 Criterion for Combining Datasets for Linear
Regression

Suppose a dataset Dk = {(x(k)i , y
(k)
i )}nk

i=1 is generated
from a distribution Pk on X × Y for k = 1, · · · ,K, where
X = Rp, Y = R, and K = 2 temporarily. We have the
following standard assumption.

Assumption 1. For all k ≤ K, we assume that x(k)i follows
the marginal distribution P (k)

X , and there exists a parameter
vector β(k) such that, for all i ≤ nk, the response variable
satisfies y(k)i = x

(k)⊤
i β(k) + ϵ

(k)
i , where ϵ(k)i ∼ N(0, σ2)

with σ2 > 0. Additionally, the covariates x(k)i and the noise
ϵ
(k)
i are independent.

With this assumption, for a cleaner notation, let us
condense Dk more compactly as (X(k), y(k)) =

([x
(k)
1 , · · · , x(k)nk ]

⊤, [y
(k)
1 , · · · , y(k)nk ]

⊤) ∈ Rnk×p × Rnk ,
and a merged dataset D1 ∪ D2 as (X(c), y(c)) =



([X(1)⊤, X(2)⊤]⊤, [y(1)⊤, y(2)⊤]⊤). With this setting, we
fit linear regression models on D1 and D2.

The minimizer of the empirical loss is the ordinary least
squares (OLS) estimator. The OLS estimator fitted from a
single dataset Dk can be denoted by

β̂(k) = (X(k)⊤X(k))−1X(k)⊤y(k),

and the estimator fitted from the combined dataset D1 ∪D2

is

β̂(c) = (X(c)⊤X(c))−1X(c)⊤y(c).

Now we characterize the population loss. In the setting of
linear regression, the loss ℓ is the L2 loss and the population
loss is referred to as the out-of-sample error (OSE). When
(x, y) is sampled from P , we can denote the OSE of the
regressor f̂(x) = x⊤β̂ by

OSE(β̂, P ) = E(x,y)∼P

[(
y − x⊤β̂

)2]
.

With this setting, the comparison of population loss can be
denoted by

2∑
k=1

OSE(β̂(k), Pk) >

2∑
k=1

OSE(β̂(c), Pk). (2)

However, in practice, we only observe the sample loss.
Again, it is necessary to establish theoretical results that
allow us to infer population loss comparisons from sample
loss observations.

To have an alternative form that is easier to compute, we
define

h : R→ R, h(x) := A0x

g : Rp × Rp → R, g(y, z) := ||y − z||2B0

where A0 and B0 are constants determined by the under-
lying distributions. Their precise definitions are given in
Theorem 1 in Appendix B.1.1. || · ||B0

is the Mahalanobis
norm so that ||v||B0

=
√
v⊤B0v. The following theorem

establishes an equivalent condition for equation (2), and the
proof is deferred to Appendix B.1.1.

Theorem 1. Equation (2) holds if and only if h(σ2) >
g(β(1), β(2)).

Theorem 1 agrees with what one would have expected with
respect to the true parameters β(1) and β(2). If the two
models were close so that ∥β(1) − β(2)∥ for some norm
|| · || is small, then we can have a similar condition for
||β(1) − β(2)||B0 by norm equivalence. The condition in the
theorem indicates that merging the datasets indeed reduces
the error.

2.2.2 Provable Algorithm for Combining Datasets

The true parameters β(k) are unknown in practice, and we
need to develop data-driven algorithms based on Theorem 1.
By concentration and anti-concentration inequalities, with
high probability we can control the deviation of the estima-
tion of σ2, β(1), and β(2) from their true value.

More specifically, the estimators can be bounded in the
following way with a confidence level δ. They involve some
distributional constants Ã1(δ) and Ã2(δ) which depend on
δ, and D(·), a function of the input data, all defined in detail
in Appendix B.1.2. Next, we define

ϕδ(u, v, w) = Ã1(δ)w + Ã2(δ)∥D(u− v)∥2

and

ψδ(u, v, w) =
{√

g(u, v) + Tδ(w, ∥D(u− v)∥)
}2

where Tδ(x, y) is at the scale of O(max(x, y)), and also
depends on the confidence level δ. Under Assumption 1,
the OLS estimators β̂(1) and β̂(2) are normally distributed.
Therefore, if the parameters β(k) are replaced by their es-
timators β̂(k) in Theorem 1, then g(β̂(1), β̂(2)) would be
close to its true value g(β(1), β(2)). ψδ acts as a bound of
g(β̂(1), β̂(2)) with a margin depending on the properties of
the underlying distribution and δ as defined above. Similarly,
the sample variance of the noise on the combined dataset
σ̂(c)2, which has the form σ̂(c)2 = ∥y(c)−X(c)β̂(c)∥2/(n1+
n2 − p), would lie near its true value σ2. Hence ϕδ, as a
linear function of w, behaves as a surrogate of the linear
function h. The following lemma formalizes this result, and
we leave the proof in Appendix B.

Lemma 1. Under Assumption 1, with probability at least
1− 5δ, we have equation (2) holds if

ϕδ(β̂
(1), β̂(2), σ̂(c)2) ≥ ψδ(β̂

(1), β̂(2), σ̂(c)2). (3)

Lemma 1 provides a computationally feasible approach
to verify (2). It utilizes the computationally feasible terms
ϕδ(β̂

(1), β̂(2), σ̂(c)2) and ψδ(β̂(1), β̂(2), σ̂(c)2) as proxies of
the terms h(σ2) and g(β(1), β(2)) in the oracle inequality,
which are computationally infeasible. This result implies a
directly implementable algorithm, detailed in Algorithm 1.

Proposition 1 guarantees that with high probability, the de-
cision made by Algorithm 1 is valid.

Proposition 1. Under Assumption 1, with probability at
least 1 − 5δ, the output of Algorithm 1 is a decision rule
with minimum out-of-sample error being

min

{
2∑
k=1

OSE(β̂(k), Pk),

2∑
k=1

OSE(β̂(c), Pk)

}
.



Algorithm 1 High Probability Criterion to Combine Two
Datasets

Input: Datasets {D1, D2}, confidence level δ
Output: A decision Merge whether to merge the
datasets or not

1: Fit linear models β̂(1), β̂(2), and β̂(c) on D1, D2, and
D1 ∪D2, respectively

2: Compute
(
ϕδ(β̂

(1), β̂(2), σ̂(c)2), ψδ(β̂
(1), β̂(2), σ̂(c)2)

)
3: Return Merge = 1{ϕδ>ψδ}

The high probability guarantee of Algorithm 1 comes at the
price of limited applicability. Computing the functions ϕδ
and ψδ requires some knowledge of the marginal distribu-
tion of x. Moreover, even when ϕδ and ψδ can theoretically
be computed under distributional assumptions, it will still
pose a strong limitation because real data is very heteroge-
neously distributed. This motivates us to develop Algorithm
2, a computationally feasible algorithm.

2.2.3 Approximation Algorithm

We develop Algorithm 2, which takes Algorithm 1 as a
subroutine and tries to approximate Algorithm 1’s decision
boundary, and is computationally feasible. We apply Al-
gorithm 1 multiple times, and with a sufficient number of
repetitions, Theorem 4 in Appendix B.1.4 justifies the con-
sistency of the approximation.

Because Algorithm 2 is an approximation algorithm, there
is no high probability guarantee. Therefore, Algorithm 2
aims to estimate and maximize the success rate (SR), mean-
ing the output is correct compared to the estimated ground
truth. From (3), for each δ the condition ϕδ > ψδ implies
that our algorithm suggests a merge, and the success of
the merge could be determined by whether OSE_dif :=∑2
k=1 OSE(β̂(k), P

(k)
X×Y) −

∑2
k=1 OSE(β̂(c), P

(k)
X×Y) > 0.

Henceforth, the success rate (SR) is formally defined as

SR = P ((ϕδ − ψδ)× OSE_dif > 0) . (4)

As we do not know the exact OSE_dif due to the lack of in-
formation about the distribution, we approximate it based on
given data. More specifically, suppose our available dataset
Dk is generated from a distribution Pk for k = 1, 2. A
subset Dtrain

k of Dk is reserved for training and the rest
Dout
k = Dk − Dtrain

k is used to generate out-of-samples
{(x̃(k)i , ỹ

(k)
i )}ñk

i=1 for some out-of-sample size ñk, indepen-
dent from the training data. Under these settings, OSE_dif
is estimated by ÔSE_dif :=

∑2
k=1 ÔSE

(
β̂(k), Dout

k

)
−∑2

k=1 ÔSE
(
β̂(c), Dout

k

)
where ÔSE approximates the true

out-of-sample error of an estimator β̂ by

ÔSE
(
β̂,Dout

k

)
=

1

ñk

ñk∑
i=1

(
ỹ(k) − x̃(k)⊤β̂

)2
.

Finally, we repeatedly apply the algorithm several times and
estimate SR by its average success rate ŜR.

We then present Algorithm 2 with SR as the optimization
target. Algorithm 2 treats δ as a hyperparameter, whose
optimal value can be finetuned by maximizing the estimated
success rate ŜR. We follow Arlot and Bach [2009] and
employ grid search to find the optimal value. As Proposition
1 holds in probability, we evaluate the SR by repeating
Algorithm 1 several times. The full procedure is described
in detail in Algorithm 2.

Algorithm 2 Merging Two Datasets with Optimal Confi-
dence Level

Input: Datasets {D1, D2}, hyperparameter range
[αmin, αmax], grid search window size η, accuracy
threshold λ
Output: Decision 1merge whether to merge the datasets
or not, proxy accuracy proxy_acc
Part1: Tuning α

1: for α = αmin, αmin + η, · · · , αmax do
2: Initialize correctα = 0
3: for j = 1, 2, · · · ,max_iterations do
4: Sample (X(k), y(k)) from Dk (k = 1, 2)
5: Run Algorithm 1 on {(X(k), y(k))}2k=1 with

log 1
δ replaced by α to obtain (ϕα, ψα)

6: Generate out-of-samples (X̃(k), ỹ(k)) from Dk

for k = 1, 2
7: Compute ÔSE_dif
8: correctα ← correctα + 1(ϕα−ψα)×OSE_dif>0

9: end for
10: end for
11: Choose αopt = argmaxαcorrectα

Part2: Analysis of the data
12: Repeat 2-9 with α = αopt
13: Return proxy_acc = correctαopt

/max_iterations
and Merge = 1proxy_acc>λ

Algorithm 2 provides a self-contained process for making
a decision in practice. It uses only a portion of the given
dataset to train models. The rest are used as out-of-samples
to compute ÔSE. In Algorithm 2, Algorithm 1 is applied
with different values of α, and the optimal value is chosen
based on its performance. After tuning α, the algorithm can
be employed to make the actual decision. Due to the page
limit, we put Theorem 4 which justifies the consistency of
the approximation, in Appendix B.1.4.



2.2.4 Extension to Multiple Datasets

Algorithm 2 is based on Proposition 1, which provides a
provable guarantee for a pairwise decision. To generalize
to the cases where multiple datasets are given, Algorithm
2 is applied iteratively to choose which datasets to merge.
Here, we compare multiple datasets and form clusters by
adopting a greedy algorithm. Specifically, given a dataset
that has not yet been assigned any cluster, we compare it
with other datasets that also have not been clustered. We
choose the one with the largest boost in performance when
merged with the given dataset, and decide to combine the
two if the elevated performance exceeds a certain threshold.
The comparison is repeated until no other dataset can be
merged to the current cluster. Details of the algorithm are
presented in Algorithm 3.

Algorithm 3 Merging Multiple Datasets with Greedy Algo-
rithm

Input: A collection of datasets {Dk}Kk=1, accuracy
threshold λ
Output: Cluster of each dataset {ck}Kk=1

1: while ∃Dk without a cluster do
2: Assign a new cluster ck to Dk

3: For every Dj without a cluster, choose j that maxi-
mizes proxy_acc(k,j) by Algorithm 2

4: while proxy_acc(k,j) > λ do
5: Assign cj the same cluster as ck, and merge Dk

and Dj

6: Repeat 3
7: end while
8: end while
9: Return {ck}Kk=1

We note that the greedy algorithm is chosen for simplicity
and practicability. It is straightforward to understand, and
it is guaranteed to return a non-increasing error. Moreover,
Algorithm 3 has a quadratic dependence on the number of
datasets. To the best of our knowledge, there is no stan-
dard clustering method faster than the greedy algorithm
among those that are suitable for our setting. This is due to
the absence of a universal feature space in which datasets
are embedded, which necessitates pairwise comparison to
precede a clustering method. Further complexity analysis,
including running time report, is provided in Appendix C.4.

2.3 COLLABORATIVE PREDICTION FOR
CLASSIFICATION

Similar arguments can be made on classification tasks as in
regression. We employ logistic regression model to make
decisions and assess its population error with cross entropy
loss, with details provided in Appendix B.2. In a broad
sense, the decision should be made by comparing errors,
where the error now refers to classification error rather than

the regression error. Once again, we want to represent the
population loss in terms of β, the linear parameters related to
the covariates in the generating distribution. Under moderate
assumptions, it can be proved that combining the datasets
gives smaller population error bound when

Ψ(β(1), β(2)) ≤ Φ(β(1)) + Φ(β(2)),

where the precise definition of Ψ and Φ can be
found in Appendix B.2.1 and B.2.2. The major differ-
ence between the two functions, as described in The-
orem 9 in Appendix B.2.3, is that Ψ involves a term
of O

((
1√
n1

+ 1√
n2

)
∥β(1) − β(2)∥

)
, while Φ contains

O
(
β√
n

)
. Hence the error bound on the combined dataset

decreases if the distance between the true parameters
∥β(1) − β(2)∥ is small, which aligns with our previous con-
clusion on regression. Due to the page limit, we refer readers
to Appendix B.2 for precise statements and details.

