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Abstract001

Large Language Models (LLMs) excel at com-002
plex reasoning through search algorithms, yet003
current strategies often suffer from massive004
token consumption due to redundant explo-005
ration of semantically equivalent steps. Ex-006
isting semantic similarity methods struggle to007
accurately identify such equivalence in domain-008
specific contexts like mathematical reasoning.009
To address this, we propose EquivPruner, a010
simple yet effective approach that identifies011
and prunes semantically equivalent actions dur-012
ing LLM reasoning search. We also introduce013
MathEquiv, the first dataset we created for014
mathematical statement equivalence, which en-015
ables the training of a lightweight equivalence016
detector. Extensive experiments across vari-017
ous models and tasks demonstrate that Equiv-018
Pruner significantly reduces token consump-019
tion, improving searching efficiency and often020
bolstering reasoning accuracy. For instance,021
when applied to Qwen2.5-Math-7B-Instruct on022
GSM8K, EquivPruner reduced token consump-023
tion by 48.1% while also improving accuracy.024
Our code is available at https://anonymous.025
4open.science/r/EquivPruner-2364/.026

1 Introduction027

Large Language Models (LLMs) are increasingly028

demonstrating remarkable capabilities, yet their029

performance scaling during pretraining faces po-030

tential constraints due to data limitations (Lightman031

et al., 2023). Consequently, enhancing LLM ca-032

pabilities at inference time has become a critical033

research frontier (Snell et al., 2024). A prominent034

direction involves leveraging search algorithms,035

particularly reward-guided tree search, to improve036

complex reasoning (Ke et al., 2025). These meth-037

ods typically expand the search space by gener-038

ating multiple reasoning steps (e.g., via chain-of-039

thought prompting (Wei et al., 2022)) and employ040

techniques like beam search (Kang et al., 2024)041

or Monte Carlo Tree Search (MCTS) (Chen et al.,042

2024; Zhang et al., 2024a) to navigate this space 043

and identify high-quality solutions. 044

However, current search strategies exhibit signif- 045

icant inefficiencies (Damani et al., 2024). A com- 046

mon practice involves sampling multiple candidate 047

reasoning steps and exploring them, often allocat- 048

ing computational resources uniformly across these 049

candidates (Yao et al., 2023; Long, 2023; Besta 050

et al., 2024). This approach overlooks the potential 051

semantic equivalence among textually distinct can- 052

didates. Treating semantically identical reasoning 053

steps as unique branches leads to redundant ex- 054

ploration of the search space, incurring substantial 055

computational overhead through unnecessary token 056

generation and processing. Moreover, for search al- 057

gorithms that incorporate preference learning based 058

on intermediate steps (e.g., Xie et al., 2024; Jiang 059

et al., 2024),learning preferences from pairs of 060

equivalent steps may provide noisy or conflicting 061

signals, hindering the learning of effective reason- 062

ing policies. This challenge is particularly acute 063

in domains like mathematical reasoning, where nu- 064

merous textual formulations can represent the same 065

underlying logical operation or state. Addressing 066

this redundancy via standard Semantic Textual Sim- 067

ilarity (STS) techniques (Majumder et al., 2016) 068

proves inadequate as illustrated in Figure 1. Exist- 069

ing embedding models, such as SBERT (Reimers 070

and Gurevych, 2019), predominantly trained on 071

general text, often fail to capture the nuanced struc- 072

tural and logical equivalence specific to mathemati- 073

cal statements. Even domain-specific models like 074

MathBERT (Peng et al., 2021), which enhance 075

mathematical text representation, along with other 076

embedding models MATH-Similarity (Steinfeldt 077

and Mihaljević, 2024), lack optimization for identi- 078

fying functional equivalence between mathematical 079

sentences. This limitation is further exacerbated 080

by the lack of specialized benchmark datasets de- 081

signed for mathematical statement equivalence. Al- 082

though large-scale generative models can achieve 083
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Figure 1: Illustration of the mathematical statement
equivalence challenge during reasoning search. Given
multiple candidate steps generated by an LLM, standard
methods like embedding similarity or Levenshtein Ratio
may incorrectly assess candidate 1 and candidate 2 as
highly similar due to surface features, while failing to
recognize the true semantic equivalence between can-
didate 2 and candidate 3, which represent the identical
logical operation.

