
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Self-Calibrated Listwise Reranking with Large Language Models
Anonymous Author(s)

Abstract
Large language models (LLMs), with advanced linguistic capabil-

ities, have been employed in reranking tasks through a sequence-
to-sequence approach. In this paradigm, multiple passages are
reranked in a listwise manner and a textual reranked permuta-
tion is generated. However, due to the limited context window of
LLMs, this reranking paradigm requires a sliding window strat-
egy to iteratively handle larger candidate sets. This not only in-
creases computational costs but also restricts the LLM from fully
capturing all the comparison information for all candidates. To
address these challenges, we propose a novel self-calibrated list-
wise reranking method, which aims to leverage LLMs to produce
global relevance scores for ranking. To achieve it, we first propose
the relevance-aware listwise reranking framework, which incor-
porates explicit list-view relevance scores to improve reranking
efficiency and enable global comparison across the entire candidate
set. Second, to ensure the comparability of the computed scores,
we propose self-calibrated training that uses point-view relevance
assessments generated internally by the LLM itself to calibrate
the list-view relevance assessments. Extensive experiments and
comprehensive analysis on the BEIR benchmark and TREC Deep
Learning Tracks demonstrate the effectiveness and efficiency of
our proposed method.

ACM Reference Format:
Anonymous Author(s). 2024. Self-Calibrated Listwise Reranking with Large
Language Models. In . ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 Introduction
Text reranking1 is a fundamental task in the information re-

trieval (IR) area, especially in web search. It focuses on scoring and
reranking a set of retrieved text candidates (e.g., passages and doc-
uments) on the input query [58]. In the real world, text reranking
is generally an important intermediate stage in the widely-used
IR pipeline, underpinning numerous downstream tasks, such as
question answering [27] and dialogue systems [52]. Concretely, this
task aims to measure the semantic relevance of each text candidate
with the input query, and then ranks all candidates in order of
that [30, 62]. In recent years, with the exceptional problem-solving
capabilities of large language models (LLMs) [59], existing work has

1Text reranking is highly related to the Search and retrieval-augmented AI Track since
it is an important task in web search scenarios.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

applied LLMs to the text reranking tasks [25, 46, 64]. Instead of indi-
vidually computing the relevance score for all query-candidate pairs,
LLM-based methods are capable of directly generating the permu-
tation of reranked candidates in an autoregressive manner [26, 40].
Such a listwise paradigm enables efficient one-pass reranking for all
candidates, and can also leverage the strong generation capability
of LLMs, achieving remarkable performance.

Despite the success, limited by the input window length of LLMs,
it is hard to apply listwise LLM-based rerankers into a large candi-
date set or long documents. Although existing work has proposed
the sliding window strategy [34, 35] that splits the candidate set
for multi-round ranking, the increased computational cost is also
higher for real-world applications. Moreover, the sliding window
strategy would cause only part of the whole candidate set to be
ranked by LLM at the same time. As a result, the global ranking
process will degrade into local ranking within the window, which
not only restricts LLMs from fully comparing all candidates but also
leads to potential risks of the influence from the initial input order.
Considering these limitations, several efforts are made to optimize
the sliding window strategy [33, 56] or the autoregressive genera-
tive reranking paradigm [40]. Nevertheless, as they rely on LLMs
for language generation (ranked permutation), the shortcomings
in efficiency and effectiveness are still hard to fully resolve.

In this paper, we aim to propose a novel method to enable LLMs
to efficiently and effectively perform listwise reranking. Given the
whole candidate set, our motivation is to explicitly compute the
list-view relevance scores for the listwise input, instead of directly
producing the textual reranking results via LLMs. In this way, the
list-view relevance scores can be used for a global ranking of all
candidates (in the same window or not), which breaks the short-
comings caused by the in-window local comparison. To assess the
relevance, we add a projection layer into the decoder-only LLM, to
map the last token representations of the candidate text into the
score. For the given in-window candidates, we can obtain their rel-
evance scores and utilize ranking objectives for training. However,
the ranking objectives mainly focus on learning the comparison
of all candidates, which would lead to biased scores that affect the
global ranking performance, especially for the top or bottom can-
didates (with extreme scores of 1 or 0). To address it, we propose
self-calibrated training that adjusts the list-view relevance score
to better align with the self-generated point-view relevance score.
The point-view relevance score is generated solely based on the
query and a single candidate, which is relatively fair and provides
a regularization for reducing the bias. In this way, we can make
use of two views of relevance scores for supervising the training
process. The list-view scores provide rich comparison information,
and the point-view scores calibrate the possible bias in the list-view
ones, both ensuring the global comparability of the relevance score.

To this end, we design a Self-Calibrated Listwise Reranking
method, termed SCaLR. First, we devise the relevance-aware list-
wise reranking framework by revising the autoregressive genera-
tion process of LLMs. Concretely, we add corresponding projection

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

layers for generating list-view relevance scores. To reduce the com-
putational cost, we design a special mask mechanism to guarantee
that the list-view relevance scores can be computed by a one-pass
encoding process [57]. Based on this, we introduce the parallel
context encoding into the decoder-only LLM architecture, enabling
independent encoding of candidates to generate the point-view
relevance scores. Second, we propose the self-calibration training
strategy that aligns the list-view relevance score with the point-
view relevance score. Specifically, we employ the multi-task learn-
ing framework to learn both list-view and point-view relevance
scores, and propose an adaptive optimization strategy to consider
the reliability of the point-view scores during calibration.

Our main contributions are summarized as follows:
• We propose a novel listwise reranking framework SCaLR

based on explicit list-view relevance for ranking, which en-
hances the model efficiency while addressing the limitation
of window-based local ranking strategies.

• We employ parallel context encoding for accelerating can-
didate modeling and utilize self-generated point-view rele-
vance to calibrate the list-view relevance, ensuring global
comparability for evaluating on large candidate set.

• Extensive experiments and analyses on the BEIR and TREC
benchmarks demonstrate the superiority of the proposed
approach from in-domain and out-of-domain evaluation
over state-of-the-art methods.

2 Preliminaries
Before diving into the details of the proposed method, we first

formulate the task of text reranking, followed by a formal defi-
nition of the listwise reranking task in the era of large language
models (LLMs).

Let 𝑞 denote a query in natural language form and C = {𝑝𝑖 | 𝑖 ∈
{1, 2, . . . , |C|}, 𝑝𝑖 ∈ P} denote a set of candidate texts relevant to 𝑞.
C is retrieved from a large-scale candidate corpus P by a retrieval
model (usually for hundreds or thousands of candidates). The task of
text reranking is to refine the order of candidates in C by leveraging
more granular relevance modeling, ultimately producing a ranking
order that more accurately reflects the real relevance between the
candidates and the query, which can be formalized as:

C′ = {𝑝𝑖1 , 𝑝𝑖2 , . . . , 𝑝𝑖 |L| } = Rerank(C) . (1)

In traditional reranking tasks, the reranker independently evaluates
the relevance between the query 𝑞 and each candidate 𝑝𝑖 , using
this relevance assessment to determine a new ranking order. This
approach is referred to as the pointwise reranking method.

