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ABSTRACT

Sample efficiency lies at the heart of many optimization problems, especially for
black-box settings where costly evaluations and zeroth-order feedback occur. Typ-
ical methods such as Bayesian optimization and evolutionary strategy, which stem
from an online formulation that optimizes mostly through the current batch, suf-
fer from either high computational cost or low efficiency. To strengthen sample
efficiency under reasonable computational cost, one promising way is to achieve
invariant under smooth bijective transformations of model parameters. In this
paper, we build the first invariant practical optimizer framework INVIGO based
on information geometric optimization. It can incorporate historical information
without violating the invariant. We further exemplify INVIGO with historical in-
formation on multi-dimensional Gaussian, which gives an invariant and scalable
optimizer SYNCMA that fully incorporates historical information with no external
learning rate to tune. The theoretical behavior and advantages of our algorithm
over other Gaussian-based optimizers are further analyzed to demonstrate its the-
oretical superiority. We then benchmark SYNCMA against other leading optimiz-
ers, including the competitive optimizer in Bayesian optimization, on synthetic
functions, Mujoco locomotion tasks and rover planning task. In all scenarios,
SYNCMA demonstrates great competence, if not dominance, over other optimiz-
ers in sample efficiency.

1 INTRODUCTION

For many optimization problems in the real world, we do not have access to any gradient information
in the continuous space. The available zeroth-order evaluations, on the other hand, are so expensive
to collect that their usefulness may decrease tremendously with time as the environment changes.
Therefore, it may be better to model these tasks as online optimization problems with zeroth-order
feedback and an ignorant initial. And an ideal optimizer should have high sample efficiency with
reasonable computational complexity.

Typical methods in this scenario are mostly from the field of black-box optimization, such as
Bayesian optimization and evolutionary strategy. Both of them give more weight to the current
information to either adapt a global surrogate model or performs a local search strategy, so they also
thrive in the online settings. In the previous literature, these two methods may use different names
and criteria under similar formulations, so we compare our method with Bayesian optimization and
evolutionary strategy under the same criteria as shown in the Experiments section.

Bayesian optimization has great sample efficiency but limited scalability. It suffers from cubic or
quadratic computational complexity with respect to sample size, which severely limits its use when
the dimension is beyond a few dozen. There exist scalable variants such as TuRBO (Eriksson et al.,
2019), but their computational cost is still order of magnitude higher than evolutionary strategies.

Evolutionary strategies include a number of nature-inspired optimizers, among which the leading
family of optimizers is originated from covariance matrix adaptation evolutionary strategy(CMA-
ES) (Hansen, 2016). These CMA optimizers, such as DD-CMA (Akimoto & Hansen, 2020) and
TR-CMA-ES (Abdolmaleki et al., 2017), choose multi-dimensional Gaussian as their parameter
space which we will exemplify. CMA optimizers reach a balance between sample efficiency and
computational cost, but lack a solid theoretical foundation for interpretation and analysis. Therefore,
despite many efforts invested (Arnold & Hansen, 2010; Brockhoff et al., 2012; Shirakawa et al.,
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2018; Nishida & Akimoto, 2018; Ba et al., 2016; Akimoto & Hansen, 2016), limited improvement
in sample efficiency has been achieved.

For general optimization problems where gradient information is available, the performance of lead-
ing first-order optimizers such as AdaGrad (Duchi et al., 2011) and Adam (Kingma & Ba, 2014) are
highly dependent on the curvature of the optimization objective. Since the curvature depends on
the parameterization of the model, reparameterization techniques (Salimans & Kingma, 2016; He
et al., 2016) or a parameterization invariant optimizer are considered promising ways to optimize
high-value or even life-critical systems that have rugged objectives. For invariant optimizers, natural
gradient (Amari, 1998) uses the local landscape of the parameter space to be invariant in an ideal
case. Further efforts (Song et al., 2018; Transtrum & Sethna, 2012) towards practical methods then
concentrate on exploiting higher order structure in parameter space, i.e. geodesic in statistical man-
ifold, to accelerate or strengthen invariant for natural gradient. However, only limited progress has
been made.

When gradient information is not available, the primary mission for invariant is to compute the gra-
dient and local curvature with sampling. Information Geometric Optimization(IGO) (Ollivier et al.,
2017) makes a solid step forward for parametric distributions, allowing limited natural gradient with
only zeroth-order feedback. It encompasses several evolutionary strategies and classical statistical
models in a unified framework. Similarly, geodesic modification is also explored (Bensadon, 2015)
but the practical invariant capability is limited as in the general case.

In this paper, we build the first invariant optimizer framework INVIGO for online optimization with
ignorant initial and zeroth-order feedback. INVIGO adopts an approximation to the objective in IGO
to allow everywhere differentiability and no external learning rate. While this approximation can
be solved directly with duality, we use only Lagrange necessary condition to construct the solu-
tion in order to leave room for complete and scalable incorporation of historical information. The
INVIGO with historical information is built thereby with an invariant property, which is further ex-
emplified with multi-dimensional Gaussian to derive the practical optimizer SYNCMA. SYNCMAis
a synchronous optimizer that is invariant, scalable, free of external learning rate, and historical in-
formation completely incorporated. We then analyze its theoretical advantages and connection over
other optimizers. Empirically, in both synthetic and realistic tasks, SYNCMA demonstrates great
competence over other optimizers in sample efficiency.

To summarize, our main contribution is the invariant framework INVIGO which exemplifies an in-
variant, scalable, external learning rate free and historical information fully incorporated optimizer
SYNCMA with edges in synthetic and realistic tasks against other optimizers both theoretically and
empirically.

2 AN INVARIANT OPTIMIZER FAMILY WITH AN APPROXIMATE OBJECTIVE

Considering the online optimization problem where a black-box function f needs to be optimized,
and the optimizer is initially ignorant with only zeroth-order feedback available.

x∗ = argminx∈Rn f(x) (1)

A global parametric sample distribution θ 7→ pθ is often used to relax the original optimization
problem into an optimization problem on the parameter space Θ.

θ∗ = argminθ∈Θ Epθ
[f(x)] (2)

However, as f itself might not be continuous or finite, typical methods may use an substitutional
fitness function gf,θ(x) to represent how good a sample x ∈ Rn is.