3 NUMERICAL EXPERIMENTS

In this section, we empirically show the effectiveness and
broad applicability of our algorithm. The structure of the
section is as follows.

• In Section 3.1, we conduct experiments in synthetic
environments. The results demonstrate strong perfor-
mance, aligning well with our theoretical predictions.

• In Section 3.2, we evaluate our algorithm on real
datasets, casting them as regression problems. It ex-
hibits strong performance, effectively handling datasets
with heterogeneous distributions.

• In Section 3.3, we extend our algorithm to neural net-
works. The results not only show its robustness and
strong performance across different settings but also
highlight its applicability to different predictive mod-
els.

Experimental details, such as the structure of neural net-
works or the choice of hyperparameters, can be found in
Appendix C.1 and C.2.

3.1 SYNTHETIC ENVIRONMENT

We first test our example in the synthetic environment,
where we know (or can sample) the ground truth such that
whether datasets should be combined can be precisely deter-
mined. Also, the extent to which the datasets are heteroge-
neous could be controlled by regulating the difference be-
tween the underlying distributions. By experimenting within
different environment setups, we can have a comprehensive
idea how and when our algorithm will be effective.

We first consider the case where two datasets are available,
and further deal with general settings on subsequent sec-



Table 3: Accuracy of Algorithm 2 on the Synthetic Data:
n1 = n2 = 50, µ1 = µ2 = 0,Σ1 = Σ2 = I

p d Merge? Algorithm 2 Direct Comparison

10 0 Yes 82.7% 17.3%
10 0.1 Yes 79.4% 20.5%
10 0.3 No 73.1% 80.5%
20 0 Yes 87.4% 12.6%
20 0.1 Yes 80.4% 19.4%
20 0.3 No 70.1% 92.5%

tions. Each of the dataset is generated by a linear model
y
(k)
j = x

⊤(k)
j β(k) + ϵ

(k)
j (k = 1, 2, j = 1, · · · , nk,

β(k) ∈ Rp) with randomly generated covariates x(k) ∼
N(µ(k),Σ(k)) and Gaussian noise ϵ ∼ N(0, σ2I). We se-
lect different combinations of p, µ(k), and Σ(k), and com-
pare the sum of the out-of-sample errors of individual mod-
els
∑2
k=1OSE(β̂(k), P

(k)
X×Y) with the out-of-sample error

of combined model
∑2
k=1OSE(β̂(c), P

(k)
X×Y).

Because not many related algorithms are available, we com-
pare Algorithm 2 with the algorithm called Direct Com-
parison, which is a naive algorithm that directly compares
the sample loss (described in the beginning of Section 2).
In the synthetic environment, we know the ground truth of
the decision whether or not to combine the datasets. The
accuracy metric is computed by comparing the ground truth
with the outputs of algorithms for evaluation.

We show results for two settings. In both environments, the
datasets are sampled from different distributions. In the first
setting (in Table 3), we gradually shift β(2) by increasing d,
where β(2) − β(1) = d1p and 1p ∈ Rp is a unit vector. In
the second environment (in Table 4), we make an additional
change so that the covariate x is sampled from a distribution
with shifted mean (µ1 = 0 and µ2 = 1p). The performance
of Algorithm 2 and Direct Comparison is summarized in
Table 3 and Table 4. The accuracy metric is computed by
comparing the ground truth with their outputs.

Algorithm 2 successfully reduces out-of-sample error by
making adaptive decisions on a wide variety of circum-
stances. Intuitively, combining the datasets for small values
of d would aid the performance of a model, as the underly-
ing distributions are similar, while the datasets should be
deemed as distinct and sharing information will not improve
the model if d is large. The ground truth decision for com-
bining the datasets changes mostly around c ∈ (0.1, 0.3).
Algorithm 2 intelligently sorts out the situation. For c ≤ 0.1,
combining the two datasets indeed lowers the out-of-sample
error for most of the cases, and the algorithm also suggest
merging the datasets. For c ≥ 0.3, information of two distri-
butions becomes irrelevant according to the out-of-sample
errors, and Algorithm 2 also captures this fact.

Table 4: Accuracy of Algorithm 2 on the Synthetic Data:
n1 = n2 = 50, µ1 = 0, µ2 = 1p,Σ1 = Σ2 = I

p d Merge? Algorithm 2 Direct Comparison

10 0 Yes 80.6% 19.4%
10 0.1 Yes 73.6% 22.6%
10 0.3 No 98.0% 98.2%
20 0 Yes 84.7% 15.3%
20 0.1 Yes 66.6% 32.7%
20 0.3 No 99.1% 99.9%

3.2 APPLICATION ON REAL-WORLD DATA

We now apply the proposed algorithm to real-life datasets.
We demonstrate results on four datasets, which are se-
lected from frequently cited sources in machine learning
community such as the UC Irvine repository. The datasets
are: 1) Demand Forecast for Optimized Inventory Planning
(DFOIP) [Aguilar, 2023], which contains records of online
transactions on different items, 2) Walmart Data Analysis
and Forcasting (WDAF) [Sahu, 2023], which consists of
weekly sales and factors that might impact customers, 3)
Boom Bikes (BB) [Mishra, 2021], data on the number of
daily bike rentals with weather information, and 4) Pro-
ductivity Prediction of Garment Employees (PPGE) [Siri,
2021], data on productivity of workers in a company.

We manually divide the datasets into separate parts based on
certain features. The datasets can now be viewed as sampled
from different conditional distributions (conditioned on the
feature), and it becomes reasonable to believe that a single
model can be consistently applied to these parts. Namely,
DFOIP is partitioned for each item, the ten most popular
of which are used for the experiment. WDAF is divided
into holiday and non-holiday weeks, BB is split by weather
conditions, and PPGE is divided according to day.

We find that carefully choosing which datasets to combine
can greatly improve model performance. Merging all DFOIP
datasets, for instance, increases data size but may reduce
accuracy, as customer behavior varies across products. Sep-
arate models offer tailored predictions, but may struggle
with new items due to limited data. In this case, Algorithm 3
provides a solution by merging datasets of similar products.

The performance of Algorithm 3 is illustrated in Table 5.
Note that on real data, the true out-of-sample errors are
inaccessible as parameters of underlying distributions are
unknown. Hence out-of-sample errors are estimated via
bootstrapped samples. As Table 5 exhibits, Algorithm 3
reduces the out-of-sample error by more than 17.48% by
aggregating pertinent datasets, compared to out-of-sample
error of individual models trained independently on each
dataset. The results suggest that even with simple clustering,
our algorithm greatly reduces the error.



Table 5: Performance of Algorithm 3 Reducing ÔSE

Individual Algorithm 3 Reduction

DFOIP 4.14× 108 1.25× 106 99.7%
WDAF 8.98× 1011 7.41× 1011 17.5%

BB 2.057 1.347 34.5%
PPGE 5.57× 10−2 3.95× 10−2 29.1%

3.3 INTEGRATION ON NEURAL NETWORKS

We further integrate our algorithm into neural networks.
Neural networks are often pre-trained on massive amount
of data and then fine-tuned for specific tasks by modifying
the final layer. It is well-known that the representations
before the final layer contain useful information of the input.
By treating these representations as input, our algorithm
can effectively distinguish between similar and dissimilar
representations and improve predictive performance. See
Appendix C.1 for the details of applying our algorithms in
the representation space of neural networks.

Five datasets are analyzed in this section: 1) Rossmann Store
Sales (RSS) [FlorianKnauer and Cukierski, 2015], which
consists of sales of different stores along with additional
information on each day, 2) Store Sales Forcasting (SSF)
[Cukierski, 2014], weekly sales data of Walmart stores, 3)
Corporación Favorita Grocery Sales Forecasting (CFGSF)
[Favorita et al., 2017], another retail sales data in Ecuador, 4)
Seoul Bike Sharing Demand (SBSD) [Veerappampalayam
et al., 2020], weekly bike demand data, and 5) Metro Inter-
state Traffic Volume (MITV) [Hogue, 2019], data of traffic
volume in Minneapolis. Retail datasets are divided by store
types. SSF and CFGSF is further split into department and
item types. The last two datasets are divided based on season
and weather.

We use two simple networks: multi-layer perceptron with
one hidden layer (MLP1) and two hidden layers (MLP2).
While more sophisticated and advanced models could defi-
nitely be used to extract representation, and those models
would indeed return finer representation of data, our algo-
rithm would be further highlighted if it performs well even
on these simple models. After training the models, we take
the penultimate layer’s representations as new datasets. We
then apply Algorithm 3 and check whether out-of-sample
error is reduced by the algorithm.

The outcome of Algorithm 3 is summarized in Table 6 along
with the out-of-sample errors estimated by bootstrapping
as before. The errors are measured on representation of the
models rather than the original datasets. As can be confirmed
from Table 6, the error decreases 64.22% at minimum. The
results suggest that our algorithm is good at distinguish-
ing and combining relevant datasets, even on these simple
neural network models, suggesting the effectiveness of our

Table 6: Algorithm 3 on Representation with ÔSE

MLP1 Individual Alg. 3 Reduction

RSS 2.197× 103 2.326× 102 89.41%
SSF 1.381× 104 4.310× 103 68.79%

CFGSF 1.564× 101 4.308 72.46%
SBSD 1.325× 101 4.830 63.55%
MITV 2.111× 103 1.388× 103 72.46%

MLP2 Individual Alg. 3 Reduction

RSS 1.327× 103 2.760× 102 79.20%
SSF 3.277× 106 3.816× 104 98.83%

CFGSF 1.320× 102 4.723× 101 64.22%
SBSD 1.146× 101 4.110 63.55%
MITV 1.699× 103 2.028× 102 88.06%

algorithm for more complex models as well.

Figure 1: Representation of MLP2 on CFGSF

The effectiveness of clustering the datasets can also be con-
firmed by visualizing the representation. Figure 1 demon-
strates representation of MLP2 projected onto R2 by prin-
cipal component analysis. We present four collections of
datasets from CFGSF, with each collection containing mul-
tiple datasets that are classified as the same cluster by Al-
gorithm 3. As illustrated, each cluster includes multiple
groups of representation from different datasets, which are
heterogeneous and non-Gaussian. Nevertheless, the datasets
are clustered to reduce the overall error. Figure 1 shows
that our algorithm successfully reduces error even when the



underlying distribution of the input data does not meet the
theoretical assumptions.

4 CONCLUSION

We present a data-driven algorithm for combining multiple
datasets to share information across similar tasks with theo-
retical guarantee. We empirically demonstrate that our pro-
posed algorithm smartly combines similar datasets and re-
duces population loss on real data. Additionally, we showed
that it can be successfully integrated into neural networks.
Future works include exploring other clustering strategies
with provable guarantees to improve dataset selection. It is
also interesting to extend this framework to other machine
learning models.
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A RELATED WORK

Multi-task learning. Given a collection of datasets from multiple tasks, multi-task learning aims to enhance the learning
ability by exploiting commonalities between the tasks. A large portion of the literature focuses on optimization algorithms
and their convergence on risk minimization problem. Structural learning with linear predictors was studied by Ando and
Zhang [2005]. Without theoretical justification, Evgeniou and Pontil [2004] took regularization into account in multi-
task learning. Amit et al. [2007] proposed to decompose tasks into feature clusters and task clusters to learn common
characteristics among different tasks. Lin et al. [2018], Kumar and Daume III [2012], Barzilai and Crammer [2015], and
Murugesan et al. [2017] also used similar ideas with different regularization tactics. Zhou and Zhao [2016] and Yao et al.
[2019] suggested to seek for representative tasks to flexibly cluster tasks by allowing a single task to be related to multiple
representative tasks without specifying the number of cluster in advance.

Several studies also attempted to address the question related to the performance of the estimators. Lounici et al. [2009]
worked on multi-task linear regression and provided a performance guarantee with high probability for a specific regulariza-
tion coefficient, assuming sparsity of the tasks. Liang et al. [2009] devised asymptotical criterion for when a plugin estimator
should be preferred to oracle or unregularized estimator. Blum et al. [2017] studied PAC framework of multi-task learning
on personalized and centralized settings without making connection among similar tasks. The work that is most closely
related to our study was done by Solnon et al. [2012], where they tackled multi-task kernel regression problem by estimating
regularization coefficient based on the given data and providing high probability guarantees on their model.

Concentration and anti-concentration inequality. Studies on concentration inequality aim to provide a bound on the
tail probability of a distribution. A wide range of study deals with sub-Gaussian random variables, see Vershynin [2018]
and Boucheron et al. [2013] for example. Hanson and Wright [1971] first proposed a tail bound for a quadratic form of
independent random variables, and Rudelson and Vershynin [2013] later gave a modern proof. Hsu et al. [2011] also dealt
with quadratic forms of sub-Gaussian random vectors. Meanwhile, works on anti-concentration inequality pose a bound
on the probability that a random variable resides in a small region. The concept of anti-concentration is based on Levy’s
concentration function (Kolmogorov [1958]). Latala and Oleszkiewicz [2005] provided an upper bound on the probability
that a random variable falls in a small ball. Dasgupta and Gupta [2002] presented similar type of bound on χ2 distribution.

