
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LLMOPT: LEARNING TO DEFINE AND SOLVE GEN-
ERAL OPTIMIZATION PROBLEMS FROM SCRATCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimization problems are prevalent across various scenarios. Formulating and
then solving optimization problems described by natural language often requires
highly specialized human expertise, which could block the widespread applica-
tion of optimization-based decision making. To make problem formulating and
solving automated, leveraging large language models (LLMs) has emerged as a
potential way. However, this kind of way suffers from the issue of optimization
generalization. Namely, the accuracy of most current LLM-based methods and
the generality of optimization problem types that they can model are still limited.
In this paper, we propose a unified learning-based framework called LLMOPT to
boost optimization generalization. Starting from the natural language descriptions
of optimization problems and a pre-trained LLM, LLMOPT constructs the intro-
duced five-element formulation as a universal model for learning to define diverse
optimization problem types. Then, LLMOPT employs the multi-instruction tun-
ing to enhance both problem formalization and solver code generation accuracy
and generality. After that, to prevent hallucinations in LLMs, such as sacrificing
solving accuracy to avoid execution errors, model alignment and self-correction
mechanism are adopted in LLMOPT. We evaluate the optimization generalization
ability of LLMOPT and compared methods across six real-world datasets cover-
ing roughly 20 fields such as health, environment, energy and manufacturing, etc.
Extensive experiment results show that LLMOPT is able to model various opti-
mization problem types such as linear/nonlinear programming, mixed integer pro-
gramming and combinatorial optimization, and achieves a notable 11.08% average
solving accuracy improvement compared with the state-of-the-art methods. The
code is available at https://anonymous.4open.science/r/LLMOPT.

1 INTRODUCTION

Optimization problems are widespread across a various range of scenarios, such as job schedul-
ing (Brandimarte, 1993), path planing (Hong et al., 2016; Li et al., 2023), matching problem (Wang
et al., 2020), and revenue management (Trimborn et al., 2018), etc. Although powerful solvers are
available, formally defining domain-specific optimization problems from natural language descrip-
tions and then developing the solver code are highly complex tasks. It requires specialized domain
knowledge, expert involvement, and significant time investment. For example, in finance, the port-
folio problems (Chen et al., 2021) often managing thousands of variables and complex constraints,
such as full investment constraints, cardinality constraints and pre-assignment constraints, where
expert intervention is crucial for achieving accurate (i.e., low simple regret) solutions due to the
complexity and specialization of optimization problems.

With the rapid development of large language models (LLMs) like ChatGPT (Brown et al., 2020)
and GPT-4 (OpenAI, 2023), using LLMs to automatically formulate and solve optimization prob-
lems described by natural language is becoming increasingly attractive. Existing work about it can
be roughly divided into prompt-based and learning-based methods. Pioneering studies like Chain-
of-Expert (Xiao et al., 2024) and OptiMUS (AhmadiTeshnizi et al., 2024) explore prompt-based
methods, leveraging LLM interfaces to extract key information and solve optimization problems.
Although these methods show promise, recent advancements in learning-based methods, such as
LLaMoCo (Ma et al., 2024) and ORLM (Tang et al., 2024), could demonstrate even greater po-
tential. Notably, ORLM (Tang et al., 2024) reveals that a fine-tuned 7B open-source model can

1

https://anonymous.4open.science/r/LLMOPT

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

An accounting firm employs part time
workers and full time workers. Full time
workers work 8 hours per shift while part
time workers work 4 hours per shift. In
addition, full time workers are paid $300
per shift while part time workers are paid
$100 per shift. Currently, the accounting
firm has a project requiring 450 hours of
labor. If the firm has a budget of $15000,
how many of each type of worker should
be scheduled to minimize the total
number of workers.

Problem Description Five-Element Formulation

Set of employee types: 𝒮 = 	 {𝑓, 𝑝}
Hours per shift: ℎ! = 	8, ℎ" = 	4
Wages per shift:	𝑤! = 	300, 𝑤" = 	100
Total labor time required: 𝑇	 = 450
Budget: 𝐵	 = 	15000

Employees shifts: 𝑥!, 𝑥"
Minimize employee number: min	$!,$" 	𝑥!+ 𝑥"

Labor time onstraint: ℎ!𝑥! +	ℎ"𝑥" ≥ 𝑇
Budget constraint: 𝑤!𝑥! +	𝑤"𝑥" ≤ 𝐵
Positive integer constraint: 𝑥! , 𝑥" ∈ ℤ#

Constraints

Parameters

Sets

Objective

Variables

from pyomo.environ import *
model = ConcreteModel()

model.x_f = Var(domain=NonNegativeReals)
model.x_p = Var(domain=NonNegativeReals)

model.objective = Objective(expr=model.x_f + model.x_p, sense=minimize)

model.c1 = Constraint(expr=8 * model.x_f + 4 * model.x_p >>= 500)
model.c2 = Constraint(expr=300 * model.x_f + 100 * model.x_p <<= 15000)
.....

from pyomo.environ import *
model = ConcreteModel()

model.x_f = Var(domain=NonNegativeIntegers)
model.x_p = Var(domain=NonNegativeIntegers)

model.objective = Objective(expr=model.x_f + model.x_p, sense=minimize)

model.c1 = Constraint(expr=8 * model.x_f + 4 * model.x_p >>= 500)
model.c2 = Constraint(expr=300 * model.x_f + 100 * model.x_p <<= 15000)
.....

Generate Solver CodeGenerate Solver Code

Optimal Solution Found:
Number of Full-Time Shifts (x_f): 37.5
Number of Part-Time Shifts (x_p): 37.5
Total Number of Employees: 75.0

Optimal Solution Found:
Number of Full-Time Shifts (x_f): 37
Number of Part-Time Shifts (x_p): 39
Total Number of Employees: 76

CorrectIncorrect
Missing integer
constraint

Correct definition
and solution

Problem Description Five-Element Formulation

Figure 1: An example of the proposed five-element formulation, which provides a structured defini-
tion for general optimization problems. Using the five-element formulation as an intermediate step
can lead to more accurate solver code and solution.

outperform larger pre-trained models like GPT-4, highlighting the value of learning-based methods
for optimization tasks.

Although previous research has established the use of LLMs for formulating and solving optimiza-
tion problems described by natural language, their optimization generalization remains limited, re-
stricting broader applicability and deployment across diverse problems. Optimization generaliza-
tion, which involves both accuracy and generality in assessing whether LLMs can effectively solve
general optimization problems, remains a significant challenge. Specifically, accuracy refers to solv-
ing problems correctly, and generality refers to the ability to model and solve diverse optimization
problem types across different task scenarios.

In this paper, we propose a unified learning-based framework called LLMOPT to significantly boost
the optimization generalization. Through focusing on improving both accuracy and generality to
effectively define and solve a wide range of optimization problems, this work tries to narrow the
gap between methods and practical applications. Specifically, we propose the five-element formu-
lation for defining optimization problems to enhance solving accuracy as illustrated in Figure 1. To
ensure the effectiveness of learning, we design a data augmentation process and conduct data label-
ing, resulting in high-quality datasets. Leveraging these datasets, we implement multi-instruction
supervised fine-tuning to improve the LLM’s accuracy in both defining and solving optimization
problems. Additionally, we introduce model alignment to further enhance accuracy and reduce the
risk of hallucinations. We also develop an auto-testing process with a self-correction mechanism,
enabling the accurate and automated resolution of optimization problems. Finally, the optimiza-
tion generalization ability of LLMOPT is extensively evaluated on six real-world optimization and
operation problem datasets involving roughly 20 domains, including health, environment, energy
and manufacturing, etc. The results show that LLMOPT effectively handles various optimization
problems, such as linear and nonlinear programming, mixed integer programming and combinato-
rial optimization, etc. Ablation studies validate the contributions of problem definition and model
alignment in improving accuracy. Notably, LLMOPT achieves an average accuracy improvement of
11.08% over state-of-the-art methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The consequent sections respectively introduce the related work, present the proposed LLMOPT,
show and analysis the empirical results, discuss important issues, and finally conclude the paper.

2 RELATED WORK

LLMs for Formulating and Solving Optimization Problems. The NL4Opt competition (Rama-
monjison et al., 2021) encourages researchers to explore how LLMs can be leveraged to solve opti-
mization problems efficiently (Huang et al., 2024; Tang et al., 2024; Xiao et al., 2024; AhmadiTesh-
nizi et al., 2024; Ma et al., 2024). Related work can be divided into prompt-based and learning-based
methods. The prompt-based methods utilize existing LLM interfaces to automate the solving opti-
mization problems. Chain-of-Expert (CoE) (Xiao et al., 2024) introduces an agent-based workflow,
where specific tasks are assigned to LLM agents at each stage of reasoning, while OptiMUS (Ah-
madiTeshnizi et al., 2024) employs tailored prompts designed specifically for solving linear pro-
gramming and mixed-integer linear programming problems. The learning-based method remains
relatively underexplored. LLaMoCo (Ma et al., 2024) introduces an instruction tuning framework
in a code-to-code manner and demonstrates its efficacy through model fine-tuning. ORLM (Tang
et al., 2024) proposed a semi-automated approach for generating synthetic training data during the
instruction tuning phase, addressing the data-hungry nature of optimization modeling. Besides,
Mamo (Huang et al., 2024) offers a benchmark for mathematical modeling with two optimization
datasets, and introduces a standardized process for generating solver code using LLMs.

LLMs as Components of Optimizers. Yang et al. (2024b) propose to use LLMs as optimizers,
inspired by Bayesian optimization (Garnett, 2023). One LLM iteratively optimizes prompts, which
are then used to guide another LLM in performing specific optimization tasks. LLMs can also
serve as components within an optimizer (Guo et al., 2024; Yang & Li, 2023; Liu et al., 2024a;
2023; 2024b). Guo et al. (2024) uses LLMs to as the crossover and mutation operators in genetic
algorithms, thereby finding high-quality prompts. When solving the traveling salesman problem, Liu
et al. (2024a) uses LLMs to generate new trajectories based on existing ones, iteratively optimizing
them to produce higher-quality solutions. Liu et al. (2023) and Yang & Li (2023) apply LLMs to
specific multi-objective optimization tasks. Liu et al. (2024b) employs LLMs to simulate both the
acquisition function and the surrogate model in the Bayesian optimization process.

3 METHODOLOGY

3.1 AN OVERVIEW OF THE PROPOSED LLMOPT FRAMEWORK

This work aims to achieve a better optimization generalization of defining and solving the optimiza-
tion problems through a learning-based approach. To this end, this paper proposes the LLMOPT
framework, as illustrated in Figure 2, which comprises three key components: data, learning, and
auto-testing. The following sections provide a detailed introduction: First, in Section 3.2, we in-
troduce the five-element formulation to define general optimization problems well, and discuss the
augmentation and labeling of training data. Next, in Section 3.3, we detail the multi-instruction
supervised fine-tuning (SFT) process and model alignment to enhance solving accuracy. Finally, in
Section 3.4, we present the auto-testing process with self-correction.

