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Abstract

We present UniFoil, the largest publicly available universal airfoil dataset based on
Reynolds-averaged-Navier–Stokes (RANS) simulations. It contains over 500,000
samples spanning a wide range of Reynolds numbers, Mach numbers, capturing
both transitional and fully turbulent flows across incompressible to compressible
regimes. UniFoil is designed to support machine learning (ML) research in fluid
dynamics, particularly for modeling complex aerodynamic phenomena. Most
existing datasets are limited to incompressible, fully turbulent flows with smooth
field characteristics, thus overlooking the critical physics of laminar–turbulent
transition and shock-wave interactions-features that exhibit strong nonlinearity and
sharp gradients. UniFoil fills this gap by offering a broad spectrum of realistic flow
conditions. Turbulent simulations utilize the Spalart–Allmaras (SA) model, while
transitional flows are modeled using an eN -based transition prediction method
coupled with the SA model. The dataset includes a comprehensive geometry
set comprising over 4,800 natural laminar flow (NLF) airfoils and 30,000 fully
turbulent (FT) airfoils, effectively covering the diversity of airfoil designs relevant
to aerospace, wind energy, and marine applications. This dataset is also highly
valuable for scientific machine learning (SciML), enabling the development of
data-driven models that more accurately capture the transport processes associated
with laminar–turbulent transition. UniFoil is freely available under a permissive
CC-BY-SA license.

∗Corresponding author.



1 Introduction

Surrogate model-based aerodynamic shape optimization is a well-established field that has received
significant attention over the past decades. Recently, machine learning (ML)-based surrogate models
have shown substantial progress, offering the potential to accelerate design tasks. The objective is to
develop an efficient and accurate model capable of rapidly identifying optimal designs. In particular,
the surrogate must provide highly accurate drag predictions—within 1% relative error—across
a broad range of flight conditions and geometric variations. However, existing efforts are often
limited by small datasets with incomplete coverage of both the flight envelope and design space. To
overcome these limitations, this paper introduces a comprehensive dataset comprising one million
airfoil simulations spanning subsonic and transonic regimes, including both fully turbulent and
laminar–turbulent transitional flows, a wide range of angles of attack (AoAs), and diverse geometric
configurations.

In addition, another recent focus of the field is to discover new transport equation for laminar-turbulent
transitional flow to replace the classic linear stability theory-based en method. Our dataset also
includes transitional airfoil simulations. This data can help to expedite the research in the data-driven
transition model research.

The remainder of this paper is organized as follows. In Section 1, we review existing datasets
and highlight the unique features of our proposed dataset, UniFoil. Section 2 details the tools and
techniques used for data generation, while Section 3 describes the dataset structure and access
details. Finally, conclusions are presented in Section 5. The dataset is available through the Harvard
dataverse2. Tools to help view the dataset with preliminary ML results are available in the GitHub
repository3.

1.1 Related Work

Recent advances in ML for computational fluid dynamics (CFD) have led to the development of
several open-access datasets tailored to automotive and aerospace applications. The AhmedML
dataset Ashton et al. [2024b] offers hybrid RANS-LES simulations for 500 variants of the Ahmed
body, supporting ML-based aerodynamic modeling. Similarly, WindsorML Ashton et al. [2024a]
provides 355 wall-modeled large-eddy simulations (WMLESs) of the Windsor body to benchmark
ML surrogate models. The DrivAerML dataset Ashton et al. [2024c] introduces high-fidelity HRLES
simulations for 500 morphs of the DrivAer model. Meanwhile, AirfRANS Bonnet et al. [2022] focuses
on 2D RANS simulations over airfoils, enabling ML exploration of steady-state incompressible flows.
Finally, CFDGen Yagoubi et al. [2024] presents a synthetic data generation pipeline to enhance
generalization and robustness of ML models across varying flow conditions. Collectively, these
efforts underscore a growing commitment to reproducible ML research in CFD, though limitations
remain in geometry complexity.

There are several airfoil datasets represent significant advancements in providing large-scale, ML-
ready CFD data tailored for aerodynamic analysis. The datasets information is summarized in Table 1.
The first dataset by Schillaci et al. [2021], comprises 425 simulations of turbulent flows over airfoils
without modeling laminar–turbulent transition. The simulations are incompressible, and volume-
resolved field data are provided for each case. The second dataset, AIRFRANS Bonnet et al. [2022],
includes 1,000 simulations of turbulent airfoil flows at a Mach number (Ma) of 0.3 and Reynolds
number (Re) ranging from 2 to 6 million. The dataset does not model transition and is limited to
incompressible flows. It provides full field data across a wide range of angles of attack (AoAs). The
third dataset by Ramos et al. [2023a], expands to 1,830 airfoils and incorporates both turbulence and
transition modeling. Although the flows remain incompressible with a fixed Mach number of 0.1,
the dataset spans multiple Re (3, 6, and 9 million) and AoAs from −4◦ to 20◦ and includes over
250,000 simulations with corresponding flow field data. Other similar datasets have been summarized
in Table 1 and compared with our UniFoil dataset.

2Harvard dataverse link - https://doi.org/10.7910/DVN/VQGWC4
3GitHub Repository — https://github.com/rohitroxkp7/UniFoil
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Table 1: Comparison of publicly available 2D airfoil simulation datasets and our dataset.

Dataset No. of
Airfoils Turb. Trans.

Model Compr. Mach Re
(×106) AoA (◦) Field

Data
No. of
Sim.