Given that LLMs possess advanced linguistic capabilities that can
process multiple candidates simultaneously, LLM-based rerankers
typically rerank a subset C𝑠𝑢𝑏 of the candidate set C in a single
inference with a well-designed instruction 𝐼 :

C′
𝑠𝑢𝑏

= LLM(𝐼 , C𝑠𝑢𝑏), (2)

where the output of the LLM is typically a textual response that
indicates the reranked order of the candidate ids. Subsequently, the
reranking results on the complete candidate set C can be obtained
based on multiple iterations with subset reranking through tailored
strategies (e.g., slidingwindow). Such a rerankingmethod is referred

to as the listwise reranking, which leverages contextual information
more effectively, thereby improving overall ranking performance.

Although the listwise reranker has demonstrated commendable
performance in reranking tasks, its inference efficiency remains
a significant bottleneck. This limitation primarily arises from its
dependence on strategies such as sliding windows for iterative
reranking across the entire set of candidates, coupled with its au-
toregressive generation framework, which substantially increases
the model’s redundant computations. Furthermore, the sliding win-
dow strategy ensures ranking accuracy onlywithin thewindow size,
failing to guarantee global optimality over extended ranges, thus
restricting its applicability in scenarios requiring longer rerank-
ing sequences. In contrast to previous approaches, our method
improves the architecture of the listwise reranker and introduces
explicit relevance assessments for global comparability. This not
only improves computational efficiency but also achieves global
optimality across the entire candidate set C.

3 Methodology
In this section, we present SCaLR, our method for listwise rerank-

ing, which introduces two key technical contributions: (1) the
relevance-aware listwise reranking framework for incorporating
explicit relevance with high efficiency, and (2) the self-calibration
approach for adaptively calibrating the list-view relevance by in-
ternal signals of the model.

3.1 Relevance-Aware Listwise Reranking
Framework

The prevailing listwise reranking paradigm, which generates
ranking permutations in textual form, faces inherent limitations
in terms of both efficiency and local optima. To overcome these
challenges, we propose an enhancement to this framework by in-
corporating explicit list-view and point-view relevance in one LLM.

3.1.1 List-view Relevance Incorporation. Based on cross-attention
modeling within LLM, we concatenate the candidate identifiers of
all candidates to the end of the input sequence. A linear projection
layer is then applied over the output layer, ultimately producing a
real-valued score that quantifies the relevance of each candidate to
the query. The green part on the left side of Figure 1 illustrates this
concept. The formal definition is as follows:

𝑙𝑠𝑖 = Linear𝑑→1

(
LLM

(
input

)
[𝑖𝑑𝑥 id𝑖]

)
, (3)

where 𝑖𝑑𝑥 id
𝑖

denotes the position of the concatenated i-th candi-
date identifier within the input sequence. For a listwise input com-
prising 𝑀 candidates, the LLM generates a relevance list {𝑙𝑠𝑖 }𝑀𝑖=1
corresponding to the input candidates.

Since this relevance is derived from listwise input, we define it as
list-view relevance. In our listwise reranking paradigm, all candidate
identifiers are concatenated at the end of the input sequence. To
ensure that the generation of each list-view relevance score remains
independent of previous candidate identifiers, we introduce an
attention mask matrix at the position of the candidate identifiers
to block information exchange between them.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Self-Calibrated Listwise Reranking with Large Language Models Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Query Candidate id1 Candidate idM idM

ls1

List-view Relevance

ls2 lsM...ps1 ps2 psM

Point-view Relevance

id
Attention

Masks

 Decoder-only
LLM

Parallel Context Encoding

ps1 ps2 psMq1
q2

qQ

In-batch Instance Sampling

ls1 ls2 lsMq1
q2

qQ

Self-calibrated Training

If condition met:

Relevance-aware Listwise Reranking Architecture

Adaptive Optimization Self-
C

alibrate

ls1 ls2 lsM

ls1 ls2 lsM

ps1 ps2 psM

ps1 ps2 psM

Candidate id2 id2id1

Figure 1: The proposed SCaLR method for listwise reranking. The relevance-aware listwise reranking architecture generates
list-view relevance scores to capture information from multiple candidates and uses parallel context encoding to generate
point-view relevance scores for each candidate. During self-calibrated training, the list-view relevance is adaptively calibrated
by the point-view relevance with the in-batch sampling strategy.

3.1.2 Point-view Relevance with Parallel Context Encoding. List-
view relevance offers a comprehensive relevance evaluation of
cross-candidate information in the current listwise input. Further-
more, we introduce parallel context encoding [55] into the decoder-
only LLM to enable relevance capture merely based on a single
candidate in listwise inputs, since such a pointwise relevance natu-
rally satisfies global optimal. The core idea behind this approach
is to assign identical positional encodings to all input candidates,
ensuring that each candidate is modeled independently, without
interference from other candidates. The left part in the purple of Fig-
ure 1 provides an illustration. We append a special token <DOC_END>
at the end of each candidate and incorporate a linear mapping layer
at this position to generate a relevance score:

𝑝𝑠𝑖 = Linear𝑑→1

(
LLM

(
input

)
[𝑖𝑑𝑥st𝑖]

)
, (4)

where 𝑖𝑑𝑥st
𝑖
denotes the position of the special token of i-th candi-

date in the input sequence. Since each relevance score is assessed
based on a single candidate, we refer to it as point-view relevance.

The incorporation of parallel context encoding ensures that inde-
pendent point-view relevance scores for every query-candidate pair
can be extracted within the LLM, without being influenced by the
presence of other candidates. This establishes a crucial foundation
for the subsequent calibration process.

