
Published as a conference paper at ICOMP 2024

Neural Networks for Structured Grid Generation

Bari Khairullin, Sergey Rykovanov, Rishat Zagidullin ∗

Artificial Intelligence & Supercomputing Laboratory
Skolkovo Institute of Science and Technology
Skolkovo, Bolshoy Boulevard 30, bld. 1, Russia
inbox@skoltech.ru

Abstract

Numerical solutions of partial differential equations (PDEs) on regular do-
mains provide simplicity as we can rely on the structure of the space. We
investigate a novel neural network (NN) - based approach to generate 2-
dimensional body-fitted curvilinear coordinate systems (BFCs) that allow
to stay on regular grids even when the complex geometry is considered.
We describe a feed-forward neural network (FNN) as a geometric transfor-
mation that can represent a diffeomorphism under certain constraints and
approximations, followed by the ways of training it to create BFCs. We
show that the optimization system is similar to a physics informed neural
network (PINN) based solution of Winslow equations. Unlike in classical
BFC generation, FNN provides a differentiable mapping between spaces,
and all the Jacobian matrices may be obtained exactly at any given point.
Also, it allows to change an interior nodes distribution without the need of
recreating the whole mapping.

1 Introduction

When solving PDEs with numerical methods, one usually considers discretized problems
on approximations of original domains. There are many algorithms to generate structured
and unstructured grids, which are then used along with the Finite Difference (FDM), Finite
Volume (FVM) or Finite Elements (FEM) methods. Structured meshes require additional
attention when dealing with curved boundaries. One of the most common techniques to
handle them is a staircase approximation, however, it has been shown that it may gener-
ate significant computational errors, especially in Finite-Difference Time-Domain schemes
(FDTD) (Häggblad & Runborg, 2014). Ease of use and computational efficiency of FDM
contributed to the development of BFCs, octree meshing (Tu et al., 2005), etc. Unstructured
grids provide better control over boundaries and are usually used with FEMs (Benito et al.,
2007) and FVMs (Dalal et al., 2008), however, structured grids are still widely used with
FDMs, as well as with cutting-edge Physics-Informed Geometry-Adaptive Convolutional
Neural Networks (Gao et al., 2021).
BFCs try to overcome the boundary problem by finding a proper map x from a rectangular
grid ΩC ⊂ Rd (computational space) to a given domain ΩP ⊂ Rd (physical space), such that
x(∂ΩC) = ∂ΩP , x is bijective, smooth and meets certain quality conditions. Afterwards, one
can reformulate the initial PDE to be solved in ΩC with boundaries lying on a rectangular
grid. Many algorithms were built to create such a map (Hinz et al., 2018), however, there is
no general algorithm that works for any given non-convex domain, which is discussed in the
paper Azarenok (2009). In 2022, Xinhai Chen, Tiejun Li, et al. (Chen et al., 2022) were the
first to present a way to generate structured meshes with the use of unsupervised NNs called
MGNet. They construct a BFC as a C∞

(
R2,R2

)
function represented by a neural network of

the architecture shown in the Figure 1. The fully-connected neural network (FCNN) blocks
are the ones containing weights Wl ∈ Matdim(xl+1)×dim(xl), biases bl ∈ Matdim(xl+1)×1, and
the transformation between two consecutive layers is given via the recurrent formula:

xl+1 = σ (Wlxl + bl) (1)
∗bari.khairullin@skoltech.ru

1



Published as a conference paper at ICOMP 2024

with an activation function σ = tanh. The optimization process employs non-convex opti-
mization algorithms like stochastic gradient descent or quasi-Newton methods. A signifi-
cant benefit of this approach is that, following the training phase, mesh refinement can be
achieved with just a single forward pass. This is because the mapping function learns to
represent the entire geometric transformation, rather than merely its discretized version.
Throughout the work, we develop further the main concepts from (Hauser & Ray, 2017),
allowing us to treat FNNs as geometric transformations over space. Consider a set of
coordinate systems f on a d-dimensional manifold M parametrised by l ∈ [0, 1] that are
connected through a differential equation for some k ∈ N, T (·, l) ∈ C∞ (M) as follows:

dkf(l)

dlk
= T (f(l), l). (2)

It can be discretized using the forward-difference scheme to

fn+1 = T (fn, n)∆lk +

k∑
i=1

(−1)i+1

(
k

i

)
fn+i−k, (3)

where fn = f(n∆l) is a sequence of coordinate systems defined recursively, ∆l = 1/N, n ∈
0..N . If one restricts the T -function, this formula can be treated as a layer-wise transfor-
mation of a constant-width residual neural network with T (fn, n) = σ (Wnfn + bn). By
treating the whole transformation from the layer 0 to the layer N as a combination of
transformations between layers, the whole Jacobian matrix becomes a product of consec-
utive layer-wise Jacobians, establishing differentiable structures between input and output
data. Additional routine is needed to handle initial conditions for f , e.g., provide f0 for
k = 1, further set f1 = f0 for k = 2, etc. We will call coordinate systems curvilinear
ξ =

(
ξ1 . . . ξd

)⊤ ∈ ΩC and Cartesian x =
(
x1 . . . xd

)⊤ ∈ ΩP for f0 and fN respectively.