Representation in neural networks. It is widely accepted that features from a neural network can act as representation of
data. Alain and Bengio [2016] extensively investigated features of each layer of neural networks and empirically showed that
deeper features predict class labels well. Li et al. [2016] discovered that features of different models could converge to a set
of features which serves as a low dimensional representation. Athiwaratkun and Kang [2015] removed the top output layer
of convolutional neural networks (CNNs) and demonstrated that classification with features outperforms the original CNN.
Bakker and Heskes [2003] used outputs from the penultimate layer of a multi-layer perceptron as features for multi-task
learning, and empirically proved that task clustering increases the model performance.
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Collaborative prediction. The term collaborative prediction is used in the literature in slightly different points of view.
One line of research, Fan et al. [2023] and Zhang et al. [2024] for example, focuses on generating better predictions given a
fixed set of trained models. These works either demonstrate performance gain empirically or provide theory on asymptotics.
Another line of research uses the term collaborative prediction and collaborative filtering interchangeably to refer to the
problem of matrix completion, as in Srebro et al. [2004] and Yu et al. [2009]. On the contrary, we define collaborative
prediction as training an unspecified number of models on homogeneous datasets.

B PROOFS AND DETAILS

In this section, we prove the theorems presented in the main text and delineate details of the classification problem in Section
2.3. We make a brief remark on overparametrized regime.

We first review the notations and setups. Then the theorems are proved under common assumptions.

B.1 REGRESSION

On regression, it is possible to precisely compute out-of-sample error of a model. We first provide the expression for the
error, which contains true unknown parameters. We next replace the parameters with data-driven estimators which could be
computed explicitly given data. Consistency of the error is also proved under appropriate assumptions.

B.1.1 Exact Out-of-Sample Error

Let X and Y denote the space of features and predictors, respectively. A dataset Dk is a set of data sampled from X × Y
by some probability distribution. Suppose Dk = {(x(k)i , y

(k)
i ) ∈ Rp × R|i = 1, · · · , nk} is generated from a distribution

P
(k)
X×Y for k = 1, · · · ,K. We concatenate all the samples in the same dataset as (X(k), y(k)) =



x
(k)⊤
1
...

x
(k)⊤
nk

 ,

y
(k)
1
...

y
(k)
nk


, and

restate Assumption 1 below.

Assumption 1. (restated) A sample (x(k), y(k)) is generated from the distribution P (k)
X×Y such that x(k) ∼ P

(k)
X , the

marginal distribution w.r.t. X , and y(k) = x(k)⊤β(k) + ϵ(k), where ϵ(k) ∼ N(0, σ2) and σ > 0. Additionally, the covariates
and the noise are independent.

Let us consider the case where only two datasetsD1 andD2 exist. We stack all the data as (X(c), y(c)) =

([
X(1)

X(2)

]
,

[
y(1)

y(2)

])
.

The (unbiased) OLS estimator on Dk is β̂(k) = (X(k)⊤X(k))−1X(k)⊤y(k), the (unbiased) OLS estimator on D1 ∪ D2

is β̂(c) = (X(c)⊤X(c))−1X(c)⊤y(c), and the (unbiased) estimator for the variance of the noise on D1 ∪ D2 is σ̂(c)2 =
∥y(c)−X(c)β̂(c)∥2

n1+n2−p . It is well-known that the out-of-sample error of the OLS estimator OSE(β̂(k), P
(k)
X×Y) is of the following

form

OSE(β̂(k), P
(k)
X×Y) = σ2 + σ2tr(E[x̃(k)x̃(k)⊤]E[(X(k)⊤X(k))−1]),

where x̃(k) is an out-of-sample generated from the same marginal distribution P (k)
X . For the following theoretical develop-

ment, we present an alternative form of OSE(β̂(c), P
(k)
X×Y).

Lemma 2. Under Assumption 1,

OSE(β̂(c), P
(k)
X×Y) = σ2 + σ2tr(WkE[(X(c)⊤X(c))−1]) + (β(1) − β(2))⊤E[Z⊤

3−kWkZ3−k](β
(1) − β(2)),

where Wk = E[x̃(k)x̃(k)⊤] for an out-of-sample x̃(k) ∼ P (k)
X and Zk = (X(c)⊤X(c))−1X(k)⊤X(k) .

Remark. For our two datasets case, the (3− k)th dataset refers to the other dataset instead of Dk. For instance, if k = 1 so
that β̂(1) is being analyzed, then Z3−k refers to (X(c)⊤X(c))−1X(2)⊤X(2).



Proof. By definition,

OSE(β̂(c), P
(k)
X×Y) = E[(ỹ(k) − x̃(k)⊤β̂(c))2]

= E[(x̃(k)⊤β(k) + ϵ− x̃(k)⊤β̂(c))2]

= E[(x̃(k)⊤β(k) − E[x̃(k)⊤β̂(c)|x̃(k)])2] + E[(E[x̃(k)⊤β̂(c)|x̃(k)]− x̃(k)⊤β̂(c))2]

+ 2E
[
(x̃(k)⊤β(k) − E[x̃(k)⊤β̂(c)|x̃(k)])(E[x̃(k)⊤β̂(c)|x̃(k)]− x̃(k)⊤β̂(c))

]
+ σ2.

Note that

E[x̃(k)⊤β̂(c)|x̃(k)] = E[x̃(k)⊤(X(c)⊤X(c))−1X(c)⊤y(c)|x̃(k)]
= x̃(k)⊤E[(X(c)⊤X(c))−1(X(1)⊤X(1)β(1) +X(2)⊤X(2)β(2))|x̃(k)]
= x̃(k)⊤β(k) + x̃(k)⊤E[(X(c)⊤X(c))−1X(3−k)⊤X(3−k)(β(3−k) − β(k))|x̃(k)]
= x̃(k)⊤β(k) + x̃(k)⊤E[Z3−k(β

(3−k) − β(k))|x̃(k)],

hence

E[x̃(k)⊤β(k) − E[x̃(k)⊤β̂(c)|x̃(k)])2] = (β(1) − β(2))⊤E[Z3−k]
⊤E[x̃(k)x̃(k)⊤]E[Z3−k](β

(1) − β(2)). (5)

Also, we have

E
[
(x̃(k)⊤β(k) − E[x̃(k)⊤β̂(c)|x̃(k)])(E[x̃(k)⊤β̂(c)|x̃(k)]− x̃(k)⊤β̂(c))

]
= E

[
E
[
(x̃(k)⊤β(k) − E[x̃(k)⊤β̂(c)|x̃(k)])(E[x̃(k)⊤β̂(c)|x̃(k)]− x̃(k)⊤β̂(c))

∣∣x̃(k)]]
= 0.

By Lemma 3 and (5), it follows that

OSE(β̂(c), P
(k)
X×Y) = σ2 + σ2tr(WkE[(X(c)⊤X(c))−1]) + (β(1) − β(2))⊤E[Z⊤

3−kWkZ3−k](β
(1) − β(2)).

Lemma 3. Under Assumption 1,

E[(E[x̃(k)⊤β̂(c)|x̃(k)]− x̃(k)⊤β̂(c))2] = σ2tr
(
WkE[(X(c)⊤X(c))−1]

)
+ (β(k) − β(3−k))⊤E[Z⊤

3−kWkZ3−k](β
(k) − β(3−k))

− (β(k) − β(3−k))⊤E[Z3−k]
⊤WkE[Z3−k](β

(k) − β(3−k)).

Proof. We first derive

E[(E[x̃(k)⊤β̂(c)|x̃(k)]− x̃(k)⊤β̂(c))2] = E[E[(E[x̃(k)⊤β̂(c)|x̃(k)]− x̃(k)⊤β̂(c))2|x̃(k)]]

= E[V ar(x̃(k)⊤β̂(c)|x̃(k))],

and

V ar(x̃(k)⊤β̂(c)|x̃(k)) = E[V ar(x̃(k)⊤β̂(c)|X(c), x̃(k))|x̃(k)] + V ar(E[x̃(k)⊤β̂(c)|X(c), x̃(k)⊤]|x̃(k))
= σ2x̃(k)⊤E[(X(c)⊤X(c))−1]x̃(k)⊤

+ V ar
(
x̃(k)⊤

(
β(k) + (X(c)⊤X(c))−1X(3−k)⊤X(3−k)(β(3−k) − β(k))

)
|x̃(k)

)
= σ2x̃(k)⊤E[(X(c)⊤X(c))−1]x̃(k)⊤ + x̃(k)⊤V ar

(
Z3−k(β

(k) − β(3−k))
)
x̃(k),

hence

E[(E[x̃(k)⊤β̂(c)|x̃(k)]− x̃(k)⊤β̂(c))2] = σ2tr
(
WkE[(X(c)⊤X(c))−1]

)
+ tr

(
WkV ar

(
Z3−k(β

(k) − β(3−k))
))

.



To further simplify V ar
(
Z3−k(β

(k) − β(3−k))
)
,

V ar
(
Z3−k(β

(k) − β(3−k))
)
= E[Z3−k(β

(k) − β(3−k))(β(k) − β(3−k))⊤Z⊤
3−k]

− E[Z3−k](β
(k) − β(3−k))(β(k) − β(3−k))⊤E[Z3−k]

⊤.

Since

E[Z3−k(β
(k) − β(3−k))(β(k) − β(3−k))⊤Z⊤

3−k]i,j = E[(Z3−k)i,:(β
(k) − β(3−k))(β(k) − β(3−k))⊤(Z3−k)

⊤
j,:]

= (β(k) − β(3−k))⊤E[(Z3−k)
⊤
j,:(Z3−k)i,:](β

(k) − β(3−k)),

where (Z3−k)i,: refers to the ith row of Z3−k, it follows that

tr
(
WkV ar

(
Z3−k(β

(k) − β(3−k))
))

= tr

(
Wk

[
(β(k) − β(3−k))⊤E[(Z3−k)

⊤
j,:(Z3−k)i,:](β

(k) − β(3−k))
]
i,j=1,··· ,p

)
− (β(k) − β(3−k))⊤E[Z3−k]

⊤WkE[Z3−k](β
(k) − β(3−k)).

Now, because we have the following relations

tr

(
Wk

[
(β(k) − β(3−k))⊤E[(Z3−k)

⊤
j,:(Z3−k)i,:](β

(k) − β(3−k))
]
i,j=1,··· ,p

)
=

p∑
j=1

(Wk)1,j(β
(k) − β(3−k))⊤E[(Z3−k)

⊤
j,:(Z3−k)1,:](β

(k) − β(3−k))

+ · · ·+
p∑
j=1

(Wk)p,j(β
(k) − β(3−k))⊤E[(Z3−k)

⊤
j,:(Z3−k)p,:](β

(k) − β(3−k))

=

p∑
i=1

p∑
j=1

(Wk)i,j(β
(k) − β(3−k))⊤E[(Z3−k)

⊤
j,:(Z3−k)i,:](β

(k) − β(3−k))

= (β(k) − β(3−k))⊤
p∑
i=1

p∑
j=1

(Wk)i,jE[(Z3−k)
⊤
j,:(Z3−k)i,:](β

(k) − β(3−k))

= (β(k) − β(3−k))⊤E[Z⊤
3−kWkZ3−k(β

(k) − β(3−k)),

we get

E[(E[x̃(k)⊤β̂(c)|x̃(k)]− x̃(k)⊤β̂(c))2] = σ2tr
(
WkE[(X(c)⊤X(c))−1]

)
+ (β(k) − β(3−k))⊤E[Z⊤

3−kWkZ3−k](β
(k) − β(3−k))

− (β(k) − β(3−k))⊤E[Z3−k]
⊤WkE[Z3−k](β

(k) − β(3−k)).

Now that the exact error is identified, the equivalent condition in Theorem 1 for error reduction can be proved.

Theorem 1. Under Assumption 1, we have
2∑
k=1

OSE(β̂(k), P
(k)
X×Y) >

2∑
k=1

OSE(β̂(c), P
(k)
X×Y)

if and only if

h(σ2) > g(β(1), β(2)),

where

h(x) = A0x,

g(y, z) = ∥y − z∥2B0
,

A0 = tr
(
W1E

[
(X(1)⊤X(1))−1 − (X(c)⊤X(c))−1

]
+W2E

[
(X(2)⊤X(2))−1 − (X(c)⊤X(c))−1

])
, and

B0 = E[Z⊤
1 W2Z1] + E[Z⊤

2 W1Z2].



Proof. By Lemma 2,

2∑
k=1

OSE(β̂(k), P
(k)
X×Y) >

2∑
k=1

OSE(β̂(c), P
(k)
X×Y)

⇐⇒ 2σ2 + σ2tr
(
W1E

[
(X(1)⊤X(1))−1

]
+W2E

[
(X(2)⊤X(2))−1

])
> σ2tr

(
(W1 +W2)E[(X(c)⊤X(c))−1]

)
+ (β(1) − β(2))⊤

(
E[Z⊤

1 W2Z1] + E[Z⊤
2 W1Z2]

)
(β(1) − β(2)) + 2σ2

⇐⇒ σ2tr
(
W1E

[
(X(1)⊤X(1))−1 − (X(c)⊤X(c))−1

]
+W2E

[
(X(2)⊤X(2))−1 − (X(c)⊤X(c))−1

])
> (β(1) − β(2))⊤

(
E[Z⊤

1 W2Z1] + E[Z⊤
2 W1Z2]

)
(β(1) − β(2)).

B.1.2 Replacing Parameters with Estimators

Now, we prove Lemma 1, which replaces β(k) and σ2 with estimators by imposing high probability bounds. We first state
concentration and anti-concentration inequalities from existing literature, and then develop high probability bounds on both
sides of the inequality in Theorem 1.