3.2 Self-Calibrated Training
3.2.1 Learning for List-view and Point-view Relevance. By introduc-
ing explicit list-view relevance scores, the model’s optimization
shifts from a text generation task to a similarity-based ranking
task. To ensure fairness in subsequent comparisons, we adhere to
established research and utilize the textual ranking permutation

generated by RankGPT [46] as the training data source. Conse-
quently, we employ the RankNet [2] loss to optimize the model in
a pairwise manner:

LList =
𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1

1𝑟𝑖<𝑟 𝑗 log(1 + exp(𝑙𝑠𝑖 − 𝑙𝑠 𝑗)), (5)

where 𝑟𝑖 and 𝑟 𝑗 represent the ranks of 𝑖-th and 𝑗-th candidates
in the permutation, respectively. Since RankNet is a pairwise loss
function, we decompose the entire permutation into all possible
pairwise combinations, resulting in𝑀 (𝑀 − 1)/2 candidate pairs for
training. We similarly employ RankNet loss to optimize the task of
generating point-view relevance scores:

LPoint =
𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1

1𝑟𝑖<𝑟 𝑗 log(1 + exp(𝑝𝑠𝑖 − 𝑝𝑠 𝑗)) . (6)

3.2.2 Self-Calibrating List-view Relevance by Point-view Relevance.
Although our relevance-aware listwise reranking paradigm the-
oretically ensures global comparability across different sublists,
empirical attempts reveal that after training with the ranking loss,
the list-view relevance scores assigned to each sublist’s candidates
still exhibit tendencies toward local optima. While point-view rel-
evance demonstrates strong global optimality, it neglects the in-
formation from other candidates present in the listwise input. To
overcome this challenge, We propose to utilize the global optimal
characteristics of point-view relevance scores to calibrate list-view
relevance scores. Since point-view relevance scores are generated
based on internal model parameters, this process is referred to as
self-calibration.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Self-Calibration Loss. In our study, the objective of calibration
is to ensure that the list-view relevance more accurately reflects
the true relevance scale between a query and its corresponding
candidate, rather than simply maintaining the relative ranking of
the current candidate list. Given that point-view relevance is de-
termined without interference from other candidate information,
it provides an ideal assessment for global comparison without the
need for external supervisory signals. We substitute the permuta-
tion labels used in RankNet with the point-view relevance scores,
thereby calibrating the score of list-view relevance:

LCal =
𝑀∑︁
𝑖=1

𝑀∑︁
𝑗=1

1(𝑝𝑠𝑖>𝑝𝑠 𝑗) log(1 + exp(𝑙𝑠𝑖 − 𝑙𝑠 𝑗)) . (7)

Adaptive Optimization using In-batch Instances. As rerank-
ing loss focuses solely on optimizing the relevance scores of differ-
ent candidates for the same query, we first propose to adopt the
in-batch sampling strategy [19, 38] widely utilized in dense retrieval
into the reranking task. In contrast to in-batch sampling for dense
retrieval, which relies on in-batch candidates for optimization, we
propose incorporating additional query-candidate pairs from the
current batch into the optimization process to enlarge the instance
number. This can be regarded as a global cross-query sampling
strategy to achieve better calibration performance. Formally, we
define the in-batch self-calibration loss as follows:

LCal-IB =

𝑀∗𝑄∑︁
𝑖=1

𝑀∗𝑄∑︁
𝑗=1

1(𝑝𝑠𝑖>𝑝𝑠 𝑗) log(1 + exp(𝑙𝑠𝑖 − 𝑙𝑠 𝑗)), (8)

where𝑄 denotes the query number in the mini-batch. This strategy
extends the calibration process from in-query to cross-query setting.

Furthermore, the point-view relevance scores are derived from
the LLM’s internal parameters. During the initial stage of training,
point-view relevance scores may exhibit limited discrimination
across different query-candidate pairs, resulting in suboptimal cali-
bration. To address this challenge, we further introduce an adaptive
optimization mechanism. Specifically, we first calculate the vari-
ance of the point-view relevance scores for the candidates of each
query in the current batch, followed by calculating the average
variance across all queries:

Var =
1
𝑄

𝑄∑︁
𝑞=1

𝜎2 ({𝑝𝑠𝑞
𝑘
}𝑀
𝑘=1), (9)

where 𝜎2 (·) denotes the operation of calculating variance. We set a
threshold 𝜏 to assess whether the current point-view relevance eval-
uation is sufficiently reliable for the calibration task. The integral
calibration loss with in-batch sampling and adaptive optimization
is defined as follows:

LCal-AdaIB =

𝑀∗𝑄∑︁
𝑖=1

𝑀∗𝑄∑︁
𝑗=1

1((Var>𝜏)∧(𝑝𝑠𝑖>𝑝𝑠 𝑗))

log(1 + exp(𝑙𝑠𝑖 − 𝑙𝑠 𝑗)). (10)

As a result, self-calibration is applied only after point-view rel-
evance reaches a state deemed most favorable for adjustment,
thereby avoiding potential misalignment during the initial stages
of training.

3.2.3 Final Loss. Building on the point-view and list-view rel-
evance optimization methods outlined in Section 3.2.1, alongside
the self-calibration loss with adaptive optimization and in-batch
sampling strategy presented in Section 3.2.2, we combine the list-
view, point-view, and self-calibrated loss as the final optimization
objective of SCaLR:

LFinal = LList + LPoint + LCal-AdaIB . (11)

3.3 Overview and Discussion
In this section, we provide an overview of SCaLR and discuss its

advantages.
During inference, we only need the list-view relevance scores

for reranking all candidates. Given that the listwise input com-
prises𝑀 candidates, we split the entire candidate set C into |C| /𝑀
listwise inputs and compute the list-view relevance scores for the
candidate texts within each input. Since our framework modifies
the autoregressive listwise reranking paradigm, the generation of
each list-view relevance score depends solely on the original input.
It enables us to obtain relevance scores for the entire candidate
set with lower cost than the sliding window strategy in existing
LLM-based ranking methods. Furthermore, drawing inspiration
from Quiet-STaR [57], we parallelize the generation of all relevance
scores to accelerate inference and optimize memory usage, further
improving efficiency and saving cost.

Our self-calibrated listwise reranking method owns two major
advantages:

(1) The proposed relevance-aware listwise reranking framework
introduces explicit relevance scores, enabling the model to consider
both list-view and point-view relevances for the given candidates
during training. The list-view relevance scores effectively capture
the listwise knowledge, and the point-view relevance scores charac-
terize the query-candidate semantic relevance. Both support using
parallel training and inference techniques for acceleration.

(2) We self-calibrate the list-view relevance scores using point-
view relevance scores without the need of external signals. It allows
the list-view relevance to maintain the multi-candidate view while
ensuring the global comparability characteristics of point-view
relevance.

4 Experiments and Analysis
In this section, we first outline the experimental setup, followed

by the presentation of the main results, ablation study, and in-depth
analysis.

