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Abstract

The fine-tuning of open-source large language001
models (LLMs) for machine translation has re-002
cently received considerable attention, mark-003
ing a shift towards data-centric research from004
traditional neural machine translation. How-005
ever, the area of data collection for instruction006
fine-tuning in machine translation remains rela-007
tively underexplored. In this paper, we present008
LexMatcher, a simple yet effective method for009
data curation, the design of which is driven010
by the coverage of senses found in bilingual011
dictionaries. The construction process com-012
prises data retrieval from an existing corpus013
and data augmentation that supplements the014
infrequent senses of polysemous words. Utiliz-015
ing LLaMA2 as our base model, our approach016
outperforms the established baselines on the017
WMT2022 test sets and also exhibits remark-018
able performance in tasks related to word sense019
disambiguation and specialized terminology020
translation. These results underscore the ef-021
fectiveness of LexMatcher in enhancing LLM-022
based machine translation.023

1 Introduction024

The emergence of large language models (LLMs)025

(Brown et al., 2020; Touvron et al., 2023b; Ope-026

nAI, 2023) has brought about new opportunities027

for machine translation and improving the trans-028

lation performance of smaller-sized LLMs (7B or029

13B) has attracted a lot of attention (Jiao et al.,030

2023; Zeng et al., 2024; Zhang et al., 2023; Xu031

et al., 2024). Unlike traditional neural machine032

translation (NMT) which relies heavily on abun-033

dant parallel data (Sennrich et al., 2016; Edunov034

et al., 2018; Gordon et al., 2021; Fernandes et al.,035

2023). LLMs have demonstrated less dependency036

on vast amounts of supervised data to achieve com-037

petitive performance. Similar to other tasks by038

LLMs (Zhou et al., 2023; Gunasekar et al., 2023),039

the quality of fine-tuning data plays a more crucial040

role in NMT (Zhang et al., 2023; Xu et al., 2024).041

Current work primarily focuses on constructing 042

fine-tuning data by leveraging human-written devel- 043

opment sets, and creating refined instruction data 044

for special purposes such as contrastive translation 045

pairs and interactive translation (Zeng et al., 2024; 046

Zhang et al., 2023). However, these methods do 047

not fully exploit the potentially valuable informa- 048

tion embedded within the existing large parallel 049

corpus. Moreover,it has been demonstrated that 050

fine-tuning LLMs with extensive parallel data can 051

impair their inherent translation capabilities (Xu 052

et al., 2024). The quality of data distributions has 053

been emphasized to have a more significant im- 054

pact on the model performance than quantity alone 055

(Gunasekar et al., 2023; Li et al., 2023), with more 056

uniform data distributions contributing to improved 057

generalization for unseen compositions (Patel et al., 058

2022). 059

Motivated by the above observations, we investi- 060

gate a principled method, LexMatcher, for curating 061

supervised fine-tuning data for LLM-based transla- 062

tion. The objective is to collect a small yet carefully 063

selected dataset that follows a proper distribution 064

for maximizing translation quality. To this end, 065

we leverage a bilingual dictionary as a pivotal re- 066

source to ensure comprehensive coverage of word 067

or phrase senses in bilingual contexts. The con- 068

struction of the dataset involves two steps: data 069

retrieval and data augmentation. In the data re- 070

trieval step, we traverse commonly-used corpora 071

(e.g., WMT training data) and identify sentence 072

pairs that are guided by the coverage of dictionary 073

senses. Inevitably, however, there may be uncov- 074

ered senses of polysemous words, representing 075

long-tail knowledge essential for accurate trans- 076

lation. In the data augmentation step, we employ 077

a commercial LLM (e.g., ChatGPT) to generate 078

precise and concise sentence pairs that contain the 079

uncovered senses. Finally, we fine-tune LLMs us- 080

ing a combination of the retrieved and generated 081

data. 082
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We conduct extensive experiments on six lan-083