Theorem 2. [Hsu et al., 2011] If K ∈ Rm×n, L = K⊺K, µ ∈ Rn, σ ≥ 0, and E[eα
⊺(x−µ)] ≤ e 1

2σ
2∥α∥2

, ∀α ∈ Rn, then
for ∀t > 0

P

∥Kx∥2 > σ2
{
tr(L) + 2

√
tr(L2)t+ 2∥L∥t

}
+ ∥Kµ∥2

√√√√1 + 4

√
∥L2∥
tr(L2)

t+
4∥L∥2
tr(L2)

t

 ≤ e−t.
Theorem 3. [Lovett, 2010] If V ∼ Nd(0, I), then

P(∥V ∥2 ≤ ϵ) ≤
√

2e
ϵ

d
.

Next, we present lemmas needed for the application of our setting.

Lemma 4. If Z ∼ Nd(µ, Id), then

P(∥Z∥ ≤ t) ≤
√

2e

d
(∥µ∥+ t) + 2e−

(∥µ∥−t)2

2d − 1

for t < ∥µ∥.

Proof. From Theorem 3, we can show that

P(∥Z∥ ≤ t) ≤ P(∥Z − µ∥ ≤ ∥µ∥+ t)− P(∥Z − µ∥ ≤ ∥µ∥ − t)

≤
√

2e

d
(∥µ∥+ t) + 2e−

(∥µ∥−t)2

2d − 1

Based on these inequalities, a lower bound for f(σ2) can be obtained as follows.

Lemma 5. For D⊤D = {(X(1)⊤X(1))−1 + (X(2)⊤X(2))−1}−1,

h(σ2) ≥ ϕδ(β̂(1), β̂(2), σ̂(c)2)



with probability at least 1− 2δ, where

ϕδ(u, v, w) = Ã1(δ)w + Ã2(δ)∥D(u− v)∥2,

Ã1(δ) =
n0A0(

n0 + 2
√
n0 log

1
δ + 2 log 1

δ

)(
3 + 4

√
1
n0

log 1
δ

) ,
Ã2(δ) =

−2A0

(
1 + 2

√
1
n0

log 1
δ

)
(
n0 + 2

√
n0 log

1
δ + 2 log 1

δ

)(
3 + 4

√
1
n0

log 1
δ

) ,
and n0 = n1 + n2 − p.

Proof. Let us introduce additional notations for more efficient computation. Let X(0) =

[
X(1) 0
0 X(2)

]
, y(0) =

[
y(1)

y(2)

]
,

ϵ(0) =

[
ϵ(1)

ϵ(2)

]
, and β(0) =

[
β(1)

β(2)

]
. Then the estimator for σ2 on the combined dataset D1 ∪D2 is σ̂(c)2 = 1

n1+n2−p (∥y
(1)−

X(1)β̂(c)∥2 + ∥y(2) −X(2)β̂(c)∥2).

Let us further denote C =
[
Ip −Ip

]
and A = X(0)(X(0)⊤X(0))−1C⊤, and let M = A(A⊤A)−1A⊤ and HX(0) =

X(0)(X(0)⊤X(0))−1X(0). Then I −HX(0) +M is symmetric and idempotent, and σ̂(c)2 = 1
n1+n2−py

(0)⊤(I −HX(0) +

M)y(0). Since tr(I −HX(0) +M) = n1 + n2 − p, ∥I −HX(0) +M∥ = λmax(I −HX(0) +M) = 1, and

∥(I −HX(0) +M)X(0)β(0)∥2 = β(0)⊤X(0)⊤(I −HX(0) +M)X(0)β(0)

= β(0)⊤C⊤{C(X(0)⊤X(0))−1C⊤}−1Cβ(0),

Theorem 2 gives

(n1 + n2 − p)σ̂(c)2 ≤ σ2

(
n1 + n2 − p+ 2

√
n1 + n2 − p

√
log

1

δ
+ 2 log

1

δ

)

+

1 + 2

√
log 1

δ

n1 + n2 − p

 ∥D(β(1) − β(2))∥2 (6)

with probability at least 1− δ, where λmax(·) denotes the maximum eigenvalue of a matrix.

As D(β̂(1) − β̂(2)) = DCβ̂(0) = DA⊺y(0), Theorem 2 leads to

P(∥D(β̂(1) − β̂(2))−D(β(1) − β(2))∥2 > σ2(tr(M) + 2
√
tr(M)t+ 2∥M∥t)) ≤ e−t,

or equivalently,

∥D(β̂(1) − β̂(2))−D(β(1) − β(2))∥ ≤

√√√√σ2

(
n1 + n2 − p+ 2

√
n1 + n2 − p

√
log

1

δ
+ 2 log

1

δ

)
(7)

with probability at least 1− δ. Hence

∥D(β(1) − β(2))∥2 ≤ 2∥D(β̂(1) − β̂(2))−D(β(1) − β(2))∥2 + 2∥D(β̂(1) − β̂(2))∥2

≤ 2σ2

(
n1 + n2 − p+ 2

√
n1 + n2 − p

√
log

1

δ
+ 2 log

1

δ

)
+ 2∥D(β̂(1) − β̂(2))∥2 (8)

with probability at least 1− δ. Combining (6) and (8) gives

(n1 + n2 − p)σ̂(c)2 ≤ σ2

(
n1 + n2 − p+ 2

√
n1 + n2 − p

√
log

1

δ
+ 2 log

1

δ

)3 + 4

√
log 1

δ

n1 + n2 − p


+ 2

1 + 2

√
log 1

δ

n1 + n2 − p

 ∥D(β̂(1) − β̂(2))∥2,



or equivalently,

h(σ2) ≥ Ã1(δ)σ̂
(c)2 + Ã2(δ)∥D(β̂(1) − β̂(2))∥2.

with probability at least 1− 2δ.

Next, g(β(1), β(2)) can also be bounded in a similar way, and we show it in the following lemma.

Lemma 6. For D⊤D = {(X(1)⊤X(1))−1 + (X(2)⊤X(2))−2}−1,

g(β(1), β(2)) ≤ ψδ(β̂(1), β̂(2), σ̂(c)2)

with probability at least 1− 2δ, where

ψδ(u, v, w) =
{√

g(u, v) + Tδ(w, ∥D(u− v)∥)
}2

and Tδ(x, y) = O(max{x, y}).

Proof. Let I −HX(0) +M = PΛP ⊺. Since I −HX(0) +M is symmetric and idempotent, its eigenvalues are 0 or 1. As
tr(I −HX(0) +M) = n1 + n2 − p, assume the first n1 − n2 + p diagonal entries of Λ be 1 and the rest be 0 without loss
of generality. Then

P⊤(I −HX(0) +M)y(0) ∼ N(P⊤MX(0)β(0), σ2Λ)

= Nn1+n2

(
P ⊺MX(0)β(0), σ2

[
In1+n2−p 0

0 0

])
.

where In denotes the n× n identity matrix.

Denote F =
[
In1+n2−p 0

]
and G =

[
0 Ip

]
. For a constant c,

P((n1 + n2 − p)σ̂(c)2 ≤ c) = P(∥P⊤(I −HX(0) +M)y(0)∥2 ≤ c)
= P(∥FP⊤(I −HX(0) +M)y(0)∥2 + ∥GP⊤(I −HX(0) +M)y(0)∥2 ≤ c)

Let Z = FP ⊺(I −HX(0) +M)y(0). Then Z ∼ N(FP ⊺MX(0)β(0), σ2I), and

∥FP⊤MX(0)β(0)∥2 = β(0)⊤X(0)⊤M(I −HX(0) +M)MX(0)β(0)

= β(0)⊤C⊤(C(X(0)⊤X(0))−1C⊤)−1Cβ(0)

= ∥D(β(1) − β(2))∥2.

Also, GP⊤(I −HX(0) +M)y(0) ∼ N(GP⊤MX(0)β(0), 0), and

∥GP⊤MX(0)β(0)∥2 = β(0)⊤X(0)⊤MP (I − Λ)P⊤MX(0)β(0)

= β(0)⊤X(0)⊤M(I − I +HX(0) −M)MX(0)β(0)

= 0.

Combining with Lemma 4, it follows that

P((n1 + n2 − p)σ̂(c)2 ≤ c) ≤ 1

σ

√
2e

n1 + n2 − p
(∥D(β(1) − β(2))∥+

√
c) + 2e

− (∥D(β(1)−β(2))∥−
√

c)2

2(n1+n2−p) − 1

≤ 2

σ

√
2e

n1 + n2 − p
∥D(β(1) − β(2))∥+ 2e

− (∥D(β(1)−β(2))∥−
√

c)2

2(n1+n2−p) − 1



for c ≤ ∥D(β(1) − β(2))∥2. Hence

(n1 + n2 − p)σ̂(c)2 ≥
{
∥D(β(1) − β(2))∥+ σ

√√√√2(n1 + n2 − p) log
2

1 + δ − 2∥D(β(1) − β(2))∥
√

2e
n1+n2−p

1
σ

}2

≥
{
∥D(β(1) − β(2))∥+ σ

√
2(n1 + n2 − p)

(√
log

4

1 + δ
+

1

2
√

log 4
1+δ

− 1

8∥D(β(1) − β(2))∥

×
√
n1 + n2 − p

2e

1 + δ√
log 4

1+δ

σ

)}2

with probability at least 1− δ as the function ξ : s 7→
√
log 1

a− b
s

satisfies

ξ(s) ≥ ξ
(
2b

a

)
+ ξ′

(
2b

a

)(
s− 2b

a

)
= − a

4b
√
log 4

a

s+

√
log

4

a
+

1

2
√
log 4

a

.

Rearranging the terms gives

∥D(β(1) − β(2))∥
√
(n1 + n2 − p)σ̂(c)2 ≥ −n1 + n2 − p

8

1 + δ√
e log 4

1+δ

σ2 ++∥D(β(1) − β(2))∥2

+ ∥D(β(1) − β(2))∥
√
2(n1 + n2 − p)

√log
4

1 + δ
+

1

2
√
log 4

1+δ

σ (9)

with probability at least 1− δ.

Meanwhile, from (7),

∥D(β(1) − β(2))∥ ≤ ∥D(β̂(1) − β̂(2))−D(β(1) − β(2))∥+ ∥D(β̂(1) − β̂(2))∥

≤

√
σ2(n1 + n2 − p+ 2

√
n1 + n2 − p

√
log

1

δ
+ 2 log

1

δ
) + ∥D(β̂(1) − β̂(2))∥ (10)

and

∥D(β(1) − β(2))∥ ≥ ∥D(β̂(1) − β̂(2))∥ − ∥D(β̂(1) − β̂(2))−D(β(1) − β(2))∥

≥ ∥D(β̂(1) − β̂(2))∥ −

√
σ2(n1 + n2 − p+ 2

√
n1 + n2 − p

√
log

1

δ
+ 2 log

1

δ
) (11)

with probability at least 1− δ.



Combining (9), (10), and (11) gives

√
(n1 + n2 − p)σ̂(c)2

√σ2(n1 + n2 − p+ 2
√
n1 + n2 − p

√
log

1

δ
+ 2 log

1

δ
) + ∥D(β̂(1) − β̂(2))∥


≥ ∥D(β(1) − β(2))∥

√
(n1 + n2 − p)σ̂(c)2

≥ −n1 + n2 − p
8

1 + δ√
e log 4

1+δ

σ2 + ∥D(β(1) − β(2))∥2

+ ∥D(β(1) − β(2))∥
√
2(n1 + n2 − p)

√log
4

1 + δ
+

1

2
√

log 4
1+δ

σ

≥ −n1 + n2 − p
8

1 + δ√
e log 4

1+δ

σ2 +

√log
4

1 + δ
+

1

2
√

log 4
1+δ

√2(n1 + n2 − p)σ

×
(
∥D(β̂(1) − β̂(2))∥ − σ

√
(n1 + n2 − p+ 2

√
n1 + n2 − p

√
log

1

δ
+ 2 log

1

δ
)

)

+

(
∥D(β̂(1) − β̂(2))∥ −

√
σ2(n1 + n2 − p+ 2

√
n1 + n2 − p

√
log

1

δ
+ 2 log

1

δ
)

)2

with probability at least 1− 2δ. Solving σ leads to

σ ≤ c0 :=
c1 − c4 +

√
(c1 − c4)2 − 4c3(c5 − c2)

2c3

with probability at least 1− 2δ, and the parameters being

c1 =
√

(n1 + n2 − p)σ̂(c)2

√
n1 + n2 − p+ 2

√
n1 + n2 − p

√
log

1

δ
+ 2 log

1

δ
,

c2 =
√
(n1 + n2 − p)σ̂(c)2∥D(β̂(1) − β̂(2))∥,

c3 = −n1 + n2 − p
8

1 + δ√
e log 4

1+δ

−
√
2(n1 + n2 − p)

√log
4

1 + δ
+

1

2
√
log 4

1+δ


×

√
n1 + n2 − p+ 2

√
n1 + n2 − p

√
log

1

δ
+ 2 log

1

δ
+ n1 + n2 − p+ 2

√
n1 + n2 − p

√
log

1

δ
+ 2 log

1

δ
,

c4 = ∥D(β̂(1) − β̂(2))∥

{√
2(n1 + n2 − p)

√log
4

1 + δ
+

1

2
√
log 4

1+δ


− 2

√
n1 + n2 − p+ 2

√
n1 + n2 − p

√
log

1

δ
+ 2 log

1

δ

}
, and

c5 = ∥D(β̂(1) − β̂(2))∥2.