4.1 Experimental Settings
4.1.1 Datasets. To eliminate the impact of training data variability
on model performance, we wholly adhere to current state-of-the-art
listwise reranking approaches [35, 40], employing listwise compar-
ison data generated by RankGPT-3.5 and RankGPT-4 [46] as the
distillation training data. This dataset includes 100K queries an-
notated by RankGPT-3.5 and sampled 5K queries annotated by
RankGPT-4 from MS MARCO [29], each paired with 20 candidates
retrieved by the retriever, serving as input. Due to the presence of
annotation noise identified in the data from RankGPT-3.5, we ex-
clude approximately 13% of this dataset. In contrast to prior studies,

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Self-Calibrated Listwise Reranking with Large Language Models Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Zero-shot Rerankers Fine-tuned Rerankers

BM25 RG-S Set- GPT- GPT4 mono- LiT5 List- PE- Rank- Rank- Rank- FIRST SCaLR
wise 3.5 T5 T5 Rank LLaMA Vicuna Zephyr (ours)

Model size - ? 11B ? ? 110M 770M 3B 7B 7B 7B 7B 7B 7B
Retriever - BM25 BM25 BM25 BM25 BM25 BM25 BM25 BM25 RepL. Cont. Cont. Cont. Cont.
Top-𝑘 for rank - 100 100 100 100 100 100 100 100 200 100 100 100 100
Training data - - - - - 𝑀l 𝑀d 𝑀l 𝑀d 𝑀l 𝑀d 𝑀d 𝑀d 𝑀d
Inf. strategy PW PW SW LW LW PW LW LW LW PW LW LW LW LW

Climate-FEVER 16.5 - - - - 23.1 19.8 24.8 - 28.0 28.2 25.6 26.7 23.0
DBPedia 31.8 41.9 42.4 44.5 47.1 42.8 43.5 46.2 40.1 48.3 50.0 50.0 50.9 50.7
FEVER 65.1 - - - - 78.4 73.9 82.0 - 83.9 81.0 80.1 81.7 86.0
FiQA 23.6 - - - - 39.2 41.6 45.1 - 46.5 35.9 42.2 42.2 47.6
HotpotQA 63.3 - - - - 71.2 70.9 75.6 - 75.3 73.5 71.6 74.2 75.2
NFCorpus 32.2 39.0 34.6 35.6 38.5 35.7 35.4 37.7 36.4 30.3 33.1 37.7 37.4 38.9
NQ 30.6 - - - - 52.1 55.3 56.2 - 66.3 58.6 65.6 66.4 68.1
SCIDOCS 14.9 - - - - 16.7 18.1 19.5 - 17.8 18.4 20.5 20.4 21.9
SciFact 67.9 75.2 75.4 70.4 75.0 73.1 74.1 77.0 69.4 73.2 70.5 76.7 74.6 76.7
TREC-COVID 59.5 80.5 76.8 76.7 85.5 78.3 80.3 84.7 77.7 85.2 71.3 78.4 78.8 79.4

Average 43.7 - - - - 51.1 51.3 54.9 - 55.5 52.1 54.8 55.3 56.8†

Table 1: NDCG@10 Results on BEIR. Ml denotes training on MS MARCO labeled data, while Md refers to training on the
distilled data. RepL. and Cont. denote RepLLaMA and Contriever, respectively. LW and PW denote listwise and pointwise
reranker, respectively. We provide the experimental details of each baseline that correspond to the reported results. The symbol
“†” denotes that the performance improvement is statistically significant with p < 0.05 compared against all the baselines.

we do not artificially expand RankGPT-4 data by sublist sampling
to increase the dataset size.

For evaluation, we used the BEIR benchmark [49] to perform out-
of-domain evaluations. The BEIR benchmark comprises datasets
across a diverse set of datasets spanningmultiple domains, designed
for information retrieval tasks. We followed the evaluation settings
from the previous work [40], selecting the 10 datasets for com-
parison consistency including Climate FEVER, DBPedia, FEVER,
FiQA, HotpotQA, NFCorpus, Natural Questions, Scidocs, SciFact,
and Trec-COVID. Additionally, we evaluate SCaLR utilizing the
TREC Deep Learning (DL) Track [4–7] test collections from 2019,
2020, 2021, and 2022. Notably, DL 2019 and 2020 utilize the passage
corpus of MS MARCO v1, while DL 2021 and 2022 rely on MS
MARCO v2 passage corpus.

4.1.2 Evaluation Metrics. Following previous studies [35, 40], the
evaluation metric utilized in our experiment is Normalized Dis-
counted cumulative gain (NDCG). NDCG is a widely recognized
measure for assessing the quality of ranked results in information
retrieval tasks, by comparing the weighted relevance of all results
to an ideal order. Specifically, we use NDCG@10 for evaluation in
our experiment.

4.1.3 Baselines. Here, we compare our proposed approach against
numerous competitive reranking baselines, including a sparse reranker
BM25 [20], zero-shot rerankers, and fine-tuned rerankers.

Zero-shot rerankers in our study denote rerankers that directly
rely on pure LLM (e.g., LLaMA [50]) for evaluation and are not
fine-tuned on any reranking tasks. Concretely, we adopt LRL [26],
Setwise [64], RG-S (0, 4) [61], RankGPT-3.5 [46], and RankGPT-
4 [46] for evaluation.

Fine-tuned reranker baselines including pre-trained language
models like and T5 [39], also with LLMs-based rerankers. We in-
troduce a diverse set of baselines to comprehensively demonstrate
the superiority of our method, including monoT5 [31], LiT5 [47],
ListT5 [56], RankLLaMA [25], RankVicuna [34], RankZephyr [35],
PE-Rank [23], and FIRST [40]. We use PE-Rankjina for BEIR eval-
uation and PE-RankBGE for TREC DL evaluation, we adopt the
LiT5-Distill version for evaluation.

For consistency in the evaluation of benchmarks, we replicate
some of the reported performance metrics in the baseline papers for
comparison. Note that some baselines are not evaluated on specific
baselines, resulting in the absence of some performance results.
Given that different approaches may employ distinct first-stage
retrievers to obtain candidate results, we annotate the retriever
used by each approach in the table accordingly.

4.1.4 Implement Details. For a fair comparison, following recent
competitive methods [35, 40], we adopt Zephyr𝛽 [51] as the back-
bone model for training, and use Contriver [16] to retrieve top
100 candidates for reranking on BEIR and BM25 to retrieve top
100 candidates for reranking on TREC DL. We fine-tune the model
for 3 epochs with a batch size of 8 and a learning rate of 1e-5
using bfloat16 precision. Our training is implemented on eight
NVIDIA A100 80G GPUs for 18 hours. We set the threshold 𝜏 of 10
to adaptively introduce the calibration loss considering the average
variation.

4.2 Main Results
In this section, we present the evaluation results of SCaLR on

both the BEIR and TREC DL Tracks.
5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Model Source Training DL19 DL20 DL21 DL22
Size Retriever top-𝑘 Data nDCG@10 nDCG@10 nDCG@10 nDCG@10

Zero-shot Rerankers
BM25 [20] - - - - 50.6 48.0 44.6 26.9
LRL [26] ? BM25 100 - 65.8 62.2 60.0 -
Setwise [64] 11B BM25 100 - 71.1 68.6 - -
GPT-3.5 [46] ? BM25 100 - 65.8 62.9 60.1 41.8
GPT-4 [46] ? BM25 100 - 73.6 70.6 70.7 50.8

Fine-tuned Rerankers
monoT5 [31] 3B BM25 100 𝑀l 71.5 68.9 - -
ListT5 [56] 3B BM25 100 𝑀l 71.8 69.1 - -
PE-Rank [23] 7B BGE 100 𝑀d 72.9 67.8 - -
RankVicuna [34] 7B BM25 100 𝑀d 68.5 69.0 66.1 43.9
RankZephyr [35] 7B BM25 100 𝑀d 73.7 70.7 69.6 51.4
SCaLR (Ours) 7B BM25 100 𝑀d 74.6† 71.0† 71.8† 52.1†

Table 2: Results on TREC DL Tracks. Ml denotes training on MS MARCO labeled data, while Md refers to training on the
distilled data. We provide the experimental details of each baseline that correspond to the reported results. The symbol “†”
denotes that the performance improvement is statistically significant with p < 0.05 compared against all the baselines.

