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Abstract

Efficient and effective Out-of-Distribution (OOD)
detection is essential for the safe deployment
of AI systems. Existing feature space methods,
while effective, often incur significant compu-
tational overhead due to their reliance on aux-
iliary models built from training features. In
this paper, we propose a computationally-efficient
OOD detector without using auxiliary models
while still leveraging the rich information em-
bedded in the feature space. Specifically, we
detect OOD samples based on their feature dis-
tances to decision boundaries. To minimize com-
putational cost, we introduce an efficient closed-
form estimation, analytically proven to tightly
lower bound the distance. Based on our estima-
tion, we discover that In-Distribution (ID) fea-
tures tend to be further from decision boundaries
than OOD features. Additionally, ID and OOD
samples are better separated when compared at
equal deviation levels from the mean of train-
ing features. By regularizing the distances to
decision boundaries based on feature deviation
from the mean, we develop a hyperparameter-
free, auxiliary model-free OOD detector. Our
method matches or surpasses the effectiveness of
state-of-the-art methods in extensive experiments
while incurring negligible overhead in inference
latency. Overall, our approach significantly im-
proves the efficiency-effectiveness trade-off in
OOD detection. Code is available at: https:
//github.com/litianliu/fDBD-OOD.

1. Introduction
As machine learning models are increasingly deployed in
the real world, it is inevitable to encounter samples out of
the training distribution. Since a classifier cannot make
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Figure 1. Overview. Left: Conceptual Illustration. The feature
distance to decision boundaries on a multi-class classifier’s penul-
timate layer, quantifying the perturbation magnitude needed to
alter the model prediction to a class (see formal definition in Sec-
tion 3.1). Right: Empirical Observation. Features of ID samples
(CIFAR-10) tend to reside further from decision boundaries than
OOD samples (SVHN). The distances are measured using our
method (see Section 3.1) and averages are per sample.

meaningful predictions on test samples from classes unseen
during training, the detection of Out-of-Distribution (OOD)
samples is crucial for taking necessary precautions. The
field of OOD detection, which has recently seen a surge in
research interest (Yang et al., 2021a), divides into two main
areas. One area investigates the training time regularization
to enhance OOD detection (Wei et al., 2022; Huang & Li,
2021; Ming et al., 2023), while our work, along with others,
delves into post-hoc methods, which are training-agnostic
and suitable for ready implementation on pre-trained models.
OOD detectors can be designed over model output space
(Liang et al., 2018; Liu et al., 2020; Hendrycks et al., 2019).
Additionally, Tack et al. (2020); Lee et al. (2018); Sun et al.
(2022) and Sastry & Oore (2020) use the clustering of In-
Distribution (ID) samples in the feature space for OOD
detection. For example, Lee et al. (2018) fit a multivariate
Gaussian over the training features and detect OOD based
on the Mahalanobis distance, and Sun et al. (2022) detect
OOD based on the k-th nearest neighbor (KNN) distance
to the training features. While existing feature-space meth-
ods are highly effective, their reliance on auxiliary models
built from training features incurs additional computational
costs. This poses a challenge for time-critical real-world
applications, such as autonomous driving, where the latency
of OOD detection becomes a top priority.

In this work, we focus on designing post-hoc OOD detec-
tors for pre-trained classifiers. We aim to leverage the rich
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information in the feature space while optimizing computa-
tional efficiency and avoiding the need for auxiliary models
built from training statistics. To this end, we study from the
novel perspective of decision boundaries, which naturally
summarizes the training statistics. We begin by asking:

Where do features of ID and OOD samples reside with
respect to the decision boundaries?

To answer the question, we first formalize the concept of
the feature distance to a class’s decision boundary. We de-
fine the distance as the minimum perturbation in the feature
space to change the classifier’s decision to the class, visu-
ally explained in Figure 1 Left. In particular, we focus on
the penultimate layer, i.e., the layer before the linear clas-
sification head. Due to non-convexity, the distance on the
penultimate layer cannot be readily computed. To mini-
mize the cost of measuring the distance, we introduce in
Section 3.1 an efficient closed-form estimation, analytically
proven to tightly lower bound the distance. Intuitively, fea-
ture distances to decision boundaries reflects the difficulty
of changing model decisions and can quantify model un-
certainty in the feature space. Unlike output space softmax
confidence, our feature-space distance uses the rich infor-
mation embedded in the feature space for OOD detection.

Based on our closed-form distance estimation, we pioneer-
ingly explore OOD detection from the perspective of deci-
sion boundaries. Intuitively, features of ID samples would
reside further away from the decision boundaries than OOD
samples, since a classifier is likely to be more decisive in ID
samples. We empirically validate our intuition in Figure 1
(Right). Further, we observe that ID and OOD can be better
separated when compared at equal deviation levels from the
mean of training features. Using the deviation level as a
regularizer, we design our detection score as a regularized
average feature distance to decision boundaries. The lower
the score is, the closer the feature is to decision boundaries,
and the more likely the sample is OOD.

Thresholding on the detection scores, we have fast Decision
Boundary based OOD Detector (fDBD). Our detector is
hyperparameter-free and auxiliary model-free, eliminating
the cost of tuning parameters and reducing the inference
overhead. Moreover, fDBD scales linearly with the number
of classes and the feature dimension, theoretically guaran-
teed to be computationally scalable for large-scale tasks.
In addition, fDBD incooperates class-specific information
from the class decision boundary perspective to improve
OOD detection effectiveness.

With extensive experiments, we demonstrate the superior
efficiency and effectiveness of our method across various
OOD benchmarks on different classification tasks (Ima-
geNet (Deng et al., 2009), CIFAR-10 (Krizhevsky et al.,
2009)), diverse training objectives (cross-entropy & su-
pervised contrastive loss (Khosla et al., 2020)), and a

range of network architectures (ResNet (He et al., 2016)
& ViT (Dosovitskiy et al., 2020) & DenseNet (Huang et al.,
2017)). Notably, our fDBD consistently achieves or sur-
passes state-of-the-art OOD detection performance. In
the meantime, fDBD maintains inference latency compa-
rable to the vanilla softmax-confidence detector, inducing
practically negligible overhead in inference latency. Over-
all, our method significantly improves upon the efficiency-
effectiveness trade-off of existing methods. We summarize
our main contributions below:

• Closed-form Estimation of the Feature Distance to
Decision Boundaries In Section 3.1, we formalize the
concept of the feature distance to decision boundaries.
We introduce an efficient and effective closed-form
estimation method to measure the distance, providing
a beneficial tool for the community.

• Fast Decision Boundary based OOD Detector: Us-
ing our estimation method in Section 3.1, we establish
in Section 3.2 the first empirical observation that ID
features tend to reside further from decision bound-
aries than OOD features. This ID/OOD separation is
enhanced when regularized by the feature deviation
from the training feature mean. Based on the obser-
vation, we propose a hyperparameter-free, auxiliary
model-free, and computationally efficient OOD detec-
tor from the novel perspective of decision boundaries.

• Experimental analysis: In Section 4, we demonstrate
across extensive experiments that fDBD achieves or
surpasses the state-of-the-art OOD detection effective-
ness with negligible latency overhead.

• Theoretical analysis: We theoretically guarantee the
computational efficiency of fDBD through complexity
analysis. Additionally, we support the effectiveness of
our fDBD through theoretical analysis in Section 5.

2. Problem Setting
We consider a data space X , a class set C, and a classifier f :
X → C, which is trained on samples i.i.d. drawn from joint
distribution PXC . We denote the marginal distribution of
PXC on X as Pin. And we refer to samples drawn from Pin

as In-Distribution (ID) samples. In practice, the classifier
f may encounter x ∈ X which is not drawn from Pin. We
say such samples are Out-of-Distribution (OOD).

Since a classifier cannot make meaningful predictions on
OOD samples from classes unseen during training, it is im-
portant to distinguish between such OOD samples and ID
samples for deployment reliability. Additionally, for time-
critical applications, it is crucial to detect OOD samples
promptly to take precautions. Instead of using the clustering
of ID features and building auxiliary models as in prior art
(Lee et al., 2018; Sun et al., 2022), we alternatively investi-
gate OOD-ness from the perspective of decision boundaries,
which inherently captures the training ID statistics.
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3. Detecting OOD using Decision Boundaries
To understand the potential of detecting OOD from the
decision boundaries perspective, we ask:

Where do features of ID and OOD samples reside with
respect to the decision boundaries?