Now, for B0 = B⊤B, applying Theorem 2 leads to

∥B(β(1) − β(2))−B(β̂(1) − β̂(2))∥2 = ∥BC(X(0)⊤X(0))−1X(0)⊤(X(0)β(0) − y(0))∥2

≤ σ2

{
tr(Σ) + 2

√
tr(Σ2) log

1

δ
+ 2∥Σ∥ log 1

δ

}



with probability at least 1− δ, and Σ = X(0)(X(0)⊤X(0))−1C⊤B⊤BC(X(0)⊤X(0))−1X(0)⊤. Therefore,

g(β(1), β(2)) ≤
{
∥B(β(1) − β(2))−B(β̂(1) − β̂(2))∥+ ∥B(β̂(1) − β̂(2))∥

}2

≤

σ
√
tr(Σ) + 2

√
tr(Σ2) log

1

δ
+ 2∥Σ∥ log 1

δ
+

√
g(β̂(1), β̂(2))


2

(12)

with probability at least 1− δ. With (12), the bound on g(β(1), β(2)) finally becomes

g(β(1), β(2)) ≤
{
c0

√
tr(Σ) + 2

√
tr(Σ2) log

1

δ
+ 2∥Σ∥ log 1

δ
+

√
g(β̂(1), β̂(2))

}2

with probability at least 1− 3δ.

Finally, the proof of Lemma 1 is a natural implication of Lemma 5 and 6.

Lemma 1. (restated) With probability at least 1− 5δ, we have f(σ2) ≥ g(β(1), β(2)) if

ϕδ(β̂
(1), β̂(2), σ̂(c)2) ≥ ψδ(β̂(1), β̂(2), σ̂(c)2).

Proof. From Lemma 5,

h(σ2) ≥ ϕδ(β̂(1), β̂(2), σ̂(c)2)

with probability at least 1− 2δ. From Lemma 6,

g(β(1), β(2)) ≤ ψδ(β̂(1), β̂(2), σ̂(c)2)

with probability at least 1− 3δ. Therefore, if

ϕδ(β̂
(1), β̂(2), σ̂(c)2) ≥ ψδ(β̂(1), β̂(2), σ̂(c)2),

then f(σ2) ≥ g(β(1), β(2)) with probability at least 1− 5δ.

B.1.3 Theoretical Guarantee for Consistency of Algorithm 2

In this section, we justify the consistency of our estimation on ÔSE for Algorithm 2. Proposition 1 guarantees
that if we combine the two datasets D1 and D2 whenever ϕδ > ψδ and do not merge otherwise, then we have∑2
k=1 OSE(β̂(k), P

(k)
X×Y) >

∑2
k=1 OSE(β̂(c), P

(k)
X×Y) with probability 1 − 5δ. Next we will show that the estimator

ÔSE used in Algorithm 2 is consistent.

We aim to develop algorithm with high SR, which is computationally infeasible if we only have access to empirical
distribution. From (4), a natural idea is to estimate the out-of-sample errors to approximate SR. With the lack of generating
distribution, one can only rely on the existing sampled dataset {Dall}, and the problem becomes how to provide a valid
estimation for OSE(f̂ , P (k)

X×Y) = E
P

(k)
X×Y

[(ỹ − f̂(x̃))2] for some function f̂ where (x̃, ỹ) ∼ P (k)
X×Y .

In practice, our estimator ÔSE
(
β̂,Dout

k

)
is computed by the method of bootstrap. As we do not assume knowledge of

the underlying distribution, this nonparametric method is coherent with our assumption. Specifically, the m-th bootstrap
samples {(x∗i,m, y∗i,m)}ñk

i=1 are generated from Dout
k for m = 1, · · · ,M . We estimate the error by ÔSEM (β̂,Dout

k ) =
1
M

∑M
m=1

1
ñk

∑ñk

i=1(y
∗
i,m − x∗⊤i,mβ̂)2. By boostrapping, we get a consistent estimator of the out-of-sample error.

As described below, we can have the following theoretical guarantee under some technical assumption. For a reminder,
samples (X(k), y(k)) are generated from the distribution P (k)

X×Y and P (k)
X is the marginal distribution. Let X(c) denote the

combined data [X(1)⊤, X(2)⊤]⊤. Moreover, let µk and Σk be the mean and the variance of P (k)
X .

Assumption 2. Denote bk = E[β̂(c)|X(c)] − β(k), and its second moment E[bkb
⊤
k ] to be Λk. We define Ωk =

E[(X(k)⊤X(k))−1] and Ωc = E[(X(c)⊤X(c))−1]. Finally, we assume Ωkµk ̸= 0 and σ2Ωcµk + Λkµk ̸= 0.

Theorem 4. With Assumption 1 and 2, we have ÔSEM (β̂(k), Dout
k )− OSE(β̂(k), P kX×Y )

p→ 0 as ñk →∞.



B.1.4 Consistency of Errors

Next, we prove Theorem 4, the consistency of the estimator of the out-of-sample error. We first make the following
assumption.

Assumption 2. (restated) Denote bk = E[β̂(c)|X(c)] − β(k). Let Λk = E[bkb
⊤
k ], Ωk = E[(X(k)⊤X(k))−1] and Ωc =

E[(X(c)⊤X(c))−1] be given. We assume Ωkµk ̸= 0 and σ2Ωcµk + Λkµk ̸= 0.

Consistency result is built upon the following theorem on central limit theorem of bootstrapping.

Theorem 5. [Gill, 1989] Let F denote the space of all cumulative distribution functions. Assume X1, · · · , Xn are iid
samples from a distribution F ∈ F and X∗

1 , · · · , X∗
n are bootstrapped samples from their empirical distribution F̂n. Let

us denote the empirical distribution of the bootstrapped samples as F̂ ∗
n . For µ = E[X1], if a functional T on F satisfies

T (F ) = g(µ) for some continuously differentiable function g and g′(µ) ̸= 0, then

sup
u

∣∣∣PF̂n

(√
n(T (F̂ ∗

n)− T (F̂n) ≤ u
)
− PF

(√
n(T (F̂n)− T (F ) ≤ u

)∣∣∣→ 0

almost surely as n→∞.

Theorem 4 is proved by comparing the limit of estimated out-of-sample error of β̂(k) on original samples and bootstrapped
samples.

Theorem 4. (restated) Under Assumption 1 and 2,

ÔSEM (β̂(k), Dout
k )− OSE(β̂(k), P

(k)
X×Y)

p→ 0

as ñk →∞.

Proof. The out-of-sample error of β̂(k) on P (k)
X×Y can be rewritten as

OSE(β̂(k), P kX×Y ) = σ2 + σ2tr(E[x̃(k)x̃(k)⊤]E[(X(k)⊤X(k))−1])

= σ2 + σ2tr(V ar(x̃(k))Ωk) + σ2tr(E[x̃(k)]E[x̃(k)]⊤Ωk),

where x̃(k) denotes an out-of-sample from the marginal distribution P (k)
X . Note that OSE(β̂(k), P kX×Y ) is differentiable with

respect to E[x̃(k)] and dOSE(β̂(k),Pk
X×Y )

dE[x̃(k)]
= 2σ2ΩkE[x̃(k)] ̸= 0.

The estimated OSE built upon the out-of-samples {(x̃(k)i , ỹ
(k)
i )}ñk

i=1 from Dout
k is ÔSE(β̂(k), Dout

k ) = 1
ñk

∑ñk

i=1(ỹ
(k)
i −

x̃
(k)
i β̂(k))2 . Let us choose ñk = nk. By the central limit theorem,

√
nk(ÔSE(β̂(k), Dout

k )−OSE( ˆβ(k), P
(k)
X×Y))

d→ N(0, 1)

as nk →∞, hence ÔSE(β̂(k), Dout
k )− OSE( ˆβ(k), P

(k)
X×Y)

p→ 0.

The estimated OSE on the bootstraps {{(x∗i,m, y∗i,m)}ñk
i=1}Mm=1 from Dout

k is ÔSEM (β̂(k), Dout
k ) =

1
M

∑M
m=1

1
ñk

∑ñk

i=1(y
∗
i,m − x∗⊤i,mβ̂

(k))2. By Theorem 5,
√
ñk

(
ÔSEM (β̂(k), Dout

k )− ÔSE(β̂(k), Dout
k )

)
and

√
nk(ÔSE(β̂(k), Dout

k ) − OSE( ˆβ(k), P
(k)
X×Y)) asymptotically have the same distribution almost surely as ñk → ∞. It

follows that ÔSEM (β̂(k), Dout
k )− OSE(β̂(k), P

(k)
X×Y)

p→ 0.

Additionally, Theorem 6 establishes the consistency of the estimated out-of-sample error of β̂(c).

Theorem 6. Under Assumption 1 and 2,

ÔSEM (β̂(c), Dout
k )− OSE(β̂(c), P

(k)
X×Y)

p→ 0

as ñk →∞.



Proof. The out-of-sample error of β̂(c) on P (k)
X×Y can be rewritten as

OSE(β̂(k), P kX×Y ) = σ2 + σ2tr(E[x̃(k)x̃(k)⊤]E[(X(c)⊤X(c))−1]) + (β(1) − β(2))⊤E[X(3−k)⊤X(3−k)(X(c)⊤X(c))−1

× E[x̃(k)x̃(k)⊤](X(c)⊤X(c))−1X(3−k)⊤X(3−k)](β(1) − β(2))

= σ2 + σ2tr(V ar(x̃(k))Ωk) + σ2E[x̃(k)]⊤ΩkE[x̃(k)] + tr(E[x̃(k)x̃(k)⊤]E[(X(c)⊤X(c))−1

×X(3−k)⊤X(3−k)(β(1) − β(2))(β(1) − β(2))⊤X(3−k)⊤X(3−k)(X(c)⊤X(c))−1]).

As

(X(c)⊤X(c))−1X(3−k)⊤X(3−k)(β(3−k) − β(k)) =

2∑
j=1

(X(c)⊤X(c))−1X(j)⊤X(j)β(j) − β(k)

= E[β̂(c)|X(c)]− β(k)

= bk,

the above expression becomes

OSE(β̂(k), P kX×Y ) = σ2 + σ2tr(V ar(x̃(k))Ωk) + σ2E[x̃(k)]⊤ΩkE[x̃(k)] + tr(V ar(x̃(k))Λk) + E[x̃(k)]⊤ΛkE[x̃(k)].

Lastly, OSE(β̂(k), P kX×Y ) is differentiable with respect toE[x̃(k)] and dOSE(β̂(k),Pk
X×Y )

dE[x̃(k)]
= 2σ2ΩkE[x̃(k)]+2ΛkE[x̃(k)] ̸= 0.

By the same reasoning as in Theorem 4, it can be shown that ÔSEM (β̂(c), Dout
k )− OSE(β̂(c), P

(k)
X×Y)

p→ 0.

B.1.5 Overparametrized Regime

We conclude the discussion on the regression problem by adding a remark on overparameterized regime. In regression, the
overparameterized regime refers to the case where the feature size p exceeds the number of observations n. Equivalently, the
covariate matrix X is in Rn×p with n < p. In this scenario, the covariance matrix X⊤X is singular and, in turn, the OLS
estimator is not well defined.

One common way to bypass the issue is to use the Moore-Penrose pseudoinverse instead of the matrix inverse. Let us
denote the Moore-Penrose pseudoinverse of a matrix A by A+. Analogous to the OLS estimator, we define Moore-Penrose
(MP) estimator as β̂MP = (X⊤X)+X⊤y. Assuming X has full row rank, the MP estimator can also be written as
β̂MP = X⊤(XX⊤)−1y. With this formulation, similar arguments can be made about the overparametrized regime. For
instance, under Assumption 1, the out-of-sample error of the MP estimator on a single distribution is

OSE(β̂(k)
MP , P

(k)
X×Y) = σ2 + σ2tr(E[x̃(k)x̃(k)⊤]E[(X(k)⊤X(k))+])

+ tr(E[x̃(k)x̃(k)⊤]E[(I − (X(k)⊤X(k))+X⊤(k)X(k))β(k)β(k)⊤(I −X(k)⊤X(k)(X(k)⊤X(k))+)]).

Compared to the OLS estimator, adopting the MP estimator incurs an additional term tr(E[x̃(k)x̃(k)⊤]E[(I −
(X(k)⊤X(k))+X⊤(k)X(k))β(k)β(k)⊤(I − X(k)⊤X(k)(X(k)⊤X(k))+)]). This additional term reduces to 0 if X⊤X is
invertible, under which condition the pseudoinverse (X⊤X)+ coincides with the matrix inverse (X⊤X)−1 and the MP
estimator β̂MP becomes the OLS estimator. OSE on the combined dataset is also modified correspondingly, and parallel
arguments can be made about the OSE comparison. We leave further details to future work and now turn to classification
problem.

B.2 CLASSIFICATION

In contrast to the regression where the out-of-sample error could be precisely computed, estimators for classification usually
do not have an explicit form, let alone the loss. Instead of attempting to find the exact error, we bound the out-of-sample
error for classification with high probability. Based on the bounds, we propose an equivalent condition under which the error
bound decreases when datasets are merged.

In this section, we consider the problem of combining two datasets on a classification task with a focus on neural networks.
A classification dataset is composed of a feature of a data x and the corresponding class label y. For a new data with an



unknown label, the goal of classification is to correctly predict the label. It is common in practice that multiple datasets
are available to train a model, but is not immediately clear how to leverage the datasets to their full potential. The natural
question that arises is that when the datasets can be safely combined.