3.2 DATA: DEFINING AND LABELING GENERAL OPTIMIZATION PROBLEMS

3.2.1 UNIVERSAL FORMULATION TO DEFINE GENERAL OPTIMIZATION PROBLEMS

To enable LLMs to formulate more general optimization problems described in natural language,
we propose five-element, a universal formulation to define optimization problems. Firstly, in math-
ematics, an optimization problem can be formally represented as the following expression:

min
x∈X⊆RD

f(x) , s.t. G(x) ≤ c , (1)

where x = (x1, x2, . . . , xD)⊤ is the D-dimensional decision variable, X ⊆ RD is the feasible
domain of x, and the goal is to minimize the objective function f : X → R. The constraints are
represented by the vector-valued function G(x) : RD → Rm, where G(x) ≤ c denotes a series of
inequality constraints, and c = (c1, c2, . . . , cm)⊤ is the vector of upper bounds for these constraints.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Pre-trained LLM

LLMSFT

Optimization
Problems

Label 5-Element
by Expert

Expert GPT-4

Generate 5-Element by GPT-4
& Label by Expert

Label Code
by Expert

Generate Code by GPT-4
& Label by Expert

Expert

(a) Data

(c) Auto-Testing

(b) Learning

Data for Formulation Data for Solving

5-ElementProblem Code Results

Errors

SolverLLMFINALLLMFINAL

Self-correction

LLMFINAL
(Defining) (Solving)

Logs

Formulation:
Learning to

Define

Solving:
Learning to

Generate Code

KTO
Alignment

SFT

LLMFINAL

Optimal Solution

Natural Language
Description

5-Element f
for Problem p

Solver Code s
for Problem p

5-Element f ' with Desirability Label d

5-Element (Generated by GPT-4)

Desirability (Labeled by Expert)

Solver Code s' with Desirability Label d

Solver Code (Generated by GPT-4)

Desirability (Labeled by Expert)

(p, f)
Problem with 5-Element
Labeled by Expert

(p, s)
(f, s)

Problem/5-Element with Code
Labeled by Expert

(p, f ' , d)
Problem with
5-Element Generated by GPT-4
& Desirability Labeled by Expert

(p, s', d)

(f, s', d)
Problem/5-Element with
Solver Code Generated by GPT-4
& Desirability Labeled by Expert

Figure 2: The framework of LLMOPT. Sub-figure (a) shows the data labeling process, where experts
and GPT-4 work together to label both the five-element formulation and solver code. Sub-figure (b)
shows the learning process, in which multi-instruction supervised fine-tuning and model alignment
are employed to learn to define and generate code. Sub-figure (c) shows the auto-testing process
with self-correction mechanism, which can define and solve optimization problems automatically.

In practice, a vast majority of optimization problems can be formulated as shown in Formula 1.
Based on it, five-element formulation provides a structured and intuitive way to define optimization
problems, retaining essential descriptions and making them more accessible and understandable,
even for LLMs. As the name suggests, five-element consist of the five key components of an opti-
mization problem: Sets, Parameters, Variables, Objective and Constraints. As shown in Figure 1,
the element Variables, Objective, and Constraints describe the decision variables x, the objective
function f(x), and the constraints G(x) in Formula 1, along with concise descriptions for each.
Meanwhile, Sets and Parameters provide detailed information on indices and descriptions, as well
as the specific numerical values of the parameters involved in the objective function and constraints.
Importantly, five-element provides a more accurate formulation of the problem by mining and pre-
serving key descriptions of the problem. For example, in Figure 1, the positive integer constraint is
implicit in the problem but is effectively captured by the five-element formulation.

As a universal formulation, five-element can define various types of optimization problems, thereby
enhancing the optimization generalization ability. For instance, integer programming can be mod-
eled by adjusting the feasible region X , while linear and non-linear programming constraints are
captured by different forms of G(x). More complex problems, such as multi-objective optimiza-
tion, extend the objective function to a vector-valued form F (x). Additional examples illustrating
the formulation of various optimization problems are provided in Appendix J.

3.2.2 DATA AUGMENTATION AND LABELING

The five-element formulation enables the mapping of optimization problems described in natural
language to a universal structure, which can then be used to generate solver code. However, the ef-
fectiveness of learning is significantly influenced by the quality, quantity, and distribution of training
data. Current available datasets are limited in these aspects and lack proper labels of formulations
and solver code. Therefore, data augmentation and labeling are employed to address these gaps.

Firstly, we collect almost all existing optimization problem datasets, including NL4Opt (Ramamon-
jison et al., 2021), Mamo (EasyLP and ComplexLP) (Huang et al., 2024), IndustryOR (Tang et al.,
2024), NLP4LP (AhmadiTeshnizi et al., 2024) and ComplexOR (Xiao et al., 2024) whose detail
informations are introduced in the Appendix A. Subsequently, 100 samples are randomly selected
from each dataset as the reserved testing dataset. For datasets with fewer than 100 samples, all data

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

are used for testing. The remaining samples are used for data augmentation, ensuring a clear separa-
tion between training and testing data. In the data augmentation process, LLMs effectively generate
data through prompt engineering (Tang et al., 2024; Luo et al., 2023). To build a high-quality dataset,
seven distinct instructions are applied to 1,763 seed problems. These instructions comprehensively
extend the original problems from various perspectives, such as modifying constraints, changing
scenarios, altering optimization types, and branching out from the original problem, among other
approaches. Finally, experts review the generated problems, removing those with unclear descrip-
tions or infeasible solutions to ensure data diversity and quality. Prompts are detailed in Appendix I.

Then, the labeling of optimization problems using five-element and solver code is performed by
experts. GPT-4 (OpenAI, 2023) is also used to generate labels with uncertain correctness, which
can be used in the model alignment. As shown in Figure 2(a), for each optimization problem p,
experts label the five-element formulation f and solver code s, and GPT-4 generates the formulation
f ′ and code s′, respectively. Since GPT-4 may produce errors, experts validate it and assign a
desirability label d′ to indicate whether GPT-4’s label is accurate (True) or not (False). This process
produces two types of labeled data: fully accurate formulations and solver codes, and those with
potential errors but validated by experts. The two kinds of data are well-suited for the processes of
multi-instruction supervised fine-tuning and model alignment, as discussed in the next section. The
detailed process of data labeling and augmentation is introduced in Appendix K.

3.3 LEARNING: MULTI-INSTRUCTION SFT AND MODEL ALIGNMENT

3.3.1 MULTI-INSTRUCTION SFT

Direct utilization of LLM to address optimization problems described in natural language often
results in inaccuracies, primarily due to their inability to comprehensively capture implicit informa-
tion. To address this issue, we enhance the capability to both define and solve the problems through
multi-instruction supervised fine-tuning (SFT).

The multi-instruction dataset DSFT = Df
SFT ∪ Ds

SFT, labeled by experts, is designed to improve both
the problem formulation and solving code generation abilities of LLM. The formulation dataset
Df

SFT = {(ui, vi)}
Nf

i focuses on enhancing the LLM’s ability to accurately define general optimiza-
tion problems by providing data pairs (ui, vi), where ui represents a problem p after being applied
to a template, and vi is its corresponding five-element formulation f . Meanwhile, the solving dataset
Ds

SFT = {(ui, vi)}Ns
i focuses on improving the LLM’s ability to generate solver code. It contains

two types of data: in one, ui is the problem p and vi is the solver code s; in the other, ui is the
formulation f and vi is the solver code s. Both are aligned with the appropriate templates and all
the labels in DSFT are correctly labeled by experts. The instruction templates used in the learning
process are detailed in Appendix H, which provides a comprehensive explanation, including a more
in-depth description of the five-element to facilitate better understanding by the LLM.

Then, given the instruction u and its label v, the objective of SFT is to maximize the conditional
probability p(v | u). Assuming that p(v | u) =

∏
i=1 p(vi | v0:i−1, u), this leads to minimizing the

negative log-likelihood:

LSFT(θ) = −E(u,v)∼DSFT

∑
i=1

log π(vi | v0:i−1, u; θ) . (2)

where DSFT denotes the multi-instruction SFT dataset, which combines instructions from Df
SFT and

Ds
SFT to train the LLM in defining and solving optimization problems. π(·) represents the predicted

probability distribution of the LLM, and θ denotes its parameters.

3.3.2 MODEL ALIGNMENT

Despite SFT training the model to learn how to write solving code, LLMs may still exhibit hal-
lucination when faced with novel problems. This hallucination manifests as outputs that appear
plausible but are, in fact, fabricated or inaccurate. To mitigate hallucinations, we incorporate model
alignment, which is not utilized by other learning-based methods. We use Kahneman-Tversky Op-
timization (KTO)(Ethayarajh et al., 2024) as our alignment method, as it avoids reward model bias
and mitigates the data demands of ranking-based approaches like PPO(Ouyang et al., 2022) and
DPO (Rafailov et al., 2023).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The KTO algorithm aligns the model using (instruction, completion, desirability) data, where desir-
ability reflects the correctness of the completion using a binary label: True or False. Specifically, the
dataset DKTO = {(ui, vi, di)}NKTO

i , used by KTO, contains GPT-4 completions with expert-assigned
desirability labels. The instructions ui in DKTO match those in DSFT, covering formulation and
code generation tasks. However, the completions vi, generated by GPT-4, do not always fulfill the
instructions ui correctly, and experts assign desirability labels di to achieve the model alignment.

Building upon the previous work by Rafailov et al. (2023), it is evident that the LLM can be inter-
preted as a reward function. Consequently, we can express the optimal reward for KTO as follows:

r∗KTO(u, v) = β log
π∗(v | u)
πref(v | u)

. (3)

In this equation, r∗(·) denotes the optimal reward function of the completion v in response to the
instruction u, π∗(·) represents the corresponding optimal model (i.e., the KTO model), πref(·) in-
dicates the reference model (i.e., the SFT model), and β serves as the scaling factor. This ratio
measures the relative confidence of the optimal model in generating v compared to the reference
model.

Inspired by classic prospect theory (Tversky & Kahneman, 1992), the value function employs a lo-
gistic transformation on the adjusted ratio of log probabilities, thereby assessing the value of each
generation in terms of its desirability and the divergence of the policy from the reference. By sub-
stituting the exponential function with a sigmoid function, we derive the value function as follows:

ϕKTO(u, v;β) =

{
σ(rKTO(u, v)− zref) if d = True | u, v ,
σ(zref − rKTO(u, v)) if d = False | u, v , (4)

where zref is defined as the reference point, formulated as: zref = βKL(π∗(v′ | u) || πref(v
′ | u)).