To this end, we first define the feature distance to decision
boundaries in a multi-class classifier. We then introduce an
efficient and effective method for measuring the distance us-
ing closed-form estimation. Using our method, we observe
that the ID features tend to reside further away from the
decision boundaries. Accordingly, we propose a decision
boundary-based OOD detector. Our detector is post-hoc and
can be built on top of any pre-trained classifiers, agnostic
to model architecture, training procedure, and OOD types.
In addition, our detector is hyperparameter-free, auxiliary
model-free, and computationally efficient.

3.1. Measuring Feature Distance to Decision Boundaries

We now formalize the concept of the feature distance to the
decision boundaries. We denote the last layer function of f
as f−1 : Z → C, which maps a penultimate feature vector
z into a class c. Since f−1 is linear, we can express f−1 as:

f−1(z) = argmax
c∈C

wT
c z + bc,

where wc and bc are parameters corresponding to class c.

Definition 3.1. On the penultimate space of classifier f , we
define the L2-distance of feature embedding zx for sample
x to the decision boundary of class c, where c ̸= f(x), as:

Df (zx, c) = inf
{z′:f−1(z′)=c}

∥zx − z′∥2 .

Here, {z′ : f−1(z
′) = c} is the decision region of class c

in the penultimate space. Therefore, the distance we defined
is the minimum perturbation required to change the model’s
decision to class c. Intuitively, the metric quantifies the
difficulty of altering the model’s decision.

As the decision region is non-convex in general as shown
in Figure 1, the feature distance to a decision boundary
in Definition 3.1 does not have a closed-form solution and
cannot be readily computed. To circumvent computationally
expensive iterative estimation, we relax the decision region
and propose an efficient and effective estimation method for
measuring the distance.

Theorem 3.2. On the penultimate space of classifier f , the
L2-distance between feature embedding zx of sample x
and the decision boundary of class c, where c ̸= f(x), i.e.
Df (zx, c), is tightly lower bounded by

D̃f (zx, c) :=
|(wf(x) −wc)

Tzx + (bf(x) − bc)|∥∥wf(x) −wc

∥∥
2

, (1)

where zx is the penultimate space feature embedding of x
under classifier f , wf(x) and bf(x) are parameters of the
linear classifier corresponding to the predicted class f(x).

Proof. For any class c, c ̸= f(x), let
Zc :={z : f−1(z

′) = c}
={z : wT

c z + bc > wT
c′z + bc′ ∀c′ ̸= c};

Z ′
c :={z′ : wT

c z
′ + bc > wT

f(x)z
′ + bf(x)}.

Observe that Zc ⊆ Z ′
c. Therefore, we have

Df (zx, c) = inf
z∈Zc

∥z − zx∥2 ≥ inf
z′∈Z′

c

∥z′ − zx∥2 . (2)

Note that geometrically infz′∈Z′
c
∥z′ − zx∥2 represents the

l2 distance from zx to hyperplane

(wf(x) −wc)
Tz + (bf(x) − bc) = 0, (3)

and thus

inf
z′∈Z′

c

∥z′ − zx∥2 =
|(wf(x) −wc)

Tzx + (bf(x) − bc)|∥∥wf(x) −wc

∥∥
2

.

(4)
Combining Eqn. (4) with Eqn. (2), we conclude that Eqn. (1)
lower bounds Df (zx, c).

We now show that equality in Eqn. (2) holds for class c2,
corresponding to the nearest hyperplane to the sample em-
bedding zx, i.e.,

c2 := arg min
c∈C,c̸=f(x)

inf
z′∈Z′

c

∥z′ − zx∥2 . (5)

Let the projection of zx on the nearest hyperplane be px.
From Eqn. (5), for all c /∈ {c2, f(x)}, we have

∥px − zx∥2 = inf
z′∈Z′

c2

∥z′ − zx∥2 ≤ inf
z′∈Z′

c

∥z′ − zx∥2 .

(6)
Consequently, we have px ∈ Z ′

c
∁, i.e. wT

c px + bc ≤
wT

f(x)px + bf(x) for any c /∈ {f(x), c2}. Intuitively, as
all other hyperplanes are further away from zx than px,
px and zx must fall on the same side of each hyperplane.
Therefore, px falls within the closure of Zc2 , i.e. px ∈ Zc2 .
It follows that

∥px − zx∥2 ≥ inf
z∈Zc2

∥z − zx∥2 . (7)

Combining Eqn. (6) and Eqn. (7), we see that equality holds
in Eqn. (2) for c = c2. Therefore, we conclude that Eqn. (1)
tightly lower bounds Df (zx, c)

Effectiveness of Distance Measure Our Theorem 3.2 an-
alytically guarantees the effectiveness of our method. In
addition, we empirically validate that our estimation method
achieves high precision with a relative error of less than
1.5%. See details in Appendix H.

Efficiency of Distance Measure Analytically, Eqn. (1) can
be computed in constant time on top of the inference pro-
cess. Specifically, the numerator in Eqn. (1) calculates the
absolute difference between corresponding logits generated
during model inference. And the denominator takes a finite
number of |C| × (|C| − 1) possible values, which can be
pre-computed and retrieved in constant time during infer-
ence. Empirically, our method incurs negligible inference
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Figure 2. Regularization enhances ID/OOD separation. Left:
Histograms of ID/OOD features based on the average distance to
decision boundaries. Right: Histograms of ID/OOD features based
on the regularized average distance to decision boundaries, which
effectively compares ID and OOD features at equal deviation levels
from the mean of training features.

overhead. In particular, on a Tesla T4 GPU, the average
inference time on the CIFAR-10 classifier is 0.53ms per
image with or without computing the distance using our
method. In contrast, the alternative way of estimating the
distance through iterative optimization takes 992.2ms under
the same setup. This empirically validates the efficiency of
our proposed estimation. See details in Appendix H.

For the rest of the paper, we use our closed-form estimation
in Eqn. (1) to empirically study the relation between OOD-
ness and the feature distance to decision boundaries, and to
design our OOD detector.

3.2. Fast Decision Boundary based OOD Detector

We now study OOD detection from the perspective of deci-
sion boundaries. Recall that the feature distance to decision
boundaries measures the minimum perturbation required to
change the classification result. Intuitively, the distance re-
flects the difficulty of changing the model’s decision. Given
that a model tends to be more certain on ID samples, we
hypothesize that ID features are more likely to reside further
away from the decision boundaries compared to OOD fea-
tures. We extensively validate our hypothesis in Appendix J
with plots showing ID/OOD feature distance to decision
boundaries. And we spotlight our empirical study by visu-
alizing the per-sample average feature distance to decision
boundaries for ID/OOD set in Figure 2 (Left).

Going one step further, we investigate the overlapping re-
gion of ID/OOD under the metric of the average distance
to decision boundaries. To this end, we present Figure 3,
where we group ID and OOD samples into buckets based
on their deviation levels from the mean of training features.
For each group, we plot the mean and variance of the aver-
age distance to decision boundaries. Examining Figure 3,
we discover that the average feature distance to decision
boundaries of both ID and OOD samples increases as fea-
tures deviate from the mean of training features. We provide

Figure 3. ID and OOD are better separated at Equal Devia-
tion Levels. Features are grouped by deviation levels with group
mean and variance displayed. Since the average feature distance
to decision boundaries increases as features deviate from the mean
of training features, the circled ID/OOD groups cannot be distin-
guished based on their average distance to decision boundaries
while being effectively separable at their own deviation levels.

theoretical insights into this observation in Section 5. Conse-
quently, OOD samples with a higher deviation level cannot
be well distinguished from ID samples that fall into a lower
deviation level. In contrast, within the same deviation level,
OOD can be much better separated from ID samples.