θ∗ = argminθ Epθ
[gf,θ(x)] (3)

The expression of g is determined manually from the set of integrable functions depending on orig-
inal objective f and perhaps the current point θ ∈ Θ. The substitution here actually generalize
the problem as specifically, (1) If f is good, then it is naturally to set gf,θ = f ; (2) If g is related
with θ, then the problem will match the time-varying environment setting for which lots of online
optimizers pursue.
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2.1 NATURAL GRADIENT FLOW WITH ZEROTH-ORDER FEEDBACK

To solve equation (3) on the parameter space Θ, a natural gradient flow is often the primary choice.
Here θt denotes the current θ with static nature that gradient should not apply on.

dθ

dt
= −▽̃θEpθ

[gf,θt(x)] (4)

The usage of natural gradient keep this ODE invariant under smooth bijective transformation of
parameter space. Its vanilla discrete version, i.e. natural gradient descend algorithm goes to,

θt+1 = θt − h▽̃θ|θ=θtLθt(θ) (5)

Here h denotes the learning rate, and the loss function is defined as Lθt(θ) ≡ Epθ
[gf,θt(x)]. This

definition of loss function can be easily extended to contain the usual definition of loss function in
deep learning by extending the sample distribution pθ to include neural network, although in this
paper we concentrate on parametric distribution families.

To practically compute the natural gradient from ignorant initial and zeroth-order feedback, IGO
stems from the fact that ▽̃θpθ = pθ▽̃θ ln pθ when pθ is smooth. They discover for certain distribu-
tion families such as multi-dimension Gaussian, it is possible to compute natural gradient at current
point θt through sampling. Here I(θ) denotes the Fisher information matrix of pθ, indicating the
local landscape of parameter space.

▽̃θ|θ=θtLθt(θ) = ▽̃θ|θ=θt

∫
gf,θt(x)pθ(x)dx (6)

= I−1(θt)

∫
gf,θt(x)

∂ ln pθ(x)

∂θ
|θ=θtpθt(dx) (7)

In IGO, the natural gradient is only available at point θt, different choices of distribution family Θ
thus give different optimization methods in the form of (5). In other words, certain Θ must satisfy
the following assumption in order to apply IGO. Also as currently there is no alternative to IGO, we
define the IGO complexity to measure the computational complexity of other natural gradient based
optimizers.

Assumption 1. For a given x ∈ Rn and θ ∈ Θ, I−1(θ)∂ ln pθ(x)
∂θ cost finite H time to compute.

Definition 1 (IGO complexity). When assumption1 holds, the IGO complexity O(HN) is the com-
putational complexity for single step updates when applying IGO to natural gradient method, i.e. to
compute equation (7) with N samples.

2.2 INVARIANT ERROR IN CURRENT METHODS

When discretizing with certain learning rate, errors with respect to the invariant property will occur.
Here we adopt the definition in Song et al. (2018) to characterize invariant error with invariant order.
We say that an optimizer is d-th order invariant if the error between the approximate solution and
some exactly invariant trajectory decreases as O(hd).

Unfortunately, in general when the natural gradient is accessible, there is no known complete in-
variant optimizer for an arbitrary Θ under computational complexity comparable to natural gradient
descend algorithm. The best so far result is 2nd order invariant. In the context of black-box ob-
jective with zeroth-order feedback, where the natural gradient is not intrinsic available, IGO under
assumption 1 gives accessibility to natural gradient descend and thus is 1st order invariant. All these
results are far from complete invariant.
Definition 2 (Invariant property). Let θ be the parameter of an optimizer using model pθ and φ(θ)
be an smooth bijective transformation of θ of the same optimizer using model p′φ(θ) = pθ. Let θt be
the optimization trajectory when optimizing objective f , parameterized by θ and initialized at θ0.
And φt the optimization trajectory when optimizing objective f , parameterized by φ and initialized
at φ0 = φ(θ0). We say this optimizer is invariant if ∀t ∈ N, φt = φ(θt).

2.3 OPTIMIZING WITH THE APPROXIMATE OBJECTIVE : INVIGO

Given that gf,θt is manually selected and ∀b ∈ R,▽θEpθ
[gf,θt(x)] = ▽θEpθ

[gf,θt(x) + b], we
assume gf,θt to be non-negative without loss of generality. Let reweighted distribution qθ(x) ≡
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pθ(x)gf,θt (x)

Lθt (θ)
, then we can decompose logLθt(θ) as follow,

log
Lθt(θ)

Lθt(θt)
=

∫
qθt(x)(log

qθt(x)

qθ(x)
+ log

pθ(x)

pθt(x)
)dx (8)

= DKL(qθt ||qθ) +DKL(qθt ||pθt)−DKL(qθt ||pθ) (9)
Inspired from this decomposition, we claim DKL(qθt ||pθ) a good objective approximating Lθt(θ).
All the proofs and detailed derivations are in Appendix A.
Theorem 1. The KL-divergence DKL(qθt ||pθ) is a substitution for Lθt(θ) with the following prop-
erties.

1. The (natural) gradients for logLθt(θ) and −DKL(qθt ||pθ) coincide at current point θt,
further ∀θ ≡ (θt + δθ) ∈ Θ, ▽θ logLθt(θ) = −▽θDKL(qθt ||pθ) +O(δθ).

2. Under Assumption 1 , computing natural gradient of DKL(qθt ||pθ) at any point θ ∈ Θ
costs the IGO complexity O(HN). While objective Lθt(θ) in IGO is only available to be
differentiated at point θt.

Combining with above two properties of DKL(qθt ||pθ), it is natural to consider a step size constraint
update for θt+1 when optimizing DKL(qθt ||pθ). The specific choice of that step size constraint
comes from the definition of natural gradient,

▽̃|θ=θtLθt(θ) = −Lθt(θt)▽̃|θ=θtDKL(qθt ||pθ) (10)

∝ lim
ϵ→0+

1

ϵ
argmaxδθ s.t. DKL(pθt ||pθt+δθ)≤ϵ2/2DKL(qθt ||pθt+δθ) (11)

Now our optimization problem for each time step is,
θt+1
∗ = argmaxθDKL(qθt ||pθ) (12)

s.t. DKL(pθt ||pθ) ≤ ϵ2/2

While formulation (12) is similar to the basic problem formulation of TR-CMA-ES, it is clear that
our invariant motivation gives a different road to (12) and further leads to a different modification
and final framework. Specifically, TR-CMA-ES follows Expectation-Maximazation framework to
formulate and thus directly solves it with strong duality and an additional search, and arbitrarily
uses historical information. As our motivation is invariant under proper computational cost, we only
apply natural Lagrange condition over multiplier η to derive our updates that enables further scalably
and completely incorporating historical information.