guage directions including Zh⇔En, En⇔De, and084

En⇔Ru. By employing LexMatcher, we extract085

0.1% of the WMT data, totaling 1 million samples086

across all six language directions. Results of fine-087

tuned LLMs on the test sets show the superiority088

of our method over the baselines in both standard089

and zero-shot settings. The fine-tuned models also090

achieve comparable or better performance in termi-091

nology translation and translation disambiguation092

compared to the dedicated or commercial systems.093

Further analyses of different data collection meth-094

ods and composition generalization underscore the095

significance of high-quality data distributions. We096

will release the code, data, and models upon accep-097

tance.098

2 Related Work099

Data Selection for NMT. For traditional neural100

machine translation models, augmenting the vol-101

ume of parallel data often leads to improvements in102

performance (Sennrich et al., 2016; Edunov et al.,103

2018; Gordon et al., 2021; Fernandes et al., 2023).104

Conversely, there have also been studies explor-105

ing data selection to reduce the size of the training106

corpus. For instance, van der Wees et al. (2017)107

gradually reduces the training data to a cleaner sub-108

set, determined by external scorers. Wang et al.109

(2018) introduce curriculum-based data selection110

that employs a trusted clean dataset to assess the111

noise level of each sample. Kumar et al. (2019)112

employ reinforcement learning to simultaneously113

learn a denoising curriculum and improve the NMT114

model. Mohiuddin et al. (2022) initially train a115

base NMT model on the entire available data and116

subsequently fine-tune the base model using se-117

lected subsets. Compared to traditional NMT, data118

curation is more critical for LLM-based MT, for119

which we make the first investigation by proposing120

a simple and practical method.121

LLMs for MT. The usage of LLM-based MT is122

significantly different from the conventional NMT.123

LLMs, particularly large ones like GPT-4, serve124

as interfaces that can perform translation with sim-125

ple translation instructions or in-context learning126

(ICL) (Lin et al., 2022; Hendy et al., 2023; Zhu127

et al., 2023; Agrawal et al., 2022). For ICL, the128

influence of data selection methods on model per-129

formance is not significantly noticeable (Zhu et al.,130

2023; Agrawal et al., 2022; Lin et al., 2022). Fine-131

tuning smaller-sized LLMs such as LLaMA (Tou-132

vron et al., 2023a) for translation has garnered in- 133

creasing attention (Jiao et al., 2023; Zhang et al., 134

2023), which has the potential to achieve an im- 135

proved trade-off between quality and efficiency. 136

TIM (Zeng et al., 2024) constructs translation pairs 137

for comparison and introduces an additional prefer- 138

ence loss. Bayling (Zhang et al., 2023) automati- 139

cally generates interactive translation instructions. 140

Mao and Yu (2024) construct an additional cross- 141

lingual discrimination task using word alignment 142

for low-resource languages. Yang et al. (2023) fine- 143

tune LLMs using more than 300 million parallel 144

instances while Xu et al. (2024) indicate that such 145

strategy could potentially impair the translation 146

capabilities of LLMs. Instead, they propose a two- 147

stage process that involves further post-training 148

LLMs using a substantial amount of mixed mono- 149

lingual data, followed by a subsequent step of fine- 150

tuning with human-written parallel data. 151

In line with the above efforts, we also aim to 152

improve the open-source LLMs. The difference 153

is that we propose specific parallel data collection 154

methods, following the principle of achieving uni- 155

form coverage of semantic units in the dictionary. 156

Moreover, our approach achieves a better balance 157

between efficiency and performance, and we can 158

obtain a high-quality translation model using fewer 159

computational resources compared to continual pre- 160

training. 161

Bilingual Dictionary for NMT. Bilingual dic- 162

tionaries have been employed to enhance transla- 163

tion quality, particularly for rare words or domain- 164

specific entities. One approach involves augment- 165

ing the training data with pseudo-parallel sentences 166

generated based on the dictionary. For example, 167

Zhao et al. (2020) enhance the parallel corpus with 168

the help of paired entities extracted from multilin- 169

gual knowledge graphs. Hu et al. (2022) propose 170

denoising entity pretraining for NMT using mono- 171

lingual data and paired entities. These methods 172

do not consult bilingual dictionaries for translation 173

candidates during the inference stage. Another ap- 174

proach involves leveraging bilingual alignments 175

as lexical constraints (Li et al., 2022; Wang et al., 176

2022; Zeng et al., 2023). For LLMs, bilingual dic- 177

tionaries have been used as a part of prompts (Lu 178

et al., 2023; Ghazvininejad et al., 2023) for the 179

LLMs of more than 100B. In contrast, we aim to 180

improve LLMs’ fine-tuning performance on trans- 181

lation tasks. The dictionaries serve as a pivot for 182

data collection and can also be added in prompts 183
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Figure 1: Illustration of our LexMatcher for instruction
fine-tuning smaller LLMs (e.g., LLaMA).

when needed.184

3 Method185

The overview of LexMatcher is illustrated in Fig-186

ure 1, which takes data retrieval (§3.1) and data187

augmentation (§3.2) steps for curating a compact188

parallel dataset for instruction fine-tuning.189

3.1 Data Retrieval190

Given a dictionary Φ = (s, t), where Φ =191

{(s1, t1), (s2, t2), . . . , (sn, tn)} and each (si, ti)192

represents a source-target segment pair, we aim to193

ground each pair in parallel contexts by retrieving194

data from a bilingual parallel dataset D = {(x, y)}.195

The dictionary Φ shares the same source and target196

languages with D. The segments can be words197

(e.g., “country”), phrases (e.g., “take over”), or198

named entities (e.g., “World Trade Organization”)199

in the dictionary. Ideally, the objective is to find a200

subset Sr ⊆ D such that:201

∀(s, t) ∈ Φ, ∃(x, y) ∈ Sr : s ⊆ x ∧ t ⊆ y, (1)202

where x = {x1, x2, ..., x|x|} and y =203

{y1, y2, ..., y|y|}. In practice, however, it is not204

guaranteed that the existing bilingual corpora can205

cover all dictionary senses. Therefore, we extract a206

subset that strives to fulfill this objective.207

We traverse the corpus in sequential order and208

search for potential matches with segment pairs209

in the dictionary. To prioritize the extraction of210

high-quality sentence pairs, we rank the corpus211

Algorithm 1 Data retrieval in LexMatcher
1: Input: Parallel dataset D, dictionary Φ, thresh-