4.2.1 Results on BEIR. The results of different reranking methods
evaluated on BEIR are shown in Table 1. It can be observed that:

(1) Among all methods, the proposed SCaLRmethod outperforms
other baselines in average evaluation across the BEIR benchmark,
demonstrating its superior out-of-domain performance. The key
distinction of our method lies in the incorporation of explicit list-
view relevance for performing listwise reranking. SCaLR combines
the efficiency advantage of pointwise methods with the enhanced
contextual understanding advantage of listwise methods. Through
self-calibrated training, the list-view relevance scores are refined
to be more accurate for achieving global optimum across the entire
candidate set.

(2) Although the BEIR benchmark is designed for out-of-domain
evaluation, our analysis indicates that zero-shot rerankers overall
underperform compared to fine-tuned rerankers, even when lever-
aging LLMs with substantial parameter scales. We hypothesize that
this performance gap stems from the absence of explicit rerank-
ing task training during the pretraining stages of LLMs without
supervised fine-tuning. Nevertheless, RankGPT-4 remains a robust
and competitive baseline, owing to its outstanding problem-solving
capabilities.

(3) In comparison to the pointwise reranking approaches, listwise
reranking methods typically superior superior performance. This
can be attributed to the capabilities of LLMs to process multiple
documents simultaneously, enabling more effective handling of
listwise inputs and consequently yielding improved results. It is also
noteworthy that RankLLaMA exhibits exceptional performance. We
note that its results are derived from reranking the top 200 outputs
of RepLLaMA, which may offer a certain advantage over reranking
other retrieval results.

4.2.2 Results on TREC DL Tracks. For a fair comparison, we em-
ploy BM25 as the retriever to provide search results across multiple
baselines. The results of different reranking methods evaluated on
TREC DL Tracks are presented in Table 2. It can be observed that
the proposed SCaLR method consistently outperforms all baselines

Variants BEIR Average

SCaLR 56.8

w/o adaptive optimization 55.2
w/o in-batch instances 52.9
w/o self-calibration 52.1
w/ point-view relevance 55.3

Table 3: NDCG@10 results on variants of SCaLR, we report
the average results across datasets in BEIR.

across all datasets. Since the datasets in the TREC DL Tracks are
derived from MS MARCO v1 and MS MARCO v2, these experi-
ments represent in-domain evaluations. The superior performance
of SCaLR highlights its remarkable in-domain capabilities, which
can be attributed to our calibrated, globally comparable list-view
relevance score enabled by its novel listwise reranking architecture.
In addition, we observe that RankGPT-4 shows compatible perfor-
mance in the reranking task, even without supervised fine-tuning,
leveraging its robust instruct-following capabilities to outperform
many fine-tuned rerankers.

4.3 Effect of Relevance Calibration
In this section, we conduct an ablation study to comprehensively

examine the effectiveness of key strategies in SCaLR. We report the
average results on BEIR. Here, we consider three variants based on
SCaLR for comparison: (a) w/o adaptive optimization always intro-
duces the self-calibration loss; (b) w/o in-batch instances removes
the optimization over other query-candidate instances within the
same mini-batch; (c) w/o self-calibration eliminates the calibration
of list-view relevance scores; (d) w/ point-view employs point-view
relevance scores for reranking, replacing the list-view scores.

Table 3 presents the results for variants of SCaLR, fromwhich we
can observe the following findings: (a) The performance drops in

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Self-Calibrated Listwise Reranking with Large Language Models Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

100 150 200 300
Candidate number

75.5

76.0

76.5

77.0 SCaLR
RankZephyr

(a) SciFact dataset.

100 150 200 300
Candidate number

78

80

82

84
SCaLR
RankZephyr

(b) TREC-Covid dataset.

Figure 2: NDCG@10 results for extending candidate number
on two BEIR datasets.

w/o adaptive optimization, demonstrating that adaptively incorpo-
rating self-calibration loss during training helps list-view relevance
be calibrated in a more proper opportunity. (b) The performance
drops in w/o in-batch instances, demonstrating the importance of
the importance of introducing cross-query supervision signals for
relevance calibration. (c) The performance significantly drops in
w/o self-calibration, highlighting the necessity of calibrating the list-
view relevance and the effectiveness of our proposed calibration
method. (d) The performance drops inw/ point-view, demonstrating
the effectiveness of reranking with multiple candidate information.

4.4 Reranking on Expansive Candidate Sets
Compared to existing LLM-based listwise reranking methods, a

key advantage of our proposed approach lies in the utilization of cal-
ibrated relevance scores, which replace the permutation generation
used solely for local ranking. We hypothesize that this enables the
method to exhibit greater robustness and efficiency across larger
candidate sets. In this section, we design experiments to validate
this hypothesis from the perspectives of both performance and
efficiency.

4.4.1 Evaluation on Performance. We first investigate the scala-
bility of our method in handling larger candidate sets by exam-
ining its reranking performance. We select RankZephyr [35], a
well-established listwise reranking method based on open-source
LLMs, as a representative LLM-based listwise reranker for com-
parison. Starting with a candidate set size of 100, we progressively
increased the number of candidates to observe how different meth-
ods performed under varying conditions.

As shown in Figure 2, the evaluation results on the SciFact and
TREC-Covid datasets reveal distinct patterns. On the SciFact dataset,
the performance gap between SCaLR and RankZephyr widens as
the number of candidates increases. On the TREC-Covid dataset,
RankZephyr’s overall performance declines with a larger candidate
set, whereas SCaLR’s performance remains relatively stable. This
observation demonstrates that SCaLR exhibits superior robustness
on reranking performance when reranking a larger number of
candidates, which is contributed by the relevance-aware listwise
reranking architecture with the well-calibrated relevance scores.

100 150 200 300 500 1000

Candidate Number

0

50

100

150

200

250

300

350

La
te

nc
y

(s
)

SCaLR
RankZephyr

Figure 3: The latency for reranking one query with varying
numbers of candidates evaluated on TREC-Covid.