▽̃θ|θ=θt+1(−DKL(qθt ||pθ) + η(ϵ
2
/2 −DKL(pθt ||pθ))) = 0 (13)

We name such algorithm family from iteratively solving (13) for different choice of parametric
distribution family Θ as INVIGO.
Assumption 2. The chosen fitness function gf,θt(x) and the Lagrange multiplier η are independent
from the parameterization of θ.
Theorem 2 (Invariant for INVIGO). When assumption 1 and 2 hold, optimizers in INVIGO are
invariant. While the single step computational cost remains the same as IGO complexity O(HN).

Apart from the desired invariant property, one may ask what is the behavior when optimizing prob-
lem (12), as equation (13) is just the necessary condition of optimization problem (12). According
to equation (11), it can be seen that the optimization problem (12) is solving ODE :

dθ

dt
= −s(θ)▽̃ logLθt(θ) (14)

Here s(θ) ≡ 1
ϵ ||▽̃|θ=θtDKL(qθt ||pθ)|| corresponds to the implicit learning rate of INVIGO. As there

is no explicit learning rate, this implicit learning rate hints an overall learning rate that is proportion
to DKL(pθt ||pθ)−0.5. The efficiency of such dependency of the overall learning rate with the KL-
divergence between adjacent distributions is widely verified in natural gradient based optimization
methods such as K-FAC Ba et al. (2016) and reinforcement learning algorithms such as ACKTR Wu
et al. (2017). Our formulation in constraint optimization problem 12 is justified thereby.

Additionally, the efficiency of the overall learning rate without an explicit learning rate demonstrate
the decrease in the number of hyperparameters to tune with. When further exemplifying with specific
distribution family and comparing with other mature algorithms in online optimization, this decrease
will be our advantage as shown in the following exemplification.
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2.4 INVARIANTLY INCORPORATING HISTORICAL INFORMATION

When only local information is used in each iteration, historical information is useful for the opti-
mization, even if the environment is continuously changing over time.We thus demonstrate how to
incorporate historical information in INVIGO without violating the invariant property. The modifica-
tion is changing the objective DKL(qθt ||pθ) to incorporate historical information. Here T denotes
the horizon and the widely used exponential decay is applied with decay parameter λ ∈ [0, 1), λ0 is
regarded as 1 in default.

θt+1
∗ = argmaxθ

T∑
τ=0

λτDKL(qθt−τ ||pθ) (15)

s.t. DKL(pθt ||pθ) ≤ ϵ2/2

Similar to equation (13), applying natural Lagrange condition on formulation (15) yields corre-
sponding update. We name the algorithm family from iteratively following that updates for different
choice of parametric distribution family Θ as INVIGO with historical information.

▽̃θ|θ=θt+1(−
T∑

τ=0

λτDKL(qθt−τ ||pθ) + η(ϵ
2
/2 −DKL(pθt ||pθ))) = 0 (16)

Theorem 3 (Invariant for INVIGO with historical information). When assumption 1, 2 hold and the
decay weight λ is independent from the parameterization of θ, optimizers in INVIGO with historical
information are invariant. With the single step computational cost O(THN) in general.

In some parametric distribution family, it is possible to represent ▽̃θ

∑T
τ=0 λ

τDKL(qθt−τ ||pθ) as a
self-evolved term to decrease the computational cost to O(HN) as shown in our following exem-
plification.

3 EXEMPLIFYING WITH MULTI-DIMENSIONAL GAUSSIAN

We choose multi-dimensional Gaussian as our candidate distribution family Θ given its wide appli-
cations.

To start with, we claim the computational accessibility of multi-dimensional Gaussian for assump-
tion 1,
Proposition 1 (Theorem 4.1 in Akimoto et al. (2012)). Suppose θm and θc are n- and n(n +
1)/2-dimensional column representing mean and covariance respectively. Then ∂m/∂θm and
∂vec(C)/∂θc are invertible at θ ∈ Θ and,

I−1
m (θ)

∂ lnPθ(x)

∂θm
= (

∂m

∂θm
)−1(x−m) (17)

I−1
c (θ)

∂ lnPθ(x)

∂θc
= (

∂vec(C)

∂θc
)−1vec((x−m)(x−m)T − C) (18)

Then we propose our choices of the fitness function gf,θt(x) and the Lagrange multiplier η to satisfy
assumption 2 while being as simple as possible. We denote the fitness function gf,θt(x) as the level
function that reflect the probability to sample a better value from pθt . This is the exact choice used
in standard CMA-ES Hansen (2016) . In time step t, N samples {xt

i} are drawn from pθt and we

further denote ŵt
i ≡

gf,θt (x
t
i)∑

i gf,θt (x
t
i)

as the normalized fitness for sample xt
i.

According to proposition 1, parameter θ = (θm, θc) 7→ N (m,C) with θm ∈ Rn and θc ∈
Rn(n+1)/2 representing mean and covariance respectively. We can thus split the Lagrange multi-
plier into η = (ηm, ηc) in INVIGO without violating the invariant property. For better comparisons
with CMA family optimizers, we adopt this split to directly use the default values in the fine-tuned
version of CMA-ES and keep them constant. The assumption 2 is satisfied therefore.

We use the parameterization θ = (m,C) for simplification sake through this section. Different pa-
rameterizations that meet the conditions in proposition 1 will conduct different practical optimizers
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by following this section with minor modifications. The performance should be the same up to the
transformation due to the invariant property but may vary if certain modification that violates the
conditions in theorem 3 is made for other needs.

3.1 AN INVARIANT OPTIMIZER WITH HISTORICAL INFORMATION : SYNCMA

We directly apply INVIGO with historical information and a maximum time horizon T = t− 1, the
objective is thereby abbreviated as Gt(θ) ≡

∑T
τ=0 λ

τDKL(qθt−τ ||pθ). By choosing such infinite
horizon, the historical information is maximally used with the price of t times computational costs
more than IGO. This proportion to the current sample size is exactly the defect of Bayesian opti-
mization. Fortunately, we can overcome this extra proportion and reduce the computational costs to
the same as IGO, i.e. scalable to O(HN) for single step update.

The key is to replace Gt(θ) with a self-evolved term M t(θ), such that the gradient information is
completely preserved.