old K
2: Output: Subset Sr ⊆ D
3: Initialize Sr ← ∅，frequency count C ← {}
4: for each (x, y) ∈ D do
5: Found←false
6: for each segment x̂i in Lemmatize(x) do
7: for each tn in Φ[x̂i] do
8: if C[(x̂i, tn)] < K and
9: tn in Lemmatize(y) then

10: C[(x̂i, tn)]←C[(x̂i, tn)] + 1
11: Found←true
12: end if
13: end for
14: end for
15: if Found then
16: Add (x, y) to Sr

17: end if
18: end for
19: return Sr

with model-based translation quality metrics, e.g., 212

COMET-KIWI (Rei et al., 2022). Specifically, for 213

each segment1 in a source sentence, we perform a 214

dictionary lookup for all the aligned target words. 215

If one of the aligned target segments exists in the 216

target sentence, we put the sentence pair into the 217

translation candidate subset Sr. We lemmatize 218

each word in the source and target sentence to alle- 219

viate the effect of morphological textual variations. 220

In addition, we introduce a threshold K to skip the 221

sentence if all the segment pairs in it have already 222

been matched K times. K enables convenient con- 223

trol over the size of the subset and is used to en- 224

courage even distribution of segment pairs. The 225

matching procedure is illustrated in Algorithm 1. 226

3.2 Data Augmentation 227

Using a partial set of open-source corpora can- 228

not cover all the senses in the dictionary, which 229

can be rare named entities or low-frequency oc- 230

currence of distinctive senses of certain words. 231

The translation of rare entities is generally unique 232

and can be solved effectively by prompting LLMs 233

during inference, and the lack of training data 234

for these cases may have minimal impact. How- 235

ever, the senses of polysemous words are context- 236

sensitive and may require specific training data to 237

1We use unigram and bigram excluding stopwords.
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strengthen the model’s understanding and trans-238

lation of them. To compensate for the missing239

senses, we leverage ChatGPT2 to construct trans-240

lation demonstrations for each sense, thus creating241

the subset Sc. Concretely, we prompt ChatGPT242

with a sense expressed in source and target lan-243

guages and the sense’s definition. The prompt is244

shown in Figure 6 (Appendix B). Only nouns and245

verbs with more than three senses are considered246

due to their highly polysemous nature (Campol-247

ungo et al., 2022). Note that the subset Sc only248

takes up a neglectable portion of the whole dataset249

(e.g., 225 sentence pairs for English-Germen, and250

the specific numbers are reported in §5).251

4 Instruction Fine-tuning LLM for MT252

Instruction fine-tuning has become standard prac-253

tice in LLM-based translation (Zeng et al., 2024;254

Xu et al., 2024; Zhang et al., 2023). Our instruction-255

following data is constructed based on S = Sr∪Sc256

(§3). Generally, each instance comprises an “in-257

struction” c describing the task the model should258

perform (e.g., “Translate the sentences from En-259

glish to Chinese.”), an “input” x indicating the260

source sentence, and a corresponding output y indi-261

cating the answer to the instruction, i.e., the target262

sentence. The LLMs are optimized by minimizing263

the negative log-likelihood of the output y:264

L = −
∑

(x,y)∈S

1

|y|

|y|∑
i

log p(yi|c, x; θ), (2)265

where θ is the trainable parameters.266

We use two kinds of translation instructions: 1)267

general translation instructions mainly used to in-268

dicate translation directions (e.g., “Translate the269

following sentence to English”), and 2) constrained270

translation instructions that specify word transla-271

tions from a given dictionary or based on specific272

user requirements. (e.g., ‘Translate the following273

sentence to English using the given reference trans-274

lations.”) For the latter, we randomly sample a275

small number of sentence pairs to incorporate spec-276

ified word translations3. For each sample, we in-277

troduce at most 3 segment pairs matched in the278

dictionary and orgnize them with a template:279

c = Template({(si, ti)}Ni=1), (3)280

2GPT-3.5-turbo-0314
3The maximum number of sentences under the constrained

translation instructions for each direction is set to 10,000.