4.4.2 Evaluation on Latency. To evaluate the efficiency of SCaLR,
we measure the average latency required to rerank the entire can-
didate set for a single query, comparing it to the RankZephyr, a
represented listwise reranker based on LLM. To ensure fairness in
comparison, we align the experimental setups of both methods and
conduct the evaluations on the same GPU machine. To evaluate the
efficiency of SCaLR, we measure the average latency required to
rerank the full candidate set for a single query, comparing it against
RankZephyr, a representative listwise reranker based on LLMs. For
a fair comparison, we standardize the experimental conditions for
both methods, ensuring evaluations are conducted on the same
GPU machine.

As illustrated in Figure 3, SCaLR exhibits a slow linear increase
in runtime as the number of candidate documents grows. In con-
trast, while RankZephyr also exhibits a linear growth trend, its rate
of increase is substantially higher than that of SCaLR, resulting in
approximately 23 times greater latency compared to SCaLR. As the
number of candidate documents increases to 1000, the latency of
RankZephyr exceeds five minutes, a level that is generally unsus-
tainable for reranking systems in real-world deployments. In addi-
tion, we find the truncation length setting of RankZephyr is shorter
than that of SCaLR, aligning the truncation length may result in
a more significant latency disparity. We attribute this efficiency
difference primarily to the autoregressive text generation approach
and the redundant computations introduced by the sliding window
strategy in RankZephyr. SCaLR’s architectural advantage lies in
requiring only a single context computation for sublist reranking,
and by leveraging globally comparable relevance scores, it avoids
the multiple computations per candidate imposed by the sliding
window strategy.

4.5 Position Bias
Existing LLM-based listwise reranking methods are typically

highly sensitive to the positions of candidate documents in the
input [45, 48, 56]. A possible explanation for this is the “lost-in-the-
middle” phenomenon, where LLMs may struggle to fully compre-
hend long contextual information. In our method, by introducing
parallel context encoding for candidates in a decoder-only LLM,

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Orders DBPedia NQ SciFact TREC-Covid

Original 50.7 68.1 76.7 79.4
Reversed 50.3 67.8 76.0 79.0
Random 50.2 67.9 75.7 79.1

Table 4: NDCG@10 results on various input candidate orders
of SCaLR on four datasets in BEIR.

each candidate is encoded independently, without being influenced
by its position relative to other candidates. This characteristic in-
herently addresses the position bias issue observed in LLM-based
listwise rerankers.

To validate this hypothesis, we designed three sets of experi-
ments. For each query, we reversed and randomized the order of
input candidates during the evaluation phase. Table 4 presents the
average results on the BEIR dataset. We observed no significant
performance drops in SCaLR across the reversed, and randomized
candidate orders compared with the original order setting, which is
robust facing the position bias issue found in previous studies. Note
that in our training data, we have maintained the original order
of the retrieved candidates without changing the candidate order
for data augmentation [34] to ensure robustness, which strongly
demonstrates the robustness of parallel context encoding in ad-
dressing position bias.

5 Related Work
5.1 Text Reranking

Early reranking methods rely on vector space [44] or proba-
bilistic models [42], where documents are ranked based on the
degree of overlap between query and document terms. Although
effective in early retrieval systems, these methods are limited in
capturing deeper semantic relationships beyond surface-level term
matching. With the advancements in machine learning and deep
neural network, learning-to-rank [1, 3, 17, 54] and neural IR ap-
proaches [13, 28, 53] introduce new reranking paradigms to infor-
mation retrieval, leading to significant improvements in ranking
performance.

In recent years, pretrained language models (e.g., BERT [8]) have
revolutionized text understanding, significantly improving the per-
formance of text reranking [21, 30, 32]. These models typically use
cross-encoder architectures to model fine-grained query-document
interactions, yielding relevance scores optimized through point-
wise, pairwise, or listwise loss functions [12, 14, 62]. Various ad-
vanced strategies have been proposed to enhance the effectiveness
of the cross-encoder [18, 22, 37]. A common approach involves
data augmentation, for instance, leveraging query generation mod-
els to create synthetic query-document pairs for training [9, 43].
Researchers have also explored distillation strategies, where capa-
bilities from a more powerful model are distilled into a student
reranker [11, 15], as well as joint training of the retriever and the
reranker [41] and long document reranking methods [10]. Addi-
tionally, some approaches utilize text generation models to estimate
the likelihood of generating a query from a document, using such
a likelihood to compute the relevance between the query and the
document [63, 65].

5.2 Large Language Model based Reranking
Recent advancements in large language models (LLMs) have

demonstrated their effectiveness across various natural language
processing tasks [59], including the construction of effective rerank-
ing models [46, 60]. The predominant approach to LLM-based
reranking employs a listwise input format, wherein the model con-
siders multiple documents concurrently and generates a textual list
of the reranked order [24, 47]. However, due to the limitations in the
long context capabilities of LLMs, this method typically necessitates
the implementation of a sliding window strategy during inference,
maintaining the order of a sublist of candidate documents [34, 35].
Several studies have sought to enhance this reranking paradigm,
such as replacing the sliding window strategy with more efficient
tree inference architectures [56] or top-down partitioning strat-
egy [33], utilizing passage embeddings for context encoding [23],
and leveraging the probability distribution of the first generated
token to derive sublist order [40]. In addition, cross-encoder ar-
chitectures can be supplanted with decoder-only LLMs, deriving
relevance scores through linear mappings [25].

Recognizing the wealth of world knowledge inherent in LLMs,
numerous research has focused on achieving LLM-based reranking
without extra fine-tuning, primarily by crafting specific task instruc-
tions that elicit LLMs’ potential for reranking tasks. This includes
employing pairwise [36], listwise [26, 46], or setwise prompting [64]
strategies to utilize LLMs’ instruct-following capabilities, and in-
troducing fine-grained relevance labels to enhance the model’s
perception of relevance [61].

Our study adopts the listwise reranking pattern while addressing
its susceptibility to local optima and inefficiencies in inference by
improving both the architecture and inference strategy, ultimately
achieving superior reranking performance while reducing the costs
associated with listwise methods.

6 Conclusion
In this work, we proposed the SCaLR framework, a novel ap-

proach to LLM-based listwise reranking, addressing key limitations
in current listwise reranking methods, such as local optima and in-
efficiencies. To implement our method, we made two technical con-
tributions. First, we introduced a relevance-aware listwise rerank-
ing architecture, incorporating explicit relevance assessments for
both list-view and point-view. Building on this, we proposed self-
calibrated training to calibrate list-view relevance by point-view
relevance with in-batch sampling and adaptive optimization strate-
gies. SCaLR combines the efficiency of pointwise methods with the
multi-candidate information retrieval capability of the list-view ap-
proach, ultimately achieving efficient and effective listwise rerank-
ing. Our experiments on diverse datasets highlight the effectiveness,
efficiency, and robustness of SCaLR, particularly when scaling to
large candidate sets. We believe that this novel listwise reranking
paradigm based on large models has the potential to inspire new
research directions within the community.