satisfactory performance in few-shot scenarios for084

such judgment tasks, their substantially higher com-085

putational complexity results in significantly slower086

inference speeds compared to embedding models087

(Brown et al., 2020). The consequent latency ren-088

ders them impractical for high-throughput applica-089

tions requiring real-time processing.090

To overcome these limitations, we introduce091

EquivPruner, a simple yet effective approach that092

centers on identifying and pruning semantically093

equivalent actions during LLM reasoning search.094

We create MathEquiv, the first dataset specifically095

designed for mathematical statement equivalence.096

Leveraging this dataset, we trained a lightweight097

yet effective equivalence detection model. This098

model serves as a dynamic pruner integrated into099

the LLM’s search process. When the LLM gener-100

ates multiple candidate reasoning steps at a given101

expansion point, the pruner identifies sets of seman-102

tically equivalent candidates among these siblings.103

For each set of equivalent steps, it retains only a104

single representative node for further exploration,105

effectively pruning the redundant branches and sig-106

nificantly reducing the search space.107

While the proposed pruning framework is po-108

tentially generalizable, this paper focuses on its109

validation within mathematical reasoning due to110

the significant research community attention (Ke111

et al., 2025) and the availability of well-developed 112

open-source process reward models (Shao et al., 113

2024). We conduct extensive experiments across 114

various models, including Mistral-7B-SFT (Shao 115

et al., 2024) and the Qwen2.5-Math-Instruct series 116

(Yang et al., 2024), using two widely recognized 117

math reasoning benchmarks: GSM8K (Cobbe et al., 118

2021) and MATH (Hendrycks et al., 2021). Our 119

proposed EquivPruner demonstrates compelling 120

improvements across these settings. For instance, 121

when applied to Qwen2.5-Math-7B-Instruct on 122

GSM8K—where the model already achieves a very 123

high baseline accuracy of 96.44%—EquivPruner 124

not only cuts token consumption by a substantial 125

48.1% but also further boosts accuracy to 96.59%. 126

This demonstrates EquivPruner’s ability to signifi- 127

cantly enhance searching efficiency. 128

Our main contributions are: 129

• To the best of our knowledge, this work is the 130

first to identify and address the problem of 131

action equivalence in LLM-based reasoning 132

search. 133

• We introduce EquivPruner, a simple yet ef- 134

fective approach that centers on identifying 135

and pruning semantically equivalent actions 136

during LLM reasoning search. 137

• We release MathEquiv, the first benchmark 138

dataset specifically designed for mathematical 139

statement equivalence. It serves as a versatile 140

resource applicable to a variety of mathemati- 141

cal tasks and scenarios. 142

• Extensive experiments demonstrate the ef- 143

fectiveness of EquivPruner. When applied 144

to Qwen2.5-Math-7B-Instruct on GSM8K, 145

EquivPruner not only cuts token consump- 146

tion by a substantial 48.1% but also further 147

boosts accuracy in a very high baseline. 148

2 Related Work 149

LLM Reasoning via Search Strategies Efforts 150

to improve LLM problem-solving capabilities 151

have moved beyond simple prompting. Chain- 152

of-Thought prompting (Wei et al., 2022) demon- 153

strated the value of intermediate reasoning steps. 154

Building on this, structured search methods like 155

Tree-of-Thoughts (Yao et al., 2023) and Graph- 156

of-Thoughts (Besta et al., 2024) explore multiple 157

reasoning paths, enhancing performance on com- 158

plex tasks requiring exploration and backtracking. 159
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Further advancing this direction, a particularly pow-160