2 Structured Grid Generation

2.1 Non-PINN approach

First, let us address the problem from a non-PINN side, i.e. without mesh-loss term.
Consider the network (3). One can construct a point-wise loss-function, e.g.

Lboundary =
1

B

∑
i

∥x
(
ξ(i)

)
− x(i)∥22, (4)

ξ(i) ∈ ∂ΩC , x(i) ∈ ∂ΩP , i = 1..B, (5)
that is minimized through changes in Wn and bn to match predicted boundary with a
physical one. The bigger the value of layers N , the smaller changes a neural network has
to learn in a transition between two consecutive layers. Despite the fact that the neural
network is considered to be of constant width, one can create an embedding for the input
layer:

ξ(i) =
(
ξ1(i) . . . ξ

d
(i), 0 . . . 0

)
︸ ︷︷ ︸

d′

(6)

and pass it through the NN of width d′. The last layer will represent a projection onto a
d-dimensional hypersurface. This approach may seem beneficial due to bigger expressiveness
of the NN (Lu et al., 2017), but it tends to generate non-bijective maps on the projection
step.
Even if transitions between layers are small, they are not necessarily non-degenerate. To
constraint the map, additional relations on weights are needed. Below we consider a neural
network with d = 2, k = 1:

fn+1 = fn +∆lσ (Wnfn + bn) , (7)

Jn+1 = I +∆lDnWn, (8)

2



Published as a conference paper at ICOMP 2024

Dn =

(
σ̇1 (Wnfn + bn) 0

0 σ̇2 (Wnfn + bn)

)
. (9)

The goal here is to keep the Jacobian determinant non-negative, which will prevent foldings
of the mesh. Zero values are allowed to handle cases where boundaries are not smooth and
corners are not matched.

det Jn+1 = 1 + tr(DnWn)∆l + detDn detWn∆l2 ≥ 0. (10)

If we bound components 0 ≤ σ̇i ≤ 1, for example, by taking tanh, Softplus, SiLU, etc. as
an activation function, and use the Cauchy-Schwarz inequality, we may estimate the lower
bound of the determinant in terms of weights only:

det Jn+1 ≥ 1−

∆l

√
2
∑
i

(Wn,ii)
2 −∆l2H(detWn) detWn


︸ ︷︷ ︸

µ(Wn)

, (11)

where H is a Heaviside step function. Then the relation µ (Wn) ≤ 1 ensures (10). The
pseudo-code to implement such a constraint is written in the algorithm 1.

Algorithm 1 Algorithm to constraint Jacobians

1: W ← W +∆W ▷ train step
2: for Wn in W do
3: count ← 0
4: while µ (Wn) > 1 do
5: if count < Nmax then
6: Wn ← Wn − α ∂µ

∂Wn
(Wn)

7: count ← count+1
8: else
9: Wn ← β ·Wn

10: end if
11: end while
12: end for

Here α > 0 is a parameter of gradient descent, and 0 < β < 1 is a coefficient for robust
algorithm convergence. Note that biases bn are optimized during training, too, but they do
not contribute to the constraint.

2.2 PINN-approach

To control interior grid points, one may consider additional loss function that measures the
deviation of mapping from being conformal on randomly sampled interior points distribu-
tion, e.g., Liao, Winslow, area orthogonality, etc. (Khattri, 2007).

∥gij∥ = J⊤J (12)

is called a metric tensor, and one of the advantages of neural networks is that they can
handle gradients of gij with respect to weights and inputs exactly. In two dimensions, the
Winslow integrand is approximated on ΩC by:

Lint ≈
1

P

∑
p

(
g11 + g22√

detg

)
(p)

, (13)

(gij)(p) = gij(ξ(p)), ξ(p) ∈ ΩC \ ∂ΩC , i = 1..P (14)
with the total loss

L = Lboundary(x, ξ) + ϵLint

(
∂x

∂ξ

)
. (15)

3



Published as a conference paper at ICOMP 2024

Figure 1: MGNet architecture without excita-
tion blocks.

