
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERATIVE LOCATION MODELING FOR SPATIALLY
AWARE OBJECT INSERTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative models have become a powerful tool for image editing tasks, including
object insertion. However, these methods often lack spatial awareness, generating
objects with unrealistic locations and scales, or unintentionally altering the scene
background. A key challenge lies in maintaining visual coherence, which requires
both a geometrically suitable object location and a high-quality image edit. In
this paper, we focus on the former, creating a location model dedicated to iden-
tifying realistic object locations. Specifically, we train an autoregressive model
that generates bounding box coordinates, conditioned on the background image
and the desired object class. This formulation allows to effectively handle sparse
placement annotations and to incorporate implausible locations into a preference
dataset by performing direct preference optimization. Our extensive experiments
demonstrate that our generative location model, when paired with an inpainting
method, substantially outperforms state-of-the-art instruction-tuned models and
location modeling baselines in object insertion tasks, delivering accurate and vi-
sually coherent results.

1 INTRODUCTION

Explicit modeling of object locations has recently proven to be an effective strategy for generating
complex scenes. Methods that use this strategy often separate the tasks of determining where objects
should be placed and what those objects should look like (Feng et al., 2024a; Phung et al., 2024;
Cho et al., 2024; Lian et al., 2023). This two-step approach typically involves generating a spatial
layout and then conditioning an image generation model on this layout to create the final image. The
success of these approaches has brought renewed attention to location modeling as a key component
for achieving realistic and coherent scene generation.

We explore explicit location modeling for object insertion, which involves determining where new
objects can be placed in a given scene. This is an important task with applications in generative data
augmentation (Zhao et al., 2023; Kupyn & Rupprecht, 2024; Fang et al., 2024), virtual reality (Park
et al., 2005) and robotics (Cheong et al., 2020). Given a scene image and an instruction specifying
an object to be added, object insertion aims to place a new object into the scene with a realistic
appearance and geometry, while preserving the background and other objects intact. Unlike gener-
ating a full scene layout (Gupta et al., 2021), object insertion must account for the rich contextual
information provided by the image, which also imposes strong constraints on where objects can and
cannot be placed.

Current state-of-the-art object insertion methods rely on instruction-tuned image editing (Brooks
et al., 2023; Zhao et al., 2024; Zhang et al., 2024b; Wasserman et al., 2024), which requires models to
jointly learn the realism in both appearance (what) and spatial placement (where). This is a difficult
task that requires large-scale object insertion datasets that are inherently hard to construct. Despite
training on such datasets, existing approaches often favor realism in appearance over placement,
generating objects in unrealistic locations, replace or destroy existing objects, and create unintended
changes in unrelated areas, as seen in Figure 1 (a).

In this work, we propose a two-stage object insertion pipeline that first identifies the object location
using a dedicated location model, then generates the object locally in the appointed location using an
inpainting model, as illustrated in Figure 1 (b). Object placement datasets (Liu et al., 2021; Wasser-
man et al., 2024) suitable for training such a model have recently been released. However, as it is

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Instruction-tuned Image Editing Models

Background distortion

Object replacement

Multiple insertions

Obscure object

Original Image

InstructPix2Pix MagicBrush

Paint-by-Inpaint Diffree

“Add a bus”

Instruction-tuned

Stable Diffusion

(b) Location Model with Inpainting

Original Image

“Add a bus”“Add a bus”

InpaintingLocation

Model

Figure 1: Our proposed pipeline for object insertion (b), in contrast to instruction-tuned methods
(a). We use a pretrained inpainting model by providing it with plausible locations for insertion.

unfeasible to manually label all possible bounding boxes where objects can be placed, these datasets
are inherently sparse, providing annotations for less than 1% of possible locations. Additionally,
there may be multiple realistic locations for any given image, making location modeling a one-to-
many problem. State-of-the-art object placement models handle these issues by either assuming
unlabeled areas as implausible locations (Lin et al., 2018; Tripathi et al., 2019; Zhang et al., 2020)
or crafting custom loss functions (Niu et al., 2022; Zhu et al., 2023). However, these strategies risk
penalizing unlabeled positive locations and are also highly sensitive to annotation sparsity, limiting
their scalability across datasets.

To overcome these challenges, we approach the problem from a generative perspective, as training
a generative model only requires access to samples from the target distribution. Specifically, we
represent the input image and the object class as a sequence of tokens and use an autoregressive
transformer model (Vaswani et al., 2017; Radford et al., 2019) to iteratively decode bounding box
coordinates of plausible object locations. Furthermore, we can also fully leverage any additional
negatively labeled locations by treating pairs of positive and negative labels as a preference dataset,
where positive locations are preferred over negative locations. This perspective allows for direct
preference optimization (Rafailov et al., 2024) on the location model, which further enhances the
accuracy of the locations.