Another essential component of KTO loss is the weight function, which can be expressed as follows:

w(v) =

{
λD if d = True | u, v ,
λU if d = False | u, v . (5)

The weight function w(v) assigns weights to the loss depending on the desirability of the outcome
v, with λD and λU representing the weights for desirable and undesirable outcomes, respectively.

Finally, the KTO loss function is formulated as:

LKTO(π
∗, πref) = E(u,v,d)∼DKTO [w(v)(1− ϕKTO(u, v;β))] . (6)

The KTO loss function encourages the optimal model π∗ to produce completions that align more
closely with expert-labeled data, improving the overall optimization generalization of both problem
formulation and solver generation.

3.4 AUTO-TESTING: FORMULATION, SOLVING AND SELF-CORRECTION

In the auto-testing process, first, the optimization problem is formulated using the five-element
framework based on its natural language description; second, the solver code is generated for the
five-element formulation and executed; finally, the solver’s running logs, including output results
and errors, are analyzed to determine whether self-correction is necessary. The auto-testing pro-
cess automates the entire workflow of problem definition and solver code generation, while also
integrating the self-correction mechanism for continuous improvement.

Inspired by Chen et al. (2024), to enhance optimization generalization, we implement self-correction
to automatically analyze the output results and identify errors arising during the execution of the
solver code. Specifically, the instruction is organized around the problem, the five-element formula-
tion, the solver code, and the execution output results, following a template outlined in Appendix H.
The self-correction LLM then determines whether further resolution is necessary or whether the
optimal solution has been achieved. If resolution is needed, the model generates an analysis with
suggestions and decides to return to whether the problem formulation step or the code generation
step. The self-correction mechanism ensures a more robust and adaptive optimization process, im-
proving optimization generalization especially in the accuracy of formulations and final solutions.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENT

To analyze the performance of LLMOPT, we conduct SFT and model alignment based on the open-
source LLM Qwen1.5-14B (Bai et al., 2023) and compare it with various learning-based and prompt-
based methods on extensive datasets. The experiments aim to answer four key questions below.

(Q1) Learning-based vs. Prompting-based Methods: What advantages do learning-based meth-
ods, such as LLMOPT, have over LLMs that rely solely on prompt engineering?

(Q2) Optimization Generalization (Accuracy and Generality): To what extent can LLMOPT
improve optimization generalization ability compared with existing methods?

(Q3) Importance of Problem Definition in LLMOPT: How does the proposed five-element for-
mulation as an intermediate step contribute to boost accuracy in solving optimization tasks?

(Q4) Effectiveness of Model Alignment in LLMOPT: How effective is model alignment in en-
hancing the solving accuracy of LLMs for optimization tasks?

The four questions are answered in order in the next sections which include a detailed introduction
to the experiments, followed by the analysis of results.

4.1 EXPERIMENTAL SETUP

The experiments are conducted on six real-world optimization and operation task datasets, namely
NL4Opt (Ramamonjison et al., 2021), Mamo (EasyLP and ComplexLP) (Huang et al., 2024), In-
dustryOR (Tang et al., 2024), NLP4LP (AhmadiTeshnizi et al., 2024), ComplexOR (Xiao et al.,
2024). These datasets encompass about 20 scenario and 7 types of optimization problems. Detailed
descriptions of these datasets are provided in Appendix A. Training and testing data are strictly sep-
arated. For the NL4Opt, Mamo (EasyLP and ComplexLP) datasets, we shuffle the original datasets
and randomly extract 100 data from each dataset as the testing datasets, and the remaining data is
used as seed data for data augmentation. The IndustryOR dataset retains its original partitioning.
Due to the limited data in NLP4LP and ComplexOR, all data from these datasets are used for testing
and excluded from the training process.

In the experiment, we use three performance metrics to comprehensively evaluate the optimization
generalization of the algorithm, namely, Execution Rate (ER), Solving Accuracy (SA), and Average
Solving Times (AST). Specifically, ER refers to the proportion of solutions whose code can run
without any errors and has running results output. SA refers to the proportion of solutions that
correctly solve the optimization problem, i.e., find the optimal solution. AST refers to the average
number of times the self-correction process is performed during the test. In our experiment, the
maximum number of self-correction re-solves is set to 12 times.

4.2 ANALYSIS OF OPTIMIZATION GENERALIZATION

In this section, we compare LLMOPT with prompt-based methods (Reflexion (Shinn et al., 2023),
Chain-of-Experts (Xiao et al., 2024), OptiMUS (AhmadiTeshnizi et al., 2024)), learning-based
methods (ORLM (Tang et al., 2024) built on Mistral-7B, Deepseek-Math-7B-Base, LLaMa3-8B),
and GPT-4 (OpenAI, 2023), demonstrating the optimization generalization capability of LLMOPT.

Learning-based vs. Prompting-based Methods (Answer to Q1). To demonstrate the potential of
the learning-based method, we perform SFT on Qwen1.5-14B Bai et al. (2023) and compare it with
GPT-4o using the same prompt (Appendix H). As shown in Figure 3(a), the results indicate that
LLM with only SFT can achieve comparable performance to GPT-4o. For the complete LLMOPT
(including model alignment and self-correction), as shown in Figure 4, LLMOPT outperforms both
GPT-4o and GPT-4-Turbo, achieving higher solving accuracy with fewer solving times across all six
datasets. All these results demonstrate the potential of learning-based methods.

Accuracy (Answer to Q2-1). We compare the solving accuracy (SA) of LLMOPT with prompt-
based and learning-based methods as shown in Table 1 and 2, respectively. To ensure consistency
in reproduction, we only cite the results from the original paper. LLMOPT achieves state-of-the-art
(SOTA) performance in SA across six datasets, outperforming both prompt-based and learning-
based methods. Compared to learning-based methods, defining with the five-element formulation

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

NL4Opt Mamo E. Mamo C. IndustryOR NLP4LP ComplexOR
0%

20%

40%

60%

80%

100%

So
lv

in
g

A
cc

ur
ac

y
(S

A
)

81.0%

91.0%

34.0% 34.0% 32.4%
27.3%

88.0% 89.0%

46.0%

33.0%

54.1%
45.5%

(a) Comparison between GPT-4o and Qwen1.5-14B with only SFT.

GPT-4o
Qwen1.5 with Only SFT

NL4Opt Mamo E. Mamo C. IndustryOR NLP4LP ComplexOR
0%

20%

40%

60%

80%

100%

So
lv

in
g

A
cc

ur
ac

y
(S

A
)

91.0%
96.0%

64.0%

41.0%

73.0% 72.7%

93.0% 97.0%

68.0%

46.0%

83.8%

72.7%

(b) Ablation of five-element.

LLMOPT w/o 5-Element
LLMOPT

NL4Opt Mamo E. Mamo C. IndustryOR NLP4LP ComplexOR
0%

20%

40%

60%

80%

100%

So
lv

in
g

A
cc

ur
ac

y
(S

A
)

90.0%
97.0%

65.0%

43.0%

64.9%
54.6%

93.0% 97.0%

68.0%

46.0%

83.8%

72.7%

(c) Ablation of KTO.

LLMOPT w/o KTO
LLMOPT

NL4Opt Mamo E. Mamo C. IndustryOR NLP4LP ComplexOR
0%

20%

40%

60%

80%

100%

So
lv

in
g

A
cc

ur
ac

y
(S

A
)

88.0% 89.0%

46.0%

33.0%

54.1%
45.5%

93.0% 97.0%

68.0%

46.0%

83.8%

72.7%

(d) Ablation of both five-element and KTO.

LLMOPT w/o KTO & 5-Element
LLMOPT

Figure 3: The results of the SA metric. Sub-figure (a) compares the SA performance of GPT-4o
and the Qwen1.5-14B model with only SFT, showing the potential of learning-based methods. Sub-
figures (b), (c) and (d) perform ablation on five-element and KTO. The Mamo Easy and Mamo
Complex datasets are abbreviated as Mamo E. and Mamo C., respectively, due to space constraints.

and self-correction process improves the accuracy, with an average increase of 14.83% on four
datasets. For prompt-based methods, SFT and model alignment enhance the LLM’s ability to solve
optimization problems, yielding a 10.67% average improvement across three datasets. Overall,
LLMOPT improves SOTA performance by an average of 11.08% across the six datasets.

Generality (Answer to Q2-2). To analyze the generality of LLMOPT on general optimization
problems, we conduct testing on six datasets, each covering diverse optimization types, such as
linear programming, nonlinear programming, integer programming, mixed-integer programming,
multi-objective optimization, and combinatorial optimization, as detailed in Appendix G. These
datasets span over 20 different fields, including agriculture, energy, and healthcare, as detailed in
Appendix F. LLMOPT achieves state-of-the-art results across all datasets including a variety of
optimization problems, demonstrating its generality. Appendix L shows the specific experimental
results by question types. Moreover, despite the absence of NLP4LP and ComplexOR data in
the training dataset, LLMOPT still achieves SOTA performance on them, as shown in Table 1, fur-
ther proving its generality. Furthermore, seven examples of the five-element formulation applied to
various optimization problems are provided in Appendix J to illustrate the generality of this defi-
nition. The high accuracy and generality demonstrate the optimization generalization capability of
LLMOPT.

4.3 ABLATION STUDY

In this section, we conduct comprehensive ablation experiments, including LLMOPT without five-
element formulation, without KTO alignment, and without self-correction. The results of these

Table 1: Comparison of the SA metric between LLMOPT and learning-based methods. The results
for ORLM are cited from Tang et al. (2024). Underlined results indicate the previous SOTA, while
bold results indicate the current SOTA.

Datasets NL4Opt Mamo Easy Mamo Complex IndustryOR
GPT-4 Directly 47.3% 66.5% 14.6% 28.0%

ORLM
Mistral-7B 84.4% 81.4% 32.0% 27.0%
Deepseek-Math-7B-Base 86.5% 82.2% 37.9% 33.0%
LLaMa3-8B 85.7% 82.3% 37.4% 38.0%

LLMOPT (Ours) Qwen1.5-14B 93.0% 97.0% 68.0% 46.0%
Improvement Rate ↑ +6.5% +14.7% +30.1% +8.0%

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Comparison of the SA metric between LLMOPT and prompt-based methods. The results
for Reflexion, Chain-of-Experts, and OptiMUS are cited from Xiao et al. (2024). Underlined results
indicate the previous SOTA, while bold results indicate the current SOTA.