Schillaci et al. [2021] 425 Yes No No NA 3 10 Yes 425
Bonnet et al. [2022] 1,000 Yes No No 0.3 [2,6] [-5,15] Yes 1,000
Ramos et al. [2023a] 1,830 Yes Yes No 0.1 3,6,9 [-4,20] Yes 250,000
Ramos et al. [2023b] 9,000 Yes Yes No 0.1 9 [4,12] Yes 17,992
Agarwal et al. [2024] 2,900 Yes No No NA 0.1 [-4,8] No 2,900
Cornelius et al. [2025] 18,000 Yes No Yes [0.25,0.9] [0.075,8] [-20,20] Yes 52,480
UniFoil (Current) 34,800 Yes Yes Yes [0.1,0.85] [1,10] [-2,6] Yes 500,000

1.2 Focus of this work

The existing dataset focuses on incompressible fully turbulent flows which missed critical strongly
nonlinear physics including shock waves and laminar turbulent transition. While our new dataset is
more general with these essential physics incorporated. More details can be found in Figure 1.

A shock wave is a narrow region across which flow properties such as pressure, temperature, and
velocity change abruptly due to compressibility effects at high speeds (see the second figure in the
first row of Figure 1). Shock waves introduce sharp spatial discontinuities in fluid flow that pose
fundamental challenges for ML models, particularly those relying on smoothness assumptions or local
interpolation. In high-speed regimes, shocks dominate the flow field and drive nonlinear phenomena
such as boundary layer separation and wave interactions. For ML researchers, modeling and predicting
shocks tests the limits of both inductive bias and network expressivity, especially in generalization
across flow regimes. By including shock-resolving simulations in our dataset, we offer a benchmark
that pushes beyond existing datasets constrained to subsonic, smooth flows—highlighting scenarios
where naive ML architectures fail and physics-aware models are essential.

Laminar–turbulent transition presents a different but equally critical challenge: subtle, highly non-
linear sensitivity to geometry, freestream conditions, and Re. Transition refers to the process in
which a smooth, orderly (laminar) flow becomes chaotic and energy-dissipative (turbulent), often
triggered by small disturbances that amplify through instability mechanisms. Unlike fully developed
turbulence, transitional flows require ML models to detect weak, spatially diffuse signals that trigger
instability growth. This makes the transition regime a compelling test case for evaluating data
efficiency, uncertainty estimation, and transfer learning. By embedding detailed transition modeling
in the dataset, we aim to foster research into hybrid physics-ML models capable of reasoning across
regimes and learning representations that respect dynamic bifurcations—a capability that standard
datasets with fully turbulent flows cannot test.

While high-fidelity CFD datasets with complex physical phenomena such as shock waves and lami-
nar–turbulent transition are traditionally the focus of aerospace and applied physics communities,
the growing intersection of scientific computing and ML necessitates their availability to the larger
audience. The proposed dataset is designed not just for physical fidelity, but also for benchmarking
modern ML methods—such as graph neural networks, physics-informed models, and latent-space
surrogates—on realistic, multi-regime flow conditions. By introducing sharp nonlinearities (shocks)
and regime-dependent sensitivities (transition), the dataset poses fundamental challenges in general-
ization, inductive bias, and physical consistency that are of direct interest to the NeurIPS community.
In contrast to existing datasets that assume smooth flow fields, our dataset serves as a rigorous testbed
for developing robust, generalizable models that can extrapolate across physics regimes, making it a
valuable contribution to the ML for scientific discovery initiative.

1.3 Main contribution

In this paper, we aim to address several critical limitations of prior airfoil CFD datasets and contribute
to advancing ML for high-fidelity fluid dynamics. The contributions of this work are summarized as
follows:

• The largest publicly available high-fidelity CFD dataset of 2D airfoil flows, consisting
of over half-a-million simulations spanning wide ranges of Re, Ma, and angle of attack
(AoA);
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Figure 1: The first row shows the pressure coefficient (Cp) distributions for a subsonic flow at Mach
0.2 and a transonic flow at Mach 0.8. The subsonic case exhibits a smooth pressure field, whereas
the transonic case features two shock waves forming on the suction and compression sides of the
airfoil. The second row presents contours of the dimensionless turbulent viscosity, µt/µ, for both a
fully turbulent model and a laminar–turbulent transition model under identical flight conditions. The
fully turbulent model assumes immediate transition at the leading edge, while the transition model
predicts a delayed onset of turbulence, with the transition location indicated by arrows.

• The first dataset of this scale to include both shock waves and laminar–turbulent transition
phenomena, enabling ML models to be trained and evaluated on realistic, multi-regime
aerodynamic behavior;

• Compressible RANS simulations using transition-sensitive turbulence models and shock-
resolving numerical schemes;

• A comprehensive dataset including volume-resolved flow fields, wall-bounded quantities,
integrated aerodynamic coefficients, and geometric descriptors in standardized formats;

• Full reproducibility enabled through open access to the simulation setup, meshing pipeline,
and post-processing scripts, all built upon the extensively tested ADflow solver4, which has
been employed in multiple NASA projects.

• Released under a permissive CC-BY-SA license to support open science and integration into
ML workflows.

To summarize and contrast the key new additions the current dataset brings to the literature, we refer
the readers to Table 1 and a summary of the input fields can be found in Table 2.