▽̃θG
t(θ) = −▽̃θM

t(θ) + ▽̃θDKL(qθt ||pθ) (19)

As the single step update comes from the natural Lagrange multiplier condition as shown in equation
(16), equation (19) guarantees the resulted invariant algorithm remains the same. A simple solution
can be obtained with scalars λ0, Q

t
1 ∈ R and vectors stm, stc, Q

t
2, Q

t
3 ∈ Rn. We use ◦ to denote

v1 ◦ v2 ≡ v1v
T
2 + v2v

T
1 for two vectors v1, v2 ∈ Rn.

▽̃mM t(θ) = λ0(s
t
m +mt −m) (20)

▽̃cM
t(θ) = λ0((s

t
c +mt −m)(stc +mt −m)T − C) (21)

+ Qt
1 +Qt

2 ◦m+Qt
3mmT

Corresponding updates for hyperparameter λ0 ∈ R and self-evolved terms stm, stc, Q
t
2, Q

t
3 ∈ Rn that

initially zero are shown below. For simplicity needs, we denote dti ≡ xt
i−mt, dtw ≡

∑
i ŵ

t
id

t
i, d̂

t
w ≡

dtw+mt to represent statistics in a single generation, and ŝt−1
m ≡ st−1

m +mt−1, ŝt−1
c ≡ st−1

c +mt−1

to represent elements for historical information.

λ = λ0/λ0+1 (22)

stm +mt = λŝt−1
m + (1− λ)d̂t−1

w (23)

stc +mt =
√
λŝt−1

c +
√
1− λd̂t−1

w (24)

Qt
1 = λQt−1

1 + λ
∑

ŵi(d
t−1
i − dt−1

w )(dt−1
i − dt−1

w )T − λ0

√
λ
√
1− λd̂t−1

w ◦ ŝt−1
c (25)

Qt
2 = λQt−1

2 − λ0(
√
λ+

√
1− λ− 2)(

√
λ ∗ ŝt−1

c +
√
1− λ ∗ d̂t−1

w ) (26)

Qt
3 = λQt−1

3 − λ0(
√
λ− 1)(

√
1− λ− 1) (27)

We now arrive at the single step update for next parameter θt+1 = (mt+1, Ct+1). The resulting
algorithm is named as SYNCMA to emphasize another prominent characterization, the synchronous
update nature, as discussed in section 3.2, besides invariance. The final updates in single iteration
with zm = ηm + λ0 + 1, zc = ηc + λ0 + 1, βt = 1

zm
(dtw + λ0s

t
m) for brevity sake is shown below.

mt+1 =mt + βt (28)

Ct+1 =
ηc
zc

(Ct + βt(βt)T ) +
λ0

zc
(stc − βt)(stc − βt)T (29)

+
1

zc
(
∑
i

ŵi(d
t
i − βt)(dti − βt)T +Qt

1 +Qt
2 ◦mt +Qt

3m
t(mt)T )

3.2 THEORETICAL COMPARISON WITH OTHER CMA OPTIMIZERS

Theoretical advantages. We here list four main theoretical advantages of SYNCMA over other
CMA optimizers : it is invariant, it has no external learning rate, it fully incorporates historical
information, and it is synchronous.
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The invariant, external learning rate free, and historical information fully incorporated properties are
grant by induced framework INVIGO with historical information. For other CMA optimizers, they
mostly stem from parameterization θ = (m,σΣ) with σ the external learning rate that need to be
tuned or set rules Hansen (2016) for evolution. Also, in the previous literature, no optimizers ever
incorporate historical information into the mean update with a stable optimization procedure. And
our fully incorporation, actually decrease the number of parameters needed to tune in historical part.

The synchronous property from which SYNCMA is named is a result of the fact that INVIGO with
historical information is built on IGO, which treats the current distribution θ as a single point in space
to update, i.e. the updates for mean and covariance are intertwined. For other CMA algorithms,
the updates are performed sequentially in each generation, e.g. mt+1 = Um(mt, σtΣt),Σt+1 =
Uc(m

t+1, σtΣt), etc. Moreover, to strictly follow the proposition 1 , updates need to be intertwined
as SYNCMA does.

Connection to CMA-ES. It is also worth making the connection between SYNCMA and the CMA
family algorithms. Where the approximations used correspond to the four theoretical advantages
of SYNCMAmentioned above.
Proposition 2. When (1) the historical information is partially used for covariance, i.e.
▽̃mM t(θ) = 0 and ▽̃cM

t(θ) = λ0((s
t
c + mt − m)(stc + mt − m)T − C). (2) all the higher

order terms, when assuming ηc ≈ zc ≫ 1, zm ≫ 1, are discarded. SYNCMA coincide with
CMA-ES up to an external learning rate difference.

Limitation and Future Direction. There is still much to explore in both the INVIGO and
the SYNCMA . For the framework, it is tempting to generalize to a broader family of models through
such approximations. For the algorithm, we currently set parameters ηm, ηc and λ0 constants as in
below experiments, which might make SYNCMA overshoot in the final stage of optimization when
it is close to the optimum. However, they can absolutely be invariant variables instead of constants
for a better overall optimization performance.

4 EXPERIMENTS

In this section, we evaluate SYNCMA with other baselines in synthetic functions, Mujoco locomotion
tasks, and rover planning task. The criteria are chosen in the context of online optimization, focusing
on full optimization procedures in the natural axis and near global optimal efficiency. We have
therefore plotted all optimization procedures with the shaded area bounded by quantiles and the
solid line denoting the median performance over all trails.

Baselines are chosen in a structured way. First, random search (RS) (Bergstra & Bengio, 2012) is
chosen as the overall baseline. Then, two black-box optimizers, differential evolution (DE) (Storn
& Price, 1997) and simulated annealing (SA) (Bouttier & Gavra, 2019) are chosen. Among the
CMA optimizers, we choose CMA-ES and two of its leading variants DD-CMA and TR-CMA-ES
for detailed comparison. Finally, the Bayesian optimization method TuRBO (Eriksson et al., 2019)
is used as the state-of-the-art baseline for BO. Parameters ηm, ηc of SYNCMAare set to constant
that match the initial settings of the corresponding parameters in CMA-ES. λ0 corresponds to a
combination of several parameters in CMA-ES so we simply test with the constant value λ0 = 2,
which corresponds to the approximate counterpart in CMA-ES. We use this value throughout the
main paper while there are better performances of SYNCMA with different λ0 as shown in ablation
studies in Appendix B.4.

TR-CMA-ES is based on its original paper version implemented in Matlab due to precision problems
in Python, and therefore we exclude TR-CMA-ES in the Mujoco locomotion and rover planning
tasks as they are based on specific Python libraries. All other baselines are implemented with their
fine-tuned version available online (Duan et al., 2022; Balandat et al., 2020). See Appendix B for
details.