We empirically observe that given a precise location of the object to be generated, off-the-shelf in-
painting models outperform state-of-the-art instruction-tuned object insertion models. Moreover,
we observe that any inaccuracy in estimating the object location can significantly degrade the image
quality, highlighting the role of location modeling as the critical component of the object inser-
tion pipeline. Our location model produces high-quality locations, allowing it to outperform both
instruction-finetuned models in object insertion and existing location models in terms of positional
accuracy. We further validate the effectiveness of our approach in a user study.

Summarizing our main contributions are as follows:

• We propose a two-stage object insertion approach, that overcomes the limitations of
instruction-tuned editing with an explicit location model.

• We effectively handle sparsity in location annotations with a generative approach: an
image-conditioned autoregressive transformer that models bounding box locations.

• We can leverage available negative annotations following our generative formulation using
direct preference optimization, further improving the accuracy of our location model.

• Through extensive experiments and a user study, we demonstrate that our approach
achieves state-of-the-art performance in location modeling, and significantly outperforms
instruction-tuned image editing models in object insertion tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Instruction-based Image Editing. InstructPix2Pix (Brooks et al., 2023) introduced an approach
that finetunes Stable Diffusion (Rombach et al., 2021) to interpret text instructions, trained with a
dataset of paired images before and after specific edits. Subsequently, other methods (Zhang et al.,
2024b; Hui et al., 2024; Zhang et al., 2024a) have released similar datasets for instruction-tuning,
capable of changing the style and content of a given image.

Only recently has there been an emphasis on adding objects using text instructions, supported by
datasets that provide paired images where specific objects have been artificially removed by inpaint-
ing (Wasserman et al., 2024; Zhao et al., 2024). One downside of these datasets is that they contain
inpainting artifacts, which can cause models trained on them to replace existing objects or alter
backgrounds. Additionally, since these models are typically trained to regenerate the entire image,
they often introduce unintended changes to the scene. In contrast, our approach decouples the object
insertion process by using a dedicated location model for determining placement and an inpainting
model for rendering. This factorization allows for more control and precision in object insertion.

Object Placement. Traditionally, object placement has relied on copy-pasting an object segment
by simply determining its location and scale (Zhang et al., 2020; Zhu et al., 2023; Zhou et al., 2022;
Tripathi et al., 2019; Niu et al., 2022). However, this approach is not ideal for inserting objects into
background images, as it requires the user to prepare an image of the object that fits seamlessly into
the scene purely by placement.

To avoid relying on object segments, some approaches predict locations from class labels by query-
ing a classifier (Dvornik et al., 2018) on random bounding boxes, categorizing them as either plausi-
ble or implausible locations for the given class. To enable training a discriminative model, unlabeled
locations are typically treated as negatives or implausible locations. Such an assumption is not al-
ways valid in object placement, as the lack of annotations for specific locations does not necessarily
indicate they are implausible. Therefore, penalizing them may result in an inaccurate location model.
To overcome this limitation, we instead propose a generative approach that requires only samples
from the target distribution, and does not make any assumption about unlabeled locations and only
requires samples of the target distribution (i.e., positive locations).

Layout Generation. Another related category of work is focused on scene layout generation, usu-
ally via a generative model of bounding box locations (Jyothi et al., 2019; Gupta et al., 2021; Chai
et al., 2023; Inoue et al., 2023) or segmentation maps (Lee et al., 2018). Such layouts are often
used as a condition for image generation models such as GLIGEN (Li et al., 2023) to generate com-
plex scenes (Feng et al., 2024a; Phung et al., 2024; Cho et al., 2024; Lian et al., 2023; Gani et al.,
2024; Feng et al., 2024b). Unlike these full-layout generation approaches, our goal is to insert an
object into an existing scene. Having access to the background image fundamentally changes the
nature of the task. On one hand, the background image provides valuable context for realistic ob-
ject placement, but on the other hand, it imposes strong constraints on where objects can be placed.
We therefore design a location model that integrates these contextual cues and avoids placement in
unrealistic locations.

3 METHOD

3.1 GENERATIVE LOCATION MODELING

Given the distribution of image X , plausible object locations Y , and classes C, we frame the location
modeling problem using a generative model, which estimates the conditional probability of the
locations as

P (Y | X,C) =
∏
Yi∈Y

P (Yi | X,C), (1)

where Yi are different locations for an object of class C to be placed within the image X . Note
that unlike discriminative models P (C | X,Y), which require labels for both positive and negative
locations to classify a given location, a generative model only requires samples of positive locations.