Figure 2: Proposed network archi-
tecture.

Here we propose to use the neural network architecture shown in Figure 2. First, it embeds
the input space to have several Fourier modes(

cos(ξ1), cos(2ξ1), . . . cos(kξ1), sin(ξ1), . . . , cos(ξ2) . . .
)
, (16)

as well as additional zero-nodes to match the size of hidden layers. Second, it passes values
with C1-smooth structure, projecting to two-dimensional space at the last transformation.
The main idea behind this approach is to initialize all the weights of the FCNN with zeros,
and weights of the last transformation with values representing first two coordinates of the
last hidden layer:

fN =

(
I2×2

0dim(fN−1)×2

)
fN−1 + 02×1. (17)

This way, the initial mapping before training is an identity map. Following that it is non-
degenerate by construction, the loss (13) will have only positive values of the Jacobian
determinant, preventing foldings. This is ensured due to the denominator of the loss, which
approaches zero as a folding occurs. Additionally, bigger orders of smoothness Ck are possible
by copying an embedding layer k − 1 times.
One question to address, is why using residual connections between all of two consecutive
layers as it is possible to reconstruct an initial identity map by connecting, for example, the
last layer with the first one only. The answer lies in the fact that if we do the latter, then

fn = f0 + Net (θW,b) (18)

and the neural network has to learn a big deviation from the identity map, which still may
provide foldings due to discretization of optimization algorithms. In contrast, the proposed
network learns small deviations from identity map from layer to layer, sharing better control
over regularity of grid.

2.3 Numerical experiments

It can be seen in the Figure 3 that algebraic interpolaters failed to fit the star shape.
Without additional control of an interior point distribution, neural networks tend to generate
degenerate maps (Figure 3c), and while the non-PINN method provided some bijective
solution, its convergence at boundaries and overall mesh are of the poor quality. The best
solution was obtained by a PINN method with 2 fourier modes (i.e. additional 8 dimensions).

4



Published as a conference paper at ICOMP 2024

(a) scipy LinearNDInterpolator. (b) Transfinite interpolation.

(c) Embedding without interior loss. (d) Non-PINN method.

(e) PINN method with 2 fourier modes
and interior loss.

Figure 3: Flower dataset fits comparison.

(a) Iterations number: 0. (b) Iterations number: 1200.

(c) Iterations number: 9800. (d) Iterations number: 11000.

Figure 4: Multi connected dataset training process.

5



Published as a conference paper at ICOMP 2024

(a) Homogeneous input grid. (b) Inhomogeneous input grid.

(c) Output of homogeneous grid. (d) Output of inhomogeneous grid.

Figure 5: Example of mesh refinement in input and output spaces.

3 Conclusions

It was shown that a neural network can be used for body-fitted curvilinear coordinate system
generation with further application to finite-difference solvers of partial differential equa-
tions. While usually neural networks are considered black-box functions, several methods
can be used to constraint Jacobians through weights control and mesh loss functions. Ben-
efits of such a grid generation relative to discrete schemes of Winslow equations and others,
are that it allows to vary the interior points distribution on the computational domain and
compute metric tensors exactly, leading to better representations of differential operators.
The use of BFC can be justified, for example, in inverse problem to find estimations of
parameters on sparse grids, because it is fast and captures the boundary much better than
a staircase approximation.
Still, the grid generator is far from being robust in terms of convergence in a soft loss
setup. Further investigation implies the analysis of hard-constrained PINN solvers and
interpretations of neural network in that case. Also, such features as 3D domain processing
and time-dependent boundaries are to be investigated and still remain an open question.

References
Boris Nikolaevich Azarenok. Generation of structured difference grids in two-dimensional

nonconvex domains using mappings. Computational Mathematics and Mathematical
Physics, 49:797–809, 2009.

Josip Basic, Nastia Degiuli, and Dario Ban. A class of renormalised meshless laplacians for
boundary value problems. Journal of computational physics, 354:269–287, 2018.

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In Large Scale
Kernel Machines. MIT Press, 2007.

JJ Benito, F Urena, and L Gavete. Solving parabolic and hyperbolic equations by the
generalized finite difference method. Journal of computational and applied mathematics,
209(2):208–233, 2007.

6



Published as a conference paper at ICOMP 2024

Xinhai Chen, Tiejun Li, Qian Wan, Xiaoyu He, Chunye Gong, Yufei Pang, and Jie Liu.
Mgnet: a novel differential mesh generation method based on unsupervised neural net-
works. Engineering with Computers, 38(5):4409–4421, 2022.