Based on the understanding, we design our OOD detection
score as the average feature distances to decision boundaries,
regularized by the feature distance to the mean of training
features:

regDistDB :=
1

|C| − 1

∑
c∈C, c ̸=f(x)

D̃f (zx, c)

∥zx − µtrain∥2
, (8)

where D̃f (zx, c) is the estimated distance defined in
Eqn. (1) and µtrain denotes the mean of training features.
The score approximately compares ID and OOD samples at
the same deviation levels. As demonstrated in Figure 2, the
regularized distance score enhances the ID/OOD separation,
which we explain theoretically in Appendix B. By applying
a threshold on regDistDB, we introduce the fast Decision
Boundary based OOD Detector (fDBD), which identifies
samples below the threshold as OOD.

It’s worth noticing that our fDBD is hyperparameter-free
and auxiliary-model-free. In contrast to many existing ap-
proaches (Liang et al., 2018; Lee et al., 2018; Sun et al.,
2022), our fDBD eliminates the pre-inference cost of tuning
hyper-parameter and the potential requirement for additional
data. Benefiting from our closed-form distance measuring
method, fDBD is computationally efficient. Specifically,
computing D̃f (zx, c) takes constant time (Section 3.1) and
computing ∥zx − µG∥2 in Equation 8 has time complex-
ity O(P ), where P is the dimension of penultimate layer.
Overall, fDBD has time complexity O(|C| + P ), which
scales linearly with the number of training classes |C| and
the dimension P , indicating computational scalability for
larger datasets and models. We will further demonstrate the
efficiency of fDBD through experiments in Section 4.

4



Fast Decision Boundary based Out-of-Distribution Detector

Table 1. fDBD achieves superior performance with negligible latency overhead on CIFAR-10 OOD benchmarks. Evaluated on
ResNet-18 with FPR95, AUROC, and inference latency. ↑ indicates that larger values are better and vice versa. Best performance
highlighted in bold. Methods with ∗ are hyperparameter-free.

Method Latency ↓ SVHN iSUN Place365 Texture AVG
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

with Cross-entropy Loss
MSP * 0.53 59.51 91.29 54.57 92.12 62.55 88.63 66.49 88.50 60.78 90.14
ODIN 1.34 61.71 89.12 15.09 97.37 41.45 91.85 52.62 89.41 42.72 91.94

Energy * 0.53 53.96 91.32 27.52 95.59 42.80 91.03 55.23 89.37 44.88 91.83
ViM 0.70 25.38 95.40 30.52 95.10 47.36 90.68 25.69 95.01 32.24 94.05
MDS 2.83 16.77 95.67 7.56 97.93 85.87 68.44 35.21 85.90 36.35 86.99
KNN 1.95 27.85 95.52 24.67 95.52 44.56 90.85 37.57 94.71 33.66 94.15

fDBD * 0.53 22.58 96.07 23.96 95.85 46.59 90.40 31.24 94.48 31.09 94.20
with Supervised Contrastive Loss

CSI NA 37.38 94.69 10.36 98.01 38.31 93.04 28.85 94.87 28.73 95.15
SSD+ 1.12 1.35 99.72 33.60 95.16 26.09 95.48 12.98 97.70 18.51 97.02
KNN+ 1.93 2.20 99.57 20.06 96.74 18.38 96.57 8.09 98.56 12.18 97.86
fDBD * 0.55 4.59 99.00 10.04 98.07 23.16 95.09 9.61 98.22 11.85 97.60

CIFAR10 ResNet  CE + Supcon

4. Experiments
In this section, we demonstrate the superior efficiency and ef-
fectiveness of fDBD across OOD benchmarks. We use two
widely recognized metrics in the literature: the False Posi-
tive rate at 95% true positive rate (FPR95) and the Area Un-
der the Receiver Operating Characteristic Curve (AUROC).
A lower FPR95 score indicates better performance, whereas
a higher AUROC value indicates better performance. In
addition, we report the per-image inference latency (in mil-
liseconds) evaluated on a Tesla T4 GPU. We refer readers
to Appendix F for implementation details.

4.1. Evaluation on CIFAR-10 Benchmarks

In Table 11, we present the evaluation of baselines and our
fDBD across CIFAR-10 OOD benchmarks on ResNet-18.

Training Schemes We evaluate OOD detection perfor-
mance on a model trained under the standard cross-entropy
loss, achieving an accuracy of 94.21%. Moreover, we ex-
periment with a model whose representation mapping is
trained using supervised contrastive loss (SupCon) (Khosla
et al., 2020). With a linear classifier trained on top of the
representation mapping, the model achieves an accuracy
of 94.64%. We note that classifiers trained with SupCon
loss reach competitive accuracy, making them essential for
real-world deployment and highlighting the importance of
studying OOD detection performance on such models. As
shown by Sun et al. (2022), clustering-based OOD detectors
excel for models trained with SupCon loss. Thus, we aim to
assess if fDBD can achieve state-of-art performance in such
competitive scenarios.

1CSI results copied from Table 4 in Sun et al. (2022).

Datasets On the CIFAR-10 OOD benchmark, we use the
standard CIFAR-10 test set with 10,000 images as ID test
samples. For OOD samples, we consider common OOD
benchmarks: SVHN (Netzer et al., 2011), iSUN (Xu et al.,
2015), Places365 (Zhou et al., 2017), and Texture (Cimpoi
et al., 2014). All images are of size 32× 32.

Baselines We compare our method with six baseline meth-
ods on the model trained with standard cross-entropy loss.
In particular, MSP (Hendrycks & Gimpel, 2016), ODIN
(Liang et al., 2018), and Energy (Liu et al., 2020) design
OOD score functions on the model output. Conversely,
MDS (Lee et al., 2018) and KNN (Sun et al., 2022) uti-
lize the clustering of ID samples in the feature space and
build auxiliary models for OOD detection. ViM (Wang
et al., 2022) combines feature null space information with
the output space Energy score. In addition, we consider
four baseline methods particularly competitive under con-
trastive loss, CSI (Tack et al., 2020), SSD+ (Sehwag et al.,
2020), and KNN+. All four methods utilize feature space
clustering through building auxiliary models. Our method,
fDBD, is training-agnostic and applicable across training
schemes. We eliminate auxiliary models and incorporate
class-specific information from the decision boundaries
perspective. Notably, fDBD, MSP, and Energy are hyper-
parameter free, while the other baselines require hyper-
parameter fine-tuning.

OOD Detection Performance In Table 1, we compare
fDBD with the baselines. Overall, fDBD achieves state-
of-art performance in terms of FPR95 and AUROC scores
across training schemes. In addition, thanks to our efficient
distance estimation method in Section 3.1, fDBD has min-
imal computational overhead: the original classifier takes
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Table 2. fDBD achieves superior performance with negligible latency overhead on ImageNet OOD benchmark. Evaluated on
ResNet-50 with FPR95, AUROC, and inference latency. ↑ indicates that larger values are better and vice versa. Best performance
highlighted in bold. Methods with ∗ are hyperparameter-free.

ImageNet ResNet50 CE + Supcon

Method Latency↓ iNaturalist SUN Places Texture Avg
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

with Cross-entropy Loss
MSP * 7.04 54.99 87.74 70.83 80.63 73.99 79.76 68.00 79.61 66.95 81.99
ODIN 7.05 47.66 89.66 60.15 84.59 67.90 81.78 50.23 85.62 56.48 85.41

Energy * 7.04 55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17
ViM 9.55 71.85 87.42 81.79 81.07 83.12 78.40 14.88 96.83 62.91 85.93
MDS 35.83 97.00 52.65 98.50 42.41 98.40 41.79 55.80 85.01 87.43 55.17

KNN (𝛼 =	100%) 10.31 59.00 86.47 68.82 80.72 76.28 75.76 11.77 97.07 53.97 85.01
KNN (𝛼 =	1%) 7.04 59.08 86.20 69.53 80.10 77.09 74.87 11.56 97.18 54.32 84.59

fDBD * 6.81 40.24 93.67 60.60 86.97 66.40 84.27 37.50 92.12 51.19 89.26
with Supervised Contrastive Loss

SSD+ 28.31 57.16 87.77 78.23 73.10 81.19 70.97 36.37 88.53 63.24 80.09
KNN+(𝛼 =	100%) 10.47 30.18 94.89 48.99 88.63 59.15 84.71 15.55 95.40 38.47 90.91

KNN+(𝛼 =	1%) 7.04 30.83 94.72 48.91 88.40 60.02 84.62 16.97 94.45 39.18 90.55
fDBD * 6.82 17.27 96.68 42.30 90.90 49.77 88.36 21.83 95.43 37.79 92.84

0.53 milliseconds per image, and with fDBD, the processing
time remains the same. Furthermore, we observe that OOD
detection significantly improves under contrastive learning.
This aligns with the study by Sun et al. (2022), showing that
contrastive learning better separates ID and OOD features.