To model this generative process, we train an autoregressive model (Vaswani et al., 2017) that se-
quentially predicts the bounding box coordinates of plausible locations. Specifically, each location

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Location Modeling Preference Alignment

Image

Encoder

Text

Encoder
“a vase”

“a vase”
[SOS] 𝑥1

𝑥1 𝑦1

𝑦1 𝑥2

𝑥2 𝑦2

𝑦2 [EOS]

Location

Model

…

“a vase”

Location

Model

𝑥1

𝑦1

𝑥2

𝑦2

𝑥1

𝑦1

𝑥2

𝑦2

𝑥1

𝑦1

𝑥2

𝑦2

𝑥1

𝑦1

𝑥2

𝑦2

Bounding box

coordinates

: Reference model

: Target model

Maximize positive reward

log
𝜋𝜃(𝑌

+ ∣ 𝑋, 𝐶)

𝜋ref(𝑌
+ ∣ 𝑋, 𝐶)

Minimize negative reward

log
𝜋𝜃(𝑌

− ∣ 𝑋, 𝐶)

𝜋ref(𝑌
− ∣ 𝑋, 𝐶)

Figure 2: Training scheme during pretraining (left) and direct preference optimization (right).

Yi is represented as a bounding box with four components
[
bi1, b

i
2, b

i
3, b

i
4

]
= [x1, y1, x2, y2], rep-

resenting the coordinates of the top-left and bottom-right corners. Thus, given a dataset D which
provides pairs of images X and plausible locations Y for object category C, we train the model
using a negative log-likelihood objective:

Ltrain = −E(X,Y,C)∼D
∑
Yi∈Y

[
4∑

k=1

logP (bik | bi<k, X,C)

]
. (2)

where each bounding box coordinate bik is sequentially predicted, conditioned on previous coordi-
nates bi<k, the image X , and the object class C.

It is important to note that at training time, we model multiple bounding boxes independently (Equa-
tion 1) by predicting a single bounding box (i.e., four coordinates) for a given input. In other words,
we sample a single location Yi from Y during training. This choice allows us to avoid issues re-
lated to the ordering of multiple plausible bounding boxes and arbitrary sequence lengths due to
the sparsity of the annotations. During inference, we are still able to produce multiple locations by
independently sampling multiple times.

The model architecture and the training procedure are illustrated in Figure 2. We tokenize images
and the class embeddings using a pre-trained Vision Transformer (ViT) (Dosovitskiy, 2021) and a
CLIP encoder (Radford et al., 2021). We encode bounding box coordinates by quantizing them to
a grid with equally spaced bins of 1 pixel wide, (i.e., 512 location tokens for 512 × 512 images).
The image tokens and the target class token are prepended to the sequence, and our location model
is trained to predict the probability of each coordinate in an autoregressive manner.

3.2 LEVERAGING NEGATIVE LABELS VIA DIRECT PREFERENCE OPTIMIZATION

While the training objective in Equation 2 allows training the location model on sparse positive
annotations, training solely on positive feedback can lead to predictions in implausible locations.
Incorporating negative annotations, when available, into the training objective can be beneficial for
refining the model, encouraging it to assign lower likelihoods to undesirable locations and thereby
improving overall accuracy.

Our generative formulation allows us to use any negative labels in the dataset as well, so that the
model can learn to avoid predicting bounding boxes for implausible locations. Specifically, we treat
the positive and negative labels as a preference dataset, where positive locations are implicitly pre-
ferred over negative ones, even though annotators were not explicitly asked to rank them. Using this
preference structure, we fine-tune the model with direct preference optimization (DPO) (Rafailov
et al., 2024), penalizing high logits assigned to negative labels. We repeat the training objective
below and refer the reader to Rafailov et al. (2024) Eq. 1-6 for a thorough derivation.

Given a target location model πθ (i.e.the model currently being finetuned by DPO), a reference
location model πref (i.e.a frozen model trained by Equation 2 only), and a preference dataset DDPO
where locations Y + are preferred over Y −, we can derive the likelihood of Y + being preferred over
Y −, based on how well the target location model πθ predicts each location relative to πref, following

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Positive

Locations

Negative

Locations

Location for a cat Locations for a banana

P
IP

E

O
P
A

Figure 3: Annotation format for the PIPE dataset (left) and OPA dataset (right). The PIPE dataset has
one groundtruth location per image, whereas OPA provides multiple positive and negative locations.

the Bradley-Terry model (Bradley & Terry, 1952):

P (Y + ≻ Y − | X,C) =

(
1 + exp

(
β log

πθ(Y
− | X,C)

πref(Y − | X,C)
− β log

πθ(Y
+ | X,C)

πref(Y + | X,C)

))−1

. (3)

Here, πθ and πref output the logits for the target model and the reference model, respectively, and β
is a hyperparameter. We can maximize the preference of Y + locations by initializing the target and
reference models from a pre-trained location model, and then optimizing the target model using a
negative log-likelihood objective:

LDPO = −E(Y +,Y -,X,C)∼DDPO

[
log σ

(
β log

πθ(Y
+ | X,C)

πref(Y + | X,C)
− β log

πθ(Y
− | X,C)

πref(Y − | X,C)

)]
. (4)

In this way, we are able to leverage any available negative labels in the object placement dataset, and
thereby improve the accuracy of the location model.