Datasets NL4Opt NLP4LP ComplexOR
GPT-4 Directly 47.3% 35.8% 9.5%

Reflexion 53.0% 46.3% 19.1%
Chain-of-Experts 64.2% 53.1% 38.1%

OptiMUS 78.8% 72.0% 66.7%

LLMOPT (Ours) 93.0% 83.8% 72.7%
Improvement Rate ↑ +14.2% +11.8% +6.0%

1.0 3.0 5.0 7.0 9.0 11.0
Average Solving Times (AST)

20%

40%

60%

80%

100%

So
lv

in
g

A
cc

ur
ac

y
(S

A
)

(a) Comparison with GPT-4o and GPT-4-Turbo.

LLMOPT (Ours)
GPT-4o
GPT-4-Turbo

1.0 3.0 5.0 7.0 9.0 11.0
Average Solving Times (AST)

30%

44%

58%

72%

86%

100%

So
lv

in
g

A
cc

ur
ac

y
(S

A
)

(b) Comparison with ablation versions.

LLMOPT
w/o 5-Element
w/o KTO
w/o 5-Element & KTO

NL4Opt Mamo Easy Mamo Complex IndustryOR NLP4LP ComplexOR

Figure 4: Comparison of SA and AST between LLMOPT, GPT-4, and ablated versions.

experiments are shown in Figure 3, Figure 4, and Table 3. We also design detailed ablation experi-
ments on the self-correction mechanism, which are introduced in Appendix M.

Importance of Problem Definition (Answer to Q3). In order to explore the importance of problem
definition, we evaluate three metrics on the ablation experiments: Execution Rate (ER), Solving
Accuracy (SA), and Average Solving Time (AST). As detailed in Table 3 and Figure 3(b), these
results show that using the five-element formulation as the problem definition improves SA across
all six datasets. However, this definition can sometimes lower the ER, as the LLM may oversimplify
the problem without it, producing error-free but inaccurate code. In contrast, using the five-element
approach ensures correct code generation, improving SA at the cost of slightly reduced ER.

Effectiveness of Model Alignment (Answer to Q4). Alignment typically enhances the efficiency
and effectiveness of LLMs on specific tasks. As shown in Figure 4(b) and 3(c), the ablation results
shows that KTO alignment not only significantly boosts SA but also reduces AST across all six
datasets. Furthermore, as shown in Figure 4(b), 3(d), and Table 3, the combination of the five-
element formulation and KTO alignment improves performance in terms of SA and AST on complex
datasets.

5 DISCUSSION

Attempt on Larger Models. To explore the potential for further performance improvement of LL-
MOPT on larger models, we deploy it on Qwen2-72B (Yang et al., 2024a). The detailed results
are provided in Appendix D. We conduct experiments on two complex task datasets, Mamo Com-
plex and IndustryOR, and the results show that LLMOPT based on Qwen2-72B shows significant
improvements in both SA and ER compared with its performance on Qwen1.5-14B. Given the trade-
off between performance and the costs of training and deployment, i.e., green computing issue, we
opt not to use larger models, since Qwen1.5-14B already achieves state-of-the-art performance.

Compared with OpenAI o1 Model. OpenAI o1 model (OpenAI, 2024) has recently garnered
attention for its strong reasoning ability. However, due to the limited availability of its API and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: The ablation results of LLMOPT without (w/o) five-element formulation, KTO alignment
and self-correction, respectively. In the experiments without self-correction, the model is called only
once, resulting in an AST of 1.00. Bold indicates the best performance for each metric.

Metrics ER SA AST ER SA AST ER SA AST

Dataset NL4Opt Mamo Easy Mamo Complex
LLMOPT 99.0% 93.0% 3.07 100.0% 97.0% 1.70 97.0% 68.0% 6.30

w/o five-element 99.0% 91.0% 2.95 100.0% 96.0% 2.36 98.0% 64.0% 6.38
w/o KTO 99.0% 90.0% 3.47 100.0% 97.0% 2.80 95.0% 65.0% 6.79

w/o self-correction 79.0% 57.0% (1.00) 85.0% 71.0% (1.00) 52.0% 32.0% (1.00)

Dataset IndustryOR NLP4LP ComplexOR
LLMOPT 92.0% 46.0% 8.35 100.0% 83.8% 7.00 94.7% 72.7% 10.27

w/o five-element 92.0% 41.0% 8.50 96.9% 73.0% 7.43 94.7% 72.7% 10.05
w/o KTO 92.0% 43.0% 8.88 89.2% 64.9% 8.32 100.0% 54.6% 10.84

w/o self-correction 55.0% 31.0% (1.00) 47.7% 35.2% (1.00) 47.4% 18.2% (1.00)

restrictions on the number of weekly trials, our evaluation of the o1 model’s performance is limited.
We conduct experiments on 10 easy and 10 complex problems from the Mamo Complex dataset.
With a single call, the o1 model successfully generated code to solve 7 easy problems and 5 complex
problems. These results suggest that the o1 model is more accurate in solving optimization problems
compared with GPT-4 series models. However, due to the lack of open access, the absence of
detailed technical specifications and training data description of o1, as well as the limitations on
usage and high costs, fine-tuning open-source large models with LLMOPT presents a more cost-
effective solution for achieving better optimization generalization in real industrial scenarios. When
the API of o1 is available in future, we plan to comprehensive compare LLMOPT with it.

The Seesaw Issue of LLMs. The seesaw issue in LLMs refers to the trade-off between improving
the performance on specialized tasks and its generalization across diverse tasks, where gains in one
area often result in losses in another. To assess whether enhancing the LLM’s ability to define and
solve optimization problems affects its performance on other tasks, we compared the model’s per-
formance before and after fine-tuning across 10 general tasks, including math, code, classification,
information extraction, open QA, closed QA, text generation, brainstorming, rewriting and summa-
rization. The results indicate that the fine-tuned model showed performance improvements in 6 tasks
and declines in 4 tasks, with an average performance increase of 0.3% across all tasks. Importantly,
no significant trade-off or seesaw effect is observed. Detailed results are provided in Appendix E.

About High-Quality Training Data. High-quality data is crucial for fine-tuning LLMs (Villalobos
et al., 2024). Accurate and diverse training data allows the model to improve its task-specific per-
formance. However, optimization problem data described in natural language is relatively scarce.
Although we have collected as many optimization problem datasets as possible, which are de-
tailed in Appendix A, these datasets often lack high-quality labels. For instance, in the IndustryOR
dataset (Tang et al., 2024), some data have incorrectly labeled optimal solutions, and the NL4Opt
dataset (Ramamonjison et al., 2021) does not provide optimal solution annotations but only entity
labels. This highlights the scarcity of optimization problems training data. While employing prompt
engineering for data augmentation in this work, expert labeling remains a time-consuming and labor-
intensive process. Efficiently gathering, synthesizing and generating more diverse and well-labeled
high-quality data remains an issue that cannot be ignored in this research direction in future.

6 CONCLUSION

This paper focuses on the challenge of optimization generalization in LLMs, including the accuracy
in solving optimization problems and the generality of the problem types that LLMs can handle. We
propose a learning-based framework called LLMOPT, which significantly improves LLMs’ ability
to define and solve general optimization problems through multi-instruction supervised fine-tuning
and model alignment. LLMOPT introduces the five-element formulation as a universal definition
for various types of optimization problems to enhance solving accuracy. LLMOPT is extensively
evaluated on a wide range of optimization tasks. It achieves the state-of-the-art optimization gener-
alization ability across all of them, i.e., a notable 11.08% average solving accuracy improvement.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS AND REPRODUCIBILITY STATEMENT

Ethics. This work does not involve any human subjects, personal data, or sensitive information.
All the testing datasets used are publicly available, and no proprietary or confidential information is
used. We follow recommendations to use the Azure OpenAI service when using GPT models.

Reproducibility. Experimental settings are described in Section 4 and Appendix B, and datasets
included in Appendix A. The code is available at https://anonymous.4open.science/
r/LLMOPT.

REFERENCES

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. OptiMUS: Scalable optimization modeling
with (MI)LP solvers and large language models. In Proceedings of the Forty-first International
Conference on Machine Learning, Vienna, Austria, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenhang Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao
Liu, Chengqiang Lu, K. Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Yu Bowen, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xing Zhang, Yichang Zhang, Zhenru
Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report.
CoRR, abs/2309.16609, 2023.

Paolo Brandimarte. Routing and scheduling in a flexible job shop by tabu search. Annals of Opera-
tions Research, 41:157–183, 1993.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in
Neural Information Processing Systems 33, Virtual, 2020.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. In Proceedings of the Twelfth International Conference on Learning Representations,
Vienna, Austria, 2024.

Yi Chen, Aimin Zhou, and Swagatam Das. Utilizing dependence among variables in evolutionary
algorithms for mixed-integer programming: A case study on multi-objective constrained portfolio
optimization. Swarm and Evolutionary Computation, 66:100928, 2021.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Model align-
ment as prospect theoretic optimization. In Proceedings of the Forty-first International Confer-
ence on Machine Learning, Vienna, Austria, 2024.

Roman Garnett. Bayesian Optimization. Cambridge University Press, Cambridge, England, 2023.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields pow-
erful prompt optimizers. In Proceedings of the Twelfth International Conference on Learning
Representations, Vienna, Austria, 2024.

David Ke Hong, Yadi Ma, Sujata Banerjee, and Z. Morley Mao. Incremental deployment of sdn in
hybrid enterprise and isp networks. Proceedings of the Symposium on SDN Research, 2016.

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. Mamo: A mathematical
modeling benchmark with solvers. CoRR, abs/2405.13144, 2024.

Beibin Li, Konstantina Mellou, Bo qing Zhang, Jeevan Pathuri, and Ishai Menache. Large language
models for supply chain optimization. CoRR, abs/2307.03875, 2023.

11

https://anonymous.4open.science/r/LLMOPT
https://anonymous.4open.science/r/LLMOPT

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Fei Liu, Xi Lin, Zhenkun Wang, Shunyu Yao, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang.
Large language model for multi-objective evolutionary optimization. CoRR, abs/2310.12541,
2023.

Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language models
as evolutionary optimizers. In Proceedings of the 2024 IEEE Congress on Evolutionary Compu-
tation, pp. 1–8, Yokohama, Japan, 2024a.

Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language models
to enhance Bayesian optimization. In Proceedings of the Twelfth International Conference on
Learning Representations, Vienna, Austria, 2024b.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. WizardMath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. CoRR, abs/2308.09583, 2023.

Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Guojun Peng, Zhiguang Cao, Yining Ma, and Yue jiao
Gong. LLaMoCo: Instruction tuning of large language models for optimization code generation.
CoRR, abs/2403.01131, 2024.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

OpenAI. Introducing Openai o1. https://openai.com/o1/, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In Advances in Neural Information Processing Systems 35, New Orleans, LA, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
In Advances in Neural Information Processing Systems 36, New Orleans, LA, 2023.