4.1 SYNTHETIC FUNCTION

We select 10 commonly used synthetic functions with dimension n arbitrarily set. These functions,
including different characteristics such as multi-model, ill-conditioned and ill-scaled, are scaled to
a global minimum value 0 with shifted domain. The batch size is N = 2n and the evaluation limit
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is the same for all optimizers except TuRBO, where the budget is fixed at 5,000 evaluations due to
memory limitations.

The full experiments are run with different dimensions of n = {32, 64, 128} and the results are
presented in two ways under the same evaluation budget: near global optimum performance and
the whole optimization procedure. Limited results are presented here and please refer to Appendix
B.1 for the full contents.

Table 1: Near global optimum performance on 64d synthetic functions(lower is better) over 20 trials
with budget of 50000 evaluations, TuRBO is excluded. Numbers in brackets indicates the median
evaluation number needed for optimizers to achieve value better than 0.5.

Optimizer Sphere Discus Schwefel DiffPowers LevyMontalvo Rastrigin Ackley

SA 0.6 100.7 0.1(2650) 37.5 6.8 1634.7 13.6
RS 793.9 1138.8 29902.6 2369.4 14.4 1395.9 11.8
DE 7.2 20.0 25.6 63.6 0.4(49700) 586.9 3.1

DDCMA 0.0(10047) 0.0(12748) 0.0(16820) 0.0(10164) 0.0(9087) 17.9 0.0(11757)
CMAES 0.0(13825) 0.0(43265) 0.0(16134) 0.0(18503) 0.0(9901) 21.4 0.0(15620)

TRCMAES 0.0(7185) 85.9 0.0(9905) 0.0(12040) 0.0(5515) 22.4 0.0(7869)
SYNCMA(Ours) 0.0(3938) 0.0(18820) 0.0(1157) 0.0(1158) 0.0(2318) 0.2(42696) 0.0(7567)

(a) Discus (b) Rastrigin (c) LevyMontalvo (d) Rosenbrock

Figure 1: Optimization procedure in 4 typical synthetic functions with dimension n = 64 over 20
trails considering all optimizers. Index of SYNCMA indicate λ0.

According to table 1 where TuRBO is excluded as it is unable to scale to this budget,
SYNCMA demonstrate both superior optimization capability and efficiency over others. While other
optimizers are less efficient and fail to optimize high-conditional number multi-model function Ras-
trigin, ill-scaled function Discus and others. Further, full optimization procedures including TuRBO
with maximum budget under storage limit are partially shown in figure 1, SYNCMA still outper-
forms others including TuRBO after first several hundreds evaluation from 32 to 128 dimension,
demonstrating the capability of such optimizer derived from an invariant framework.

4.2 MUJOCO LOCOMOTION TASK

After the synthetic functions, we evaluate SYNCMA and other baselines on the more realistic Mujoco
locomotion tasks (Todorov et al., 2012), which are popular benchmarks for reinforcement learning
algorithms. To run sampling-based optimizers on Mujoco, we refer to (Mania et al., 2018) and
optimize a linear policy: a = Ws, where a is the agent action and s is the environment state. The
parameter matrix W are continuous and in the range of [−1, 1]. Among all 6 tasks, we dismiss the
overly high dimensional task Humanoid(6392d) and test all other 5 tasks with batch size N = 100.
Two results are shown here in figure 2a, 2b with more results in Appendix B.2. While TuRBO
dominates other baselines, SYNCMA outperforms TuRBO in 2 tasks and remains competitive with
TuRBO for the other 3 tasks.

4.3 ROVER PLANNING TASK

To further explore the empirical performance of SYNCMA in a realistic setting, we consider the
rover trajectory optimization task, where a start position s and a goal position g are defined in the

8
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(a) Ant(888d) (b) HalfCheetah(102d) (c) Rover(60d)

Figure 2: Optimization procedure for two high dimensional Mujoco locomotion tasks over 10 trials
and rover planning task over 100 trails. Index of SYNCMA indicate λ0.

2D plane, as well as a cost function c(x) over the state space. The trajectories are described by a
set of points to which a B-spline is fitted and the cost function is computed. The whole state space
is x ∈ [0, 1]60 and we make the batch size N = 2n = 120. A reward function to be optimized is
defined to be non-smooth, discontinuous, and concave over the first two and last two dimensions of
the state. The result in figure 6f shows that SYNCMA still exhibits competitive performance over
other baselines.

4.4 ABLATION STUDY

The weight for historical information λ0 is a parameter that substitutes a combination of several
parameters in CMA optimizers, and is set constantly as λ0 = 2. We thus study the sensitivity on this
parameter for constant setting here. All of previous experiments are repeated for λ0 ∈ [0, 4], with
results for λ0 = {0, 1, 2, 4} shown in Appendix B.4, from which we summarize several observations
within range [0, 4] here.

Sensitivity. When SYNCMA includes historical information, i.e. λ0 > 0, SYNCMA consistently
shows competitive performance.

Function Landscape. When their exists a fundamental subspace that covers the structure of the
problem, as in Rastrigin, a higher λ0 yields better performance and efficiency. Otherwise, as in
LevyMontalvo, a higher λ0 might be detrimental.

Dimensionality. Observed from tasks in Mujoco, synthetic functions, and rover planning, a higher
dimension generally requires a higher λ0.

5 CONCLUSION

We present an invariant optimizer framework INVIGO with no external learning rate and accessibility
to fully incorporate historical information. Although the framework is built on the assumption and
computational cost of information geometric optimization, we expect the possible generalization to
a wider family of models because of the approximations used in the formulation and solving stages.
When exemplified with multi-dimensional Gaussian, our framework derives a competitive scalable
optimizer SYNCMA for both synthetic and realistic scenarios, even when the parameters for updates
are constant.

The outperformance of SYNCMA over leading Bayesian optimizers can mean a lot to nature-inspired
optimizers and the field of local search. Its competence not only demonstrates the power of the in-
variant property derived from a complete framework, but also suggests the under-explored potential
of local search over global search methods such as Bayesian optimization. The intuition for the latter
assertion is that if the seemingly high dimension problem has a lower subspace that really matters,
then local search may find it more efficiently. If the problem is fundamentally in high dimension,
then global search methods are naturally limited due to computational constraints.