erful paradigm integrates LLMs with sophisticated161

search algorithms. Among these, the synergy be-162

tween LLMs and Monte Carlo Tree Search (MCTS)163

(Chen et al., 2024; Zhang et al., 2024a) has gar-164

nered significant attention for tackling complex165

reasoning problems. MCTS, renowned for its abil-166

ity to balance exploration and exploitation in vast167

search spaces, becomes exceptionally potent when168

guided by an LLM’s generative capabilities to pro-169

pose candidate steps and a reward model to esti-170

mate state values (Yao et al., 2023; Long, 2023;171

Besta et al., 2024). This LLM-MCTS approach,172

alongside other advanced search integrations like173

LLM-guided beam search (Chen et al., 2024), has174

consistently achieved state-of-the-art results in de-175

manding areas such as science tasks (Yang et al.,176

2024), coding (Dainese et al., 2024; Zhang et al.,177

2023), and mathematical reasoning (Zhang et al.,178

2024b; Luo et al., 2024). However, despite the179

remarkable success of these advanced search strate-180

gies, a significant challenge emerges, especially181

prevalent in mathematical reasoning when employ-182

ing methods like LLM-MCTS: the substantial to-183

ken cost (Chen et al., 2024). While LLM-MCTS184

explores many branches effectively, it often wastes185

resources evaluating syntactically distinct but se-186

mantically equivalent states. This redundancy un-187

necessarily expands the search space, consuming188

tokens without yielding novel solutions, thus limit-189

ing efficiency and scalability.190

Mathematical Equivalence Detection Effective191

detection of mathematical statement equivalence192

is crucial for efficient LLM-Based search tree193

pruning, yet current methodologies exhibit signif-194

icant shortcomings. For instance, rudimentary se-195

quence comparison metrics like Levenshtein sim-196

ilarity (Yujian and Bo, 2007) are fundamentally197

ill-suited, as they fail to capture the deep seman-198

tic and hierarchical structures inherent in math-199

ematical language, leading to unreliable equiva-200

lence assessments. Standard Semantic Textual201

Similarity models, such as SBERT (Reimers and202

Gurevych, 2019), trained predominantly on general203

language corpora, are designed to capture semantic204

relatedness rather than strict mathematical equiv-205

alence. Even domain-specific models like Math-206

BERT (Peng et al., 2021), which enhance mathe-207

matical text representation, along with other em-208

bedding models MATH-Similarity (Steinfeldt and209

Mihaljević, 2024), lack optimization for identify-210

ing functional equivalence between mathematical 211

sentences. Their capacity to accurately recognize 212

semantically equivalent mathematical sentences is 213

thereby constrained, as illustrated by the examples 214

in Figure 1. While LLMs like GPT-4o (Hurst et al., 215

2024) has the ability to recognize mathematical 216

equivalence, their complex architectures introduce 217

significant latency. This high time overhead renders 218

them impractical for real-time pruning scenarios. 219

Consequently, there is an urgent need to enable 220

efficient pruning in LLM-based search. 221

3 Methodology 222

3.1 Define Semantic Equivalence in 223

Mathematics 224

Simply equating statements based on identical out- 225

comes can be superficial and misleading, as it may 226

overlook critical differences in conceptual articu- 227

lation, structural formulation, symbolic interpre- 228

tation, and methodological pathways. To address 229

this, we propose a definition of semantic equiv- 230

alence specifically attuned to these multifaceted 231

aspects. Accordingly, in our framework, two math- 232

ematical statements are considered semantically 233

equivalent if and only if they rigorously satisfy the 234

following criteria: 235

• Conceptual Consistency: The statements 236

must articulate identical mathematical con- 237

cepts, definitions, or propositions without am- 238

biguity. 239

• Structural Equivalence: Their logical for- 240

mulations, encompassing assumptions, deriva- 241

tions, and conclusions, must be fully aligned. 242

• Notational Precision: All variables, sym- 243

bols, and mathematical expressions must be 244

employed consistently, maintaining identical 245

meanings across the statements. 246

• Methodological Congruence: Semantic 247

equivalence necessitates an alignment in the 248

underlying methodology and reasoning. State- 249

ments yielding the same final result via dis- 250

parate approaches are not considered fully 251

equivalent. 252

Our approach to semantic equivalence thus man- 253

dates a comprehensive assessment. It scrutinizes 254

the congruence of conceptual foundations, logi- 255

cal structures, notational usage, and methodolog- 256

ical approaches. Two mathematical statements 257

3



Figure 2: The EquivPruner framework. Top: Training the lightweight equivalence pruner from labeled step-level
sentence pairs. Bottom: Applying the trained lightweight pruner during tree-search-based LLM inference to remove
semantically equivalent candidates generated by the LLM.

are judged completely equivalent only when they258

demonstrate indivisible identity across all these259

critical facets.260

3.2 The MathEquiv Dataset261

Recognizing the absence of dedicated datasets262

for mathematical statement equivalence, we con-263

structed and released MathEquiv to bridge this gap.264

The MathEquiv dataset was curated by initially em-265

ploying a Step-level Beam Search algorithm (Chen266

et al., 2024) to gather action candidates. These267

candidates were subsequently formulated into step-268

level sentence pairs.269

For the task of equivalence scoring, we imple-270

mented a five-tiered classification system. This271

granular approach was adopted to enhance the272

stability of the GPT model’s outputs, as pre-273

liminary experiments with binary classification274

(equivalent/non-equivalent) revealed inconsisten-275

cies in judgments. The five-tiered system yielded276

significantly more consistent and reliable assess-277

ments:278

• Level 4 (Exactly Equivalent): The state-279

ments are mathematically interchangeable in280

all respects, exhibiting identical meaning and281

form.282

• Level 3 (Likely Equivalent): Minor syntac-283

tic differences may be present, but the core284

mathematical content and logic align.285

• Level 2 (Indeterminable): Insufficient infor- 286

mation is available to make a definitive judg- 287

ment regarding equivalence. 288

• Level 1 (Unlikely Equivalent): While some 289

partial agreement may exist, critical discrep- 290

ancies in logic, definition, or mathematical 291

structure are observed. 292

• Level 0 (Not Equivalent): The statements are 293

fundamentally distinct in their mathematical 294

meaning, derivation, or resultant outcomes. 295

The MathEquiv dataset was labeled via an itera- 296

tive refinement process. Initially, GPT-4o labeled a 297

data subset, followed by human expert review. For 298

discrepancies, the human-adjudicated label and its 299

rationale were incorporated into GPT-4o’s prompt 300

as few-shot examples. This cycle was repeated un- 301

til model outputs for a randomly sampled subset 302

consistently aligned with human consensus. Sub- 303

sequently, the collection of few-shot examples was 304

pruned to a minimal, representative set sufficient 305

to maintain this model-human alignment. This it- 306

erative calibration process yielded the MathEquiv 307

dataset, characterized by high-quality labels and an 308

accurate assessment of semantic equivalence. The 309

final prompt is detailed in Figure 4. The MathE- 310

quiv dataset is available at https://anonymous. 311

4open.science/r/MathEquiv_dataset-B2B2/. 312
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3.3 Lightweight Pruner for Tree Search313