2 Data Generation Methods

2.1 Geometry

Airfoil geometries can be efficiently represented in a reduced state space using modal decomposition
techniques. In particular, a low-dimensional basis can be extracted from a dataset of classic airfoils via
proper orthogonal decomposition (POD), enabling compact representation and efficient sampling of
shape variations. Notably, airfoils designed for fully turbulent operation differ significantly in geome-
try—and consequently in modal characteristics—from those optimized to exploit laminar–turbulent
transition mechanisms. Thus, we create two airfoil shape datasets for the fully turbulent (FT) airfoils
and natural laminar flow (NLF) airfoils. In the current dataset, we sampled 30,000 FT and 4,800

4ADflow is a compressible flow solver developed by the University of Michigan’s MDO Lab as part of the
MACH-Aero framework. Source code is available at https://github.com/mdolab/adflow. For technical
details, see Kenway et al. [2019].
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NLF airfoils. An example of this sampling is shown in Figure 2 for the FT airfoils. We refer the
readers to Li et al. [2019] for further information on sampling large datasets of geometric variations
in a particular class of airfoils.

Figure 2: An overview of FT-airfoils geometry sampling.

2.2 Mesh generation

Mesh generation for the airfoil simulations was carried out using pyHyp by Secco et al. [2021]5.
pyHyp generates high-quality O-type multi-block meshes around airfoils using a hyperbolic marching
method, which extrudes mesh lines from an initial surface mesh by solving a system of hyperbolic
partial differential equations (PDEs) that control cell spacing, orthogonality, and smoothness. One
mesh generated by pyHyp is shown in Figure 3. This approach enables accurate boundary layer
resolution and consistent mesh quality, making it well suited for RANS solvers such as ADflow. The
method is fully automated and robust across large geometric datasets, supporting high-throughput
CFD simulations.

Figure 3: An example of the structured mesh around airfoil generated by pyHyp Secco et al. [2021].

2.3 Solver and numerical considerations

The ADflow solver was used in this study to simulate several thousand airfoils Mader et al. [2020].
ADflow is a structured, multi-block, compressible RANS solver that supports adjoint derivatives and
is specifically designed for aerodynamic design and optimization. All turbulent flow simulations
employed the Spalart–Allmaras (SA) turbulence model, while laminar–turbulent transition was
modeled using an eN -based transition prediction method coupled with the SA model, as recently
implemented by Shi et al. [2020].

All simulations were steady state and performed on a far-field mesh with the airfoil body-fitted at the
center of the mesh, as shown in Figure 3. The wall was given a no-slip boundary condition and the
outermost edge of the computational domain was given a far-field boundary condition. Further details
on the numerical methods employed in data generation are elaborated in the supplementary data.

5https://github.com/mdolab/pyhyp
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An overview of the flow field figures and flow regimes in the dataset are summarized in Figure 1. In
the figure, Cp is the coefficient of pressure and µt/µ is the ratio of the turbulent eddy viscosity to the
fluid’s molecular viscosity.

2.4 Convergence checks

The data quality was checked by monitoring the convergence of the numerical simulations and
ensuring that all simulations in the dataset were sufficiently converged. It would be impractical to
perform a mesh-dependency check on half-a-million simulations, and a fine mesh was therefore used
in the data generation.

3 Dataset description

We sample a wide range of Mach numbers, Reynolds numbers, and AoAs. We have the largest ranges
of Mach numbers and Reynolds numbers among all datasets Table 1. The range of AoA is narrower
than in many other datasets, as large AoAs are typically avoided in practice to maintain aerodynamic
efficiency. In addition, with a larger AoA, RANS model is no longer able to capture the flow field
accurately due to flow separation. For each airfoil geometry, we conduct around 13 simulations with
different Mach, Re, and AoA. These three input variables were sampled using a Lattice HyperCube
Sampling approach.

The dataset is composed of three parts: The majority of the simulations are done using the fully
turbulent flow assumption with SA model together with fully turbulent airfoil geometry class (more
details see Section 2). This dataset represents the most commonly used operation condition. The
second dataset also uses the fully turbulent assumption but uses the NLF geometry class. Finally, the
last dataset has a one-to-one correspondance with the second dataset with identical flight conditions
and geometries. The only difference is that the last dataset employs an eN -based transition model
to capture the laminar–turbulent transition, whereas the second dataset assumes fully turbulent flow
from the leading edge of the airfoil.

Table 2: Statistics for the simulations in the UniFoil dataset.

Turbulence Model Airfoil Class No. of
Airfoils Mach Re

(×106) AoA (◦) Net
Simulations

SA model
FT 30,000 [0.1, 0.85] [1, 10] [−2, 6] 400,000
NLF 4,800 [0.1, 0.85] [1, 10] [−2, 6] 50,000

eN transition model
(+ trip term) NLF 4,800 [0.1, 0.85] [1, 10] [−2, 6] 50,000

3.1 Dataset access and contents summary

The dataset is publicly available under the CC-BY-SA license at the Harvard Dataverse Kanchi
et al. [2025]. The dataset contents are summarized in Table 3. All data processing and visualization
scripts will be released in a public repository referenced in the supplementary material. The CGNS
files listed in Table 3 have the coefficient of pressure, velocity vector data and the mach number.
Each CGNS file retains the grid and the values of the computed flow variables in that grid. For
the NLF-transition simulations, the CGNS files have additional information, such as turbulence
intermittency, temperature, skin-friction coefficients and density. The lift and drag coefficients (CL

and CD) are placed in the tabular file as described in Table 3.

3.2 Computational resources

The simulations comprising this dataset were performed on the ANVIL cluster maintained by Purdue
University. The computational setup included access to a total of 896 CPU cores. Each simulation
was executed on a single core, enabling efficient parallelization across multiple batches. A dedicated
5 TB storage allocation was used for data management throughout the process. On average, each
simulation required approximately 2 minutes to complete. The entire dataset was generated over a
period of roughly 134,400 CPU Hrs.