9
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APPENDICES : AN INVARIANT INFORMATION GEOMETRIC METHOD FOR
HIGH-DIMENSIONAL ONLINE OPTIMIZATION

A PROOFS AND DERIVATIONS

A.1 PROOF FOR THEOREM 1

Proof. To prove the former part, it is suffice to notice,

▽θ logLθt(θ)− (−▽θDKL(qθt ||pθ)) = ▽θDKL(qθt ||qθ) (30)

= ▽θ(
1

2

∑
I
qθt
ij (θt)δθiδθj +O(δθ3)) (31)

To prove the latter part, we first apply natural gradient to Lθt(θ),

▽̃θLθt(θ) = ▽̃θ

∫
gf,θt(x)pθ(x)dx (32)

= I−1(θ)

∫
gf,θt(x)

∂ ln pθ(x)

∂θ

pθ(x)

pθt(x)
pθt(dx) (33)

In contrast, applying natural gradient to DKL(qθt ||pθ),

▽̃θDKL(qθt ||pθ) = − I−1(θ)

∫
gf,θt(x)

Epθt
[gf,θt(x)]

∂ ln pθ(x)

∂θ
pθt(dx) (34)

Thus under assumption 1 , only DKL(qθt ||pθ) is available to take natural gradient on any point while
the computational cost remain the same

A.2 PROOF FOR THEOREM 2, 3

Proof. It is suffice to prove theorem 3 as INVIGO with historical information recovers to IN-

VIGO when λ is zero. Similar to θ, we define q′φt(x) =
p′
φt (x)gf,φt (x)

Ep′
φt

[gf,φt (x)]
.

Initially, we have q′φ0(x) = qθ0(x) from given conditions. So we assume for the current time t,
q′φt(x) = qθt(x) holds as well. Then from equation (16), we have

▽̃φ|φ=φt+1(−
T∑

τ=0

λτDKL(q
′
φt−τ ||p′φ) + η(ϵ

2
/2 −DKL(p

′
φt ||p′φ))) (35)

= ▽̃θ|θ=φ−1(φt+1)(−
T∑

τ=0

λτDKL(qθt−τ ||pθ) + η(ϵ
2
/2 −DKL(pθt ||pθ))) · (

∂θ

∂φ
|θ=φ−1(φt+1))

3

(36)
= 0 (37)

Thus we have φt+1 = φ(θt+1). From mathematical infuction, our proof finished.

A.3 DERIVATIONS OF SYNCMA

The derivations consist of two parts. The first part is to substitute optimization objevtive Gt(θ) =∑t−1
τ=0 λ

τDKL(qθt−τ ||pθ) with a self-evolved term M t(θ) so that the gradient information is com-
pletely preserved as equation (19) while the computational costs reduce to the same as IGO,
i.e. the cost of computing ▽̃θ|θ=θtLθt(θ). The second part is to derive analytical updates for
θt+1 = (mt+1, Ct+1) from solving equation (16).

12
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A.3.1 SUBSITITUTION OF Gt(θ)

We start from our target of preserving historical information,
▽̃θG

t(θ) = −▽̃θM
t(θ) + ▽̃θDKL(qθt ||pθ) (38)

We assume M t(θ) has the form that present in the main paper, with scalars λ0, Q
t
1 ∈ R and vectors

stm, stc, Q
t
2, Q

t
3 ∈ Rn all start from zero. We use ◦ to denote v1 ◦ v2 ≡ v1v

T
2 + v2v

T
1 for two vectors

v1, v2 ∈ Rn.
▽̃mM t(θ) = λ0(s

t
m +mt −m) (39)

▽̃cM
t(θ) = λ0((s

t
c +mt −m)(stc +mt −m)T − C) (40)

+ Qt
1 +Qt

2 ◦m+Qt
3mmT

Notice that Gt(θ) = λGt−1 +DKL(qθt ||pθ), therefore we have,

▽̃θM
t(θ) = λ(▽̃θM

t−1(θ)− ▽̃θDKL(qθt−1 ||pθ)) (41)

Mean Solution . Apply assumption (39) for ▽̃mM t(θ) yields,

λ0(s
t
m +mt −m) = λλ0(s

t−1
m +mt−1 −m) + λ

∑
i

ŵi(x
t−1
i −m) (42)

Which straightly gives the only solutions on λ and stm,

λ =
λ0

λ0 + 1
(43)

stm +mt = λst−1
m + (1− λ)dt−1

w +mt−1 (44)

Covariance Maxtrix Solution Apply assumption (40) for ▽̃cM
t(θ) while denoting Qt(m) =

Qt
1 +Qt

2 ◦m+Qt
3mmT yields,

λ0((s
t
c +mt −m)(stc +mt −m)T − C) +Qt(m) (45)

= λλ0((s
t−1
c +mt−1 −m)(st−1

c +mt−1 −m)T − C) + λQt−1(m)

+ λ(
∑
i

ŵi(x
t−1
i −m)(xt−1

i −m)T − C)

To cancel out C on both side, same value of lambda = λ0/λ0+1 is derived. Further, we assume the
form of update on stc is similar to stm with parameter α and zeta undetermined yet,

stc +mt = ζ(st−1
c +mt−1) + α(dt−1

w +mt−1) (46)

Thus we arrive at,
(stc +mt −m)(stc +mt −m)T = ζ2(st−1

c +mt−1 −m)(st−1
c +mt−1 −m)T (47)

+ α2(dt−1
w +mt−1 −m)(dt−1

w +mt−1 −m)T

+ (α+ ζ − 2)m ◦ (ζ(st−1
c +mt−1) + α(dt−1

w +mt−1))

+ (α− 1)(ζ − 1)mmT

+ αζ(dt−1
w +mt−1) ◦ (st−1

c +mt−1)

Notice that for the second term of Eq.47, we have,

(dt−1
w +mt−1 −m)(dt−1

w +mt−1 −m)T

= Eqθt−1 [x−m]Eqθt−1 [x−m]T (48)

= Eqθt−1 [(x− Eqθt−1 [x] + Eqθt−1 [x]−m)(x− Eqθt−1 [x] + Eqθt−1 [x]−m)T ] (49)

− Eqθt−1 [(x− Eqθt−1 [x])(x− Eqθt−1 [x])
T ]

= Eqθt−1 [(x−m)(x−m)T ]− Eqθt−1 [(x− Eqθt−1 [x])(x− Eqθt−1 [x])
T ] (50)