To facilitate dynamic, real-time pruning within our314

tree search algorithm, we developed and trained a315

dedicated Lightweight Pruner. The data collection316

process for training this pruner and its integration317

into the broader Tree-search-based LLM inference318

pipeline are illustrated in Figure 2.319

3.3.1 Data Complexity in Pruner Training320

The MathEquiv dataset, suitable for assessing over-321

all statement equivalence, presents specific chal-322

lenges for training the Lightweight Pruner. The323

dataset’s step-level sentence pairs often consist of324

multiple sentences. A key difficulty is that step325

pairs labeled as non-equivalent at a macro-level326

may nevertheless contain sub-pairs of sentences327

that are semantically equivalent. This character-328

istic, common in data derived from intermediate329

mathematical problem-solving steps, can introduce330

ambiguity and hinder the pruner’s ability to learn331

fine-grained distinctions if not appropriately ad-332

dressed. The true equivalence status of these sub-333

sentence pairs can be viewed as a latent aspect of334

the data.335

3.3.2 Pruner Training via336

Expectation-Maximization (EM)337

To effectively train the Lightweight Pruner amidst338

this data complexity, we employ the Expectation-339

Maximization (EM) algorithm, which is effective340

for handing the unobserved equivalence status of341

sub-sentence pairs within larger, complex training342

instances. The algorithm alternates between an343

Expectation (E) step and a Maximization (M) step:344

1. E-step (Expectation Step): Given the model345

parameters θ(t) at iteration t, the pruner predicts346

the equivalence probability of each sub-sentence347

pair in multi-sentence samples. Sub-sentence pairs348

with probabilities exceeding a threshold are treated349

as high-confidence equivalents and removed from350

samples to refine the dataset for the next step.351

2. M-step (Maximization Step): The model352

parameters are updated to θ(t+1) by maximizing353

the likelihood of the observed data, conditioned on354

the expectations derived in the E-step.355

By training on samples that have been simplified356

or where latent equivalences have been accounted357

for, the model can better focus on learning more358

subtle or challenging distinctions necessary for ef-359

fective pruning.360

4 Experiments 361

In this section, we present a series of comprehen- 362

sive experiments designed to validate the efficacy 363

of EquivPruner. 364

4.1 MathEquiv Dataset Generation 365

We constructed the MathEquiv dataset for math- 366

ematical statement equivalence. The foundation 367

of this dataset consists of 7,500 mathematical 368

problems sourced from the MATH training set 369

(Hendrycks et al., 2021). To prevent data leak- 370

age between training, validation, and test phases 371

of EquivPruner, these 7,500 problems were first 372

split into training, validation, and test sets using an 373

8:1:1 ratio, respectively. For each problem in these 374

distinct sets, we generated candidate reasoning step 375

pairs using the Qwen2.5-Math-7B-Instruct model 376

(Yang et al., 2024) via Step-level Beam Search. 377

These pairs were subsequently filtered based on 378

Levenshtein distance, and a balanced sample from 379

each set was then annotated for equivalence by 380

GPT-4o. This process resulted in distinct training, 381

validation, and test sets of annotated step pairs for 382

EquivPruner. The specific parameters for step pair 383

generation, filtering criteria, and the final dataset 384

sizes are detailed in Appendix A.1. 385

4.2 Experimental Setup 386

4.2.1 Models and Datasets 387

For inference, we utilized several LLMs: Qwen2.5- 388

Math-7B-Instruct (Yang et al., 2024), Mistral-7B- 389

SFT (Shao et al., 2024), and Qwen2.5-Math-1.5B- 390

Instruct (Yang et al., 2024). Given that exist- 391

ing open-source PRMs are predominantly tailored 392

for mathematical reasoning, our current investi- 393

gation is confined to mathematical tasks. Never- 394

theless, the EquivPruner framework is designed 395

for generalizability and can be readily extended 396

to other domains like code generation and com- 397

monsense reasoning. The Process Reward Model 398

(PRM) employed for guiding the Monte Carlo Tree 399

Search (MCTS) was Math-Shepherd-Mistral-7B- 400

PRM (Shao et al., 2024). As EquivPruner was 401

trained on data generated by Qwen2.5-Math-7B- 402

Instruct, the Mistral-7B-SFT and Qwen2.5-Math- 403

1.5B-Instruct models serve as out-of-distribution 404

(OOD) models in our experiments. 405

Our evaluation was conducted on two standard 406

benchmark datasets: 407

• MATH (Hendrycks et al., 2021): Featuring 408

challenging competition-level mathematics 409
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Table 1: Performance comparison of Vanilla MCTS and MCTS + EquivPruner across three language models on the
MATH and GSM8K datasets. EquivPruner significantly reduces token consumption (Tokens, Ratio) while generally
maintaining or improving accuracy (Acc, %). Best results within each model-dataset block are in bold.