6



Table 3: Overview of dataset structure and file contents.

Component Description

Airfoil_Case_Data_turb.tab Mach, AoA, and Re for FT airfoil simulations.

Turb_Cutout_<1–6>.zip FT airfoil simulations CGNS files.

airfoil_dat_from_sim_turb<1–2>.tar.gz Convergence history and CL, CD data for FT runs.

Airfoil_Case_Data_Trans_Lam.tab Mach, AoA, and Re for NLF-turbulent and NLF-
transitional simulations.

NLF_Airfoils_Fully_Turbulent.zip NLF airfoils fully turbulent simulations CGNS files.

airfoil_dat_from_sim_lam.tar.gz Convergence history and CL, CD data for fully turbulent
NLF runs.

Transi_Cutout_<1–4>.zip Transitional simulations; each folder includes surface
and volume CGNS files and slice .dat files.

Transi_sup_data_cutout_<1–4>.zip Supplementary data from transitional simulations, in-
cluding transition model outputs.

airfoil_dat_from_sim_transi.tar.gz Convergence history and CL, CD data for transition
NLF runs.

airfoil_geometry/ Airfoil coordinates and generation code (in supplemen-
tary repo3).

3.3 Limitations of the Dataset

While the UniFoil dataset provides a comprehensive and diverse set of airfoil simulations, it is
important to acknowledge the following limitations:

• Lack of time-accuracy: All simulations in the dataset are steady-state and do not capture un-
steady or time-accurate flow phenomena, which are often critical in real-world aerodynamic
applications.

• Two-dimensional approximation: The simulations are performed in two dimensions,
whereas real-life aerodynamic flows are inherently three-dimensional. This simplification
may limit the applicability of the dataset for certain classes of problems involving spanwise
effects or vortex shedding.

• Absence of validation with high-fidelity or experimental data: Although the simulations
are conducted on sufficiently fine meshes (see supplementary material for details), the dataset
has not been benchmarked against high-fidelity reference data such as direct numerical
simulations (DNS) or wind tunnel experiments. This is primarily due to the computational
cost associated with large-scale validation across the full dataset.

• Unquantified geometric diversity: While the airfoil shapes are derived from a POD of
a large airfoil design space Li et al. [2019], a formal analysis comparing the geometric
diversity of UniFoil against existing datasets has not been conducted. As a result, the extent
to which the dataset spans the full range of practically relevant airfoil shapes remains to be
quantified.
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4 Preliminary results for ML

In this section, we present the key ML results using UniFoil. We describe the training architecture
and present the predicted results bench–marked against results from ADflow. More details on data
pre–processing and training and testing metrics can be found in Appendix E.

4.1 Neural network architecture

The neural network trained on the UniFoil dataset is an encoder-decoder model with a latent space deep
neural network (DNN). An overview of the architecture of the neural network is shown in Figure 4.
A summary of the training setup is shown in Table 4. In the table the “Param #” field represents the
quantity of variables that can be modified during the training procedure. Densely connected layers
such as the ones prevalent in the DNN have a large number of these parameters as all 6134 nodes are
connected to every single node below. This model is trained on the pressure-coefficient data extracted
from each airfoil simulation. The model is split into two main components with different layer
designs used to down-sample and up-sample the input space. Further details on the exact architecture
specifics and data pre–processing step are presented in Appendices E.1 and E.2.

Figure 4: An overview of the entire training pipeline. The modal coefficients ai are obtained
from Equation (5).

4.2 Training results

We present a visualization of the ground truth Cp fields, reconstructed Cp fields and the L2 error
for those plots for some of the airfoils randomly picked from the dataset in Figure 5. Appreciable
comparisons can be seen for the field values between the ground truth and reconstructed Cp data
fields.

To further examine the model’s performance, we plot the absolute error field (Figure 5),∣∣∣C(i)
p,real − C

(i)
p,pred

∣∣∣ , (1)

which allows visualization of localized discrepancies. As shown in Figure 5, regions of high error are
found in the vicinity of shock waves, particularly over the 3rd and 4th airfoils. These errors typically
arise because the model struggles to accurately represent the steep gradients in pressure associated
with shocks, resulting in localized deviations along the shock front.

Despite this limitation, the model reliably captures the overall structure of the pressure field, including
the location of shocks and discontinuities. This makes the output useful for shock detection, even if
exact magnitudes are not fully recovered. In contrast to the abrupt errors near shocks, more diffuse
and persistent error patterns are evident in the background fields, such as around the 1st and 5th

airfoils. These are attributed to a broader modeling challenge: the failure to accurately reconstruct
mean pressure values far from the airfoil surface.
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Table 4: Neural Network Architecture Summary

Component Layer Type Output Shape Param #
Encoder Input (32, 84, 292, 1) 0

MaxPooling2D (32, 42, 146, 1) 0
Conv2D (32, 42, 146, 32) 320
MaxPooling2D (32, 21, 73, 32) 0
Conv2D (32, 21, 73, 4) 1,156
Flatten (32, 6132) 0
Dense (32, 6132) 37,607,556
Output (32, 6132) 0

Decoder Input (32, 6132) 0
Dense (32, 6132) 37,607,556
Reshape (32, 21, 73, 4) 0
Conv2DTranspose (32, 21, 73, 32) 1,184
UpSampling2D (32, 42, 146, 32) 0
Conv2DTranspose (32, 42, 146, 8) 2,312
UpSampling2D (32, 84, 292, 8) 0
Conv2DTranspose (32, 84, 292, 1) 73
Output (32, 84, 292, 1) 0

Deep Neural Network Input (32, 17) 0
Dense (32, 6134) 122,680
Dense (32, 6134) 37,632,090
Dense (32, 6134) 37,632,090
Dense (32, 6134) 37,632,090
Dense (32, 6134) 37,632,090
Dense (32, 6134) 37,632,090
Output (32, 6134) 0

One potential cause of this background error is the non-uniform resolution of the input data. The
model receives unwrapped Cp data from an O-grid representation, in which the regions closest to
the airfoil surface are more densely sampled. As a result, the model becomes biased toward higher
accuracy near the surface, while performance degrades with increasing distance.