We highlight three groups of comparisons:

• fDBD v.s. MSP / Energy: All three methods are
hyperparameter-free and detect OOD based on model
uncertainty: MSP and Energy use softmax confidence and
Energy score in the output space, respectively, whereas
fDBD utilizes the feature-space distance w.r.t. decision
boundaries. Looking into the performance in Table 1, on
the model trained with cross-entropy loss, our fDBD re-
duces the average FPR95 of MSP by 29.69%, which
is a relatively 48.85% reduction in error. Additionally,
fDBD reduces the average FPR95 of Energy by 13.78%,
resulting in a relatively 30.73% reduction in error. The
substantial improvement aligns with our intuition that the
feature space contains crucial information for OOD de-
tection, which we leverage in both our uncertainty metric
and our regularization scheme.

• fDBD v.s. KNN We benchmark against KNN under the
same hyperparameter setup in Sun et al. (2022), using
k = 50 nearest neighbors across the entire training set.
While both fDBD and KNN achieve superior detection ef-
fectiveness on CIFAR-10 OOD benchmark, KNN reports
an average inference time of 1.93ms per image, inducing
a noticeable overhead in comparison to fDBD due to the
use of the auxiliary model. In addition, fDBD signifi-
cantly outperforms KNN on ImageNet OOD benchmark

in Table 2, highlighting the benefit of incorporating the
class-specific information from the class decision bound-
ary perspective.

• fDBD v.s.ViM fDBD and ViM (Wang et al., 2022) both
integrate class-specific information into feature space rep-
resentation. Specifically, ViM algebraically adds the out-
put space energy score to the feature null space score. Due
to the use of null space, ViM requires expensive matrix
multiplication during inference, resulting in a noticeable
latency increase of 0.70ms compared to fDBD. Moreover,
fDBD outperforms ViM, especially on ImageNet OOD
benchmark in Table 2. This suggests the effectiveness of
our geometrically motivated integration of class-specific
information from the perspective of feature-space class
decision boundaries, compared to simplly algebraically
adding output-space scores to feature-space scores, as
done in ViM.

4.2. Evaluation on ImageNet Benchmarks

In Table 2 2, we further compare the efficiency and effective-
ness of our fDBD and baselines on larger scale ImageNet
OOD Benchmarks on ResNet-50.

Training Schemes & Datasets & Baselines We consider
the training schemes discussed in Section 4.1 and examine
models trained with cross-entropy loss and supervised con-
trastive loss. The ResNet-50 trained under cross-entropy

2Results in Table 2 except ours and ViM are from Table 4
by Sun et al. (2022). MDS here refers to Mahalanobis there.
Following the reference table, we exclude CSI, since Sun et al.
(2022) note that training of CSI on ImageNet is notably resource-
intensive, requiring three months on 8 Nvidia 2080Tis.
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Table 3. fDBD achieves competitive performance on ViT-B/16 model fine-tuned on ImageNet-1k. Evaluated under AUROC. Best
performance highlighted in bold.

ImageNet ViT

Method
iNaturalist SUN Places Texture Avg

FPR95	↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC	↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

ViM 5.71 98.98 39.38 92.13 46.7 89.22 39.38 92.13 32.79 92.77
KNN 6.81 98.67 46.83 90.42 54.88 87.13 38.14 90.82 36.66 91.76
fDBD 6.64 98.76 50.08 92.20 47.15 89.88 38.30 90.71 33.04 92.89

Method iNaturalist SUN Places Texture Avg
ViM 98.98 92.13 89.22 92.13 92.77
KNN 98.67 90.42 87.13 90.82 91.76
fDBD 98.76 92.20 89.88 90.71 92.89

Table 4. fDBD is compatible with activation shaping algorithms ReAct, ASH, and Scale. Evaluated under AUROC and FPR95 on
ImageNet OOD Benchmark. Best performance highlighted in bold.

Method iNaturalist SUN Places Texture Avg
FPR95	↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC	↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

fDBD w/ ReLU 40.24 93.67 60.60 86.97 66.40 84.27 37.50 92.12 51.19 89.26
fDBD w/ ReAct 20.85 96.37 32.37 93.31 41.24 90.78 27.11 94.56 30.39 93.76
fDBD w/ ASH 12.89 97.67 30.28 93.66 42.40 90.53 12.18 97.61 24.44 94.87
fDBD w/ Scale 10.19 98.07 24.58 94.87 36.12 92.00 12.52 97.48 20.85 95.61

loss achieves an accuracy of 76.65% and the ResNet-50
trained under supervised contrastive loss achieves an accu-
racy of 77.30%.

We use 50,000 ImageNet validation images in the stan-
dard split as ID test samples. Following Huang & Li
(2021) and Sun et al. (2022), we remove classes in Tex-
ture, Places365 (Zhou et al., 2017), iNaturalist (Van Horn
et al., 2018), SUN (Xiao et al., 2010) that overlap with Ima-
geNet and use the remaining datasets as OOD samples. All
images are of size 224× 224.

We compare to the same baselines in Section 4.1 except for
CSI. For KNN, we consider two sets of hyper-parameters
reported in the original paper (Sun et al., 2022): α = 100%
refers to searching through all training data for k = 1000
nearest neighbors; α = 1% refers to searching through
sampled 1% of training data for 10 nearest neighbors.

OOD Detection Performance Table 2 shows that fDBD out-
performs all baselines in both average FPR95 and average
AUROC on ImageNet OOD benchmarks. This demon-
strates fDBD consistently maintains its superior effective-
ness in OOD detection on large-scale datasets. In addition,
fDBD remains computationally efficient for ImageNet OOD
detection. This aligns with our observation on CIFAR-10
benchmarks and supports our analysis that fDBD scales lin-
early with the class number and the dimension, ensuring
manageable computation for large models and datasets.

4.3. Evaluation on Alternative Architectures

To examine the generalizability of our proposed method be-
yond ResNet, we further experiment with transformer-based
ViT model (Dosovitskiy et al., 2020) and DenseNet (Huang
et al., 2017). In Table 3, we evaluate our fDBD, as well as
strong competitors ViM and KNN on a ViT-B/16 fine-tuned

with ImageNet-1k using cross-entropy loss. The classifier
achieves an accuracy of 81.14%. We consider the same
OOD test sets as in Section 4.2 for Imagenet. In Appendix C,
we extend our experiments to DenseNet. The performance
on ViT and DenseNet demonstrates the effectiveness of
fDBD across different network architectures.

4.4. Evaluation under Activation Shaping

Orthogonal to the effort of designing standalone detection
scores, Sun et al. (2021); Djurisic et al. (2022) and Xu
et al. (2023) propose to shape the feature activation to im-
prove ID/OOD separation. The proposed algorithms, Re-
Act (Sun et al., 2021), ASH (Djurisic et al., 2022), and
Scale (Xu et al., 2023), serve as alternative operations to
the standard ReLU activation in our experiments so far.
With proper hyper-parameter selection, such algorithms
have been shown to enhance the performance of standalone
scores such as Energy, as detailed in Appendix G. As a
hyperparameter-free method, our fDBD can be seamlessly
combined with hyperparameter-dependent activation shap-
ing algorithms without intricate tuning interactions. In Ta-
ble 4, we compare fDBD performance under standard ReLU
activation and under activation shaping algorithms ReAct,
ASH, and Scale. Specifically, we evaluate ImageNet OOD
Benchmarks on a ResNet-50 trained under cross-entropy
loss following detailed setups in Section 4.2. For hyper-
parameter selection, we adhere to the original papers and
set the percentile values to 80, 90, 90 for ReAct, ASH, and
Scale, respectively. With activation shaping applied both to
test features and the mean of training feature in Equation 8,
we observe improved performance across OOD datasets,
validating the compatibility of fDBD with ReAct, ASH,
and Scale. We remark that fDBD with Scale achieves the
state-of-art performance on this benchmark, comparable to
Energy with Scale, as detailed in Appendix D.
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Table 5. Regularization enhances the effectiveness of OOD
detection. AUROC scores reported on ImageNet Benchmarks
(higher is better). regDistDB outperforms avgDistDB.