Lang Raw Retrieval SupplementK=1 K=2 K=3

Zh 33M 75k 188k 281k 2.2k
De 278M 93k 233k 351k 0.2k
Ru 227M 98k 246k 367k 0.7k

Table 1: The number of parallel sentences of different
data sets.

where si and ti denote the segment pair following 281

Section 3. We simply use “means” to connect si 282

and ti, and prepend the constraint to the translation 283

instruction. An example is shown in Figure 6(b) 284

(Appendix B). During inference, we can choose 285

whether to use the constrained translation instruc- 286

tions to incorporate translations from the dictionary 287

or terminology, depending on the situation. 288

5 Experiments 289

5.1 Setting 290

For parallel training data, we use the open- 291

source data from WMT224 in German⇔English, 292

Chinese⇔English, and Russian⇔English. The de- 293

tail of data preprocessing is shown in Appendix 294

C. We use bilingual dictionaries provided by Open 295

Multilingual WordNet (Bond et al., 2016)5. In ad- 296

dition, we take Wikititles6 as an entity dictionary. 297

Table 1 presents the number of sentence pairs for 298

each language pair in different subsets, including 299

the original training set, subsets extracted based on 300

different K, and the ChatGPT-generated data. It 301

can be observed that our method achieves a high 302

compression rate. The subset K=3 is used for 303

the main experiment, and the extracted data for 304

Chinese, German, and Russian accounts for only 305

0.57%, 0.08%, and 0.11% of the original data, re- 306

spectively. The development sets from the previous 307

WMT competitions are used by default (Jiao et al., 308

2023; Xu et al., 2024). 309

We use LLaMA2-7B and LLaMA2-13B for com- 310

paring to the related methods, and one model is 311

used for all of the translation directions. We fine 312

tune all of our models for 1 epoch with the collected 313

multilingual instruction data. The batch size is 128 314

and the learning rate is 2e-5. The final checkpoint 315

is used for evaluation, and we use beam search with 316

a beam size of 4 during inference. For automatic 317

evaluations, we use BLEU (Papineni et al., 2002) 7 318

4https://www.statmt.org/wmt22/translation-task.html
5https://www.nltk.org/howto/wordnet.html
6https://data.statmt.org/wikititles/v3/
7https://github.com/mjpost/sacrebleu
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Model Zh⇒En En⇒Zh De⇒En En⇒De Ru⇒En En⇒Ru
BLEU/COMET BLEU/COMET BLEU/COMET BLEU/COMET BLEU/COMET BLEU/COMET

GPT-3.5† 26.60/82.90 44.90/87.00 33.10/85.50 34.40/87.00 42.40/86.10 34.40/87.00
GPT-4† 27.20/82.79 43.98/87.49 33.87/85.62 35.38/87.44 43.51/86.18 30.45/88.87
NLLB-54B† 16.56/70.70 27.38/78.91 26.89/78.94 34.50/86.45 26.89/78.94 30.96/87.92

LLaMA2-7B† 18.19/75.00 16.97/71.80 30.42/82.74 19.00/76.39 36.02/82.84 16.00/73.24
Parrot-7B (Jiao et al., 2023) 20.20/75.90 30.30/80.30 27.30/82.40 26.10/81.60 - -
TIM-7B (Zeng et al., 2024) 24.51/79.71 37.83/85.10 26.12/78.94 20.90/74.91 - -
ALMA-7B (Xu et al., 2024) 23.52/79.73 36.48/85.05 29.49/83.98 30.31/85.59 38.93/84.81 27.09/87.17
LexMatcher-7B 24.81/79.13 40.34/86.11 32.33/84.29 33.56/86.31 41.01/84.43 28.97/87.23

LLaMA2-13B† 21.81/78.10 30.00/79.70 31.06/83.01 13.69/75.55 36.50/82.91 0.59/63.84
DictPrompt-13B (Ghazvininejad et al., 2023) 17.55/74.12 33.75/83.46 30.36/83.31 25.24/80.89 37.70/81.95 21.98/81.00
BigTrans-13B (Yang et al., 2023) 14.16/74.26 28.56/81.31 23.35/80.68 21.48/78.81 26.81/77.80 17.66/78.21
Bayling-13B (Zhang et al., 2023) 20.12/77.72 37.92/84.62 27.34/83.02 25.62/82.69 33.95/82.07 12.77/71.01
ALMA-13B (Xu et al., 2024) 25.46/80.21 39.84/85.96 31.14/84.56 31.47/85.62 40.27/85.27 28.96/87.53
LexMatcher-13B 26.15/79.88 41.13/86.58 32.59/84.55 34.82/86.45 41.53/84.91 30.20/87.83

Table 2: Evaluation results on WMT22 test sets. Higher scores (BLEU and COMET) denote better translation
performance. Bold numbers indicate the best scores among models of the same sizes. The numbers with the dagger
symbol represent the results from (Xu et al., 2024). LexMatcher-7B outperforms Parrot-7B and ALMA-7B with
p-value<0.01, and LexMatcher-13B outperforms ALMA-13B with p-value<0.01.