A criterion for deciding when to merge datasets with theoretical support would be highly appreciated as there is a tradeoff
between generalization and approximation. For a brief illustration, suppose two datasets are given. On one hand, regarding
all the data of the two datasets as observations from the same distribution would bring one large dataset, which is a union
of the two datasets. A single model will be trained on the combined dataset, and this same model will make predictions
on both of the datasets. The increased number of samples will reduce generalization error and help the model approach
the best model among all the candidates. However, approximation error could be large as the same model is fitted to both
of the datasets, hence restricting the model flexibility or expressivity. This tradeoff might be detrimental especially if the
two datasets were sampled from significantly heterogeneous sources. On the other hand, training two models separately
on each dataset would result in models more tailored to individual datasets. Nevertheless, the models would suffer from
comparatively larger generalization error due to smaller number of samples, rendering the models to be far from optimal.

To capture and better understand what happens in common across multiple neural networks for classification tasks, we
employ linear models in our theoretical analysis. This choice of model is motivated from the commonalities among
numerous neural networks. Modern neural networks have assorted architectures, ranging from convolutional neural networks
to Transformers. Their variation can be as simple as just having different size of dimensions or the number of layers, or can
be as complicated as using different type of layers and connections. While there are countless number of possible designs,
one thing in common among most networks for classification is that they have a linear layer at the end. Output of the linear
layer followed by a softmax function represents a predicted probability distribution over classes. In order to analyze various
neural networks in a more abstract setting, we focus on classifcation with linear models.

Our main result is as follows. We propose and prove error bounds of the models on individual datasets and combined dataset.
Then we present a theorem that provides an equivalence condition under which the error bound is minimized if the datasets
are combined. The implication of the theorem is that combining the datasets culminates in reduced error bound if the
underlying distributions of the two datasets are close to each other. This interpretation is consistent with what is intuitively
expected about the problem. If the datasets have similar characteristics or they are generated from similar distributions,
merging them would definitely be beneficial as the model could enjoy the enlarged size of the dataset.

B.2.1 Error Bound on a Single Dataset

Let us formulate the problem more formally. Let X be a feature space and Y = {1, · · · , C} be a set of all possible categories.
Suppose a dataset D = {(xi, yi)}ni=1 is given. A family of linear models β = {βc}Cc=1 takes as input the feature xi and
generates as output a probability distribution softmax(β⊤

1 xi, · · · , β⊤
Cxi). The model is trained with cross entropy loss,

which is a common practice in classification tasks. The cross entropy loss of a model β̂ augmented by regularization is
defined as

lλ(β̂;x, y) =

C∑
c=1

−yc log ŷc +
λ

2

C∑
c=1

∥β̂c∥2,

where ŷc denotes the predicted probability of the class c. We slightly abuse the notation and view y as either an integer or an
one hot vector indicating a class when there is no confusion. Specifically, if the class of a data is c, then y could be either c
or one hot vector with only the cth entry being 1, depending on the context. For the purpose of theoretical analysis, we make
separability assumption of the data.

Assumption 3. There exists a margin γ0 > 0 such that for all data (xi, yi), if the label of yi is ci, then β⊤
cixi < 0 and

β⊤
c xi > γ0 for ∀c ̸= ci. In other words,

yi =
1

2

(
1C − [sign(β⊤

1 xi), · · · , sign(β⊤
Cx)]

⊤)
where 1C ∈ RC denotes a column vector with all entries being 1.

Let us concatenate all the true parameters as β = [β⊤
1 , · · · , β⊤

C ]
⊤. A family of linear models β̂ = [β̂⊤

1 , · · · , β̂⊤
C ]

⊤ is trained
to estimate the true value of β and forecast label of a new data. Total C linear models, followed by a softmax function,
predicts the probability of the data belonging to each category.



We also introduce a surrogate loss to approximate the cross entropy loss. We define the surrogate loss as

lλ,γ(β̂, β;x) =

C∑
c=1

∥βc − β̂c∥∥x∥+
C∑
c=1

−β⊤
c xgγ(β

⊤
c x) + log

C∑
c=1

eβ̂
⊤
c x +

λ

2

C∑
c=1

∥β̂c∥2,

where gγ(t) = 1(−∞,0) + 1[0,γ](1− t
γ ) is the well known ramp loss. The surrogate loss lλ,γ serves as a continuous bound

of the cross entropy with appropriate choice of γ. Namely,

lλ(β̂;x, y) ≤ lλ,γ(β̂, β;x)

if (x, y) ∼M(β) and γ ≤ γ0. The corresponding empirical loss and population loss are defined as

L̂λ,γ(β̂, β;D) =
1

n

n∑
i=1

lλ,γ(β̂, β;xi),

Lλ,γ(β̂, β) = Ex̃[lλ,γ(β̂, β; x̃)],

respectively. Population loss of lλ is defined as

Lλ(β̂, β) = Ex̃,ỹ[lλ(β̂; x̃, ỹ)].

It suffices to bound Lλ,γ in order to find an upper bound of the performance Lλ of a model.

Given two datasets D1 = {(x(1)i , y
(1)
i )}n1

i=1 and D2 = {(x(2)i , y
(2)
i )}n2

i=1, our goal is to determine whether training a single
family of linear models on the joint dataset would be beneficial, compared to fitting two families separately on each dataset.
Namely, we would like to compare the performance of a model β̂(m) trained on a single dataset Dm for m = 1, 2 and a
model β̂(1,2) trained on the joint dataset D1 ∪ D2.

It is desirable to determine whether to combine the datasets by comparing the performance of the best model based on the
data. Let us denote the minimizers of the empirical loss and the population loss as

β̂∗ = argmin
β̂

L̂λ,γ(β̂, β;D),

β∗ = argmin
β̂

Lλ,γ(β̂, β),

respectively, where β is the true parameter generating D. Note that such minimizers exist as the loss is nonnegative and
convex, and are unique due to the regularization. Unfortunately, finding the best models precisely is intractable as the
minimization problems do not have closed form solutions, opposed to the regression problem. In practice, gradient descent
is one of the popular choice to approximate the optimizer. As the surrogate loss is subdifferentiable, we employ subgradient
method to estimate the optimal solution. Starting with an initial estimate β̂[1], the estimator is iteratively updated by

β̂[k+1] = β̂[k] − η[k]g[k],

where η[k] is the kth step size and g[k] ∈ ∂Lλ,γ(β̂[k−1], β;D) is a subgradient. Instead of analyzing the performance of the
empirical risk minimizer Lλ(β̂∗, β), we focus on that of the subgradient method estimator Lλ(β̂[k], β).

Now that the problem is well formulated, let us examine error bounds of each model. We first scrutinize excess risk of an
estimator with high probability, which involves Rademacher complexity. We further bound the Rademacher complexity of
the hypothesis class of interest. The subgradient estimator will then be compared with empirical risk minimizer. Joining
all the results leads to complete analysis of the model performance. We start by making an additional assumption of
boundedness of the feature.

Assumption 4. For all data (xi, yi), the features are bounded by ∥xi∥ ≤ B.

While there is no explicit restriction to the scope of the hypothesis class, candidate parameters naturally satisfy

∥β̂c∥ ≤
√

2 logC

λ



for all c = 1, · · · , C due to the regularization. This boundedness can be easily confirmed. Suppose ∥β̂c0∥ >
√

2 logC
λ for

some c0. Then lλ(β̂) ≥ λ
2 ∥β̂c0∥

2 ≥ logC = lλ(0), hence β̂ cannot minimize the loss. Henceforth, we implicitly assume
that β̂c is bounded.

We first scrutinize the error on a single dataset D = {(xi, yi)}ni=1 where (xi, yi) ∼M(β). Under the assumptions, we can
bound the difference between the empirical loss and the population loss of an estimator. Constructing a bound requires
McDiarmid’s inequality, which is stated below.

Lemma 7. [McDiarmid, 1989] Let f : Rm → R be a function of bounded difference, that is, |f(z1, · · · , zm) −
f(z1, · · · , z′i, · · · , zm)| ≤ ci for ∀i, z1, · · · , zm, z′i. Let Z1, · · · , Zm be independent random variables. Then

P(f(Z1, · · · , Zm)− E[f(Z1, · · · , Zm)] ≥ ϵ) ≤ e
−2ϵ2∑n
i=1

c2
i

for all ϵ > 0.

We can now analyze the excess risk of an estimator. The following proposition proposes an error bound, the proof of which
uses ordinary arguments in generalization bounds. See Bartlett and Mendelson [2002] for example.

Proposition 2. If the dataset D is generated by (xi, yi) ∼M(β), then the difference between the empirical loss and the
population loss is bounded by

L̂λ,γ(β̂, β;D)− Lλ,γ(β̂, β) ≤
√

1

2n
log

1

δ
ω(β) + 2Rn(lλ,γ)

for all β̂ with probability at least 1− δ, where ω(β) = O(∥β∥),

Rn(lλ,γ) = E

[
sup
β̂

1

n

n∑
i=1

σilλ,γ(β̂, β;xi)

]

is Rademacher complexity, and σi is Rademacher random variable.

Proof. Let ω(β) = 2CB
√

logC
λ + 2B

∑C
c=1∥βc∥ + (C + 1) logC. It is straightforward that lλ,γ(β̂, β;xi) ≤ ω(β). Let

f(D) = supβ̂

{
L̂λ,γ(β̂, β;D)− Lλ,γ(β̂, β)

}
. Then

|f(D)− fm(x1, y1, · · · , x′i, y′i, · · · , xn, yn)| ≤
∣∣∣∣ sup
β̂

{
L̂λ,γ(β̂, β;D)− Lλ,γ(β̂, β)

}
− sup

β̂

{
L̂λ,γ(β̂, β;D)− Lλ,γ(β̂, β) +

1

n
lλ,γ(β̂, β;x

′
i)−

1

n
lλ,γ(β̂, β;x

′
i)

} ∣∣∣∣
≤ ω(β)

n
.

Hence

P(f(D)− E[f(D)] ≥ ϵ) ≤ e−
2n

ω(β)2
ϵ2

for all ϵ > 0. Moreover, the expectation can be bounded by the Rademacher complexity. Let D′ = {(x′i, y′i)}ni=1 be a set of



independent copies of each (xi, yi). Then

E[f(D)] = E

[
sup
β̂

{
L̂λ,γ(β̂, β;D)− Lλ,γ(β̂, β)

}]

= E

[
sup
β̂

{
L̂λ,γ(β̂, β;D)− E[L̂λ,γ(β̂, β;D′)]

}]

= E

[
sup
β̂

E
[
L̂λ,γ(β̂, β;D)− L̂λ,γ(β̂, β;D′)|D

]]

≤ E

[
sup
β̂

{
L̂λ,γ(β̂, β;D)− L̂λ,γ(β̂, β;D′)

}]

= E

[
sup
β̂

1

n

n∑
i=1

{
lλ,γ(β̂, β;xi)− lλ,γ(β̂, β;x′i)

}]

= E

[
sup
β̂

1

n

n∑
i=1

σi

{
lλ,γ(β̂, β;xi)− lλ,γ(β̂, β;x′i)

}]

≤ E

[
sup
β̂

1

n

n∑
i=1

σilλ,γ(β̂, β;xi) + sup
β̂

1

n

n∑
i=1

−σilλ,γ(β̂, β;x′i)

]
= 2Rn(lλ,γ).

Therefore,

P (f(D) ≥ ϵ) ≤ e−
2n

ω(β)2
(ϵ−E[f(D)])2

≤ e−
2n

ω(β)2
(ϵ−2Rn(lλ,γ))

2

.

Setting δ = e
− 2n

ω(β)2
(ϵ−2Rn(lλ,γ))

2

gives the result.

Similar result on the difference between the population loss and the empirical loss can be obtained by the same argument.
We state the result and omit the proof.

Proposition 3. Under the same assumption of Proposition 2, the difference between the population loss and the empirical
loss is bounded by

Lλ,γ(β̂, β)− L̂λ,γ(β̂, β;D) ≤
√

1

2n
log

1

δ
ω(β) + 2Rn(lλ,γ)

for all β̂ with probability at least 1− δ.

Previous lemmas bound the difference between Lλ,γ and L̂λ,γ with high probability using the Rademacher complexity.
While the bounds provide some insight into the excess risk, it would give rise to better comprehension if the Rademacher
complexity is replaced by more interpretable terms. To this end, we further bound the Rademacher complexity. The following
two lemmas will be useful when we analyze the Rademacher complexity.

Lemma 8. For n ∈ N,

1

2n

[n2 ]∑
k=0

(n− 2k)

(
n

k

)
≤
√

3n

4π
.



Proof. If n is even,

1

2n

[n2 ]∑
k=0

(n− 2k)

(
n

k

)
=

n

2n

n
2∑

k=0

(
n

k

)
− n

2n−1

n
2∑

k=1

(
n− 1

k − 1

)

=
n

2n

(
2n −

(
n
n
2

)
2

+

(
n
n
2

))
− n

2n−1
2n−2

=
n

2n+1

(
n
n
2

)
≤ n

2n+1

√
2πn

(
n
e

)n
e

1
12n

2π n2
(
n
2e

)n
e

2
6n+1

≤
√

n

2π
.