iNaturalist SUN Places Texture
avgDistDB 90.51 85.55 83.05 86.79
𝑧! − 𝜇"#$%& ' 47.84 58.59 58.95 41.92
regDistDB 93.67 86.97 84.27 92.12

iNaturalist SUN Places Texture
avgDistDB 53.87 63.57 68.65 53.62
𝑧! − 𝜇"#$%& ' 99.32 97.81 96.94 99.59
regDistDB 40.24 60.60 66.40 37.19

4.5. Ablation Study

4.5.1. EFFECT OF REGULARIZATION

Previously, we illustrate in Figure 2 that regularization en-
hances the ID/OOD separation under the metric of fea-
ture distances to decision boundaries. We now quantita-
tively study the regularization effect. Specifically, we com-
pare the performance of OOD detection using the regular-
ized average distance regDistDB, the regularization term
∥z − µtrain∥2, and the un-regularized average distance

avgDistDB := ∥z − µtrain∥2 regDistDB

as detection scores respectively. Experiments are conducted
on a ResNet-50 trained under cross-entropy loss following
detailed setups in Section 4.2. We report the performance
in AUROC scores in Table 5 and FPR95 in Appendix I.
Aligning with Figure 3, ∥z − µtrain∥2 alone does not nec-
essarily distinguish between ID and OOD samples, as indi-
cated by AUROC scores around 50. However, regularization
with respect to ∥z − µtrain∥2 enhances ID/OOD separation.
Consequently, regDistDB improves over avgDistDB and
achieves higher AUROC, as shown in Table 5. This supports
our intuition in Section 3 to compare ID/OOD at equal devi-
ation levels through regulirization. We further theoretically
explain the observed enhancement in Appendix B.

4.5.2. EFFECT OF INDIVIDUAL DISTANCES

For fDBD, we design the detection score as the feature dis-
tances to the decision boundaries, averaged over all unpre-
dicted classes. Notably, fDBD operates as a hyperparameter-
free method, and we do not tune the number of distances
in our experiments. Nevertheless, we perform an ablation
study to understand the effect of individual distances.

To align across samples predicted as different classes, we
sort per sample the feature distances to decision boundaries.
We then detect OOD using the average of top-k smallest
distance values. Specifically, k = 1 corresponds to the de-
tection score being the ratio between the feature distance
to the closest decision boundary and the feature distance
to the mean of training features. And k = 9 on CIFAR-
10 and k = 999 on ImageNet recover our detection score
regDistDB (see Eqn. (8)), where we average over all dis-
tances for OOD detection.

Figure 4. Ablation on Individual Distances. Left: CIFAR-10
Benchmark performance improves with an increasing number of
distances. Right: ImageNet Benchmark performance improves
with an increasing number of distances. The performance supports
the use of all distances in our hyperparameter-free fDBD.

We experiment with CIFAR-10 and ImageNet benchmarks
on ResNets trained with cross-entropy loss, following the
setups in Section 4.1 and Section 4.2. In Figure 4, we present
the average FPR95 and AUROC score across OOD datasets,
using k distances for detection. Looking into Figure 4,
the performance improves with increasing number of k.
This justifies our design of fDBD as a hyper-parameter-free
method, utilizing all distances for OOD detection.

5. Theoretical Analysis
In this section, we give theoretical analysis to shed light on
our observation and algorithm design in Section 3.

Setups We consider a general classifier for a class set C
with a penultimate layer of dimension P . Following Lee
et al. (2018), we model the ID feature distribution as a
Gaussian mixture. Specifically, we consider |C| equally-
weighted components, where each component corresponds
to a class i ∈ C and follows a Gaussian distribution
N(µi, σ

2I), where I is the identity matrix. Without loss of
generality, we assume the distribution is zero-centered, i.e.
µ

.
= 1

|C|
∑

i∈C µi = 0. Following the empirical observation
by Papyan et al. (2020), we model the geometry of class
means {µi} as a simplex Equiangular Tight Framework
(ETF):

∥µi∥2 = ∥µj∥2 ∀i, j,

⟨ µi

∥µi∥2
,

µj

∥µj∥2
⟩ = |C|

|C| − 1
δi,j −

1

|C| − 1
,

where δij is the Kronecker delta symbol.

Under the modeling, the optimal decision region of class i
can be defined as:

Vi
.
= {z : ⟨µi, z⟩ ≥ max

j ̸=i
⟨µj , z⟩}.

Correspondingly, the decision boundary between class i and
j is:

Sij
.
= {z : ⟨µi, z⟩ = ⟨µj , z⟩ ≥ max

k ̸=i,j
⟨µk, z⟩}.
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For any z ∈ Vi, the distance from z to the decision boundary
between class i and j, Sij , is the length of the projection of
z onto the norm vector of Sij :

d(z,Sij)
.
=

⟨z,µi − µj⟩
∥µi − µj∥

.

For simplicity of notation, we denote the union of deci-
sion boundaries as S = ∪Sij . Additionally, we denote the
distance from z to its closest decision boundary as d(z,S).

Following Sun et al. (2022), we assume that OOD features
reside outside the dense region of ID feature distribution.
We define this dense region as the area within two standard
deviations from each class mean:

I .
= ∪iIi = ∪i{z : ∥z − µi∥ ≤ 2σ}.

We also assume that ID features are well-separated, so that
the dense region of each class is entirely within its decision
region, i.e., Ii ⊂ Vi.

Main Result Recall from Section 3 that we observe the
feature distance to decision boundaries increases as features
deviate from the mean of training features µtrain. This
observation motivates us to compare ID and OOD features
at equal deviation levels and design our detection algorithm
accordingly. Note that µtrain is an empirical estimation of
µ, the mean of ID feature distribution.

To further understand our observation, we present Propo-
sition 5.1, which demonstrates that the feature distance to
the decision boundary d(S, z) increases as z deviates from
µ. Additionally, we validate our detection algorithm in
Proposition 5.2, showing that, at equal deviation levels, ID
features tend to be further from the decision boundary com-
pared to OOD features. We present the complete proofs in
Appendix A.

As discussed in Setups, we assume without loss of generality
that the features are zero-centered, i.e., µ = 0.
Proposition 5.1. Consider the set of features of equal dis-
tance r to the ID distribution mean Er

.
= {z : ∥z − µ∥ =

∥z∥ = r}. For any r0 < r1, we have:

1

V ol(Er0)

∫
z∈Er0

d(z,S) d(z)

<
1

V ol(Er1)

∫
z∈Er1

d(z,S) d(z).
(9)

Proposition 5.2. Consider ID and OOD features of equal
distance r to the ID distribution mean, where σ < r < 5σ.
For ID region, I ∩ Er, and OOD region, I∁ ∩ Er, we have

1

V ol(I ∩ Er)

∫
z∈I∩Er

d(z,S) d(z)

>
1

V ol(I∁ ∩ Er)

∫
z∈I∁∩Er

d(z,S) d(z).
(10)

6. Related Work
An extensive body of research work has been focused on de-
veloping OOD detection algorithms. And we refer readers
to comprehensive literature reviews by Yang et al. (2021b;
2022a;b); Zhang et al. (2023); Bitterwolf et al. (2023). Par-
ticularly, one line of work is post-hoc and builds upon pre-
trained models. For example, Liang et al. (2018); Hendrycks
et al. (2019) and Liu et al. (2020) design OOD score over
the output space of a classifier, whereas Lee et al. (2018);
Sun et al. (2022); Ndiour et al. (2020) and Liu & Qin (2023)
measure OOD-ness using feature space information. More-
over, Huang et al. (2021) explore OOD detection from the
gradient space. Our work builds on the feature space and
investigates from the largely under-explored perspective
of decision boundaries. Orthogonality, Sun et al. (2021);
Djurisic et al. (2022) and Xu et al. (2023) reveal that activa-
tion shaping on pre-trained models can enhance the ID/OOD
separation and improves the performance of standalone de-
tection scores in general. Our experiments validates that
fDBD is also compatible with activation shaping methods.