Rindranirina Ramamonjison, Timothy T. L. Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan
Ghaddar, Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, and Yong
Zhang. NL4Opt competition: Formulating optimization problems based on their natural language
descriptions. In NeurIPS 2022 Competition Track, pp. 189–203, Virtual, 2021.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflex-
ion: Language agents with verbal reinforcement learning. In Advances in Neural Information
Processing Systems 36, New Orleans, LA, 2023.

Zhengyang Tang, Chenyu Huang, Xin Zheng, Shixi Hu, Zizhuo Wang, Dongdong Ge, and
Benyou Wang. ORLM: Training large language models for optimization modeling. CoRR,
abs/2405.17743, 2024.

Simon Trimborn, Mingyang Li, and Wolfgang Karl Härdle. Investing with cryptocurrencies - A
liquidity constrained investment approach. Capital Markets: Market Efficiency eJournal, 2018.

Amos Tversky and Daniel Kahneman. Advances in prospect theory: Cumulative representation of
uncertainty. Journal of Risk and Uncertainty, 5:297–323, 1992.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn.
Position: Will we run out of data? Limits of LLM scaling based on human-generated data. In
Proceedings of the Forty-first International Conference on Machine Learning, Vienna, Austria,
2024.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Combinatorial learning of robust deep graph
matching: An embedding based approach. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45:6984–7000, 2020.

12

https://openai.com/o1/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, and Gang Chen. Chain-of-Experts: When LLMs meet
complex operations research problems. In Proceedings of the Twelfth International Conference
on Learning Representations, Vienna, Austria, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren
Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong
Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu,
Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. CoRR, abs/2407.10671, 2024a.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In Proceedings of the Twelfth International Confer-
ence on Learning Representations, Vienna, Austria, 2024b.

Heng Yang and Ke Li. InstOptima: Evolutionary multi-objective instruction optimization via large
language model-based instruction operators. In Findings of the Association for Computational
Linguistics: EMNLP, pp. 13593–13602, Singapore, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A DATASETS

A.1 THE INTRODUCTION OF DATASETS

We conduct experiments on the following real-world optimiation task datasets.

Table 4: The statistics of the optimization problem datasets.

Dateset Name # of Data Notes
NL4Opt (Ramamonjison et al., 2021) 1101 All data are unlabeled optimal solution.
Mamo Complex (Huang et al., 2024) 211 -

Mamo Easy (Huang et al., 2024) 652 -
IndustryOR (Tang et al., 2024) 100 Another 3000 data without optimal solution.

NLP4LP (AhmadiTeshnizi et al., 2024) 65 All data are unlabeled optimal solution.
ComplexOR (Xiao et al., 2024) 19 All data are unlabeled optimal solution.

NL4Opt (Ramamonjison et al., 2021). The NL4Opt Competition curates a dataset comprising 1101
annotated LPWPs across 6 diverse domains. Each set contained LPWPs from source domains like
sales, advertising, and investment, ensuring representation across all splits. However, LPWPs from
target domains such as production, transportation, and sciences were exclusively reserved for the
development and testing sets.

Mamo (Huang et al., 2024). The optimization dataset of Mamo benchmark consists of two parts,
Easy LP and Complex LP. Easy LP contains 652 high school-level MILP problems for basic learn-
ing of linear and mixed integer linear programming. Complex LP provides 211 undergraduate-
level challenges, integrating LP and MILP, suitable for advanced learners and researchers. These
problems are more complex, covering different applications and theoretical challenges, suitable for
advanced courses and research projects, and provide comprehensive development of optimization
skills from basic to complex.

IndustryOR (Tang et al., 2024). IndustryOR is the first industrial dataset designed specifically for
optimization modeling. It incorporates data from 13 different industries and covers a variety of real-
world scenarios. IndustryOR consists of real operations research (OR) problems from eight different
industries. It covers five types of optimization problems: linear programming, integer programming,
mixed integer programming, nonlinear programming, and other special problem types. These prob-
lems are also divided into three difficulty levels. The training dataset of IndustryOR contains 3000
instances without labeling optimal solution and the test dataset contains 100 instances with optimal
solution.

NLP4LP (AhmadiTeshnizi et al., 2024). NLP4LP (Natural Language Processing for Linear Pro-
gramming) is a dataset that includes 65 samples we identified from its repository. These problems
are sourced from optimization textbooks and lecture notes covering areas such as facility location,
network flow, scheduling, and portfolio management. Each instance in NLP4LP includes a de-
scription, sample parameter data file, and optimal value derived from textbook solutions or manual
solving, offering a range of complex optimization challenges of varying lengths.

ComplexOR (Xiao et al., 2024). ComplexOR dataset is developed with the collaboration of three
specialists in operations research. We identify 19 samples from its repository, sourced from diverse
references such as academic papers, textbooks, and real-world industrial scenarios. These problems
encompass a broad spectrum of topics, including supply chain optimization, scheduling problems,
and warehousing logistics.

A.2 TRAINING DATASETS FOR MULTI-INSTRUCTION SFT AND MODEL ALIGNMENT

We introduce the training datasets used for multi-instruction SFT and model alignment, as illustrated
in Table 5. After data augmentation, the SFT dataset comprises 9,828 instances, while the KTO
alignment dataset contains 19,563 instances. To keep the generalization capability of the language
model, we incorporated additional data into the datasets, which is open-source and available at

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

https://instructions.apps.allenai.org/ and https://huggingface.co/
datasets/argilla/ultrafeedback-binarized-preferences-cleaned-kto.
It is important to note that we do not utilize the entire datasets, but instead randomly selected 20,000
and 30,000 instances for the learning process.

Table 5: The number of samples in the dataset for SFT and model alignment.

of Optimization Data # of Other Data Total
SFT 9828 20000 29828

KTO
True Label 9827

19563
26384

30000
36212

49563False Label 9735 3616 13351

B DETAIL SETTING OF MULTI-INSTRUCTION SFT AND MODEL ALIGNMENT.

We implement all model training using the PyTorch framework and utilize Qwen 1.5 with 14 billion
parameters (Bai et al., 2023) as the base model. We utilize NVIDIA 8*A100 Tensor Core GPUs
with 80 GB each for model training and employ 1*A100 GPU for model inference. The hyper-
parameters of the training are shown in Table 6. (Un-)DesirableWeight in the table represents the
hyperparameters λU and λD of KTO in the paper.

Table 6: The detail training settings for SFT and KTO alignments.

LoRA Dropout LoRA R LoRA Alpha LearningRate WarmUp Ratio BatchSize MaxLength Epochs (Un-)DesirableWeight Beta
SFT 0.05 64 16 3.00E-04 0.01 24 2048 20 / /
KTO 0.05 16 16 5.00E-07 0.1 4 2048 20 1.0 0.1

For the SFT, we adopt the code from the public Github repository at https://github.com/
QwenLM/Qwen, and for KTO training, we adopt the code from the public Github repository at
https://github.com/huggingface/trl. And our project code is available at https:
//anonymous.4open.science/r/LLMOPT.

C DETAILED RESULTS

In this section, we present detailed results comparing LLMOPT with the GPT-4 series models, in-
cluding the Solving Accuracy (SA) shown in Table 7, the Execution Rate (ER) shown in Table 8,
and the Average Solving Times (AST) shown in Table 9. All the results LLMOPT is based on
Qwen1.5-14B. In all the tables, the values in bold represent the best performance achieved by LL-
MOPT, while the underlined values indicate the best performance among the GPT-4 series models.
Across all six datasets, LLMOPT outperforms GPT-4 in both Solving Accuracy (SA) and Execution
Rate (ER) metrics. Additionally, LLMOPT often achieves better performance than GPT-4 in terms
of Average Solving Times (AST).

Table 7: Detailed results of solving accuracy (SA). Bold indicates LLMOPT’s best performance,
while underlined indicates the best results from GPT-4 models.

NL4Opt Mamo Easy Mamo Complex IndustryOR NLP4LP ComplexOR

w/o debug

GPT-4-turbo
Directly 47.0% 65.0% 13.0% 26.0% 13.5% 9.1%
+ 5-elem 48.0% 66.0% 19.0% 28.0% 10.8% 0.0%

GPT-4o
Directly 52.0% 67.0% 19.0% 31.0% 18.9% 9.1%
+ 5-elem 62.0% 67.0% 23.0% 27.0% 16.2% 18.2%

LLMOPT

w/o five-element & KTO 56.0% 65.0% 29.0% 22.0% 16.2% 9.1%
w/o KTO 52.0% 63.0% 33.0% 28.0% 18.9% 9.1%

w/o five-element 60.0% 72.0% 31.0% 27.0% 16.2% 9.1%
LLMOPT (w/o debug) 57.0% 71.0% 32.0% 31.0% 35.2% 18.2%

with debug

GPT-4-turbo
+ debug 75.0% 81.0% 25.0% 30.0% 32.4% 18.2%

+ 5-elem + debug 76.0% 85.0% 27.0% 29.0% 37.8% 27.3%

GPT-4o
+ debug 81.0% 91.0% 34.0% 34.0% 32.4% 27.3%

+ 5-elem + debug 83.0% 90.0% 38.0% 34.0% 35.2% 36.4%

LLMOPT

w/o five-element & KTO 88.0% 89.0% 46.0% 33.0% 54.1% 45.5%
w/o KTO 90.0% 97.0% 65.0% 43.0% 64.9% 54.6%

w/o five-element 91.0% 96.0% 64.0% 41.0% 73.0% 72.7%
LLMOPT (Full) 93.0% 97.0% 68.0% 46.0% 83.8% 72.7%

15

https://instructions.apps.allenai.org/
https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned-kto
https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned-kto
https://github.com/QwenLM/Qwen
https://github.com/QwenLM/Qwen
https://github.com/huggingface/trl
https://anonymous.4open.science/r/LLMOPT
https://anonymous.4open.science/r/LLMOPT

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 8: Detailed results of execution rate (ER). Bold indicates LLMOPT’s best performance, while
underlined indicates the best results from GPT-4 models.