and COMET8.319

5.2 Main Results320

Seen Language Directions. Table 2 presents321

the translation performance on the WMT22 test322

sets. The LLaMA2 models fine-tuned on the in-323

struction data collected by LexMatcher signifi-324

cantly outperform their original zero-shot perfor-325

mance, especially for the En⇒xx. Concretely,326

LexMatcher-7B improves LLaMA2-7B by an av-327

erage of 17.02 BLEU points and 12.68 COMET328

points in En⇒xx, and by 4.45 BLEU points and329

2.42 COMET points in xx⇒En. LLaMA2-13B per-330

forms significantly worse than its 7B counterpart in331

En⇒xx directions due to severe off-target issues,332

while LexMatcher-13B improves this performance333

significantly. We also consider an ICL method334

DictPrompt (Ghazvininejad et al., 2023) which pro-335

vides dictionary translations for each source word9,336

and the result shows that using dictionary trans-337

lations as hints yields notable improvements in338

En⇒xx. In contrast, LexMatcher-13B achieves339

better performance and is more efficient due to a340

much shorter context during inference.341

LexMatcher demonstrates superior performance342

compared to other instruction fine-tuned base-343

lines. Specifically, LexMatcher-7B outperforms344

Parrot-7B and TIM-7B, which construct additional345

translation pairs and utilize specialized instruc-346

tions. In the En⇒De translation task, LexMatcher-347

7B surpasses TIM-7B by more than 10 BLEU348

8https://huggingface.co/Unbabel/wmt22-comet-da
9They use Bloom-176B as the backbone and we re-

implement the method on LLaMA2-13B.
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Figure 2: Zero-shot translation.

and COMET points. Moreover, LexMatcher 349

outperforms BigTrans and ALMA consistently 350

across the En⇒xx tasks, which incorporate a large 351

amount of data for continual pretraining. While 352

LexMatcher-7B still underperforms GPT-3.510 and 353

GPT-411, the COMET scores for LexMatcher-7B 354

are merely lower than GPT-3.5 within 2 points, and 355

LexMatcher-13B further narrows the gap. 356

Unseen Language Directions. To evaluate per- 357

formance in translation directions never seen 358

previously, i.e., zero-shot multilingual capabil- 359

ity, we further conduct experiments on Czech- 360

to-English (cs⇒en), Japanese-to-English (ja⇒en), 361

and Ukrainian-to-English (uk⇒en). As depicted 362

in Figure 2, LexMatcher-(*) exhibits superior zero- 363

shot multilingual capability over the LLM base- 364

lines, highlighting that better aligning training 365

languages strengthens the alignment of other lan- 366

10GPT-3.5-turbo-0301
11GPT-4-0314
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Model Zh De Ru

DeepL 58.42 76.64 67.53
Google-Translate 52.09 67.35 62.03
OPUS 25.94 27.04 28.71
NLLB-54B 48.02 67.97 67.88

LLaMA-7B-ICL(1) 30.61 57.41 60.65
LLaMA-7B-ICL(5) 27.92 55.26 56.83
LLaMA-65B-ICL(1) 44.73 62.05 65.71
LLaMA-65B-ICL(5) 42.49 62.98 66.31
Alpaca-7B 29.63 51.52 55.23

LexMatcher-7B 53.28 63.32 67.72
LexMatcher-13B 59.09 66.98 69.93

Table 3: Accuracies on the DiBiMT benchmark which
is dedicated for evaluating word disambiguation in MT.
The number following ICL denotes the number of trans-
lation demonstrations.

guages as a by-product.367

Disambiguation. By comparing the different368

senses of a word and multilingual expressions of369

meaning, the model possibly learns more precise370

word usage in translation. To investigate it, we371

submit the models to a challenging disambiguation372

leaderboard, DiBiMT (Campolungo et al., 2022). It373

compares the performance of NMT systems when374

translating sentences with ambiguous words and375

the performance is evaluated by accuracy. For com-376

parison, we display the performance of top-ranked377

systems including DeepL12, Google Translate13,378

and NLLB-54B. The results of LLMs are from Iyer379

et al. (2023).380

The result is shown in Table 3. For the LLaMA381

models, increasing model size improves the perfor-382

mance, and LLaMA-65B matches Google Tranlate383

and NLLB-54B with few-shot prompting. Alpaca-384

7B works well without demonstration (i.e., zero-385

shot prompting) and significantly outperforms the386

supervised NMT system OPUS, which indicates387

its potential for further improvement through fine-388

tuning on translation data. LexMatcher-7B sig-389

nificantly outperforms Alpaca-7B and surpasses390

Google Translate in Chinese and Russian disam-391

biguation. With a scale of 13B, it also outperforms392

the best DEEPL system in Chinese and Russian,393

achieving accuracy rates of 59.09% and 69.93%, re-394

spectively. This result demonstrates the advantage395

of our data construction principle.396

Terminology. During training, we introduce spe-397

cial instructions to train the model to use the pro-398

12https://www.deepl.com/en/translator
13https://translate.google.com

Model Zh⇒En De⇒En
ChrF/COMET Suc ChrF/COMET Suc

Lingua Custodia 32.6/60.9 74.7 61.8/73.5 62.2
VARCO 40.5/71.5 80.0 - -
UEDINLLM 41.2/75.7 75.3 60.0/81.3 58.8

LexMatcher-7B 38.2/73.2 84.5 64.3/81.9 80.8
LexMatcher-13B 39.1/73.6 85.6 64.5/82.0 81.5