In future work, we will further explore the advantages brought
by the proposed listwise reranking framework, such as the robust-
ness when incorporating more candidates in listwise inputs, and
investigating the impact of simultaneously utilizing point-view and
list-view relevance scores.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Self-Calibrated Listwise Reranking with Large Language Models Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W Bruce Croft. 2018. Unbi-

ased learning to rank with unbiased propensity estimation. In The 41st interna-
tional ACM SIGIR conference on research & development in information retrieval.
385–394.

[2] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Gregory N. Hullender. 2005. Learning to rank using gradient
descent. In Machine Learning, Proceedings of the Twenty-Second International
Conference (ICML 2005), Bonn, Germany, August 7-11, 2005 (ACM International
Conference Proceeding Series, Vol. 119). 89–96.

[3] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. 129–136.

[4] Nick Craswell, BhaskarMitra, Emine Yilmaz, and Daniel Campos. 2021. Overview
of the TREC 2020 deep learning track. arXiv preprint arXiv:2102.07662 (2021).

[5] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Jimmy Lin.
[n. d.]. OVERVIEW OF THE TREC 2021 DEEP LEARNING TRACK. ([n. d.]).

[6] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Jimmy Lin.
2022. Overview of the TREC 2021 deep learning track. In Text REtrieval Conference
(TREC).

[7] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M
Voorhees. 2020. Overview of the TREC 2019 deep learning track. arXiv preprint
arXiv:2003.07820 (2020).

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). 4171–4186.

[9] Cicero dos Santos, Xiaofei Ma, Ramesh Nallapati, Zhiheng Huang, and Bing
Xiang. 2020. Beyond [CLS] through Ranking by Generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
1722–1727.

[10] Luyu Gao and Jamie Callan. 2022. Long Document Re-ranking with Modular
Re-ranker. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 2371–2376.

[11] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2020. Understanding BERT rankers un-
der distillation. In Proceedings of the 2020 ACM SIGIR on International Conference
on Theory of Information Retrieval. 149–152.

[12] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. Rethink Training of BERT
Rerankers in Multi-stage Retrieval Pipeline. In Advances in Information Retrieval
- 43rd European Conference on IR Research, ECIR 2021, Virtual Event, March 28 -
April 1, 2021, Proceedings, Part II, Vol. 12657. 280–286.

[13] Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed Zamani,
Chen Wu, W Bruce Croft, and Xueqi Cheng. 2020. A deep look into neural
ranking models for information retrieval. Information Processing & Management
57, 6 (2020), 102067.

[14] Shuguang Han, Xuanhui Wang, Mike Bendersky, and Marc Najork. 2020.
Learning-to-Rank with BERT in TF-Ranking. arXiv preprint arXiv:2004.08476
(2020).

[15] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and
Allan Hanbury. 2020. Improving efficient neural ranking models with cross-
architecture knowledge distillation. arXiv preprint arXiv:2010.02666 (2020).

[16] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bo-
janowski, Armand Joulin, and Edouard Grave. 2021. Towards Unsupervised
Dense Information Retrieval with Contrastive Learning. ArXiv abs/2112.09118
(2021).

[17] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased
learning-to-rank with biased feedback. In Proceedings of the tenth ACM interna-
tional conference on web search and data mining. 781–789.

[18] Jia-Huei Ju, Jheng-Hong Yang, and Chuan-JuWang. 2021. Text-to-text multi-view
learning for passage re-ranking. In Proceedings of the 44th international ACM
SIGIR conference on research and development in information retrieval. 1803–1807.

[19] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 6769–6781.

[20] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep,
and Rodrigo Nogueira. 2021. Pyserini: A Python Toolkit for Reproducible Infor-
mation Retrieval Research with Sparse and Dense Representations. In Proceedings
of the 44th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR 2021). 2356–2362.

[21] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2021. Pretrained transformers
for text ranking: Bert and beyond. Synthesis Lectures on Human Language
Technologies 14, 4 (2021), 1–325.

[22] Robert Litschko, Ivan Vulić, and Goran Glavaš. 2022. Parameter-Efficient Neural
Reranking for Cross-Lingual and Multilingual Retrieval. In Proceedings of the
29th International Conference on Computational Linguistics. 1071–1082.

[23] Qi Liu, Bo Wang, Nan Wang, and Jiaxin Mao. 2024. Leveraging Passage Em-
beddings for Efficient Listwise Reranking with Large Language Models. arXiv
preprint arXiv:2406.14848 (2024).

[24] Ji Ma, Ivan Korotkov, Yinfei Yang, Keith Hall, and Ryan McDonald. 2021. Zero-
shot Neural Passage Retrieval via Domain-targeted Synthetic Question Gen-
eration. In Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume. 1075–1088.

[25] Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. 2024. Fine-
tuning llama for multi-stage text retrieval. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
2421–2425.

[26] Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and Jimmy Lin. 2023. Zero-
shot listwise document reranking with a large language model. arXiv preprint
arXiv:2305.02156 (2023).

[27] Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei
Han, and Weizhu Chen. 2021. Reader-Guided Passage Reranking for Open-
Domain Question Answering. In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021. 344–350.

[28] Bhaskar Mitra, Nick Craswell, et al. 2018. An introduction to neural information
retrieval. Foundations and Trends® in Information Retrieval 13, 1 (2018), 1–126.

[29] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. MS MARCO: A Human Generated MAchine
Reading COmprehension Dataset. In Proceedings of the Workshop on Cognitive
Computation: Integrating neural and symbolic approaches 2016 co-located with the
30th Annual Conference on Neural Information Processing Systems (NIPS 2016),
Barcelona, Spain, December 9, 2016 (CEUR Workshop Proceedings, Vol. 1773).

[30] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2019).

[31] Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. 2020. Docu-
ment Ranking with a Pretrained Sequence-to-Sequence Model. In Findings of the
Association for Computational Linguistics: EMNLP 2020. 708–718.

[32] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-Stage
Document Ranking with BERT. CoRR abs/1910.14424 (2019).

[33] Andrew Parry, Sean MacAvaney, and Debasis Ganguly. 2024. Top-Down Parti-
tioning for Efficient List-Wise Ranking. arXiv preprint arXiv:2405.14589 (2024).

[34] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023. Rankvicuna:
Zero-shot listwise document reranking with open-source large language models.
arXiv preprint arXiv:2309.15088 (2023).

[35] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023. RankZephyr:
Effective and Robust Zero-Shot Listwise Reranking is a Breeze! arXiv preprint
arXiv:2312.02724 (2023).

[36] Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming
Shen, Tianqi Liu, Jialu Liu, Donald Metzler, et al. 2024. Large Language Models
are Effective Text Rankers with Pairwise Ranking Prompting. In Findings of the
Association for Computational Linguistics: NAACL 2024. 1504–1518.