NL4Opt Mamo Easy Mamo Complex IndustryOR NLP4LP ComplexOR

w/o debug

GPT-4-turbo
Directly 64.0% 71.0% 24.0% 34.0% 21.5% 15.8%
+ 5-elem 57.0% 68.0% 23.0% 33.0% 20.0% 15.8%

GPT-4o
Directly 71.0% 71.0% 42.0% 40.0% 35.4% 42.1%
+ 5-elem 69.0% 72.0% 38.0% 36.0% 33.9% 36.8%

LLMOPT

w/o five-element & KTO 74.0% 74.0% 41.0% 39.0% 33.9% 36.8%
w/o KTO 73.0% 72.0% 39.0% 38.0% 33.9% 26.3%

w/o five-element 82.0% 86.0% 53.0% 63.0% 38.5% 42.1%
LLMOPT (w/o debug) 79.0% 85.0% 52.0% 55.0% 47.7% 47.4%

with debug

GPT-4-turbo
+ debug 95.0% 99.0% 95.0% 87.0% 81.5% 79.0%

+ 5-elem + debug 93.0% 98.0% 91.0% 83.0% 78.5% 79.0%

GPT-4o
+ debug 99.0% 99.0% 96.0% 83.0% 86.2% 89.5%

+ 5-elem + debug 96.0% 100.0% 96.0% 82.0% 84.6% 84.2%

LLMOPT

w/o five-element & KTO 100.0% 100.0% 96.0% 90.0% 73.9% 73.7%
w/o KTO 99.0% 100.0% 95.0% 92.0% 89.2% 100.0%

w/o five-element 99.0% 100.0% 98.0% 92.0% 96.9% 94.7%
LLMOPT (Full) 99.0% 100.0% 97.0% 92.0% 100.0% 94.7%

Table 9: Detailed results of average solving times (AST). Bold indicates LLMOPT’s best perfor-
mance, while underlined indicates the best results from GPT-4 models.

NL4Opt Mamo Easy Mamo Complex IndustryOR NLP4LP ComplexOR

GPT-4-turbo
+ debug 4.66 3.87 9.76 9.13 9.97 11.32

+ 5-elem + debug 4.75 3.59 9.81 9.47 10.08 11.32

GPT-4o
+ debug 3.89 3.26 9.15 8.96 9.89 11.13

+ 5-elem + debug 3.93 3.61 9.06 8.97 10.40 10.95

LLMOPT

w/o five-element & KTO 3.58 3.45 8.11 9.25 8.68 10.79
w/o KTO 3.47 2.80 6.79 8.88 8.32 10.84

w/o five-element 2.95 2.36 6.38 8.50 7.43 10.05
LLMOPT (Full) 3.07 1.70 6.30 8.35 7.00 10.27

D COMPARASION BETWEEN QWEN1.5 AND QWEN 2

In this section, we compare the performance of LLMOPT based on Qwen1.5-14B and Qwen2-
72B (Yang et al., 2024a), focusing on two challenging tasks: Mamo Complex and IndustryOR. As
illustrated in Figure 5, LLMOPT based on Qwen2-72B demonstrates superior performance in both
tasks. Specifically, LLMOPT on Qwen2-72B outperforms Qwen1.5-14B across both the Solving
Accuracy (SA) and Execution Rate (ER) metrics, highlighting the enhanced capabilities of the larger
model in handling complex optimization problems.

Mamo Complex IndustryOR0%

20%

40%

60%

80%

So
lv

in
g

A
cc

ur
ac

y
(S

A
) 68.0%

46.0%

73.0%

60.0%

(a) Solving Accuracy Comparison.

LLMOPT based on Qwen1.5-14B
LLMOPT based on Qwen2-72B

Mamo Complex IndustryOR

60%

80%

100%

Ex
ec

ut
io

n
R

at
e

(E
R

) 97.0%
92.0%

100.0% 98.0%

(b) Execution Rate Comparison.

LLMOPT based on Qwen1.5-14B
LLMOPT based on Qwen2-72B

Figure 5: Comparasion in (a) solving accuracy and (b) execition rate between Qwen1.5 and Qwen2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E GENERALIZATION ON OTHER TASKS

In this section, we compare the model’s performance before and after fine-tuning across 10 tasks:
Math, Code, Classification, Extraction, Open QA, Closed QA, Text Generation, Brainstorming,
Rewriting, and Summarization, as shown in Figure 6. The results indicate that LLMOPT does not
significantly degrade performance on a broad range of tasks.

Math Code Classification Extract Open QA Closed QA Generation Brainstorming Rewrite Summarization Average

60%

80%

100%

A
cc

ur
ac

y 80.6%
82.3%

85.6%

82.0%

77.2%

85.5%
88.3% 88.9%

92.4%

88.5%

85.1%
81.9%

89.0%

81.2%
83.5%

77.7%

85.0%

91.4% 91.2% 89.9%

82.8%
85.4%+1.3

+6.7
-4.4

+1.5

+0.5

-0.5

+3.1 +2.3 -2.5

-5.7
+0.3

Qwen1.5 (Pre-trained)
LLMOPT based on Qwen1.5

Figure 6: Results of performance evaluation on other task types.

F SCENARIOS OF DATASETS

The scenarios of the datasets are presented in Figure 7, covering 20 scenarios approximately.

NL4Opt Mamo Easy Mamo Complex IndustryOR NLP4LP ComplexOR Sum.
Agriculture 23 30 5 6 3 1 68

Energy 5 33 7 1 4 0 50
Health 52 49 53 3 1 1 159
Retail 34 47 37 11 2 1 132

Environment 6 40 0 0 0 0 46
Education 11 32 0 3 1 0 47

Financial Services 5 46 2 6 4 0 63
Transportation 36 73 76 18 7 7 217
Public Utilities 6 29 11 0 2 0 48
Manufacturing 44 71 8 45 31 8 207

Software 2 0 10 1 7 1 21
Construction 4 56 1 1 0 0 62

Legal 0 0 0 0 2 0 2
Customer Service 2 2 0 0 0 0 4

Entertainment 10 44 0 0 0 0 54
Others 5 100 1 5 1 0 112
Data 245 652 211 100 65 19 1292

Figure 7: Scenarios of the datasets.

G OPTIMIZATION TYPES OF DATASETS

The types of optimization problems are presented in Figure 8, categorized into 7 different classes.

NL4Opt Mamo Easy Mamo Complex IndustryOR NLP4LP ComplexOR Sum.

Linear Programming 104 2 59 20 15 7 207

Integer Programming 105 238 12 11 3 1 370

Mixed Integer Programming 35 412 48 44 35 8 582

Nonlinear Programming 0 0 2 0 7 0 9

Combinatorial Optimization 0 0 65 9 5 3 82

Multi-objective Programming 0 0 0 8 0 0 8

Others 1 25 8 0 0 34

Data 245 652 211 100 65 19 1292

Figure 8: Optimization types of the datasets.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

H TEMPLATES FOR INSTRUCTIONS ON LEARNING AND AUTO-TESTING

In this section, all instruction templates are introduced. Each template contains instruction con-
structed by fully filling in the curly braces “{·}” to specify the required content. The following
templates are used both for constructing learning instructions and for prompts during auto-testing.

1 In mathematics, optimization problem can be modeled as the following
expression $\min_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x}),
{\rm s.t.} G(\boldsymbol{x}) \leq \boldsymbol{c}$, where
$\boldsymbol{x} = (x_1, x_2, \ldots, x_D)ˆ\top$ is the
D-dimensional decision variable, $\mathcal{X} \subset
\mathbb{R}ˆD$ is the feasible domain, $f: \mathcal{X} \rightarrow
\mathbb{R}$ is the objective function and the goal is to find the
minima of f, $G(\boldsymbol{x}) \leq \boldsymbol{c}$ are the
constraints of \boldsymbol{x}.

2

3 The above definition can be mapped to a five-element consisting of
‘‘Variables, Objective, Constraints, Sets, Parameters’’. Variables
indicates what \boldsymbol{x} is, Objective describes the form of
the objective function $f(\boldsymbol{x})$, and Constraints
indicates the constraints $G(\boldsymbol{x})$ and \mathcal{X}.
These three can abstract the optimization problem. Sets and
Parameters are their specific explanations: Sets describes and
explains the subscripts of the vectors or matrices in them, and
Parameters supplement their specific values.

4

5 You need to write the corresponding five-element model based on the
problem description and information provided.

6

7 The problem description is as follows:
8 ‘‘‘
9 {PROBLEM DESCRIPTION}

10 ‘‘‘
11

12 Please write the corresponding five-element model. Please use LaTeX and
‘‘‘ plain text environment to complete the following template to
model the above optimization problem into five-element:

13

14 ‘‘‘
15 ## Sets:
16 [You need to fill in]
17

18 ## Parameters:
19 [You need to fill in]
20

21 ## Variables:
22 [You need to fill in]
23

24 ## Objective:
25 [You need to fill in]
26

27 ## Constraints:
28 [You need to fill in]
29 ‘‘‘

Listing 1: Instruction template of define the five-element formulation from the problem description.

1 The five-element model is the abstraction of an optimization problem,
which transforms specific problem scenarios into formal mathematical
problems. You need to write the corresponding Pyomo code based on
the five-element model provided.

2

3 The following is the five-element model of an optimization problem:
4 ‘‘‘

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

5 {FIVE-Element}
6 ‘‘‘
7

8 Please write the corresponding Pyomo code. Please add ‘from
pyomo.environ import *‘ at the beginning of your code (You can add
other ‘import‘ as well). Please print the optimal solution and the
value of the objective function. Please do not output the running
log. You need to write it in the form of a class and add a main
function:

9

10 ‘‘‘python
11 [Write your code here]
12 ‘‘‘

Listing 2: Instruction template of generate the solver code from the five-element formulation.

1 The five-element model is the abstraction of an optimization problem,
which transforms specific problem scenarios into formal mathematical
problems. You need to write the corresponding Pyomo code based on
the five-element model provided.

2

3 The problem description is as follows:
4 ‘‘‘
5 {PROBLEM DESCRIPTION}
6 ‘‘‘
7

8 Please write the corresponding Pyomo code. Please add ‘from
pyomo.environ import *‘ at the beginning of your code (You can add
other ‘import‘ as well). Please print the optimal solution and the
value of the objective function. Please do not output the running
log. You need to write it in the form of a class and add a main
function:

9

10 ‘‘‘python
11 [Write your code here]
12 ‘‘‘

Listing 3: Instruction template of generate the solver code from the problem description.

1 For the following optimization problem, modeling is performed, and pyomo
code is generated and executed based on the modeling. Please judge
whether the modeling and code are correct.

2 The problem is as follows.
3 ‘‘‘
4 {PROBLEM DESCRIPTION}
5 ‘‘‘
6

7 The five-element formulation is as follows.
8 ‘‘‘
9 {FIVE-Element}

10 ‘‘‘
11

12 The code is as follows.
13 ‘‘‘
14 {SOLVER CODE}
15 ‘‘‘
16

17 Run the code and get the following running information.
18 ‘‘‘
19 {OUTPUT INFORMATIONS}
20 {ERROR INFORMATIONS}
21 ‘‘‘
22

23 Please judge whether the above five-element and code are correct, and
give your analysis according to the template below.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

24

25 ‘‘‘
26 The five-element is [Fill in True/False here].
27

28 The code is [Fill in True/False here].
29

30 Analysis:
31 [Fill in your analysis here]
32 ‘‘‘

Listing 4: Instruction template of self-correction.