Another contributing factor to elevated L2 norm errors may be the small magnitude of the ground
truth Cp field in certain cases. Since the L2 error is a relative measure, small denominator values in
the error formula can amplify minor discrepancies in the numerator, leading to seemingly high error
values.

To improve model performance and ensure consistency across varying geometries, two normalization
strategies were applied. First, both the model outputs and the dataset were normalized to the range
[−1, 1]. Second, we recorded the minimum and maximum Cp values from each simulation and
appended them to the model’s latent space. This enabled the network to learn and predict the
appropriate scaling factors directly from the geometry.

However, this approach introduces sensitivity: minor inaccuracies in the predicted extrema can
propagate as large-scale errors across the entire field. This highlights a key limitation—without
directly preserving the true range of the pressure coefficient values, the reconstructed fields may
systematically deviate from the physical solution. Future work should explore alternative strategies
to better preserve the physical fidelity of predicted Cp distributions, particularly in the presence of
shocks and weakly varying background fields. A detailed discussion, on the training and prediction
steps, is in Appendices E.3 and E.4.
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Figure 5: Cp field contours from the ground truth data (first row) and reconstructed data (second
row). Absolute error field is plotted in the third row. This is the absolute error between the pressure
coefficient values from ADflow and prediction from neural network, as shown in the first formula
from top in the third row. In the third row, the numbers in each sub–figure represent the relative L2

norm error as defined in the second formula from top.

5 Conclusion

In this work, we introduce UniFoil, a comprehensive and large-scale dataset designed to bridge
critical gaps in existing airfoil simulation datasets. By spanning a wide range of Reynolds numbers,
Mach numbers, and AoAs, and by incorporating both laminar–turbulent transition and shock-wave
phenomena, UniFoil provides a rich and realistic foundation for advancing ML in fluid dynamics.
Unlike prior datasets that focus exclusively on incompressible and fully turbulent flows, UniFoil
captures the full complexity of aerodynamic behavior across multiple physical regimes.

Through the use of compressible RANS simulations, transition-aware turbulence modeling, and shock-
resolving numerical schemes, the dataset offers an unprecedented level of generality. Its standardized
outputs—ranging from flow-resolved fields to integral coefficients–enable direct applicability across
a wide spectrum of ML tasks, including surrogate modeling, uncertainty quantification, and regime
classification.

By openly releasing the dataset, meshing pipeline, and post-processing scripts under a permissive
CC-BY-SA license, we aim to foster open scientific collaboration and reproducibility. We anticipate
that UniFoil will serve as a rigorous benchmark for testing the limits of current ML architectures
and as a catalyst for developing physics-aware models that generalize across nonlinear, multi-regime
aerodynamic phenomena.
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B Geometry sampling

The modal representation is a useful tool to represent the geometry of the airfoil Li et al. [2019].
Taking a set of airfoil shapes, the modal analysis can extract the low dimensional modal representation
that is efficient in capture the geometries. A single airfoil can be represented by n surface points
characterized by coordinates as (xi, yi), i = 1, 2, . . . , n. The y coordinates for the m airfoils can
then be assembled into a matrix as

Y =


y11 y21 · · · ym1

y12 y22 · · · ym1

...
...

. . .
...

y1n y2n · · · ymn

 . (2)

Performing singular value decomposition (SVD) in this matrix results in

Y = UΣVT, (3)

where U ∈ Rn×n contains the orthonormal spatial modes (airfoil shape modes) as columns, Σ ∈
Rn×m is a diagonal matrix of singular values, V ∈ Rm×m contains the parametric coefficients in its
columns.

To reconstruct or generate a new airfoil shape using the leading r modes (r ≪ n), we define the
reduced basis matrix as

Ũ ∈ Rn×r, (4)

where Ũ contains the first r columns of U. Then, any new airfoil shape y ∈ Rn can be expressed as

y = Ũỹ, (5)

where ỹ ∈ Rr is the vector of modal coefficients. It is noted that the x-values remain fixed and are
termed “x-slices”.

The choice of the modal-coefficients is key in generation of the airfoil shape database. Thus, instead
of representing each airfoil with the (x, y) coordinate values of its profile, we use the reduced few
modal coefficients that were used to generate that airfoil in the input data to the neural network. For
more details on choice of modal coefficients and how the sampling is done exactly for large number
of airfoils, we direct the readers to Li et al. [2019, 2020]. In this manner, the 4, 800 NLF airfoils and
30, 000 FT airfoils were sampled. The code to sampling these airfoils and list of modal coefficients
used for the generation of the dataset are detailed in the GitHub repository publicly available in the
CC-BY-SA license3.

C Numerical method

In this section, we discuss the numerical methods used in this paper. In the first subsection, we discuss
the governing equations for the fully–turbulent and transition models used in the dataset generation
for the FT and NLF airfoils. Then, we discuss the grid generation methods and input parameters used
for the structured grids used in the simulations.