Another line of work explores the regularization of OOD
detection in training. For example, DeVries & Taylor (2018)
and Hsu et al. (2020) propose OOD-specific architecture
whereas Wei et al. (2022); Huang & Li (2021) and Ming et al.
(2023) design OOD-specific training loss. In addition, Tack
et al. (2020) propose an OOD-specific contrastive learning
scheme, while Tao et al. (2023) and Du et al. (2022) explore
methods for constructing virtual OOD samples to facilitate
OOD-aware training. Recently, Fort et al. (2021) reveal
that finetuning a visual transformer with OOD exposure
significantly can improve OOD detection performance. Our
work does not assume specific training schemes and does
not belong to this school of work.

7. Conclusion
In this work, we propose an efficient and effective OOD
detector fDBD based on the novel perspective of feature
distances to decision boundaries. We first introduce a closed-
form estimation to measure the feature distance to decision
boundaries. Based on our estimation method, we reveal that
ID samples tend to reside further away from the decision
boundary than OOD samples. Moreover, we find that ID
and OOD samples are better separated when compared at
equal deviation levels from the mean of training features. By
regularizing feature distances to decision boundaries based
on feature deviation from the mean, we design a decision
boundary-based OOD detector that achieves state-of-the-
art effectiveness with minimal latency overhead. We hope
our algorithm can inspire future work to explore model
uncertainty from the perspective of decision boundaries,
both for OOD detection and other research problems such
as adversarial robustness and domain generalization.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Proof for Section 5
Under the setups in Section 5, we slice the geometric space into regions Vj

i , i, j ∈ {1, ..., C}, defined by

Vj
i

.
= {z : ⟨z,µi⟩ > ⟨z,µj⟩ ≥ max

k ̸=i,j
⟨z,µk⟩}.

Geometrically, Vj
i represents the region within the decision region Vi of class i where the second most likely class is j. For

any z ∈ Vj
i , we have d(z,S) = d(z,Sij). In the following, we establish Proposition 5.1 and Proposition 5.2 in region Vj

i

for any i, j, thereby confirming their validity in the entire region thanks to symmetry.

Proof of Proposition 5.1

Proof. By definition, any z0 ∈ Er0 satisfies ∥z0∥ = r0. Scaling z0 by r1/r0 yields z1 = r1/r0 ·z0. We have ∥z1∥ = r1/r0 ·
∥z∥0 = r1, indicating that z1 is an element of Er1 . Conversely, for any z1 ∈ Er1 , we can obtain z0 = (r0/r1) · z1 ∈ Er0 .
This establishes a one-to-one mapping between elements in Er0 and Er1 . Considering any pair (z0, z1), we have

d(z0,S) = d(z0,Sij) =
⟨z0,µi − µj⟩
∥µi − µj∥

= r0/r1 ·
⟨z1,µi − µj⟩
∥µi − µj∥

<
⟨z1,µi − µj⟩
∥µi − µj∥

= d(z1,Sij) = d(z1,S), (11)

indicating a consistent relative ordering between elements in Er0 and Er1 Therefore, Proposition 5.1, which asserts the
ordering of the mean between these two sets, is validated.

Proof of Proposition 5.2

Proof. Without loss of generality, we assume that ∥µi∥ = 1 for ∀i ∈ C and the distance r = 1. To parameterize the element
z within region Vj

i ∩ Er=1 for given i, j, we consider the geodesic on sphere Er=1 that extends from the class mean µi to
element z, and further extends to point v ∈ Sij ∩ Er=1:

γv(t) = cos(t)µi + sin(t)
v − ⟨v,µi⟩µi

∥v − ⟨v,µi⟩µi∥
.

For any z ∈ Vj
i ∩ Er=1 and its corresponding v, we have z residing on the geodesic γv(t) with t = arccos ⟨z,µi⟩.

Geometrically, along a geodesic γv(t), the parameter t increases as one moves from the ID region I ∩ Er=1 to the OOD
region I∁ ∩ Er=1. Moreover, d(γv(t),S) is equivalent to d(γv(t),Sij) given that the geodesic resides within Vj

i . Therefore,
to show Proposition 5.2 holds for ∀z ∈ Vj

i ∩ Er=1, it suffices to show that the function d(γv(t),Sij) decreases with t.
Diving into the derivatives of d(γv(t),Sij) with respect to t, we have:

∥µi − µj∥
d

dt
d(γv(t),Sij) = ⟨γ′

v(t),µi − µj⟩ = ⟨− sin(t)µi + cos(t)
v − ⟨v,µi⟩µi

∥v − ⟨v,µi⟩µi∥
,µi − µj⟩ (12)

= − sin(t) +
sin(t)

1− C
+

cos(t)

∥v − ⟨v,µi⟩µi∥
· (⟨v,µi⟩ − ⟨v,µj⟩ − ⟨v,µi⟩+

⟨v,µi⟩
1− C

) (13)

=
C

1− C
(sin(t) +

1

∥v − ⟨v,µi⟩µi∥
cos(t)⟨v,µj⟩). (14)

We remark that Eqn. 14 remains negative within the feasible range of parameter t, where sin(t) > 0 and cos(t) > 0. This
is because the parameter t has its minimum at µi with tmin = 0 and reaches max at v with tmax = arccos(⟨v,µi⟩). As
⟨v,µi⟩ > 0 from the definition of Vj

i , we have tmax < π
2 , ensuring that t remains within the interval t ∈ (0, π

2 ).

B. Theoretical Justification for Performance Enhancement through Regularization
In the following, x denotes the feature distance to the training feature mean, and y denotes the feature distance to decision
boundaries. fxy and gxy denote the joint probability density functions of x and y for ID and OOD samples, respectively.
The notation in this section may vary from the rest of the paper for clarity and ease of presentation within this context.
Please refer to the corresponding sections for consistent notation throughout the paper.

In Section 3.2, we regularize y with respect to x to compare the distance of ID/OOD features to decision boundaries at
the same deviation levels from the training feature mean. Eqn. 11 provides intuition on how our regularization effectively
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Table 6. fDBD achieves superior performance with negligible latency overhead on DenseNet. Evaluated with FPR95, AUROC, and
inference latency. ↑ indicates that larger values are better and vice versa. Best performance highlighted in bold.

CIFAR10 DenseNet CE

Method Latency ↓ SVHN iSUN Place365 Texture AVG
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 0.87 47.24 93.48 42.31 94.52 63.02 88.57 64.15 88.15 54.18 91.18
ODIN 3.04 25.29 94.57 3.98 98.90 52.85 88.55 57.50 82.38 34.91 91.1
Energy 0.90 40.61 93.99 10.07 98.07 39.40 91.64 56.12 86.43 36.55 92.53
ViM 0.95 20.87 96.44 7.73 98.54 56.97 89.09 22.18 95.58 26.94 94.91
MDS 7.55 6.42 98.31 9.78 97.25 85.14 63.15 21.51 92.15 30.71 87.72
KNN 1.86 3.96 99.29 9.54 98.27 39.96 92.24 19.52 96.38 18.25 96.55
fDBD 0.88 5.89 98.67 5.90 98.75 39.52 91.53 22.75 95.81 18.52 96.19

enables comparison at the same deviation level x, as y scales linearly with x under our modeling. Thus, the regularization
effectively conditions y on x.

In Proposition B.1 below, we analytically justify why conditioning enhances ID/OOD separation, thereby explaining the
regularization-induced enhancement observed in Section 3.2 and Section 4.5. Specifically, as Figure 3 (Section 3.2) and
Table 5 (Section 4.5) show the ID and OOD samples cannot be distinguished by x alone, we consider the case where the
marginal distribution of x is the same for ID and OOD, i.e., fx = gx.
Proposition B.1. Under Kullback–Leibler (KL) divergence DKL, we have:

DKL(fy||gy) ≤ DKL(fy|x||gy|x).