Methods
MATH GSM8K

Acc Tokens Ratio Acc Tokens Ratio
Qwen2.5-Math-7B-Instruct:

Vanilla MCTS 83.40 106773 100.00% 96.44 34826 100.00%
+ EquivPruner 84.00 74194 69.49% 96.59 18071 51.89%

Mistral-7b-sft:
Vanilla MCTS 36.60 49251 100.00% 83.78 20217 100.00%

+ EquivPruner 37.40 38265 77.69% 85.06 12537 62.01%
Qwen2.5-Math-1.5B-Instruct:

Vanilla MCTS 75.60 91811 100.00% 91.05 39337 100.00%
+ EquivPruner 75.60 71878 78.29% 90.75 23752 60.38%

problems. Due to computational demands,410

our evaluation on the MATH dataset was per-411

formed on the MATH-500 subset, identical412

to the test partition used in Lightman et al.413

(2023).414

• GSM8K (Cobbe et al., 2021): Consisting of415

grade school mathematics word problems. Its416

test set has 1319 problems. Since EquivPruner417

was trained on data derived from MATH418

dataset problems, GSM8K is considered an419

OOD dataset.420

4.2.2 Implementation Details421

The EquivPruner model itself is a fine-tuned422

Longformer-base (Beltagy et al., 2020), chosen for423

its efficiency suitable for real-time pruning. During424

the MCTS inference phase, the determination of425

equivalence between two reasoning step nodes in-426

volves a two-stage process. First, the Levenshtein427

ratio between the steps is calculated. If the ratio428

is less than or equal to 0.75, the nodes are imme-429

diately considered non-equivalent, acting as a fast430

filter. Only if the Levenshtein ratio is greater than431

0.75 is the EquivPruner model invoked to make432

the final equivalence prediction. This hierarchical433

check balances speed and accuracy in the pruning434

process. The maximum number of newly generated435

tokens by the LLMs (max_new_tokens) was set to436

1024, and the generation temperature was 0.7. All437

experiments were conducted on NVIDIA GeForce438

RTX 3090 GPUs. Further details are available in439

Appendix A.2.440

4.3 Evaluation Metrics441

We adopted a vanilla MCTS (Chen et al., 2024)442

as the baseline for comparison. The evaluation of443

EquivPruner focuses on two primary aspects: 444

• Effectiveness: Measured using solution accu- 445

racy (Acc), the percentage of problems solved 446

correctly. 447

• Efficiency: Assessed through the total num- 448

ber of tokens generated (Tokens) and a token 449

ratio (Ratio), defined as the ratio of tokens gen- 450

erated by the EquivPruner-enhanced search to 451

those generated by the baseline MCTS. 452

4.4 Main Results 453

Table 1 presents our main experimental findings, 454

comparing vanilla MCTS against MCTS aug- 455

mented with EquivPruner. The results consis- 456

tently demonstrate that EquivPruner substantially 457

enhances computational efficiency across different 458

language models and datasets, primarily by reduc- 459

ing token generation while largely preserving or 460

even improving solution accuracy. 461

Efficiency Gains EquivPruner achieves signif- 462

icant reductions in token counts across all con- 463

figurations. For instance, with Qwen2.5-Math- 464

7B-Instruct on GSM8K, tokens were reduced by 465

approximately 48.11% (Ratio: 51.89%), and on 466

MATH, by 30.51% (Ratio: 69.49%). Similar sub- 467

stantial token savings were observed for Mistral- 468

7B-SFT (e.g., 37.99% reduction on GSM8K) and 469

Qwen2.5-Math-1.5B-Instruct (e.g., 39.62% reduc- 470

tion on GSM8K). These figures highlight Equiv- 471

Pruner’s effectiveness in pruning the search space. 472

Accuracy Impact and Resource Optimization 473

Crucially, these efficiency improvements are gen- 474

erally accompanied by maintained or enhanced 475
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Table 2: Performance of EquivPruner with Step-level
Beam Search (SBS) using the Qwen2.5-Math-7B-
Instruct model on MATH and GSM8K. EquivPruner
enhances accuracy (Acc, %) by promoting diversity
among selected nodes, with token counts (Tokens, Ra-
tio) remaining largely stable.