If n is odd,

1

2n

[n2 ]∑
k=0

(n− 2k)

(
n

k

)
=

n

2n

n−1
2∑

k=0

(
n

k

)
− n

2n−1

n−1
2∑

k=1

(
n− 1

k − 1

)

=
n

2n
2n

2
− n

2n−1

2n−1 −
(n−1

n−1
2

)
2


=

n

2n

(
n− 1
n−1
2

)
≤ n

2n

√
2π(n− 1)

(
n−1
e

)n−1
e

1
12n−12

2π n−1
2

(
n−1
2e

)n−1
e

2
6n−5

≤
√

3n

4π
.

The proof of the following lemma is motivated by Ledoux and Talagrand [2011].

Lemma 9. Let f : Rm → R be an L-Lipschitz function, gi : R → R for i = 1, · · · , n where n ≥ 0, and h : Rm → R.
Then

E

[
sup

θ1,··· ,θm
h(θ1, · · · , θm) +

n∑
i=1

σif(gi(θ1), · · · , gi(θm))

]
≤ E

 sup
θ1,··· ,θm

h(θ1, · · · , θm) + L

n∑
i=1

σi

m∑
j=1

gi(θj)





Proof. For n = 0, the inequality holds. Assume that the inequality holds for n− 1. Then

E

[
sup

θ1,··· ,θm

n∑
i=1

h(θ1, · · · , θm) + σif(gi(θ1), · · · , gi(θm))

]

=
1

2
E

[
sup

θ1,··· ,θm
h(θ1, · · · , θm) +

n−1∑
i=1

σif(gi(θ1), · · · , gi(θm)) + f(gn(θ1), · · · , gn(θm))

]

+
1

2
E

[
sup

θ1,··· ,θm
h(θ1, · · · , θm) +

n−1∑
i=1

σif(gi(θ1), · · · , gi(θm))− f(gn(θ1), · · · , gn(θm))

]

=
1

2
E

[
sup

θ1,··· ,θm,θ′1,··· ,θ′m
h(θ1, · · · , θm) + h(θ′1, · · · , θ′m) +

n−1∑
i=1

σi {f(gi(θ1), · · · , gi(θm)) + f(gi(θ
′
1), · · · , gi(θ′m))}

+ |f(gn(θ1), · · · , gn(θm))− f(gn(θ′1), · · · , gn(θ′m))|

]

≤ 1

2
E

[
sup

θ1,··· ,θm,θ′1,··· ,θ′m
h(θ1, · · · , θm) + h(θ′1, · · · , θ′m) +

n−1∑
i=1

σi {f(gi(θ1), · · · , gi(θm)) + f(gi(θ
′
1), · · · , gi(θ′m))}

+ L

∥∥∥∥∥∥∥
 gn(θ1)...
gn(θm)

−
 gn(θ

′
1)

...
gn(θ

′
m)


∥∥∥∥∥∥∥
]

≤ 1

2
E

[
sup

θ1,··· ,θm,θ′1,··· ,θ′m
h(θ1, · · · , θm) + h(θ′1, · · · , θ′m) +

n−1∑
i=1

σi {f(gi(θ1), · · · , gi(θm)) + f(gi(θ
′
1), · · · , gi(θ′m))}

+ L

m∑
j=1

|gn(θj)− gn(θ′j)|

]

= E

 sup
θ1,··· ,θm

h(θ1, · · · , θm) +

n−1∑
i=1

σif(gi(θ1), · · · , gi(θm)) + Lσn

m∑
j=1

gn(θj)


≤ E

 sup
θ1,··· ,θm

h(θ1, · · · , θm) + L

n∑
i=1

σi

m∑
j=1

gi(θj)

 by induction hypothesis.

Hence the inequality holds for all n ≥ 0.

Now we can bound the Rademacher complexity of the hypothesis class of interest with the help of the preceding lemmas.
Let us define |||β||| =

∑C
c=1∥βc∥ to further simplify the notation.

Proposition 4. The Rademacher complexity is bounded by

Rn(lλ,γ) ≤
1

2

√
3

πn
B

(√
2 logC

λ
C + |||β|||

)
+
BC√
n

√
2 logC

λ
+

1

2

√
3

πn
logC



Proof. By definition,

Rn(lλ,γ) = E[sup
β̂

1

n

n∑
i=1

σilλ,γ(β̂, β;xi)]

= E

[
sup
β̂

1

n

n∑
i=1

σi

{
C∑
c=1

∥βc − β̂c∥∥xi∥+
C∑
c=1

−β⊤
c xigγ(β

⊤
c xi) + log

C∑
c=1

eβ̂
⊤
c xi +

λ

2

C∑
c=1

∥β̂c∥2
}]

≤ E

[
sup
β̂

1

n

n∑
i=1

σi

C∑
c=1

∥βc − β̂c∥∥xi∥

]
+ E

[
sup
β̂

1

n

n∑
i=1

σi

C∑
c=1

−β⊤
c xigγ(β

⊤
c xi)

]
+ E

[
sup
β̂

1

n

n∑
i=1

σi log

C∑
c=1

eβ̂
⊤
c xi

]

+ E

[
sup
β̂

1

n

n∑
i=1

σi
λ

2

C∑
c=1

∥β̂c∥2
]
.

The first term can be bounded by

E

[
sup
β̂

1

n

n∑
i=1

σi

C∑
c=1

∥βc − β̂c∥∥xi∥

]
≤ E

[
sup
β̂

1

n

n∑
i=1

σi

C∑
c=1

B∥βc − β̂c∥

]

= E

[
B

n

n∑
i=1

σi

C∑
c=1

(
∥βc∥+

√
2 logC

λ

)
1
∑n

i=1 σi>0

]

=
B

n

(
C

√
2 logC

λ
+

C∑
c=1

∥βc∥

)
1

2n

[n2 ]∑
k=0

(n− 2k)

(
n

k

)

≤
√

3

4πn
B

(
C

√
2 logC

λ
+

C∑
c=1

∥βc∥

)

The second term is 0 as it does not contain any β̂ and all the xi’s and σi’s are independent. Especially, σi is symmetric
around 0.

As the log-sum-exp function is a contraction with respect to ∥·∥∞, the third term can be bounded by

E

[
sup
β̂

1

n

n∑
i=1

σi log

C∑
c=1

eβ̂
⊤
c xi

]
≤ E

[
sup
β̂

1

n

n∑
i=1

σi

C∑
c=1

β̂⊤
c xi

]

= E

[
sup
β̂

1

n

C∑
c=1

β̂⊤
c

n∑
i=1

σixi

]

≤ E

[
1

n

C∑
c=1

√
2 logC

λ
∥
n∑
i=1

σixi∥

]

≤ 1

n

√
2 logC

λ

C∑
c=1

√√√√E

[
∥
n∑
i=1

σixi∥2
]

=
1

n

√
2 logC

λ

C∑
c=1

√√√√E

[
n∑
i=1

∥xi∥2
]

≤ 1√
n

√
2 logC

λ
CB using lemma 9.



The last term can be bounded by

E

[
sup
β̂

1

n

n∑
i=1

σi
λ

2

C∑
c=1

∥β̂c∥2
]
= E

[
λ

2n
C
2 logC

λ
1
∑n

i=1 σi>0

n∑
i=1

σi

]

=
C logC

n

[n2 ]∑
k=0

(n− 2k)

(
n
k

)
2n

≤ C logC

n

√
3n

4π
by lemma 8.

Combining all the bounds gives the desired result.

As explained before, estimators are obtained through subgradient method since direct optimization of the loss is intractable.
The following lemma provides a guarantee that the lowest loss among all the updates is close to the optimal loss under
suitable conditions.

Lemma 10. [Shor, 1985] Let f : Rm → R be subdifferentiable with bounded subgradients such that ∥g∥ ≤ G for all
g ∈ ∂f(x). Let x[k+1] = x[k] − η[k]g[k] where g[k] ∈ ∂f(x[k]) and η[k] is a step size at the kth step. If f(x∗) = min f(x),
then

min{f(x[k])|k = 1, · · · ,K} − f(x∗) ≤
∥x[1] − x∗∥2 +G

∑K
k=1 η

[k]2

2
∑K
k=1 η

[k]
.

The above lemma gives the following guarantee for subgradient method estimator for the surrogate loss, which is stated in
the following proposition. For simplicity, we choose to use the same step size and the number of steps for all datasets, but it
is also possible to consider different step sizes and the number of steps.

Proposition 5. Let the subgradient method estimator on D be iteratively defined as β̂[k+1] = β̂[k] − η[k]g[k] where β̂[1] is
an initial estimator, η[k] is the kth step size, and g[k] ∈ ∂L̂λ,γ(β̂[k], β;D). Then

min{L̂λ,γ(β̂[k];D)|k = 1, · · · ,K} − L̂λ,γ(β̂∗;D) ≤
8 logC +Gλ

∑K
k=1 η

[k]2

2λ
∑K
k=1 η

[k]

where G = 2CB + C
√
2λ logC.

Proof. Note that

lλ,γ(β̂, β;x) =

C∑
c=1

∥βc − β̂c∥∥x∥+
C∑
c=1

−β⊤
c xgγ(β

⊤
c x) + log

C∑
c=1

eβ̂
⊤
c x +

λ

2

C∑
c=1

∥β̂c∥2.

The term ∥βc− β̂c∥ is subdifferentiable with respect to β̂c at β̂c = βc with subdifferential being a unit ball and differentiable

elsewhere with ∇β̂c
∥βc − β̂c∥ = βc−β̂c

∥β̂c−βc∥
. The other terms are all differentiable with∇β̂c

log
∑C
c′=1 e

β̂⊤
c′x = eβ̂

⊤
c x∑C

c′=1
e
β̂⊤
c′

x
x

and ∇β̂c

λ
2

∑C
c′=1∥β̂c′∥2 = λβ̂c. As L̂λ,γ(β̂, β;D) = 1

n

∑n
i=1 lλ,γ(β̂, β;xi), the subgradients of L̂λ,γ(β̂), β;D) are

bounded by G. The result follows by applying the above lemma and recalling that both β̂[1] and β̂∗ are bounded.

Integrating all the propositions leads to the main theorem, which guarantees the subgradient method estimator on a single
dataset. In the following theorem, the error bound is split into several parts for better interpretation. Details will be elucidated
after the proof.

Theorem 7. Let β̂[k] be the subgradient method estimator of L̂λ,γ(β̂, β;D). Let s = argmin
k≤K

L̂λ,γ(β̂
[k];D) denote the step

that achieved the lowest loss during K subgradient method updates. Then

Lλ(β̂
[s];β) ≤ Φ(n, β; δ) + Lλ,γ(β

∗, β)



with probability at least 1− 2δ where Φ = O(
√

1
n log 1

δ ) and

β∗ = argmin
β̂

Lλ,γ(β̂, β)

denotes the minimizer for the population surrogate loss.

Proof. By the analysis on the excess risk in Proposition 2 and 3,

Lλ,γ(β̂
[s], β)− L̂λ,γ(β̂[s], β;D) ≤

√
1

2n
log

1

δ
ω(β) + 2Rn(lλ,γ)

with probability at least 1− δ and

L̂λ,γ(β̂
∗(m), β(m);D(m))− Lλ,γ(β̂∗(m), β(m)) ≤

√
1

2n
log

1

δ
ω(β) + 2Rn(lλ,γ)

with probability at least 1− δ. Also,

L̂λ,γ(β̂
[s];D)− L̂λ,γ(β̂∗;D) ≤

8 logC +Gλ
∑K
k=1 η

[k]2

2λ
∑K
k=1 η

[k]

by the subgradient method analysis in Proposition 5 and

L̂λ,γ(β̂
∗;D) ≤ L̂λ,γ(β∗;D)

by the definition of β̂∗. Adding all the inequalities leads to

Lλ,γ(β̂
[s], β)− Lλ,γ(β̂∗, β) ≤ 2

√
1

2n
log

1

δ
ω(β) + 4Rn(lλ,γ) +

8 logC +Gλ
∑K
k=1 η

[k]2

2λ
∑K
k=1 η

[k]

with probability at least 1− 2δ. The proof concludes by recalling that Lλ,γ serves as an upper bound of Lλ and applying the
bound on the Rademacher complexity in Proposition 4. Specifically, Φ has the form of

Φ(n, β; δ) = ϕ1(n, β; δ) + ϕ2(n, β) + ϕ3

where

ϕ1(n, β; δ) =

√
2

n
log

1

δ
ω(β),

ϕ2(n, β) =
a1 + a2|||β|||√

n
,

ϕ3 =
8 logC +Gλ

∑K
k=1 η

[k]2

2λ
∑K
k=1 η

[k]

for constants a1 =
(
2
√

6
π + 4

√
2
)√

logC
λ BC + 2

√
3
πC logC and a2 = 2

√
3
πB.

The bound Φ on the excess risk is composed with three parts. The first part, denoted as ϕ1 in the theorem, is the error
stemming from the randomness of the samples. It is directly connected to the confidence level by being a function of δ. The
second part, which is ϕ2, is the error related to the complexity of the hypothesis class. The last part ϕ3 is the error due to the
subgradient method.

This theorem provides full analysis of the performance of the subgradient method estimator Lλ(β̂[s];β) in terms of the
number of samples, distributional properties, and the step sizes of the subgradient method. Suppose the step size η[k]

converges to 0 and
∑∞
k=1 η

[k] =∞. For instance, taking the step size to be η[k] = 1
k satisfies both conditions. Then the error

due to subgradient method converges to 0, implying that the subgradient method converges. Under this scenario, the error



bound is related to the size of the dataset nm. Especially, the theorem theoretically proves that the error bound decreases if
there are more samples, as one might have intuitively expected.