Table 4: Performance on WMT23 terminology trans-
lation test sets. “Suc” indicates Terminology Success
Rate.

vided segment pairs. In this experiment, we eval- 399

uate the effectiveness of the instructions on a ter- 400

minology translation test set from WMT2314. The 401

numbers of sentences on Zh⇒En and De⇒En are 402

2640 and 2963, respectively. The average numbers 403

of terms per segment on Zh⇒En and De⇒En are 404

3.8 and 1.1, respectively. The result is shown in 405

Table 4, and we only present the systems achiev- 406

ing the best performance on a specific metric (Se- 407

menov et al., 2023). Lingua Custodia and VARCO 408

are specialized Transformer architectures to ensure 409

the appearance of given terminology in the trans- 410

lation, and UEDINLLM uses ChatGPT with termi- 411

nology translation prompts. Compared to them, 412

our models achieve significantly higher terminol- 413

ogy success rates, indicating a superior ability to 414

accurately respond to the given domain-specific 415

terminology. On the quality metrics, our models 416

are inferior to UEDINLLM on Zh⇒En, and achieve 417

the best results on De⇒En. 418

6 Analysis 419

6.1 Effect of K 420

The maximal number of bilingual contexts of each 421

matched sense is influenced by K. We show the 422

performance of varying Ks across different model 423

sizes on the WMT22 test sets (Figure 3). Regard- 424

less of the amount of training data used, the larger 425

models perform better and require less data for 426

fine-tuning. In addition, the model’s performance 427

improves as K increases from 1 to 3. With the 428

addition of more parallel data, the performance 429

gains begin to plateau or even slightly decrease, 430

which aligns with the conclusions of the previous 431

study (Xu et al., 2024). Thanks to the strong few- 432

shot learning capability of the backbones, we do 433

not need to provide as many training examples as 434

before when training the NMT model. 435

14https://wmt-terminology-task.github.io/
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Figure 3: BLEU and COMET on the WMT22 test sets
with varying K and model sizes.

6.2 Alternative Data Selection Strategies436

In this experiment, we investigate two intuitive data437

collection methods: 1) random selection (RAND),438

in which the training data are randomly sampled439

from the corpus; and 2) quality-based selection440

(TOP), in which the training samples are selected441

based on the COMET-KIWI scores in descending442

order. Specifically, we use these two methods to443

extract the same sample quantity as LexMatcher444

to mitigate the impact of sample quantity. We use445

LLaMA2-7B as the backbone, and the result on446

WMT test sets is shown in Figure 4. The perfor-447

mance of RAND is inferior to the other two meth-448

ods. Random selection ensures a certain degree449

of diversity but the performance is uncontrollable450

and non-reproducible. TOP performs better than451

RAND, demonstrating the importance of data qual-452

ity for instruction tuning. LexMatcher can simul-453

taneously consider both quality and diversity and454

achieve the best performance.455

Word Frequency Distribution We are interested456

in whether the collected data has a different word457

frequency distribution from the general (randomly458

selected) one. We use the English data of the459

EN⇒ZH translation task with K=1, and plot the460

word frequency distributions of the collected data461

(blue curve) and the corresponding random data462

(gray curve). As shown in Figure 5, the blue curve463

tends to be smoother than the gray one, and the464

blue curve has more flat segments. For words with465
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Figure 4: Performance of different data selection strate-
gies.
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Figure 5: Word frequency distributions. The blue and
gray curves denote the distributions calculated on the
data selected by LexMatcher (K=1) and randomly se-
lected data, respectively.

higher frequency rankings, the word frequency of 466

the data selected based on the dictionary is lower 467

than that of the random data. This phenomenon in- 468

dicates that the dictionary-based method has gener- 469

ated a less skewed data distribution, which could be 470

the reason for better fine-tuning performance. Ad- 471

ditionally, the dictionary-based data contains 98k 472

unique words while the random data only includes 473

62k unique words, indicating that the dictionary- 474

based data covers more semantic units, thus dilut- 475

ing the word frequency. 476

6.3 Ablation Study 477

The ablation experiment of different data subsets is 478

presented in Table 5. We use LLaMA2-7B as the 479

backbone. Based on the development data, simply 480

incorporating the small amount of synthesized data 481

7



Model xx⇒En En⇒xx DiBi-AccBLEU/COMET BLEU/COMET

Dev 29.77/82.05 29.41/84.63 55.51
+Supplement 30.39/82.22 30.10/84.55 55.96
+Retrieval 32.86/82.71 34.13/86.27 59.98
LexMatcher(3) 32.71/82.61 34.29/86.55 61.44

Table 5: Ablation study on different data subsets.