C.1 Governing equations

We use ADflow as our CFD solver [Mader et al., 2020]. ADflow is a tool that has been exten-
sively tested for a class of benchmark cases in the past. It solves the compressible Euler, laminar
Navier–Stokes transitional and fully turbulent RANS equations using structured multi-block and
overset meshes. ADflow has been used in aerodynamic, aero structural, and aero propulsive design
optimization of aircraft configurations. Furthermore, we used ADflow to perform design optimization
of hydrofoils and wind turbines.

The two equations that are considered in this research are the fully turbulent RANS equation with a
SA turbulence model and the transitional RANS equation SA model coupled with the en method [Shi
et al., 2020]. The governing equation for compressible–RANS in conservation form is defined as
follows

∂q

∂t
+∇ · fc(q) = ∇ · fv(q,∇q) + s(q), (6)
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where fc(q) is the inviscid flux, fv(q,∇q) is the viscous flux, and s(q) is the turbulence source term,
q contains the mean flow state variable and the turbulence variable, ν̃ (turbulent SA eddy viscosity).
The vector of conserved variables q includes the mean density, mean momentum components, mean
total energy, and the working variable of the SA model in order as

q =


ρ̄
ρ̄ū
ρ̄v̄
ρ̄Ē
ν̃

 , (7)

where denotes time–averaging, ρ is density, u, v are the x and y velocities, E is energy and ν̃
is the Spalart–Allmaras working variable used to compute the eddy viscosity as νt = ρ̄ν̃fv1, with
fv1 = χ3/(χ3 + c3v1), χ = ν̃/ν and cv1 is an SA model constant.

The turbulence source term is defined as follows

s(q) =


0
0
0

Cb1(1− ft2)S̄ν̃ + Cb2

σ |∇ν̃|2 − Cw1fw
(
ν̃
d

)2
 , (8)

where Cb1, Cb2, σ, fw, Cw1, d are SA model constants and S̄ is defined as the magnitude of the mean
vorticity tensor as

S̄ =
√
2Ωij Ωij , Ωij =

1

2

(
∂ūi

∂xj
− ∂ūj

∂xi

)
(9)

where S is the magnitude of the mean vorticity tensor, Ωij is the mean rotation rate tensor, and ūi is
the mean velocity component in the i-th direction.

For more details, we refer the reader to the NASA website for more information ([NASA Langley
Research Center]).

The transitional solver implements the en transition model using the linear stability theory. An
intermittency function g ∈ [0, 1] is introduced to control the turbulence onset, which modified the
source term of the turbulence equation as follows:

g

(
Cb1(1− ft2)S̄ν̃ +

Cb2

σ
|∇ν̃|2 − Cw1fw

(
ν̃

d

)2
)
. (10)

Here, if g = 1 the original SA equation is recovered and we are in the fully turbulent mode. If g = 0,
the turbulence source term is completely turned off and we are in the fully laminar regime. When g
takes the value between 0 and 1, we are in the transitional region. The determination of g is based on
the en method taking the information of the base flow.

Using the base flow information, once the transition location is found, the turbulence term will affect
the main flow terms and thus resulting in a new equilibrium. An nonlinear block Gauss–Seidel
method is used to handle the coupling between the RANS and the en equations. More details on the
transition modeling can be found in Shi et al. [2020].

C.2 Grid generation

We use pyHyp Secco et al. [2021] to generate the volume grid, which uses a hyperbolic volume grid
marching scheme to extrude structured surface grids into volume grids. Thus, the grid generation
was performed such that the domain is an O-type grid with the airfoil body–fitted to the center of the
domain with one cell thickness in the z-direction as shown in Figure 3.

The one-cell-thickness necessity arises from the fact that ADflow does not support pure two-
dimensional simulations and therefore one needs to set one-cell thickness in the infinite span direction
to assume two–dimensional (2D) nature of the flow. This is essentially a pseudo–2D simulation.

To maintain the same shape for the input data format, we ensured to maintain the same input
parameters for the grid generation. The input parameters are summarized in Table 5. In the table, “TE”
stands for trailing edge and “c” stands for chord, which was set to a value of 1m in all simulations.

14



Table 5: Fine grid generation parameters

Description Value

Number of points along airfoil surface till TE 293

Number of TE points 11

Number of points in marching direction 85

First layer thickness 10−6 c

Distance from the airfoil surface to march the hyperbolic grid 100c

D Output file contents

As introduced in Section 3, the dataset comprises three categories of simulations:

1. Fully turbulent simulations for FT airfoils,
2. Fully turbulent simulations for NLF airfoils,
3. Transition simulations for NLF airfoils.

For each of the output files, we describe the contents in the following subsections. All simulation
output files follow a consistent naming convention and are provided in CGNS format. The structure
and content of these files are summarized in Table 6. In the following subsections, we discuss the
output folders and files content into two sub–categories based on the geometry, the first being the
FT–airfoil dataset and second being the NLF airfoil dataset.

Table 6: Overview of simulation data categories and file organization.

Governing equation Airfoil Folder Suffix Freestream File

Fully Turbulent FT Turb_Cutout_<1–6>.zip turb Airfoil_Case_Data_turb.tab
Fully Turbulent NLF NLF_Airfoils_Fully_Turbulent.zip lam Airfoil_Case_Data_Trans_Lam.tab
Transition NLF NLF_Airfoils_Fully_Turbulent.zip lam Airfoil_Case_Data_Trans_Lam.tab

D.1 FT–airfoil dataset

The field data for FT airfoils is organized into multiple cutout folders named:

Turb_Cutout_<1–6>.zip.