The bound also depends on the size of the hypothesis class, which is controlled by the regularization coefficient λ. The
familiy of candidate models grows larger as λ decreases. The effect of λ is hidden in the coefficients a1 and a3. For smaller
λ, these coefficiets becomes larger, which in turn implies that the number of samples required to achieve the same error
bound increases.

While the above theorem compares the performance of β̂[s](m) with β∗(m) on a single dataset Dm, it could also be compared
with

β∗(1,2) = argmin
β̂

2∑
m=1

Lλ,γ(β̂, β
(m)),

the minimizer of the population surrogate loss on the combined datset. The proof uses the same line of reasoning. This
another comparison will later be used to construct a criterion for merging the datasets.

B.2.2 Error Bound on the Combined Dataset

Performance guarantee on the combined dataset can be proved in a similar way. Most parts of the proof on the combined
dataset are essentially identical to the proof for the single dataset. We therefore only demonstrate the parts where the
reasoning deviates essentially from the previous proof. We begin by proposing another concentration inequality on the joint
loss. Note that in the following proposition, the same model β̂ is applied to both datasets, whereas there was one model
per one dataset previously. We also assume that features on the both datasets are bounded by the same constant B, but our
analysis could be easily extended to the case where the bounds are different on each dataset.

Proposition 6. The difference between the empirical loss and the population loss on D1 ∪ D2 is bounded by

2∑
m=1

{
L̂λ,γ(β̂, β

(m);Dm)− Lλ,γ(β̂, β(m))
}
≤

√
1

2

(
ω(β(1))2

n1
+
ω(β(2))2

n2

)
log

1

δ
+ 2Rn1,n2(lλ,γ)

for all β̂ with probability at least 1− δ where

Rn1,n2(lλ,γ) = E

[
sup
β̂

2∑
m=1

1

nm

nm∑
i=1

σ
(m)
i lλ,γ(β̂, β

(m);x
(m)
i )

]
.

Also,

2∑
m=1

{
Lλ,γ(β̂, β

(m))− L̂λ,γ(β̂, β(m);Dm)
}
≤

√
1

2

(
ω(β(1))2

n1
+
ω(β(2))2

n2

)
log

1

δ
+ 2Rn1,n2

(lλ,γ)

for all β̂ with probability at least 1− δ.

Proof. Both of the inequalities can be proved in the same way. We show the first inequality in this proof. Let f(D1,D2) =

supβ̂
∑2
m=1

{
L̂λ,γ(β̂, β

(m);Dm)− Lλ,γ(β̂, β(m))
}

. Then

|f(D1,D2)− f(x(1)1 , y
(1)
1 , · · · , x(1)′i , y

(1)′
i , · · · , x(1)n1

, y(1)n1
,D2)| ≤

ω(β(1))

n1
and

|f(D1,D2)− f(D1, x
(2)
1 , y

(2)
1 , · · · , x(2)′j , y

(2)′
j , · · · , x(2)n2

, y(2)n2
)| ≤ ω(β(2))

n2

as before. Hence

P(f(D1,D2)− E[f(D1,D2)] ≥ ϵ) ≤ e−
2
A ϵ

2

for all ϵ > 0 where A = ω(β(1))
n1

+ ω(β(2))
n2

. The expectation of f is bounded by the Rademacher complexity. Therefore,

P (f(D1,D2) ≥ ϵ) ≤ e−
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.

Set δ to be the right hand side of the inequality to obtain the result.



The Rademacher complexity on the joint dataset can be further bounded in the following way.

Proposition 7. The Rademacher complexity is bounded by
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where the last inequality comes from the proof for Rademacher complexity bound on a single dataset and by the fact that
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The rest of the terms are bounded in the same way as in one dataset case. Adding all the bounds up concludes the proof.

Subgradient method estimator on the combined dataset also has a similar error bound.

Proposition 8. Let the subgradient method estimator on D1 ∪ D2 be iteratively defined by β̂[k+1] = β̂[k] − η[k]g[k] where
β̂[1] is an initial estimator, η[k] is the kth step size, and g[k] ∈ ∂
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where β̂∗(1,2) = argmin
β̂

∑2
m=1 L̂λ,γ(β̂, β

(m);Dm) is the empirical risk minimizer on the combined dataset.

Integrating all the propositions gives the following guarantee on the combined dataset.



Theorem 8. Let β̂[k] be the subgradient method estimator of
∑2
m=1 L̂λ,γ(β̂, β

(m);Dm). Let s =

argmin
k≤K

∑2
m=1 L̂λ,γ(β̂

[k];Dm) denote the step that achieved the lowest loss during all the subgradient steps. Then

2∑
m=1

Lλ(β̂
[s];β(m)) ≤ Ψ(n1, n2, β

(1), β(2); δ) +

2∑
m=1

Lλ,γ(β
∗(1,2), β(m))

with probability at least 1− 2δ where Ψ = O
((√

1
n1

+
√

1
n2

)√
log 1

δ

)
and

β∗(1,2) = argmin
β̂

2∑
m=1

Lλ,γ(β̂, β
(m))

is the minimizer for the population surrogate loss on the combined dataset.
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proved by using the same line of reasoning as in Theorem 7.

As before, the bound Ψ consists of three parts. The first part ψ1 is the error stemming from the randomness of the samples,
and is connected to δ. The second part ψ2 is the error related to the complexity of the hypothesis class. ψ2 has some
overlapping terms that appeared in Theorem 7 as well as new terms that reveal the effect of relationship between β(1) and
β(2). The last part ψ3 is the error due to the subgradient method.

Once again, the theorem displays the effect of size of the datasets and the hypothesis class on the performance of the
subgradient method estimator

∑2
m=1 Lλ(β̂

[s];β(m)). Suppose the step size satisfies conditions as before, which implies
that the subgradient method converges. The error bound decreases if there are more samples in D(1) and D(1). Similar
interpretation can be made on the size of the hypothesis class.

A new implication from this theorem is that relationship between the true parameters also influences the error bound. The
error bound decreases if the true parameters are similar. Indeed, if β(1) and β(2) are close to each other, then

∣∣∣∣∣∣β(1) − β(2)
∣∣∣∣∣∣

is small, reducing ψ2,3. It aligns with the intuition that merging the datasets would undoubtedly be advantageous if they are
sampled from the same distribution.

B.2.3 An Equivalent Condition for Error Bound Reduction

We propose to combine two datasets based on the error bounds. Recall from Theorem 7 that Φ serves as an upper bound
of the performance of the model trained on a single dataset . Also, Ψ serves as an upper bound of the performance of the
model trained on the joint dataset by Theorem 8. Merging the datasets when the sum of Φ’s on each dataset is greater than Ψ
would decrease the error bound, leading to a better guarantee of the model. Specifically, let β̂[sm](m) denote the subgradient



method estimator that achieves the lowest loss on Dm alone for m = 1, 2. Similarly, let β̂[s1,2](1,2) denote the subgradient
method estimator on the joint dataset D1 ∪ D2. As in Theorem 8, let β∗(1,2) denote the minimizer for the population loss on
the joint dataset. Then
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an equivalent condition for the comparison.

Theorem 9. Let Φ and Ψ be the functions defined in Theorem 7 and 8, respectively. Then the error bound of the model
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The above condition agrees with what one would intuitively expect when combining two datasets. Suppose the true
parameters β(1) and β(2) are are close to each other. Then the distance

∣∣∣∣∣∣∣∣∣β̂(1) − β̂(2)
∣∣∣∣∣∣∣∣∣ is small, decreasing the left-hand-side

of the inequality. In turn, the above condition would possibly hold, which further indicates that the datasets should be
combined.

C EXPERIMENTAL DETAILS

In this section, we provide details for the implementation of the neural network model, and compare the algorithm with
other clustering method for multitask learning. The method that is most relevant to our study is BiFactor MTL proposed by
Murugesan et al. [2017].

C.1 NEURAL NETWORK SETUP

We employ two simple neural network architectures: a single hidden layer multi-layer perceptron (MLP1) and a two hidden
layer multi-layer perceptron (MLP2). The following details outline the configurations:

• Network Architecture: The input datasets consist of Boom Bikes (BB) [Mishra, 2021], Demand Forecast for Optimized
Inventory Planning (DFOIP) [Aguilar, 2023], and Walmart Data Analysis (WDAF) [Sahu, 2023], with input feature
dimensions of 7, 9, and 12, respectively. As datasets have different number of features, models are built based on the
input dimension accordingly. In both MLP1 and MLP2, the hidden layers have the same dimension as the input feature
dimension of each input.

• Training the Representation: For each dataset, we train the models using the entire dataset to enable the capture of
more complex patterns and generate richer feature representations. It is important to note that this step is not intended
to produce the most accurate predictive model but rather to focus on learning a more informative representation of
the data for subsequent tasks. The models are trained with a batch size of 64 over 10 epochs, with a learning rate of
1e-4 and weight decay of 0.9. The Mean Squared Error (MSE) loss function is used, optimized by stochastic gradient
descent. Training was conducted on a single Nvidia RTX 6000 (Ampere Version) GPU.



Table 7: Algorithm 3 on Representation with ÔSE

BB DFOIP WDAF

Individual 2.822 3.097× 103 1.495× 102

Alg. 3 2.359 9.105× 102 3.562× 101

Reduction 16.41% 70.60% 76.17%

BB DFOIP WDAF

Individual 3.308 2.908× 103 1.114× 102

BiFactor 3.239 1.167× 103 9.697× 101

Reduction 2.086% 59.87% 12.90%

• Integration with Algorithm 3: Let f(·) and g(·) represent the trained MLP1 and MLP2 models, respectively. Both
models consist of hidden layers followed by a linear layer, expressed as f(·) = l ◦ fh(·) and g(·) = l ◦ gh(·), where
fh(·) and gh(·) represent the hidden layer functions, and l(·) represents the linear layer. For datasets {(xi, yi)}ni=1,
we transform the input into {(ei, yi)}ni=1, where ei is the representation from the penultimate layer. That is, either
ei = fh(xi) or ei = gh(xi), depending on the model we use. Algorithm 3 can then be applied to the transformed
dataset {(ei, yi)}ni=1, as the linear layer structure aligns perfectly with the regression setting.

C.2 CHOICE OF HYPERPARAMETERS

We further provide more details on the choice of hyperparameters of our algorithms.

• Grid search of α in Algorithm 2: The grid search of α in Part1 is applied over the interval [αmin, αmax] = [2, 10]
with window size η = 0.01.

• Threshold λ in Algorithm 2 and 3: λ is fixed as 0.9 throughout all experiments.

• The number of iterations in Algorithm 2: In Part1, maxiterations is set as 1000.

• Size of training dataset: We chose n1 and n2 as 50 or 100, depending on the feature size p.

• The number of out-of-samples: Across all experiments, the number of out-of-samples is fixed as 1000.

• Performance comparison in Section 3.1: The columns Algorithm 2 and Direct Comparison in Table 3 and
Table 4 are obtained from 1000 repetitions.

C.3 COMPARISON WITH OTHER MODELS

To the best of our knowledge, no existing work specifically focuses on combining datasets with the goal of minimizing
out-of-sample error. However, the algorithm developed by Murugesan et al. [2017] could serve as an alternative approach. In
Murugesan et al. [2017], factor models are employed to decompose the weight matrix into feature clusters and task clusters.
To facilitate a comparison between the two methods, we apply each approach to the features obtained by applying the MLP1
model to the datasets introduced earlier.

The result of Algorithm 3 and BiFactor MTL is summarized in Table 7. BB is divided into three parts based on the weather
condition, DFOIP is partitioned into four parts based on store types, and WDAF is split into five parts according to store
locations. For each dataset, only a subset of the entire dataset was chosen for this additional experiment to expedite the
clustering. The reported values of ÔSE on individual datasets may be different for the two methods as they both have some
randomness when selecting out-of-samples and computing the ÔSE.

As shown in Table 7, Algorithm 3 significantly reduces ÔSE, whereas the reduction for the BiFactor MTL method is less
significant. This discrepancy in ÔSE reduction is attributed to the different dataset combinations selected by each algorithm.
For example, Algorithm 3 opted to combine the datasets for weather conditions 1 and 2 while keeping condition 3 separate
on BB, whereas BiFactor MTL merged the datasets for weather conditions 2 and 3. Our algorithm effectively identifies
relevant datasets for combination, leading to lower errors on the merged datasets.



C.4 COMPLEXITY ANALYSIS

Algorithm 3 uses pairwise comparison, which effectively reduces the running time by having a quadratic growth on the
number of datasets. As our method employs linear models, the actual execution time does not extend uncontrollably when
the number of datasets scales. For instance, it took 10 minutes for RSS and 3 hours for CFGSF to train an MLP and apply
Algorithm 3, on a standard CPU without parallelization.

To our knowledge, there is no off-the-shelf clustering method applicable to our setting to effectively reduce the computational
complexity due to the following reason. Most clustering methods commonly assume that objects to be clustered have
representative features. However, our setting only has a notion of pairwise similarity between two datasets and no universal
feature space of the datasets themselves, which renders those clustering algorithms inapplicable. Other clustering methods
that operate without features usually require a similarity matrix which contains information about similarity between any
two objects. However, the complexity of computing the similarity matrix is tantamount to that of Algorithm 3 in the worst
case. Hence we believe that applying the greedy algorithm not only simplifies the clustering, which is not the most core part
of our method, but also potentially reduces the computational cost. Given the computational resources commonly available
today, we do not view computational complexity as a significant limitation. Developing a clustering-based method within
our framework would require substantial additional work, and we hope that the exploration of clustering strategies could be
done in future research.
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