I TEMPLATES FOR DATA AUGMENTATION

In this section, a general template for data augmentation is introduced. The same as previous section,
the curly braces “{·}” should be fully filled. The “ONE OF THE RULES BELOW” represents one
of the rules of generating new questions, selected randomly from the ones introduced below.

1 Please generate an optimization problem according to the following
requirements and the given format.

2

3 {ONE OF THE RULES BELOW}
4

5 The original optimization problem is as follows:
6 ‘‘‘
7 {ORIGINAL OPTIMIZATION PROBLEM DESCRIPTION}
8 ‘‘‘
9

10 Please construct a new optimization problem according to the above
requirements and the provided questions and in the following format:

11 ‘‘‘
12 [Write your new problem here]
13 ‘‘‘

Listing 5: General template for data augmentation.

1 1. The following is an optimization problem. Please construct a new
optimization problem based on the context of this problem.

2 2. The following is an optimization problem. Please find similar
problems in other fields and construct a new optimization problem
with a new scenario.

3 3. There are two optimization problems. Please construct a new
optimization problem based on the scenario of problem A and the
optimization problem type of problem B.

4 4. The following is an optimization problem. Please modify the
constraints of this problem and construct a new optimization problem.

5 5. The following is an optimization problem. Please modify the
constraints and object of this problem and construct a new
optimization problem.

6 6. The following is an optimization problem. Please modify the variables
and parameters of this problem reasonably and construct a new
optimization problem.

7 7. The following is an optimization problem. Please modify the
description of some statements and construct a new optimization
problem without changing the meaning of the original problem.

Listing 6: Rules for data augmentation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

J EXAMPLES OF FIVE-ELEMENT FORMULATION FOR DIFFERENT
OPTIMIZATION PROBLEMS

This section presents examples of five-element formulations for different optimization problems,
including seven examples spanning linear programming, integer programming, mixed-integer pro-
gramming, nonlinear programming, and combinatorial optimization. By illustrating the five-element
formulation across these diverse problem types, we aim to show the broad applicability of this mod-
eling approach for general optimization problem.

Linear Programming

Problem Statement:
A person plans to invest $100,000 in stocks and bonds over the next year to maximize the
return on their investment portfolio. The expected annual return rate for stocks is 8%, while
the annual return rate for bonds is 4%. At the same time, the risk coefficient for stocks
is 0.08, and the risk coefficient for bonds is 0.02. The investor wants at least 60% of the
funds to be invested in bonds, and the total risk of the entire portfolio cannot exceed 0.05.
The investor needs to determine how to allocate this $100,000 under the above conditions to
achieve the maximum possible expected return.

Five-Element Formulation:
Sets
Set of investment methods: S = {s, b}

Parameters
Annual return rate for stocks: Rs = 0.08
Annual return rate for bonds: Rb = 0.04
Risk coefficient for stocks: Cs = 0.08
Risk coefficient for bonds: Cb = 0.02
Total investment amount: I = 100000
Minimum proportion of bonds: α = 0.60
Maximum total risk allowed: Cmax = 0.05

Variables
Amount of money to be invested in stocks: xs

Amount of money to be invested in bonds: xb

Objective
Maximize the total expected return:

max
xs,xb

Rsxs +Rbxb

Constraints
Total investment constraint:

xs + xb = I

Minimum investment in bonds constraint:

xb ≥ αI

Total portfolio risk constraint:

Cs
xs

I
+ Cb

xb

I
≤ Cmax

Non-negativity constraint:

xs ≥ 0, xb ≥ 0

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Integer Programming

Problem Statement:
An accounting firm employs part time workers and full time workers. Full time workers
work 8 hours per shift while part time workers work 4 hours per shift. In addition, full time
workers are paid $300 per shift while part time workers are paid $100 per shift. Currently,
the accounting firm has a project requiring 450 hours of labor. If the firm has a budget of
$15000, how many of each type of worker should be scheduled to minimize the total number
of workers.

Five-Element Formulation:

Sets
Set of employee types: S = {f, p}

Parameters
Hours per shift: hf = 8, hp = 4
Wages per shift: wf = 300, wp = 100
Total labor time required: T = 450
Budget: B = 15000

Variables
Employees shifts: xf , xp

Objective
Minimize employee number: minxf ,xp xf+xp

Constraints
Labor time constraint:

hfxf + hpxp ≥ T

Budget constraint:

wfxf + wpxp ≤ B

Positive integer constraint:

xf , xp ∈ Z+

Integer Programming 2

Problem Statement:
A company intends to construct residential buildings on a new property and needs to com-
plete the design and construction drawings. Influenced by various factors such as the market,
the time required for design and construction exhibits cyclical peaks and troughs throughout
the 12 months of the year. Specifically, the time required to complete the design drawings
for each month is as follows: 3, 3, 4, 5, 6, 7, 6, 5, 4, 4, 3, 3 months; the time required for
construction is as follows: 3, 4, 4, 5, 5, 6, 7, 8, 9, 7, 5, 4 months. What is the shortest
time required for the company to go from the start of the design phase to the completion of
construction?

Five-Element Formulation:
Sets
Month Set:

M = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Parameters
Design time (per month) is td(x):

td = [3, 3, 4, 5, 6, 7, 6, 5, 4, 4, 3, 3]

Construction time (per month) is tc(y mod 12):

tc = [3, 4, 4, 5, 5, 6, 7, 8, 9, 7, 5, 4]

Variables
The month design starts: x
The month construction starts: y

Objective
Minimize the total time span:

min
x,y

y + tc((y − 1)mod 12 + 1)− x

Constraints
Order constraint:

y ≥ x+ td(x)

Value constraint:

x ∈ {1, 2, . . . , 12}

Value constraint:

y ∈ Z+

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Mixed Integer Programming

Problem Statement:
MarketFlow Inc. must decide how to allocate resources for efficiently supplying six retail stores. They
have identified four potential distribution centers, each with different opening costs and capabilities.
The challenge is to choose the right mix of centers and optimal transportation routes to meet retail
demands at the lowest total cost, which includes both opening expenses and transportation costs.
Specifically, the supply capacity of each distribution center, measured in units, is as follows: Center
1 has a capacity of 1,631 units, Center 2 has 1,954 units, Center 3 has 1,446 units, and Center 4 has
820 units. The demand for each retail store, expressed in units, is as follows: Store 1 has a demand of
910 units, Store 2 has 875 units, Store 3 has 589 units, Store 4 has 962 units, Store 5 has 966 units,
and Store 6 has 643 units. The opening costs for each distribution center are as follows: Center 1 costs
$151,000, Center 2 costs $192,000, Center 3 costs $114,000, and Center 4 costs $171,000.
The transportation cost per unit from each distribution center to retail stores is as follows:

• From Center 1: $5 to Store 1, $5 to Store 2, $2 to Store 3, $3 to Store 4, $3 to Store 5, $3 to Store 6
• From Center 2: $5 to Store 1, $4 to Store 2, $3 to Store 3, $5 to Store 4, $2 to Store 5, $4 to Store 6
• From Center 3: $2 to Store 1, $4 to Store 2, $5 to Store 3, $1 to Store 4, $4 to Store 5, $2 to Store 6
• From Center 4: $5 to Store 1, $4 to Store 2, $1 to Store 3, $1 to Store 4, $3 to Store 5, $3 to Store 6

MarketFlow Inc. aims to efficiently meet demand at its six retail stores while minimizing costs related
to opening distribution centers and transporting goods. This involves strategically allocating resources
by selecting which centers to open and how much to transport to each store, all within supply con-
straints. What is the optimal total cost for MarketFlow Inc. to open the necessary centers and transport
goods, ensuring demands are met at the lowest overall expense?

Five-Element Formulation:
Sets
Set of potential distribution centers: I = {1, 2, 3, 4}
Set of retail stores: J = {1, 2, 3, 4, 5, 6}

Parameters
Demand of each store: d = (910, 875, 589, 962, 966, 643)⊤

Supply capacity of each center: s = (1631, 1954, 1446, 820)⊤

Opening cost of each center: c = (151000, 192000, 114000, 171000)⊤

Transportation cost per unit tij from center i to store j:

T|I|×|J| =

5 5 2 3 3 3
5 4 3 5 2 4
2 4 5 1 4 2
5 4 1 1 3 3


Variables
Amount of goods transported from distribution center i to retail store j: xij

Binary variable indicating whether distribution center i is open: yi

Objective
min

∑
i∈I

ciyi +
∑
i∈I

∑
j∈J

tijxij

Constraints
Demand fulfillment constraint: ∑

i∈I

xij = dj , ∀j ∈ J

Supply capacity constraint: ∑
j∈J

xij ≤ siyi, ∀i ∈ I

Non-negativity constraint:
xij ≥ 0, ∀i ∈ I, ∀j ∈ J

yi ∈ {0, 1}, ∀i ∈ I

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Nonlinear Programming

Problem Statement:
The Chinese University of Hong Kong, Shenzhen decides to build a circular fountain on the
campus. The school wants the fountain to be round and as large as possible but it must be
restricted in a polygonal construction field, which is given by the following points: (0, 1), (0,
6), (4, 10), (8, 10), (11, 7), (11, 4), (7, 0), and (1, 0), the unit is m. Give a linear optimization
formulation and find the maximal area. Keep your answer in four significant digit number.

Five-Element Formulation:
Sets
Set of polygon vertices: P = {(xi, yi) | i = 1, . . . , 8}

Parameters
Polygon vertices:

P1 = (0, 1) P2 = (0, 6) P3 = (4, 10) P4 = (8, 10)

P5 = (11, 7) P6 = (11, 4) P7 = (7, 0) P8 = (1, 0)

Variables
Center of the circular fountain: (xc, yc)
Radius of the circular fountain: r

Objective
max

xc,yc,r
πr2

Constraints
Center inside polygon constraint:
For each edge defined by vertices (xi, yi) and (xi+1, yi+1), ensure:

(yi+1 − yi)xc − (xi+1 − xi)yc + xi+1yi − yi+1xi√
(yi+1 − yi)2 + (xi+1 − xi)2

≥ 0 for i = 1, . . . , 8

Distance to edges constraint:
The distance from the center (xc, yc) to each edge must be at least the radius r:

|(yi+1 − yi)xc − (xi+1 − xi)yc + xi+1yi − yi+1xi|√
(yi+1 − yi)2 + (xi+1 − xi)2

≥ r for i = 1, . . . , 8

Non-negativity constraint:
r ≥ 0

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Combinatorial Optimization 1 (0-1 Knapsack Problem)

Problem Statement:
There are 4 items with weights of 4, 3, 1, and 1, and their values are 300, 200, 150, and
200 respectively, with only one of each item available. If we select items such that the total
weight does not exceed 5, what is the maximum value that can be obtained?