Each simulation file follows the naming pattern:

airfoil_<airfoil_num>_G2_A_L0_case_<case_num>_000_surf_turb.cgns .

The integers <airfoil_num> and <case_num> refer to the specific airfoil geometry and the
freestream condition, respectively. Detailed freestream conditions for each case are provided in the
file:

Airfoil_Case_Data_turb.tab .

Each CGNS file contains the Mach number, pressure coefficient, Cp, and the velocity vector field.
These files are compatible with open-source tools such as ParaView and PyVista library Sullivan
and Kaszynski [2019] and commercial software such as TecPlot (commercial) for data extraction
and visualization purposes.

A visualization of the field data present in the fully–turbulent dataset is shown in Figure 6. In
the figure, we show the Mach number, velocity magnitude and pressure coefficient values. It also
showcases shocks on both the suction and pressure sides, with flow separation aft the shock foot. The
velocity magnitude |u| is computed using the formula

|u| =
√

u2 + v2, (11)
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Figure 6: Plots of the data present in the fully turbulent simulations. |u| is the velocity magnitude
and CP is the coefficient of pressure.

where u is the x-velocity magnitude and v is the y-velocity magnitude. Both these values including
the velocity magnitude pre-computed through ADflow are available in the CGNS files.

D.2 NLF–airfoil dataset

Two datasets are available for the NLF airfoils, the fully-turbulent dataset and the transition dataset.
For both the datasets, the airfoils were run for the same freestream conditions.

The field data for NLF airfoils fully turbulent simulations is organized into a single folder named:

NLF_Airfoils_Fully_Turbulent.zip ,

with each simulation file inside this folder that follows the name:

airfoil_<airfoil_num>_G2_A_L0_case_<case_num>_000_surf_lam.cgns .

As aforementioned, the integers <airfoil_num> and <case_num> refer to the specific airfoil
geometry and the freestream condition, respectively. Detailed freestream conditions for each case are
provided in the file:

Airfoil_Case_Data_Trans_lam.tab ,

for both the fully-turbulent and transition datasets of the NLF–airfoils. Each CGNS file, once again,
contains the Mach number, pressure coefficient, Cp, and the velocity vector field, as shown in Figure 6
for the FT-airfoils.

The transition simulation dataset however, follows a slightly different folder structure. Within each
archive named Transi_Cutout_<1–4>.zip, the data is organized into subfolders following the
format:

airfoil_<airfoil_num>_G2_A_L0_case_<case_num> .

Each of these subfolders contains the following files:
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• CGNS files containing flow variables including the pressure coefficient, Cp, density, Mach
number, and velocity field.

• A slice file in tabular format containing velocity and pressure field data extracted at the
transition location along both the suction and pressure surfaces of the airfoil. These values
represent a one-dimensional “slice” through the computational domain.

Finally, the archive Transi_sup_data_cutout_<1–4>.zip mirrors this folder structure and in-
cludes eight supplementary files per case. These provide extended data on the transition characteristics,
enabling deeper analysis of the laminar-to-turbulent transition region. A full description of these
supplementary files and their contents is available in the accompanying README file on the GitHub
repository3.

A visualization of the velocity magnitude field and the field of ratio of turbulent eddy viscosity to
the molecular viscosity is shown in Figure 7. The transition onset points are marked on the airfoil
surface using the red–colored arrow on the suction side of the airfoil. The transition to turbulence
was only observed for the suction side in this case. The location for transition point was obtained
from the “transiLoc.dat” file.

Figure 7: Velocity magnitude field and eddy viscosity ratio field in one of the transition flow
simulations of the dataset. The laminar–turbulent transition point for the suction–side is located by
the red arrow in the lower figure.

The eN method predicts the laminar separation and Tollmien–Schlichting (TS) waves induced
transition mechanism. The TS waves amplification is characterized by a factor called NTS factor.
Once it reaches a threshold of 7, the unstable wave is amplified in such a magnitude that the turbulence
onset is triggered, which is when the flow transitions to fully–turbulent.

In the eN transition model, the reduced TS wave frequency is given by

f =
ω

Reδ
, (12)

where ω is the dimensionless angular frequency and Reδ is the displacement–thickness based
Reynolds number. If αi is the local dimensionless spatial amplification rate for the TS wave, then the
N factor is given by

N =

∫ x

x0

αi(x, f) dx, (13)

where x is the spatial location in the computational domain and x0 is the starting point of calculation.
Thus, the NTS factor is defined as the maximum amplification among all waves

NTS = maxf (N(f)). (14)

Out of the eight files, the key files are “nfactor_ts.dat” and “transiLoc.dat”. The former has
the TS wave factor NTS and the latter has the transition point location, if detected, on the suction
and pressure surfaces. Details on accessing and visualizing these files can be found in the GitHub
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Figure 8: Skin-friction coefficient Cf and the NTS factor vs x/c where c is the chord. The NTS factor
is plotted for their different frequencies. The region before the transition zone is laminar flow region
and region after the transition zone is the fully–turbulent flow region.

repository3. Details on the transition characteristics and the factors can be found in the paper by Shi
et al. [2020].

Figures of the skin-friction coefficient Cf and the NTS factor plotted against x/c from the
nfactor_ts.dat file is shown in Figure 8, for the airfoil shown in Figure 7. The NTS factor
for TS waves is computed as shown in Equation (14). When transition occurs, the skin–friction
coefficient starts to abruptly increase. The transition region highlighted in Figure 8 can be seen for
the suction–side of the airfoil where the skin friction coefficient suddenly rises to a value of roughly
0.0043 before it starts to dip. For the NTS factor, values begin to increase around x/c of 0.2, in–line
with the observation from the skin–friction coefficient plot.