Methods Acc Tokens Ratio
MATH:

SBS 82.00 21341 100.00%
+ EquivPruner 82.20 20952 98.18%
GSM8K:

SBS 96.06 8004 100.00%
+ EquivPruner 96.13 7927 99.04%

accuracy. Qwen2.5-Math-7B-Instruct saw accu-476

racy gains of +0.60% on MATH and +0.15% on477

GSM8K. With Mistral-7B-SFT, an OOD model478

relative to EquivPruner’s training data source, ac-479

curacy improved by +0.80% on MATH and +1.28%480

on GSM8K (also an OOD dataset for EquivPruner).481

This suggests that by eliminating redundant explo-482

rations, EquivPruner enables MCTS to allocate its483

search resources more effectively. For Qwen2.5-484

Math-1.5B-Instruct (another OOD model), accu-485

racy was maintained on MATH and saw a minor486

dip of -0.30% on GSM8K, which is a reasonable487

trade-off given the nearly 40% token reduction.488

Generalization The positive outcomes on OOD489

models (Mistral-7B-SFT, Qwen2.5-Math-1.5B-490

Instruct) and the OOD dataset (GSM8K) under-491

score EquivPruner’s generalization capabilities. It492

effectively identifies and removes equivalent rea-493

soning steps, allowing MCTS to conduct a more494

focused and efficient search across varied settings.495

4.5 Effectiveness in Step-level Beam Search496

To demonstrate its versatility beyond MCTS,497

we evaluated EquivPruner with Step-level Beam498

Search (SBS) (Chen et al., 2024) using the499

Qwen2.5-Math-7B-Instruct model. Unlike MCTS,500

SBS does not construct an extensive search tree;501

instead, it dynamically selects top-k child nodes502

during expansion. Given this mechanism, apply-503

ing EquivPruner to SBS is not primarily aimed at504

reducing the total number of generated tokens, as505

SBS inherently limits the breadth of the search.506

Instead, our hypothesis is that EquivPruner can507

enhance the quality of the search by eliminating508

redundant nodes before the top-k selection occurs.509

This process ensures that the k chosen candidates510

are more diverse, potentially leading to the discov-511
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Figure 3: Ablation study of EquivPruner components.
The plot illustrates the impact of different pruning strate-
gies within a MCTS framework on Token Consumption
(bars, left y-axis) and Accuracy (line, right y-axis).

ery of more effective reasoning paths and thereby 512

improving overall task performance. 513

The results in Table 2 validate this. On MATH, 514

EquivPruner increased accuracy from 82.00% to 515

82.20% (+0.20%), and on GSM8K from 96.06% 516

to 96.13% (+0.07%). Concurrently, token counts 517

remained largely unchanged, with ratios of 98.18% 518

on MATH and 99.04% on GSM8K. These find- 519

ings suggest that even in search algorithms like 520

SBS where token generation is already constrained, 521

EquivPruner can still offer benefits. By ensuring 522

that the limited slots in the beam are occupied by 523

semantically distinct reasoning steps, EquivPruner 524

promotes a more diverse and potentially more fruit- 525

ful exploration of the solution space. This demon- 526

strates that EquivPruner is a versatile component 527

that can enhance different types of search strategies 528

in LLM-based reasoning by improving the quality 529

and diversity of explored paths. 530

4.6 Ablation Study 531

To investigate the individual contributions of the 532

key components of our EquivPruner—specifically, 533

the fine-tuning process and the use of the EM al- 534

gorithm—we conducted an ablation study. The 535

experiments were performed using the Qwen2.5- 536

Math-7B-Instruct model on the MATH dataset. We 537

compare our full method, EquivPruner (Finetuned 538

w/ EM), against three variants: (1) No Pruning 539

(vanilla MCTS baseline); (2) Pruning w/ Original 540

Longformer (using a pre-trained Longformer-base 541

without task-specific fine-tuning for equivalence); 542

and (3) Pruning w/ Finetuned Longformer (w/o 543

EM) (standard supervised fine-tuning without the 544

EM algorithm). 545
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The results in Figure 3 demonstrate the impact of546