Model xx⇒En En⇒xx
BLEU/COMET BLEU/COMET

ALMA 30.64/82.84 31.29/85.93
+LexMatcher(1) 32.34/83.11 33.50/86.42
+LexMatcher(2) 31.88/83.07 33.31/86.47
+LexMatcher(3) 33.37/83.32 35.30/87.09
LLaMA3-8B
+LexMatcher(1) 33.15/83.26 34.20/86.58
+LexMatcher(2) 33.29/83.26 35.12/87.00
+LexMatcher(3) 33.74/83.29 35.38/86.97
Gemma-2B
+LexMatcher(1) 31.68/82.42 31.01/84.83
+LexMatcher(2) 31.83/82.39 32.13/85.50
+LexMatcher(3) 31.93/82.43 32.33/85.66

Table 6: The performance of LexMatcher combined
with different LLMs.

generated during the data augmentation phase does482

not have a significant impact on the performance.483

This is possible because the data is predominantly484

focused on low-frequency senses, and the model is485

unable to effectively leverage this knowledge. In486

comparison, adding the retrieved data leads to a487

significant performance improvement, and further488

introducing the synthesized data helps the model489

learn word disambiguation better, increasing the490

disambiguation accuracy from 59.98 to 61.44.491

6.4 Combination with Other LLMs492

In this section, we investigate the performance493

of our data curation on different LLMs including494

ALMA-7B (Xu et al., 2024), LLaMA3-8B, and495

Gemma-2B (Mesnard et al., 2024), and the results496

are shown in Table 6. ALMA (Xu et al., 2024)497

is the post-trained LLaMA2 on a large amount of498

monolingual data mixed by different languages.499

We find that adding the parallel sentences con-500

structed by LexMatcher further enhance its perfor-501

mance, indicating the compatibility of monolingual502

continual pretraining and supervised fine-tuning.503

Although the use of monolingual data during pre-504

training can reduce the dependency on bilingual505

data, the direct application of bilingual data for506

fine-tuning can be more resource-efficient. The507

size of parallel data collected by LexMatcher is508

considerably smaller than that of mixed monolin-509

Model BLEU Instance Aggregate

Transformer 59.5 28.4 62.9
Transformer+CReg 61.3 20.2 48.3

LLaMA2-ICL 38.9 68.6 87.4
LLaMA2-SFT 62.4 18.5 43.9
LexMatcher 63.5 15.6 37.3

Table 7: Compound translation error rates (CTERs) on
CoGnition. Instance and Aggregate denote the instance-
level and aggregate-level CTERs, respectively.

gual data, and the training process is only a single 510

stage. Furthermore, 511

6.5 Compositional Generalization 512

We investiage the effect of a more balanced atom 513

distribution on CoGnition (Li et al., 2021). The 514

evaluation metrics include instance-level CTER 515

which denotes the translation accuracy of novel 516

compounds, and aggregate-level CTER which mea- 517

sures the translation consistency across different 518

contexts. We use the data retrieval of LexMatcher 519

to obtain 70,272 parallel sentences from the full 520

training data (196,246) with K=50. For LLM, we 521

apply ICL with 8 examples and fine-tune LLaMA2- 522

7B on the randomly sampled training data, of which 523

the size is similar to the retrieved data. The results 524

are shown in Table 7. ICL does not yield good 525

compositional generalization performance, while 526

the fine-tuned LLaMA2 outperforms the previous 527

NMT models significantly. LexMatcher achieves 528

lower compound translation error rates than SFT 529

with the same amount of training data, demonstrat- 530

ing the positive effect of the more balanced data 531

distribution. 532

7 Conclusion 533

In this paper, we presented LexMatcher, a 534

dictionary-centric data curation method for super- 535

vised fine-tuning smaller-sized LLMs to better 536

translation models. We use the bilingual dictio- 537

nary as the pivot and try to collect limited parallel 538

sentence pairs to cover the senses uniformly. Ex- 539

periments and analyses validate the effectiveness of 540

LexMatcher from multiple perspectives including 541

zero-shot translation, disambiguation, and termi- 542

nology translation. One potential avenue for future 543

research involves extending LexMatcher to low- 544

resource scenarios, where the utilization of mono- 545

lingual data is crucial for achieving satisfactory 546

translation performance. 547
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8 Limitations548

This work focuses solely on improving translation549

performance for medium and high-resource lan-550

guage pairs. For low-resource language pairs that551

inherently lack parallel data, it is crucial to explore552

how to optimize LLMs on such translation tasks by553

integrating dictionaries, monolingual, and possible554

bilingual data.555
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A Computational Details 830