[37] Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui
Wang, Michael Bendersky, and Marc Najork. 2021. Are neural rankers still
outperformed by gradient boosted decision trees?. In International Conference on
Learning Representations.

[38] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxi-
ang Dong, Hua Wu, and Haifeng Wang. 2021. RocketQA: An Optimized Training
Approach to Dense Passage Retrieval for Open-Domain Question Answering. In
Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. 5835–5847.

[39] Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. ArXiv
abs/1910.10683 (2020).

[40] Revanth Gangi Reddy, JaeHyeok Doo, Yifei Xu, Md Arafat Sultan, Deevya Swain,
Avirup Sil, and Heng Ji. 2024. FIRST: Faster Improved Listwise Reranking with
Single Token Decoding. arXiv preprint arXiv:2406.15657 (2024).

[41] Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu,
Haifeng Wang, and Ji-Rong Wen. 2021. RocketQAv2: A Joint Training Method
for Dense Passage Retrieval and Passage Re-ranking. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. 2825–2835.

[42] Stephen E Robertson and K Sparck Jones. 1976. Relevance weighting of search
terms. Journal of the American Society for Information science 27, 3 (1976), 129–
146.

[43] Devendra Sachan, Mike Lewis, Mandar Joshi, Armen Aghajanyan, Wen-tau
Yih, Joelle Pineau, and Luke Zettlemoyer. 2022. Improving Passage Retrieval
with Zero-Shot Question Generation. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing. 3781–3797.

[44] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A Vector Space Model
for Automatic Indexing. Commun. ACM 18, 11 (1975), 613–620.

[45] Niklas Stoehr, Pengxiang Cheng, Jing Wang, Daniel Preoţiuc-Pietro, and Rajarshi
Bhowmik. 2024. Unsupervised Contrast-Consistent Ranking with Language
Models. In Proceedings of the 18th Conference of the European Chapter of the
Association for Computational Linguistics (Volume 1: Long Papers). 900–914.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[46] Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin
Chen, Dawei Yin, and Zhaochun Ren. 2023. Is ChatGPT Good at Search? Investi-
gating Large Language Models as Re-Ranking Agents. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing. 14918–14937.

[47] Manveer Singh Tamber, Ronak Pradeep, and Jimmy Lin. 2023. Scaling Down, LiT-
ting Up: Efficient Zero-Shot Listwise Reranking with Seq2seq Encoder-Decoder
Models. arXiv preprint arXiv:2312.16098 (2023).

[48] Raphael Tang, Crystina Zhang, Xueguang Ma, Jimmy Lin, and Ferhan Türe.
2024. Found in the Middle: Permutation Self-Consistency Improves Listwise
Ranking in Large Language Models. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers). 2327–2340.

[49] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of
Information Retrieval Models. arXiv preprint arXiv:2104.08663 (2021).

[50] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[51] Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif
Rasul, Younes Belkada, Shengyi Huang, Leandro vonWerra, Clémentine Fourrier,
Nathan Habib, et al. 2023. Zephyr: Direct distillation of lm alignment. arXiv
preprint arXiv:2310.16944 (2023).

[52] Seungpil Won, Heeyoung Kwak, Joongbo Shin, Janghoon Han, and Kyomin Jung.
2023. BREAK: Breaking the Dialogue State Tracking Barrier with Beam Search
and Re-ranking. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 2832–2846.

[53] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power.
2017. End-to-end neural ad-hoc ranking with kernel pooling. In Proceedings
of the 40th International ACM SIGIR conference on research and development in
information retrieval. 55–64.

[54] Jun Xu, Tie-Yan Liu, Min Lu, Hang Li, and Wei-Ying Ma. 2008. Directly optimiz-
ing evaluation measures in learning to rank. In Proceedings of the 31st annual
international ACM SIGIR conference on Research and development in information
retrieval. 107–114.

[55] Howard Yen, Tianyu Gao, and Danqi Chen. 2024. Long-Context Language
Modeling with Parallel Context Encoding. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).

Association for Computational Linguistics, Bangkok, Thailand, 2588–2610. https:
//doi.org/10.18653/v1/2024.acl-long.142

[56] Soyoung Yoon, Eunbi Lee, Jiyeon Kim, Yireun Kim, Hyeongu Yun, and Seung-
won Hwang. 2024. ListT5: Listwise Reranking with Fusion-in-Decoder Improves
Zero-shot Retrieval. arXiv preprint arXiv:2402.15838 (2024).

[57] Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and
Noah D Goodman. 2024. Quiet-star: Language models can teach themselves to
think before speaking. arXiv preprint arXiv:2403.09629 (2024).

[58] Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong Wen. 2022. Dense
text retrieval based on pretrained language models: A survey. arXiv preprint
arXiv:2211.14876 (2022).

[59] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 (2023).

[60] Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu, Wenhan Liu, Chen-
long Deng, Zhicheng Dou, and Ji-Rong Wen. 2023. Large language models for
information retrieval: A survey. arXiv preprint arXiv:2308.07107 (2023).

[61] Honglei Zhuang, Zhen Qin, Kai Hui, Junru Wu, Le Yan, Xuanhui Wang, and
Michael Bendersky. 2024. Beyond Yes and No: Improving Zero-Shot LLM Rankers
via Scoring Fine-Grained Relevance Labels. In Proceedings of the 2024 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 2: Short Papers). 358–370.

[62] Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui, Ji Ma, Jing Lu, Jianmo Ni,
Xuanhui Wang, and Michael Bendersky. 2023. Rankt5: Fine-tuning t5 for text
ranking with ranking losses. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 2308–2313.

[63] Shengyao Zhuang, Hang Li, and Guido Zuccon. 2021. Deep query likelihood
model for information retrieval. In Advances in Information Retrieval: 43rd Euro-
pean Conference on IR Research, ECIR 2021, Virtual Event, March 28–April 1, 2021,
Proceedings, Part II 43. Springer, 463–470.

[64] Shengyao Zhuang, Honglei Zhuang, Bevan Koopman, and Guido Zuccon. 2024.
A setwise approach for effective and highly efficient zero-shot ranking with large
language models. In Proceedings of the 47th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 38–47.

[65] Shengyao Zhuang and Guido Zuccon. 2021. TILDE: Term independent likelihood
moDEl for passage re-ranking. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1483–1492.

10

https://doi.org/10.18653/v1/2024.acl-long.142
https://doi.org/10.18653/v1/2024.acl-long.142

	Abstract
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Relevance-Aware Listwise Reranking Framework
	3.2 Self-Calibrated Training
	3.3 Overview and Discussion

	4 Experiments and Analysis
	4.1 Experimental Settings
	4.2 Main Results
	4.3 Effect of Relevance Calibration
	4.4 Reranking on Expansive Candidate Sets
	4.5 Position Bias

	5 Related Work
	5.1 Text Reranking
	5.2 Large Language Model based Reranking

	6 Conclusion
	References