each component. Using the Original Longformer-547

base for pruning (Setting 2) reduces tokens (106773548

to 89998) compared to No Pruning (Setting 1), but549

at the cost of a accuracy drop (83.4% to 82.4%),550

indicating that a generic model is insufficient. Stan-551

dard fine-tuning without EM (Setting 3) improves552

accuracy to 83.8% (surpassing No Pruning) while553

improve token efficiency to Setting 2 (89998 to554

85451), underscoring the necessity of task-specific555

training. Critically, our full EquivPruner method556

with EM-based fine-tuning (Setting 4) achieves557

both the highest accuracy (84.0%) and the most sig-558

nificant token reduction (106773 to 74194). This559

highlights that both the fine-tuning process and560

specifically the EM algorithm are vital for maxi-561

mizing EquivPruner’s effectiveness in improving562

accuracy and token efficiency.563

5 Conclusion564

In this paper, we introduce EquivPruner, a sim-565

ple yet effective approach to address inefficient566

token usage in LLM reasoning search by identify-567

ing and pruning semantically equivalent actions.568

We also introduce MathEquiv, the first dataset569

specifically designed for mathematical statement570

equivalence, which enables the training of an ef-571

fective lightweight equivalence detector. Exten-572

sive experiments demonstrate that EquivPruner573

significantly reduces token consumption—for ex-574

ample, by 48.1% for Qwen2.5-Math-7B-Instruct575

on GSM8K—while maintaining or often improv-576

ing reasoning accuracy across various models and577

tasks. Our findings underscore the substantial bene-578

fits of managing semantic redundancy in reasoning579

search, offering a valuable direction for enhancing580

the efficiency and effectiveness of LLMs.581

Limitations582

There are some limitations with our paper, which583

we reserve for future work. Firstly, due to computa-584

tional constraints, EquivPruner was not evaluated585

on language models significantly larger than the 7B586

parameter scale. Secondly, our work focused on587

EquivPruner’s application at inference time, and588

its potential integration with iterative LLM train-589

ing or refinement strategies remains an area for590

future exploration. Lastly, while designed for gen-591

eralizability, our empirical validation was primar-592

ily within mathematical reasoning, influenced by593

the availability of suitable process reward models594

(PRMs). Extending evaluation to other domains 595

such as science tasks or commonsense reasoning, 596

contingent upon broader PRM availability, offers a 597

promising direction for future research. 598
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uation and domain adaptation of similarity models 700
for short mathematical texts. In International Con- 701
ference on Intelligent Computer Mathematics, pages 702
241–260. Springer. 703

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 704
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 705
and 1 others. 2022. Chain-of-thought prompting elic- 706
its reasoning in large language models. Advances 707
in neural information processing systems, 35:24824– 708
24837. 709

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen 710
Kan, Timothy P Lillicrap, Kenji Kawaguchi, and 711
Michael Shieh. 2024. Monte carlo tree search boosts 712
reasoning via iterative preference learning. arXiv 713
preprint arXiv:2405.00451. 714

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 715
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 716
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2. 717
5 technical report. arXiv preprint arXiv:2412.15115. 718

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 719
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 720
2023. Tree of thoughts: Deliberate problem solving 721
with large language models. Advances in neural 722
information processing systems, 36:11809–11822. 723

Li Yujian and Liu Bo. 2007. A normalized levenshtein 724
distance metric. IEEE transactions on pattern analy- 725
sis and machine intelligence, 29(6):1091–1095. 726

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, 727
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: Llm 728
self-training via process reward guided tree search. 729
Advances in Neural Information Processing Systems, 730
37:64735–64772. 731

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jia- 732
tong Li, Tong Xie, Xiaoshui Huang, Shufei Zhang, 733
Marco Pavone, Yuqiang Li, and 1 others. 2024b. 734
Llama-berry: Pairwise optimization for o1-like 735
olympiad-level mathematical reasoning. arXiv 736
preprint arXiv:2410.02884. 737

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu 738
Ding, Joshua B Tenenbaum, and Chuang Gan. 2023. 739
Planning with large language models for code gener- 740
ation. In The Eleventh International Conference on 741
Learning Representations. 742

A Experimental Details 743

A.1 MathEquiv Dataset Generation Details 744

The MathEquiv dataset was constructed as follows: 745

Problem Sourcing and Splitting: We selected 746

7,500 problems from the MATH training set 747

(Hendrycks et al., 2021). These problems were 748

divided into three distinct sets for EquivPruner: a 749

training set (6,000 problems, 80%), a validation 750

set (750 problems, 10%), and a test set (750 prob- 751

lems, 10%). This initial split of problems ensures 752
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no data leakage between the subsequently gener-753