Here, fy and gy denote the marginal distribution of feature distance to decision boundaries for ID and OOD samples
respectively, whereas fy|x and gy|x denote the conditional distribution w.r.t. feature deviation level from the training feature
mean for ID and OOD samples respectively.

Proof. Following the chain rule of KL divergence, we have

DKL(fxy||gxy) = DKL(fx||gx) +DKL(fy|x||gy|x).

Symmetrically, we also have:

DKL(fxy||gxy) = DKL(fy||gy) +DKL(fx|y||gx|y).

Combining both, we have:

DKL(fy||gy) = DKL(fx||gx) +DKL(fy|x||gy|x)−DKL(fx|y||gx|y).

Remind that DKL(fx||gx) = 0, as fx = gx. Also, DKL(fx|y||gx|y) ≥ 0 due to the non-negativity of KL divergence.
Therefore, we have:

DKL(fy||gy) ≤ DKL(fy|x||gy|x).

C. Evaluation on DenseNet
We now extend our evaluation to DenseNet (Huang et al., 2017). The CIFAR-10 classifier we evaluated with achieves a
classification accuracy of 94.53%. We consider the same OOD test sets as in Section 4.1. The performance shown in Table 6
further indicates the effectiveness and efficiency of our proposed detector across different network architectures.

D. Evaluation under Activation Shaping
In Table 7, we compare the performance of fDBD and Energy under activation shaping methods ReAct, ASH, and Scale.
For both fDBD and Energy, we follow the original paper and set the value of the percentile hyperparameter to 80, 90, 90 for
ReAct, ASH, and Scale, respectively. Experiments are on an ImageNet ResNet-50 classifiers following the detailed setups
in Section 4.2. Looking into Table 7, we observe that fDBD with Scale achieves state-of-art performance on this benchmark,
comparable to Energy with Scale.
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Table 7. fDBD is competitive compared to Energy under activation shaping algorithms ReAct, ASH, and Scale on ImageNet Benchmark.

Method iNaturalist SUN Places Texture Avg
FPR95	↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC	↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

Energy w/ ReAct 20.38 96.22 24.20 94.20 33.85 91.58 47.30 89.80 31.43 92.95 
fDBD w/ ReAct 20.85 96.37 32.37 93.31 41.24 90.78 27.11 94.56 30.39 93.76
Energy w/ ASH 11.49 97.87 27.98 94.02 39.78 90.98 11.93 97.60 22.80 95.12
fDBD w/ ASH 12.89 97.67 30.28 93.66 42.4 90.53 12.18 97.61 24.44 94.87

Energy w/ Scale 9.48 98.17 23.22 95.02 34.50 92.26 12.89 97.37 20.02 95.70
fDBD w/ Scale 10.19 98.07 24.58 94.87 36.12 92.00 12.52 97.48 20.85 95.61

E. Evaluation under Domain Shift
Our fDBD, as a detector for semantic shift induced by mismatch in training/test class types, remains effective when ID
samples undergo moderate domain shift in real life. In Table 8, we compare fDBD performance with clean and moderately
corrupted ID samples on CIFAR-10 benchmarks. Specifically, we consider CIFAR-10-C (Hendrycks & Dietterich, 2019)
with severity level 1 & 2. For each severity level, we construct an aggregated dataset by sampling in total 10,000 images
from all 4 classes of corruption: Noise, Blur, Weather, and Digital. For the rest of the setups, we follow Section 4.1 and
report the average AUROC across OOD datasets. As shown in Table 8, fDBD’s performance degrades slightly as the
corruption level increases. Nevertheless, fDBD remains highly effective within a moderate range of domain shift.

Table 8. Performance of fDBD with CIFAR-10 / CIFAR-10-C as ID samples on CIFAR-10 Benchmark.

ID Distribution Avg AUROC
CIFAR-10 94.20

CIFAR-10-C  (Severity Level 1) 91.91
CIFAR-10-C  (Severity Level 2) 90.86

F. Implementation Details
F.1. CIFAR-10

ResNet-18 w/ Cross Entropy Loss For experiments presented in Figure 1 Right, Figure 2, Figure 3, Figure 4 Left, Table 8
and part of Table 1, we evaluate on a CIFAR-10 classifier of ResNet-18 backbone trained with cross entropy loss. The
classifier is trained for 100 epochs, with a start learning rate 0.1 decaying to 0.01, 0.001, and 0.0001 at epochs 50, 75, and
90 respectively.

ResNet-18 w/ Contrastive Loss For part of Table 1, we experiment with a CIFAR-10 classifier of the ResNet-18 backbone
trained with supcon loss. Following Khosla et al. (2020), the model is trained with for 500 epochs with batch size 1024. The
temperature is set to 0.1. The cosine learning rate (Loshchilov & Hutter, 2016) starts at 0.5 is used.

DenseNet-101 w/ Cross Entropy Loss For experiments presented in Table 6, we evaluate on a CIFAR-10 classifier of
DenseNet-101 backbone. The classifier is trained following the set up in (Huang et al., 2017) with depth L = 100 and
growth rate k = 12.

F.2. ImageNet

ResNet-50 w/ Cross-Entropy Loss For evaluation on ImageNet in Figure 4 Right, part of Ta-
ble 2, Table 4, Table 5, and Table 7 we use the default ResNet-50 model trained with cross-
entropy loss provided by Pytorch. See training recipe here: https://pytorch.org/blog/
how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/.

ResNet-50 w/ Supervised Contrastive Loss For part of Table 2, we experiment with a ImageNet classifier of ResNet-50
backbone trained with supcon loss. Following Khosla et al. (2020), the model is trained with for 700 epochs with batch size
1024. The temperature is set to 0.1. The cosine learning rate (Loshchilov & Hutter, 2016) starts at 0.5 is used.
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ImageNet ViT In Table 3, we evaluate on the pytorch implementation of ViT and the default checkpoint, available
https://github.com/lukemelas/PyTorch-Pretrained-ViT/tree/master.

G. Baseline Methods
We provide an overview of our baseline methods in this session. We follow our notation in Section 3. In the following, a
lower detection score indicates OOD-ness.

MSP Hendrycks & Gimpel (2016) propose to detect OOD based on the maximum softmax probability. Given a test sample
x, the detection score of MSP can be represented as:

exp (wT
f(x)zx + bf(x))∑

c∈C exp (w
T
c zx + bc)

, (15)

where zx is the penultimate feature space embedding of x. Note that calculating the denominator of the softmax score
function is an Ω(|C|T (exp)) operation, where T (exp) is the computational complexity for evaluating the exponential
function, which is precision related and non-constant. Note that the on-device implementation of exponential functions
often requires huge look-up tables, incurring significant delay and storage overhead. Overall, the computational complexity
of MSP on top of the inference process is Ω(|C|T (exp)).

ODIN Liang et al. (2018) propose to amplify ID and OOD separation on top of MSP through temperature scaling and
adversarial perturbation. Given a sample x, ODIN constructs a noisy sample x′ from x following

x′ = x− ϵsign∇x

exp (wT
f(x)zx + bf(x))∑

c∈C exp (w
T
c zx + bc)

. (16)

Denote the penultimate layer feature of the noisy sample x′ as h′, ODIN assigns OOD score following:

exp ((wT
c h

′ + bc)/T )∑
c′∈C exp ((w

′T
c h′ + bc′)/T )

, (17)

where c is the predicted class for the perturbed sample and T is the temperature. ODIN is a hyperparameter-dependent
algorithm and requires additional computation and dataset for hyper-parameter tuning. In our implementation, we set the
noise magnitude as 0.0014 and the temperature as 1000.

The computational complexity of ODIN is architecture-dependent. This is because the step of constructing the adversarial
example requires back-propagation through the NN, whereas the step of evaluating the softmax score from the adversarial
example requires an additional forward pass. Both steps require accessing the whole NN, which incurs significantly higher
computational cost than our fDBD which only requires accessing the penultimate NN layer.

Energy Liu et al. (2020) design an energy-based score function over the logit output. Given a test sample x, the energy
based detection score can be represented as:

− log
∑
c∈C

exp (wT
c zx + bc), (18)

where zx is the penultimate layer embedding of x. The computational complexity of Energy on top of the inference process
is Ω(|C|T (exp) + T (log)), whereas T (exp) and T (log) are the computational complexity functions for evaluating the
exponential and logarithm functions respectively. Note that the on-device implementation of exponential functions and the
logarithm functions often requires huge look-up tables, incurring significant delay and storage overhead.