Amaresh Dalal, V Eswaran, and G Biswas. A finite-volume method for navier-stokes equa-
tions on unstructured meshes. Numerical Heat Transfer, Part B: Fundamentals, 54(3):
238–259, 2008.

Han Gao, Luning Sun, and Jian-Xun Wang. Phygeonet: Physics-informed geometry-
adaptive convolutional neural networks for solving parameterized steady-state pdes on
irregular domain. Journal of Computational Physics, 428:110079, 2021.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, vol-
ume 1. MIT Press, 2016.

Jon Häggblad and Olof Runborg. Accuracy of staircase approximations in finite-difference
methods for wave propagation. Numerische Mathematik, 128:741–771, 2014.

Michael Hauser and Asok Ray. Principles of riemannian geometry in neural networks.
Advances in neural information processing systems, 30, 2017.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep
belief nets. Neural Computation, 18:1527–1554, 2006.

Jochen Hinz, Matthias Möller, and Cornelis Vuik. Elliptic grid generation techniques in the
framework of isogeometric analysis applications. Computer Aided Geometric Design, 65:
48–75, 2018.

Sanjay Kumar Khattri. Grid generation and adaptation by functionals. Computational &
Applied Mathematics, 26:235–249, 2007.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive
power of neural networks: A view from the width. Advances in neural information pro-
cessing systems, 30, 2017.

Tiankai Tu, David R O’Hallaron, and Omar Ghattas. Scalable parallel octree meshing
for terascale applications. In SC’05: Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, pp. 4–4. IEEE, 2005.

7



Published as a conference paper at ICOMP 2024

Appendix

PDE solutions

Consider the Helmholtz equation with zero Dirichlet boundary conditions in a unit circle:

∆u+ u = v, (19)

u ∈ ΩP = B(0, 1) u(∂ΩP ) = 0. (20)

If v(r, ϕ) = J1

(√
λ
(1)
2 r

)
cos(ϕ), the exact solution is known to be u = v

1−λ
(1)
2

.

(a) Grid lines of constant ξ1, ξ2. (b) Metric tensor determinant distribution.

Figure 6: NN generated BFC for the unit circle. NN configuration: 10 hidden layers,
tanh activation function, k = 1 smoothness, no grid controlling term. Loss on boundary:
1.18e-06.

One of the advantages of generating grid with neural networks is that it gives freedom in a
choice of gridsize on the computational domain. The grid with hx = hy = h = 1/100 with
982 = 9604 unknowns was taken. Also, it was compared to the classic FD solver with a
staircase approximation of the boundary on a flat space with 10364 unknowns. The results
are given in the Figure 7. The BFC algorithm outperforms the classic one even with smaller
average density of interior points.
Another example to compare both methods is a heat equation on an hourglass-shaped
domain.

∂u

∂t
= ∆u+ v, (21)

u(t, ∂ΩP ) = 0, u(0,ΩP ) = w(ΩP ), v = 1. (22)
To have a reference, a numerical solution with 12158 interior points was used that is based
on the meshless Laplace operator discretization given by J.Basic, et al. (2018)Basic et al.
(2018). The scheme is implicit and the resulting linear system is sparse. To solve it we
use the conjugate gradient algorithm from the Eigen library. Much sparser meshes were
used for FD solvers, 1444 and 1452 interior points for BFC and staircase approximations,
respectively.
Both simulations converge to a static heat distribution ∆u = −1 if sufficiently small timestep
is taken. BFC algorithm again outperforms the classic one, giving smaller errors on the whole
simulation time domain.

8



Published as a conference paper at ICOMP 2024

(a) BFC FD solution with 9604 unknowns,
RMSE = 4e-5.

(b) Classic FD on a staircase approximation
with 10364 unknowns, RMSE = 1.2e-4.

Figure 7: Comparison of BFC and classic FD solutions. RMSE is computed relative to the
exact solution at corresponding nodes.

(a) Grid lines of constant ξ1, ξ2.

(b) Metric tensor determinant distribution.

Figure 8: NN generated BFC for an hourglass-shaped domain. NN configuration: 5 hidden
layers, tanh activation function, k = 1 smoothness, Winslow (13) grid controlling loss, loss
on boundary is equal to 3.38e-06.

9



Published as a conference paper at ICOMP 2024

Figure 9: RMSE of FD solutions relative to a reference with respect to the physical time of
simulation.

10


	Introduction
	Structured Grid Generation
	Non-PINN approach
	PINN-approach
	Numerical experiments

	Conclusions