We conducted experiments using the Huggingface 831

Transformers. The experiments are performed on 832

NVIDIA A100 GPU, and all the results are run 833

once with the random seed 42. According to the 834

data license of WMT22, the data released for the 835

General MT task can be freely used for research 836

purposes. 837

B Prompts Used for Manipulating 838

ChatGPT and Terminology Translation 839

The prompt used to manipulate ChatGPT consists 840

of three parts (Figure 6 (a)). The first part is used 841

to describe the task: generate a pair of parallel 842

sentences, which can reflect the meaning of a given 843

segment pair accurately. The second part is an 844

example to demonstrate the format of the input and 845

output including a segment pair, a definition of the 846

sense, and a sentence pair. The third part is the 847

segment pair requires translation demonstration. 848

The prompt for terminology translation is shown 849

in Figure 6 (b). 850

C Corpus Preprocessing 851

Since the filtered data of Russian⇔English is sig- 852

nificantly less than the other language pairs, we 853

introduce the training set from Tatoeba translation 854

challenge 202115. We filter data with the com- 855

monly used rule-based methods and model-based 856

QE. The rules include the following categories: (1) 857

sentence-level deduplication, (2) filter out the sen- 858

tences longer than 100 words or contain a single 859

word exceeding 40 characters, (3) remove sentence 860

pairs where the ratio of source sentence length to 861

target sentence length is significantly different, i.e., 862

below 1/3 or above 3, (4) filter out the sentences 863

with high repeat ratio, i.e., the proportion of the 864

frequency of the most frequent word in a sentence 865

to the total word frequency greater than 0.3, and 866

(5) filter out the sentences in which the proportion 867

of the content words is between 0.3 and 0.8. In 868

this way, low-quality data can be efficiently filtered 869

out, saving time and resources for the subsequent 870

model-based QE. 871

We utilize one of the state-of-the-art QE models, 872

COMET-KIWI16, to obtain sentence-level quality 873

scores. For every sentence pair in the training data, 874

we calculate the QE score for the translation from 875

15https://github.com/Helsinki-NLP/Tatoeba-
Challenge/tree/v2021-08-07/data

16https://huggingface.co/Unbabel/wmt22-cometkiwi-da
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Given a pair of words that are of the same meaning but in different languages, and the definition of 

the meaning, please generate a pair of sentences in English and Chinese respectively, which can 

reflect the meaning most accurately.

Example:

Word Pair: English: “head” - Chinese: “负责人”

Definition: the person in charge of a group of people or an organization

Sentence pair:

English: She resigned as head of department.

Chinese: 她辞去了部门负责人的职务。

Now, please generate three sentence pairs for the below word pair:

Word Pair: English: “being” - Chinese: “生物”

Definition: a living thing that has (or can develop) the ability to act or function independently

Sentence Pairs:

“head” means “负责人”; “department” means “部门”.

Translate the following sentence from English to Chinese using the given reference translations.

English: She resigned as head of department.

Chinese: 

(a) 

(b) 

Figure 6: Prompts used for (a) manipulating ChatGPT to generate translation demonstrations and (b) terminology
translation.

Model Zh⇒En En⇒Zh De⇒En En⇒De Ru⇒En En⇒Ru
BLEU/COMET BLEU/COMET BLEU/COMET BLEU/COMET BLEU/COMET BLEU/COMET

Dev 23.59/78.94 35.43/84.28 29.04/83.63 28.58/84.09 36.68/83.58 24.23/85.54
+Supplement 23.69/79.05 36.50/84.20 29.45/83.82 28.67/83.98 38.03/83.80 25.14/85.49
+Retrieval 25.36/79.46 40.14/86.01 32.37/84.31 33.26/85.77 40.86/84.36 29.00/87.03
LexMatcher(3) 24.81/79.13 40.34/86.11 32.33/84.29 33.56/86.31 41.01/84.43 28.97/87.23

ALMA-7B
+LexMatcher(1) 24.27/79.82 31.77/84.52 41.00/85.01 38.61/85.83 33.12/86.19 28.77/87.25
+LexMatcher(2) 24.04/79.88 38.27/85.93 31.39/84.32 32.85/86.14 40.61/85.07 28.82/87.34
+LexMatcher(3) 25.20/80.21 41.40/86.59 32.49/84.49 34.44/86.66 42.42/85.28 30.07/88.02
LLaMA3-8B
+LexMatcher(1) 26.40/80.47 40.30/86.11 32.44/84.52 33.16/86.09 40.63/84.79 29.15/87.54
+LexMatcher(2) 26.33/80.31 42.34/86.94 32.36/84.54 33.68/86.37 41.19/84.93 29.36/87.69
+LexMatcher(3) 26.89/80.51 41.88/86.74 32.95/84.46 34.22/86.49 41.39/84.92 30.04/87.70
Gemma-2B
+LexMatcher(1) 24.88/79.75 37.89/85.01 31.35/83.77 29.27/83.95 38.81/83.75 25.87/85.53
+LexMatcher(2) 25.19/79.60 39.53/85.92 31.43/83.77 30.35/84.51 38.87/83.81 26.53/86.09
+LexMatcher(3) 24.84/79.55 39.19/85.98 31.77/83.80 30.81/85.04 39.18/83.95 27.00/85.98

Table 8: Detailed results of ablation study and combination with different LLMs.

English to the foreign language. These scores are876

utilized for both translation directions, as evalu-877

ating both directions of the training data can be878

computationally expensive. We remove sentence879

pairs with low data quality, e.g., those that have a880

score below 40. We use spaCy17 for the lemmati-881

zation.882

17https://spacy.io/
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