ated step-pair datasets for EquivPruner. Step Pair754

Generation: For each problem within these three755

sets, we generated candidate reasoning steps us-756

ing the Qwen2.5-Math-7B-Instruct model (Yang757

et al., 2024). This generation was performed via758

a Step-level Beam Search with the following pa-759

rameters: beam size (k) = 8, temperature = 0.7,760

maximum search tree width (tree_max_width) =761

10, maximum search tree depth (tree_max_depth)762

= 50, and maximum new tokens for generation763

(max_new_tokens) = 1024. Filtering: The gen-764

erated step pairs from each set were then filtered765

based on their Levenshtein ratio. Only pairs with766

a ratio between 0.75 and 0.99 (inclusive) were767

retained. This filtering aimed to capture mean-768

ingful variations while excluding nearly identical769

or overly dissimilar steps. Sampling and Anno-770

tation: From the filtered pairs of each set, we771

randomly sampled a large number for annotation:772

Training set: 80,000 pairs were annotated. Vali-773

dation set: 10,000 pairs were annotated. Test set:774

10,000 pairs were annotated. This process resulted775

in the final training, validation, and test sets for776

the MathEquiv dataset, with no overlap in the un-777

derlying problems from which the step pairs were778

derived.779

A.2 Implementation Environment and MCTS780

Parameters781

All experiments were conducted using PyTorch782

version 2.4.0. The GPU infrastructure consisted783

of eight NVIDIA GeForce RTX 3090 GPUs, each784

with 24GB, utilizing CUDA version 12.1. The785

central processing unit was an Intel(R) Xeon(R)786

Platinum 8255C CPU equipped with 96 cores.787

A.2.1 EquivPruner Training788

The EquivPruner model, a fine-tuned Longformer-789

base (Beltagy et al., 2020), was trained using hy-790

perparameters selected via Bayesian optimization.791

The optimization aimed to maximize the ‘eval/f1’792

metric over a maximum of 10 trials. The hyper-793

parameter search spaces are detailed in Table 3.794

795

A.2.2 MCTS Parameters796

The Monte Carlo Tree Search (MCTS) based797

evaluation hyperparameters are detailed in Ta-798

ble 4. These MCTS parameters (temperature,799

tree_max_width, tree_max_depth, simulations,800

PUCT values) were kept consistent across base-801

Table 3: Hyperparameter search space for EquivPruner
using Bayesian optimization.

Hyperparameter Value or Range
Learning Rate [1e-6,5e-5]
Batch Size 4
Training Epochs Discrete Values {2, 3, 5}
Weight Decay [0.0, 0.1]

line and EquivPruner-enhanced evaluations unless 802

otherwise specified.

Table 4: Monte Carlo Tree Search (MCTS) hyperparam-
eters.

Hyperparameter Value
Number of Simulations 20
LLM Generation Temperature 0.7
LLM max_new_tokens 1024
Search Tree Maximum Width 10
Search Tree Maximum Depth 50
PUCT values 1.25

803

A.2.3 SBS Parameters 804

The Step-level Beam Search (SBS) based eval- 805

uation hyperparameters are detailed in Table 5. 806

These SBS parameters (beam size, temperature, 807

tree_max_width, tree_max_depth) were kept con- 808

sistent across baseline and EquivPruner-enhanced 809

evaluations unless otherwise specified.

Table 5: Step-level Beam Search (SBS) hyperparame-
ters.

Hyperparameter Value
Beam Size 3
LLM Generation Temperature 0.7
LLM max_new_tokens 1024
Search Tree Maximum Width 10
Search Tree Maximum Depth 50

810
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Please determine whether the following two sentences are semanticly equivalent, and return 0:
Not equivalent at all; 1: May not be equivalent; 2: Can’t judge; 3: May be equivalent; 4: Exactly
equivalent. Please explain the reason, reflect, and provide a more accurate result. Please output in
the following Python dictionary format:
{ "reasoning_step": "The reasoning process of the model", "result": "Final result" (int) }
Question:
Sentence1: The inner sum is a geometric series with the first term 1

2k2−k+1
and common ratio 1

2 ,
and it has 2k terms. The sum of a geometric series is given by:

a+b−1∑
n=a

arn = a
1− rb

1− r

Sentence2: The inner sum
∑k2+k

n=k2−k+1
1
2n is a geometric series with the first term 1

2k2−k+1
and

common ratio 1
2 , and it has 2k terms. The sum of a geometric series is given by:

a+r−1∑
n=a

arn = a
1− rr

1− r

Output:
{ "reasoning_step": "Sentence1 uses the formula

∑a+b−1
n=a arn = a1−rb

1−r , while Sentence2 uses∑a+r−1
n=a arn = a1−rr

1−r . The variables and the structure of the formulas are different, which affects
the semantic equivalence. Additionally, the limits of the summation in Sentence2 are explicitly
given as

∑k2+k
n=k2−k+1

1
2n , which is not present in Sentence1. These differences indicate that the

sentences are not semantically equivalent.", "result": 0 }
Question:
Sentence1: The amplitude is the distance from the midline to the maximum value (or the minimum
value). Therefore, we can calculate the amplitude as follows:

Amplitude = Maximumvalue−Midline = 3− 1 = 2

Since the amplitude is |a|, we have:|a| = 2. Since a is a positive constant, we conclude:a = 2
Sentence2: The amplitude of the sine wave is half the distance between the maximum value and
the minimum value. Therefore, we can calculate the amplitude as follows:

Amplitude =
Maximumvalue−Minimumvalue

2
=

3− (−1)

2
=

3 + 1

2
=

4

2
= 2

Since the amplitude is |a|, we have:|a| = 2. Since a is a positive constant, we conclude: a = 2
Output: { "reasoning_step": "Sentence1 defines the amplitude as the distance from the midline to
the maximum value, calculating it as Amplitude = Maximumvalue−Midline = 3− 1 = 2.
Sentence2 defines the amplitude as half the distance between the maximum and minimum values,
calculating it as Amplitude = Maximumvalue−Minimumvalue

2 = 3−(−1)
2 = 2. While both methods

yield the same result (a = 2), the definitions and calculations are fundamentally different. This
difference in methodology means the sentences are not semantically equivalent.", "result": 0 }
Question:
Sentence1: {sentence1}
Sentence2: {sentence2}
Output:

Figure 4: Complete prompt for labeling.
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