=
∑
i

ŵi(x
t−1
i −m)(xt−1

i −m)T −
∑
i

ŵi(d
t−1
i − dt−1

w )(dt−1
i − dt−1

w )T (51)
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Thus, to meet Eq.45, we arrive at updates for stc, Q
t
1, Q

t
2, Q

t
3 with ζ =

√
λ, α =

√
1− λ,

stc +mt = ζst−1
c + αdt−1

w + (ζ + α)mt−1 (52)

Qt
1 = λQt−1

1 + λ
∑

ŵi(d
t−1
i − dt−1

w )(dt−1
i − dt−1

w )T (53)

− λ0αζ(d
t−1
w +mt−1) ◦ (st−1

c +mt−1)

Qt
2 = λQt−1

2 − λ0(ζ + α− 2)(ζ ∗ (st−1
c +mt−1) + α ∗ (dt−1

w +mt−1)) (54)

Qt
3 = λQt−1

3 − λ0(ζ − 1)(α− 1) (55)

A.3.2 DERIVATION OF θt+1

Substitute the Gt(θ) in the natural Lagrange condition (16) gives equation,

0 = ▽̃θ|θ=θt+1(−Gt(θ) + η(ϵ
2
/2 −DKL(pθt ||pθ))) (56)

= ▽̃θ|θ=θt+1(M t(θ)−DKL(qθt ||pθ)− [ηm, ηc]
TDKL(pθt ||pθ)) (57)

Apply proposition 1 on above equation, we now arrive at equations for θt+1,∑
i

(ŵt
i +

ηm
N

)(xt
i −mt+1) + ▽̃mM t(θ) = 0 (58)∑

i

(ŵt
i +

ηc
N

)((xt
i −mt+1)(xt

i −mt+1)T − Ct+1) + ▽̃cM
t(θ) = 0 (59)

Solving equations above straightly give updates with zm = ηm + λ0 + 1, zc = ηc + λ0 + 1, βt =
1
zm

(dtw + λ0s
t
m) for brevity sake.

mt+1 =mt + βt (60)

Ct+1 =
ηc
zc

(Ct + βt(βt)T ) +
λ0

zc
(stc − βt)(stc − βt)T (61)

+
1

zc
(
∑
i

ŵi(d
t
i − βt)(dti − βt)T +Qt

1 +Qt
2 ◦mt +Qt

3m
t(mt)T )

A.4 PROOF AND DISCUSSIONS ON PROPOSITION 2

Proof. We apply the first condition to equations (58, 59), which gives the updates for θt+1 with
Dt

w =
∑

i ŵ
t
i(x

t
i −mt)(xt

i −mt)T ,

mt+1 =mt +
1

zm
dtw (62)

Ct+1 =
ηc
zc

Ct +
1

zc
Dt

w +
λ0

zc
stc(s

t
c)

T (63)

− λ0

zczm
(dtw ◦ (stc))−

1

zczm
(2− zc

zm
)dtw(d

t
w)

T

Then under the second condition, the last two terms in the update of Ct+1 should be discarded. The
rest part coincide with CMA-ES up to an external learning rate difference.

B EXPERIMENTS

We implement SYNCMA using PyPop7 (Duan et al., 2022)1. All baselines except TuRBO and TR-
CMA-ES are also implemented with this library. Except for the hyperparameters mentioned in the
main paper, all evolutionary based algorithms use default options. In SYNCMA, we use constant
learning rate σ = 0.1 in order to match the initial learning rate in other CMA optimizers to sample

1https://github.com/Evolutionary-Intelligence/pypop
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with N (m,σΣ). As CMA optimizers also use σ as the update fraction for mean, we set ηm such
that 1/zm = 0.1 accordingly. ηc is set two times of the corresponding value in CMA-ES, as several
tunning techniques used in fine-tuned version of CMA-ES may let its actual corresponding value
larger. For TuRBO, we refer to the implementation of BoTorch and replicate the original algorithm.
We set the trust region number as one and keep all hyperparameter same as the original implemen-
tation.2 All experiments are held on Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz, except for
TuRBO method, a NVIDIA A100 is used.

B.1 SYNTHETIC FUNCTIONS

For synthetic functions, we directly use the benchmarks provided by PyPop7, with formulation
shown in Table 2. Full contents of near optimal performance and the average efficiency rank, i.e.
the first time hitting time into 0.5 value, for CMA optimizers under the same budget are provided in
tables 3, 4 and 5, other optimizers are excluded as their poor performance and linewidth limit. The
optimization procedure of all 10 functions for SYNCMA with different λ0 and other baselines are
provided in figures 3, 4, 5.

It can be seen that as dimension increasing, the average performance of SYNCMA is getting worse.
This align with the observation on dimensionality in ablation study that higher dimension generally
yields higher λ0.

Table 2: 10 different synthetic functions. Selected from classic test function for global optimization,
including different rugged characteristics like multi-modality, high condition number and different
optima landscape. The optima all scale to x∗ = 0, f(x∗) = 0. For the brevity sake, wi = 1 + xi+1

4

in LevyMontalvo function, zi = x2
i + x2

i+1 in Schaffer function.

Name Expression

Sphere
∑

i x
2
i

Discus 106x0 +
∑

i≥1 xi

Schwefel
∑

i xi +
∏

i xi

DiffPowers
∑

i x
2+4i/n

Bohachevsky
∑

i<n−1 0.7 + x2
i + 2 ∗ x2

i+1 − 0.3 cos(3πxi)− 0.4 cos(4πxi+1)

LevyMontalvo π
n (10 sin

2(πw0) + (wn−1 − 1)2 +
∑

i<n−1(wi − 1)2(1 + 10 sin2(πwi+1)))
Rastrigin 10n+

∑
i x

2
i − 10 cos(2πxi)

Ackley −20 exp(−0.2( 1n
∑

i x
2
i )

0.5)− exp( 1n
∑

i cos(2πxi)) + 20 + e
Schaffer

∑
i<n−1 z

0.25
i ∗ (sin2(50 ∗ z0.1i ) + 1)

Rosenbrock 100
∑

i≥1(xi − x2
i−1)

2 +
∑

i<n−1(xi − 1)2

B.2 MUJOCO LOCOMOTION TASK

For Mujoco locomotion benchmarks, we refer to ARS3 to model the task as a sampling problem,
rollout is set to 1 for simplicity. Full optimization procedure for all 5 tasks are provided in 6.

B.3 ROVER PLANNING TASK

For rover planning task, we refer to nevergrad4 to test. Optimization procedure is provided in 6f.