Five-Element Formulation:
Sets
Set of items: I = {1, 2, 3, 4}

Parameters
Weight of items: w = (4, 3, 1, 1)⊤

Value of items: v = (300, 200, 150, 200)⊤

Maximum allowable weight: W = 5

Variables
Binary variable indicator: x signifies whether
item i is selected (xi = 1) or not (xi = 0), for
i ∈ I

Objective
Maximize the total value:

max
∑
i∈I

vixi

Constraints
Weight constraint:∑

i∈I

wixi ≤ W

Binary constraint:

xi ∈ {0, 1} for all i ∈ I

Combinatorial Optimization 2 (Traveling Salesman Problem)

Problem Statement:
In a network consisting of four cities, namely A, B, C, and D, the distances between the
cities are as follows: the distance from city A to city B is 10 units, the distance from city A
to city C is 15 units, the distance from city A to city D is 20 units, the distance from city B
to city C is 35 units, the distance from city B to city D is 25 units, and the distance from city
C to city D is 30 units. All distances are symmetrical, meaning the distance from city i to
city j is equal to the distance from city j to city i. A travel route is defined as: starting from
a certain city, visiting all cities exactly once, and ultimately returning to the starting city.
Please find a travel route that meets the requirements and minimizes the total travel distance.

Five-Element Formulation:
Sets
Set of cities: I = {A,B,C,D}.

Parameters
Distance between city i and city j:

dij =



10 if {i, j} = {A,B}
15 if {i, j} = {A,C}
20 if {i, j} = {A,D}
35 if {i, j} = {B,C}
25 if {i, j} = {B,D}
30 if {i, j} = {C,D}
0 if i = j

Variables
Binary route indicator: xij , ∀i, j ∈ I
Visit order of city i: ui , ∀j ∈ I

Objective
Minimize the total travel distance:

min
∑
i∈I

∑
j∈I,i ̸=j

dijxij

Constraints
Visit and leave constraints:∑

j∈I,i ̸=j

xij = 1 ∀i ∈ I

∑
i∈I,i ̸=j

xij = 1 ∀j ∈ I

Subtour elimination constraint:

ui − uj + |I| · xij ≤ |I| − 1 , ∀i, j ∈ I, i ̸= j

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

K DETAILED PROCESS OF DATA LABELING AND AUGMENTATION

In this section, we introduce the process of data labeling and augmentation, which is divided into
four stages: preliminary review, expert labeling, expert review, and data aggregation.

1. Preliminary review. Initially review the data and remove unfeasible problems (unfeasible
not means difficult). With the help of GPT-4o, we divide optimization problems into two
categories according to their difficulty. Problems that meet one of the following conditions
will be classified as difficult problems: at least 3 out of 5 solutions using GPT-4o are
inconsistent, the code generated by GPT-4o has errors, and experts have found complex
constraints, reasoning, or large amounts of data.

2. Expert labeling. For simple questions, 2 experts independently annotate. And 3 experts
independently label for complex questions. For each question, five-element and solver
code need to be labeled, and the code must be run without errors. In this stage, experts
may use GPT-4o to generate text that meets the expert’s intentions to reduce typing time
and generate more formatted code. In order to improve data quality, experts may modify
questions appropriately to make them more suitable for the problem scenario, or delete
inappropriate questions (such as unfeasible ones).

3. Expert review. For each question, a new expert checks the labels of other experts in the
previous step, which is based on the correctness of the problem modeling and the consis-
tency of the labels of different experts (the same question may have different but correct
labels from different experts). Highly controversial questions or those with any incorrect
labels are included in a independent challenging dataset.

4. Data aggregation. Five experts discuss and analyze each of the data in the independent
difficult dataset to determine whether the problem has a solution or can be adjusted to
a feasible problem, and decide whether to abandon the problem based on this. If not, the
experts will discuss and complete the labeling of these data. The correctly labeled questions
that has passed the expert review will be summarized. And the other feasible questions that
has been incorrectly labeled during the entire labeling process will be summarized.

The above steps are completed by 12 experts. The “preliminary review” and “expert labeling” are
finished by 9 undergraduate students with bachelor’s degrees or above (computer science or mathe-
matics, all of whom have taken optimization courses), including 4 master’s students in related fields
(1 doctoral student). The “expert review” is finished by 1 university professor whose research is
optimization in machine learning and 2 algorithm engineers working on operations research opti-
mization. “Data aggregation” is finished by the experts except undergraduates. During the data
labeling process, we ensure that each expert completed the labeling independently. In the first three
stages, a question would not be assigned to the same expert twice.

The review pass rate for the seven experts assigned to simple question labeling exceeds 90%, while
the pass rate for the four experts labeling complex question labeling is above 80% (2 experts la-
beled both simple and complex questions). Considering the above statistics, along with the fact
that the labeling results will undergo review by senior experts in the third stage, the reliability and
effectiveness of the expert labeling process are well-supported.

L MORE EXPERIMENTS FOR GENERALIZATION PERFORMANCE

In order to demonstrate the generality of LLMOPT, we re-analyzed all experimental results and clas-
sified the types of optimization problems involved in each dataset, including Linear Programming
(LP), Integer Programming (IP), Mixed Integer Programming (MIP), Nonlinear Programming (NP),
Combinatorial Optimization (CO), Multi-objective Programming (MOP) and Others. The follow-
ing table shows the SA performance of LLMOPT in solving various types of problems on different
datasets. The data is the solving accuracy (SA), and the values in brackets represent “number of
problems solved correctly/number of problems in the dataset”. Detailed statistics are shown in Ta-
ble 10. The results show that LLMOPT is universal in various types of optimization problems and
can solve almost all kinds of optimization problems. However, due to the different distribution of
problem formulating difficulties, the accuracy of LLMOPT on these datasets is also different, which
will be one of the focuses of future work.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 10: SA of LLMOPT (based on Qwen-1.5-14B) organized by the type of optimization prob-
lems. The values in brackets represent “number of problems solved correctly/number of problems
in the dataset”.

NL4Opt MamoEasy MamoComplex IndustryOR NLP4LP ComplexOR
LP 90.5% (38/42) - 76.0% (19/25) 60.0% (12/20) 77.8% (7/9) 60.0% (3/5)
IP 95.8% (46/48) 100.0% (36/36) 100.0% (5/5) 45.5% (5/11) 0.0% (0/1) -

MIP 90.0% (9/10) 95.3% (61/64) 73.9% (17/23) 47.7% (21/44) 95.2% (20/21) 80.0% (4/5)
NP - - 100.0% (1/1) - 100.0% (3/3) -
CO - - 60.0% (21/35) 33.3% (3/9) 33.3% (1/3) 100.0% (1/1)

MOP - - - 37.5% (3/8) - -
Others - - 50.0% (5/10) 25.0% (2/8) - -
Total 93.0% (93/100) 97.0% (97/100) 68.0% (68/100) 46.0% (46/100) 83.8% (31/37) 72.7% (8/11)

M MORE ABLATION EXPERIMENTS FOR CORRECTION MECHANISM

To further explore the superiority of self-correction and LLMOPT, we deploy experiments on the
NL4Opt and IndustryOR datasets (NL4Opt has relatively simple problems, while IndustryOR has
relatively complex problems). We change two correction mechanisms, one is correction by GPT-4o
with the same prompt of self-correction, and the other is to repeat the inference 12 times and manu-
ally judge the optimal solution (which means that only one optimal solution needs to be found in 12
repeated experiments). The reason we chose 12 is that self-correction is limited to a maximum of 12
repeated checks, so this is fair. We also conducted experiments on GPT-4o and ORLM Tang et al.
(2024). We reproduced the open source model of ORLM Tang et al. (2024), but found that this model
seems to have lost other abilities except writing coptpy code for optimization problems. We find that
ORLM has a serious seesaw problem, which is performance as without generalization ability, and
cannot answer other questions. Therefore, only the “Best of 12 repeats” correction mechanism is
experimented. The results are shown in Table 11. The results show that, when LLMOPT (based on
Qwen-1.5) is used as the inference model, the correction performance of GPT-4 is lower than the
self-correction solving accuracy of LLMOPT. This indicates that the Qwen-1.5 model learned by
LLMOPT shows stronger overall capabilities in both solving optimization problems and correction
compared to other methods. Although manually selecting the best result from 12 repetitions shows
performance improvement (considering once solving correct if one out of 12 repetitions is accurate),
it still falls short of the effectiveness compared with the self-correction mechanism. This highlights
that identifying and correcting errors is more critical than simply repeating executions, emphasizing
the necessity of implementing a correction mechanism.

Table 11: Performance of Different Inference Models and Correction Mechanisms

Inference Model Correction Mechanism IndustryOR Dataset NL4Opt Dataset
LLMOPT (Qwen-1.5) Self-correction 46.0% 93.0%
LLMOPT (Qwen-1.5) Correction by GPT-4o 41.0% 89.0%
LLMOPT (Qwen-1.5) Best of 12 repeats 42.0% 89.0%

GPT-4o OpenAI (2023) Correction by GPT-4o 34.0% 84.0%
GPT-4o OpenAI (2023) Best of 12 repeats 32.0% 84.0%

ORLM Tang et al. (2024) Best of 12 repeats 39.0% 88.0%

27

	Introduction
	Related Work
	Methodology
	An Overview of the Proposed LLMOPT Framework
	Data: Defining and Labeling General Optimization Problems
	Universal Formulation to Define General Optimization Problems
	Data Augmentation and Labeling

	Learning: Multi-Instruction SFT and Model Alignment
	Multi-Instruction SFT
	Model Alignment

	Auto-Testing: Formulation, Solving and Self-Correction

	Experiment
	Experimental Setup
	Analysis of Optimization Generalization
	Ablation Study

	Discussion
	Conclusion
	Datasets
	The Introduction of Datasets
	Training Datasets for Multi-Instruction SFT and Model Alignment

	Detail setting of multi-instruction SFT and model alignment.
	Detailed Results
	Comparasion between Qwen1.5 and Qwen 2
	Generalization on Other Tasks
	Scenarios of Datasets
	Optimization Types of Datasets
	Templates for Instructions on Learning and Auto-Testing
	Templates for Data Augmentation
	Examples of Five-Element Formulation for Different Optimization Problems
	Detailed Process of Data Labeling and Augmentation
	More Experiments for Generalization Performance
	More Ablation Experiments for Correction Mechanism