E Preliminary results for ML–Additional information

E.1 Data pre–processing

To ensure a smooth handling of input data, maintaining the same input shape to the neural network
and to preserve the grid resolution without loss of data that typically occurs when interpolating onto
a uniform grid, the data from the O-grid was reshaped into a neat 2D array. The process of reshaping
is highlighted in Figure 9. We start at the TE and move clockwise along the airfoil surface to loop till
we reach back to the TE. This forms the first bottom–most layer of the 2D array. We then move to the
next layer and repeat till all the layers are completed.

Since the same tool (pyHyp) and grid generation inputs from Table 5 were used, we maintained the
same number of “O-grid rings” and ordering of points to reshape all input data in a similar manner.
Figure 9 shows this concept in the top row and shows the implementation of the reshaping algorithm
for the velocity field in the bottom row.

E.2 Neural network architecture

The encoder consists of two smaller encoding blocks made of a convolutional layer and a max pooling
layer. The decoder is the opposite and consists of two blocks made of a convolutional layer and a
up-sampling layer. Once the model is trained, the encoder can be used to convert all of the data into
the model’s latent space. These latent space values are then saved and used to train the DNN. The
train-test split used for this model was 80% / 20%. The model was trained for 100 epochs. Model
batch size was 32. All neurons’ activations were set to ReLU.
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Figure 9: The input data is transformed from an O-grid mesh to a uniform rectangular grid by
reordering the points in an array-like structure, without need to preserve their original spatial
arrangement. The first row presents the concept and second row presents the application to the
velocity–field data. The first column represents the data in the Cartesian coordinate system while
the second column represents the data simply arranged in a 2D space using the node numbering,
following the order of path guided by arrows in the figures.

The model was trained by first preparing the encoder-decoder model and training it on the reshaped
pressure coefficient data. Once this model is trained, the encoder is used to convert all of the pressure
coefficient data into latent space values which are saved separately. These latent space values are then
combined with matching airfoil feature data in order to train the deep neural network. When the deep
neural network is done training, the model can be used to predict an airfoils pressure coefficient field
by first converting the feature data into the latent space and then passing this latent space data into
the decoder. This results in a pressure coefficient field in the square grid format which must finally be
reshaped into the O-Grid using the geometry data from the airfoil.

It is possible to simplify this method by cutting out the encoding step entirely and instead training a
hybrid deep neural network and convolutional model. This can have a similar architecture but doesn’t
store the latent space information or a encoder allowing it to operate more efficiently. This approach
should be tested in the future with different layer architectures to see if it produces more accurate
results.

E.3 Training

The neural network was trained using the FT-airfoils dataset. 400,000 simulations from the dataset
were used for training. During the training process, the convolutional network and DNN errors were
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plotted against the number of epochs. We use the following metrics for the loss function

lossencoder-decoder =
1

nsample

∑
i

∥∥∥C(i)
p,real − C

(i)
p,pred

∥∥∥
2∥∥∥C(i)

p,real

∥∥∥
2

,

lossDNN =
1

nsample

∑
i

∥∥∥C(i)
p,real − C

(i)
p,pred

∥∥∥
2∥∥∥C(i)

p,real

∥∥∥
2

,

(15)

where Cp,real is the pressure coefficient from the ground–truth data and Cp,pred is the pressure
coefficient from the predicted data. A plot of the training error as shown in Equation (15) is shown
in Figure 10. It is observed that the error steadily decreased for both networks and flattened out
after 30 epochs for the DNN while still showing a slight but very slow decreasing trend for the
convolutional network layer.
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Figure 10: Training error against the number of epochs for the convolutional network and DNN.

E.4 Prediction

Once the training was complete, a plot for the predicted values of pressure coefficient Cp,pred against
the ground truth values of Cp,real was made for all the dataset simulations and their reconstructed
field values.

This plot is shown in Figure 11 for a randomly picked airfoil. In an ideal case, the network would
predict with no loss of accuracy. In such a scenario, we would have a one–one mapping of the
predictions and ground truth data, yielding a straight line, Cp,real = Cp,pred. This is overlaid onto the
plot as well for an ideal–case comparison. In the figure, it is observed that the prediction values were
appreciably close to the ground truth values. In this case predicted Cp values are greater then the
ground truth near the high end of the plot while predicted Cp values near the low end of the plot are
less than the ground truth.

Next, to quantify the errors in the learning process, all of the input data was regenerated for the flow
conditions they were simulated for. An L2 norm error difference study between the actual data and
the predicted data for each airfoil was then carried out and the number of airfoils quantity was plotted
against the L2 error for every airfoil in the 400,000 simulations and is shown in Figure 12. The
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Figure 11: Predicted and ground truth values for Cp.

relative L2 norm error is defined as follows∥∥∥C(i)
p,real − C

(i)
p,pred

∥∥∥
2∥∥∥C(i)

p,real

∥∥∥
2

, (16)

where Cp,pred is the pressure coefficient values from the predicted data, the Cp,real is the pressure
coefficient from the ground-truth data and i is the simulation count. This histogram plot gives an
overview of the error distribution in the dataset. Roughly 35,000 airfoil simulations from the 400,000
had the highest error of approximately 10−1.

Figure 12: Number of airfoil simulations vs L2 norm of the differences in Cp between ground truth
and predictions.
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