B.4 ABLATION STUDY

All the data provided in appendix actually contains different version of SYNCMA with λ0 =
{0, 1, 2, 4}, so they naturally consist the ablation study. The three observations can be verified

2https://botorch.org/tutorials/turbo_1
3https://github.com/modestyachts/ARS
4https://github.com/facebookresearch/nevergrad
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thereby. Through every experiment on each λ0, we monitor the behavior of SYNCMA and do not
find any degreneration happen.

Table 3: Near optimal performance of CMA optimizers on 32d synthetic functions(lower is better).
We show the median best performance of 10,000 evaluations over 100 trials. Numbers in brackets
indicates the evaluation number need for algorithms to achieve better than 0.5.

Function DD-CMA CMA-ES TR-CMA-ES SynCMA 1 SynCMA 2 SynCMA 4

Sphere 0.0(3665) 0.0(4612) 0.1(2405) 0.0(855) 0.0(555) 0.0(455)
Discus 0.0(5223) 52.8 419.6 0.1(6363) 0.0(4437) 0.0(2568)

Schwefel 0.0(5325) 0.0(5124) 0.1(3074) 0.0(704) 0.0(519) 0.0(449)
DiffPowers 0.0(3703) 0.0(5585) 0.1(3720) 0.0(704) 0.0(519) 0.0(450)

Bohachevsky 0.0(5420) 0.0(7115) 0.4(4428) 0.2(8163) 0.1(6340) 0.0(5106)
LevyMontalvo 0.0(5153) 0.0(4030) 0.1(2506) 0.0(1350) 0.0(1092) 0.1(1094)

Rastrigin 58.1 194.8 15.9 1.0 0.2(8758) 0.1(7372)
Ackley 0.0(4849) 0.0(5850) 0.1(2946) 0.1(2733) 0.0(2133) 0.0(1134)
Schaffer 61.3 71.3 2.2 6.6 4.8 3.8

Rosenbrock 28.0 29.9 0.1(7251) 29.3 29.2 29.6

Ave Rank 5 6 4 3 2 1

Table 4: Near optimal performance of CMA optimizers on 64d synthetic functions(lower is better).
We show the median best performance of 50,000 evaluations over 20 trials. Numbers in brackets
indicates the evaluation number need for algorithms to achieve better than 0.5.

Function DD-CMA CMA-ES TR-CMA-ES SynCMA 1 SynCMA 2 SynCMA 4

Sphere 0.0(10047) 0.0(13825) 0.0(7185) 0.0(4691) 0.0(3938) 0.0(1047)
Discus 0.0(12748) 0.0(43265) 85.9 0.0(27662) 0.0(18820) 0.0(10484)

Schwefel 0.0(16820) 0.0(16134) 0.0(9905) 0.0(1548) 0.0(1157) 0.0(929)
DiffPowers 0.0(10164) 0.0(18503) 0.0(12040) 0.0(1548) 0.0(1158) 0.0(937)

Bohachevsky 0.0(14605) 0.0(20369) 0.0(11865) 0.3(44088) 0.0(32247) 0.0(23314)
LevyMontalvo 0.0(9087) 0.0(9901) 0.0(5515) 0.0(2522) 0.0(2318) 0.0(2486)

Rastrigin 17.9 21.4 22.4 1.3 0.2(42696) 0.0(31565)
Ackley 0.0(11757) 0.0(15620) 0.0(7869) 0.0(9800) 0.0(7567) 0.0(4549)
Schaffer 23.3 0.4(49400) 0.3(32701) 12.3 8.2 4.9

Rosenbrock 53.8 57.8 0.0(21543) 59.8 60.1 60.9

Ave Rank 5 6 3 4 2 1

Table 5: Near optimal performance of CMA optimizers on 128d synthetic functions(lower is better).
We show the median best performance of 100,000 evaluations over 20 trials. Numbers in brackets
indicates the evaluation number need for algorithms to achieve better than 0.5.

Function DD-CMA CMA-ES TR-CMA-ES SynCMA 1 SynCMA 2 SynCMA 4

Sphere 0.0(39745) 0.0(27751) 0.0(21428) 0.2(54617) 0.1(40403) 0.0(25428)
Discus 395.8 0.0(32544) 1496.4 1.0 0.4(93272) 0.1(58425)

Schwefel 0.0(51681) 0.0(59947) 0.0(31407) 0.1(3610) 0.1(2600) 0.1(2085)
DiffPowers 0.0(62675) 0.0(28185) 0.0(41019) 0.0(3626) 0.0(2621) 0.0(2123)

Bohachevsky 0.0(57138) 0.0(39401) 0.0(31801) 9.8 4.8 1.2
LevyMontalvo 0.0(26924) 0.0(20332) 0.0(14875) 0.0(5672) 0.0(5404) 0.0(5344)

Rastrigin 107.6 23.0 33.3 42.6 19.9 5.0
Ackley 0.0(41488) 0.0(29714) 0.0(21994) 0.3(46327) 0.2(33839) 0.1(20330)
Schaffer 4.3 0.7 0.2(91494) 45.1 37.7 27.9

Rosenbrock 124.3 120.5 0.0(68532) 146.6 134.8 127.8

Ave Rank 5 3 2 6 4 1
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(a) Sphere (b) Bohachevsky (c) LevyMontalvo

(d) Rastrigin (e) Ackley (f) Schaffer

(g) Discus (h) Schwefel (i) DiffPowers

(j) Rosenbrock

Figure 3: Optimization procedure in 10 tests function with dimension n = 32 over 100 trails with
10000 evaluations.

17



Under review as a conference paper at ICLR 2024

(a) Sphere (b) Bohachevsky (c) LevyMontalvo

(d) Rastrigin (e) Ackley (f) Schaffer

(g) Discus (h) Schwefel (i) DiffPowers

(j) Rosenbrock

Figure 4: Optimization procedure in 10 tests function with dimension n = 64 over 100 trails with
50000 evaluations.
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(a) Sphere (b) Bohachevsky (c) LevyMontalvo

(d) Rastrigin (e) Ackley (f) Schaffer

(g) Discus (h) Schwefel (i) DiffPowers

(j) Rosenbrock

Figure 5: Optimization procedure in 10 tests function with dimension n = 128 over 100 trails with
100000 evaluations.
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(a) Half-Cheetah(102d) (b) Walker(102d)

(c) Ant(888d) (d) Swimmer(16d)

(e) Hopper(33d) (f) Rover planning(60d)

Figure 6: Optimization performance on 5 Mujoco locomotion tasks and the rover planing task
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