ReAct Sun et al. (2021) build upon the energy score proposed by Liu et al. (2020) and regularizes the score by truncating
the penultimate layer estimation. We set the truncation threshold at 90 percentile in our experiments.

ASH Djurisic et al. (2022) build upon the energy score proposed by Liu et al. (2020). Prior to computing the Energy score,
ASH sorts each feature to find the top-k elements, scales the top-k elements, and sets the rest to zero. We note that in
addition to the cost of Energy, ASH introduces a sorting cost of O(P log k), where P is the penultimate layer dimension.
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Scale Xu et al. (2023) build upon the energy score proposed by Liu et al. (2020). Prior to the Energy score, Scale sorts each
feature to find the top-k elements. Based on the ratio between the sum of top-k elements and the sum of all elements, Xu
et al. (2023) scale all elements in the feature. We note that in addition to the cost of Energy, Scale also introduces a sorting
cost of O(P log k), where P is the penultimate layer dimension.

MDS On the feature space, Lee et al. (2018) model the ID feature distribution as multivariate Gaussian and designs a
Mahalanobis distance-based score:

max
c

−(ex − µ̂c)
T Σ̂−1(ex − µ̂c), (19)

where ex is the feature embedding of x in a specific layer, µ̂c is the feature mean for class c estimated on the training set,
and Σ̂ is the covariance matrix estimated over all classes on the training set. Computing Eqn. (19) requires inverting the
covariance matrix Σ̂ prior to inference, which can be computationally expensive in high dimensions. During inference,
computing Eqn. (19) for each sample takes O(|C|P 2), where P is the dimension of the feature space. This indicates that the
computational cost of MDS significantly grows for large-scale OOD detection.

On top of the basic score, Lee et al. (2018) also propose two techniques to enhance the OOD detection performance. The
first is to inject noise into samples. The second is to learn a logistic regressor to combine scores across layers. We tune
the noise magnitude and learn the logistic regressor on an adversarial constructed OOD dataset, which incurs additional
computational overhead. The selected noise magnitude in our experiments is 0.005.

CSI Tack et al. (2020) propose an OOD-specific contrastive learning algorithm. In addition, Tack et al. (2020) defines
detection functions on top of the learned representation, combining two aspects: (1) the cosine similarity between the test
sample embedding to the nearest training sample embedding and (2) the norm of the test sample embedding. As CSI requires
specific training, which incurs non-tractible computational costs, we skip the computational complexity analysis for CSI
here.

SSD Similar to Lee et al. (2018), Sehwag et al. (2020) design a Mahalanobis-based score under the representation learning
scheme. In specific, Sehwag et al. (2020) propose a cluster-conditioned score:

max
m

−(ex/|ex| − µ̂m)T Σ̂−1
m (ex/|ex| − µ̂m), (20)

where ex/|ex| is the normalized feature embedding of x and m corresponds to the cluster constructed from the training
statistics.

Computing Eqn. (20) requires inverting m number of covariance matrix Σ̂m prior to inference, which can be computationally
expensive in high dimension. During inference, computing Eqn. (20) for each sample takes O(|M|P 2), where |M| is
the number of clusters constructed in the algorithm and P is the dimension of the feature space. This indicates that the
computational cost of MDS significantly grows for large-scale OOD detection problems.

KNN Sun et al. (2022) propose to detect OOD based on the k-th nearest neighbor distance between the normalized features
of the test sample zx/|zx| and the normalized training features on the penultimate space. Sun et al. (2022) also observe that
contrastive learning helps improve OOD detection effectiveness.

In terms of computational complexity, normalizing the features is an O(P ) operation, where P is the embedding dimension.
Computing the Euclidean distance between the normalized test feature and N training features is an O(NP ) operation.
Additionally, searching for the kth nearest distance out of N computed distances is a O(N log(N)) operation. Therefore, the
overall inference complexity of KNN is O(NP +N log(N)). Comparing to our O(P + |C|) algorithm fDBD , KNN exhibits
much lower scalability for large-scale OOD detection, especially when the number of training samples N significantly
surpasses the number of classes |C|.

ViM Wang et al. (2022) propose to integrate class-specific information into feature space information by adding energy
score to the feature norm in the residual space of training feature matrix. The detection score is designed to be:

α
√
xTRRx, (21)

where R ∈ RP×(P−D) correspond to the residual after subtracting the D−dimensional principle space. In the preparation
stage, ViM requires evaluating the residual/null space from the training data, which is computationally expensive given
the data volume. During inference, large matrix multiplication is required, resulting in a computational complexity of
O((P −D)2).
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H. Quantitative Study of the Proposed Distance Measuring method
In Section 3.1, we propose a closed-form estimation for measuring the feature distance to decision boundaries. To
quantitatively understand the effectiveness and efficiency of our proposed method, we compare our method against
measuring the distance via iterative optimization. In particular, we use targeted CW L2 attacks (Carlini & Wagner, 2017) on
feature space which can effectively construct an adversarial example which is classified into the target class from an iterative
process. Empirically, CW attack-based estimation and our closed-form estimation differ by < 1.5%. This implies that our
closed-form estimation differs from the true value by < 1.5%, since estimation from a CW-attack upper bounds the distance
whereas our closed-form estimation lower bounds the distance.

We follow the Pytorch implementation of CW attacks proposed by Papernot et al. (2018) with the default parameters: initial
constant 2, learning rate 0.005, max iteration 500, and binary search step 3. In our experiments, CW-attack has a success
rate close to 100%. On a Tesla T4 GPU, estimating the distance using CW attack takes 992.2ms per image per class. In
contrast, our proposed method incurs negligible overhead in inference, significantly reducing the computational cost of
measuring the distance.

I. Ablation Under FPR95
In addition to the AUROC score reported in the main paper, we report our ablation study here under FPR95, the false
positive rate of OOD samples when the true positive rate of ID samples is at 95%. In Table 9, we compare the performance
of OOD detection using the regularized average distance regDistDB, the regularization term ∥z − µtrain∥2, as well
as the un-regularized average distances avgDistDB as detection scores, respectively. Experiments are conducted on a
ResNet-50 trained under cross-entropy loss following detailed setups in Section 4.2. The results in FPR95 further validate
the effectiveness of regularization in our OOD detector.

Table 9. Regularization enhances the effectiveness of OOD detection. FPR95 scores reported on ImageNet Benchmarks (lower is
better). regDistDB outperforms avgDistDB.

iNaturalist SUN Places Texture
avgDistDB 90.51 85.55 83.05 86.79
𝑧! − 𝜇"#$%& ' 47.84 58.59 58.95 41.92
regDistDB 93.67 86.97 84.27 92.12

iNaturalist SUN Places Texture
avgDistDB 53.87 63.57 68.65 53.62
𝑧! − 𝜇"#$%& ' 99.32 97.81 96.94 99.59
regDistDB 40.24 60.60 66.40 37.19

J. Feature Distances to Decision Boundaries
We extensively validate our hypothesis that ID features tend to reside further away from decision boundaries than OOD
features in Figure 5, Figure 6, and Figure 7. To observe at a finer level of granularity, we sort per feature the estimated
distances to all decision boundaries. On each subplot for a CIFAR-10 classifier, we plot 9 histograms, corresponding to
the nearest distances, second nearest distance, and so on, up to the furthest distances. On each subplot for an ImageNet
classifier, we sort the distance and plot every 100 ranked distances. We observe that ID features tend to reside further away
from the decision boundaries compared to OOD samples across architectures and classification tasks.
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Figure 5. Feature Distances to Decision Boundaries on a ResNet-18 CIFAR-10 Classifier. ID features tend to be further away from the
decision boundaries compared to OOD features.

Figure 6. Feature Distances to Decision Boundaries on a DenseNet CIFAR-10 Classifier. ID features tend to be further away from the
decision boundaries compared to OOD features.
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Figure 7. Feature Distances to Decision Boundaries on a ResNet-50 ImageNet Classifier. ID features tend to be further away from the
decision boundaries compared to OOD features.
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