4 EXPERIMENTS

4.1 DATASETS AND ARCHITECTURE

PIPE Dataset. The PIPE dataset (Wasserman et al., 2024) was created by removing objects from
object detection datasets (Lin et al., 2014; Kuznetsova et al., 2020; Gupta et al., 2019) by inpainting.
This process results in pairs of images, one including the object and the other without it. To train our
location model we need positive bounding box locations, that we derive for the missing object by
thresholding the pixel-wise difference between the two images. An example is reported in Figure 3
(left). While the dataset offers a large number of 888,000 samples, many images contain inpainting
artifacts, potentially introducing noise in the bounding box extraction process.

OPA Dataset. The OPA dataset (Liu et al., 2021) was created by asking human annotators to judge
the plausibility of object placement locations for a subset of COCO images (Lin et al., 2014). This
dataset includes on average 41.5 annotations per image, and can be used to encourage diversity in
location model predictions (see Figure 3 right for an example). The train set includes 1022 images,
and the test set include 130 images. As OPA provides negative labels, we also use OPA as the
preference dataset for DPO training. Note that instruction-tuned editing models cannot leverage this
location dataset, as they require fully rendered images for training.

Implementation details. We use a small GPT-2 (Radford et al., 2019) architecture as our autore-
gressive location model. For tokenizing the image and the object class, we use a ViT (Dosovitskiy,
2021) model pre-trained on ImageNet-21K (Ridnik et al., 2021) as our image encoder and the CLIP
text encoder (Radford et al., 2021) as our object class encoder. We pre-train on PIPE for 30K itera-
tions and finetune on OPA for 3K iterations. For batch size 64, the model can be trained on a single
Nvidia V100 GPU. We quantize each box coordinate into one of 512 bins (i.e., one bin per pixel).
For DPO training, we train using the OPA dataset for 4K iterations. Please refer to Section D of the
Appendix for further details.

We evaluate the performance of our generative location model in an object insertion pipeline in
Section 4.2, where we rely on PowerPaint (Zhuang et al., 2023) as the inpainting approach. Specif-
ically, we utilize the V2 version1, built on top of BrushNet (Ju et al., 2024). We remark that our
pipeline has the flexibility to incorporate any inpainting method for performing localized edits (see
later in Section 4.4).

1https://github.com/open-mmlab/PowerPaint

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.05 0.10 0.15 0.20 0.25 0.30
Foreground CLIP

0.5

0.6

0.7

B
ac

kg
ro

un
d

SS
IM

Ours
FasterRCNN (+PowerPaint)
ContextCNN (+PowerPaint)
Random (+PowerPaint)
Paint-by-Inpaint
MagicBrush
Diffree
HIVE
InstructPix2pix

Figure 4: Quantitative evaluation on the OPA dataset, higher and to the right is best. For instruction-
tuned approaches, each dot represents a different guidance scale ranging from 2 to 10. For other
methods, guidance scale has a negligible effect, hence we show a single point.

4.2 OBJECT INSERTION

Baselines. We compare our object insertion pipeline against recent instruction-tuned image edit-
ing models, which represent some of the most advanced techniques for object insertion to date.
Specifically, we evaluate against general-purpose image editing models InstructPix2Pix (Brooks
et al., 2023), HIVE (Zhang et al., 2024b), and MagicBrush (Zhang et al., 2024a), as well as object
insertion-specific models, Paint-by-Inpaint (Wasserman et al., 2024) and Diffree (Zhao et al., 2024).

Moreover, we experiment with three additional explicit location models that we also pair with the
PowerPaint inpainter. First, we test random locations as a simple baseline. Then, we train Con-
textCNN (Dvornik et al., 2018), a classifier designed to assess masked regions of an image, deter-
mining their suitability for object placement. To be able to use it with the OPA class space, we
retrain the model on COCO (whose classes comprehend all the ones in OPA). Furthermore, we
train a Faster-RCNN object detector (Ren et al., 2015) using positive OPA annotations to serve as a
high-performing discriminative model.

Evaluation Metrics. Similar to existing image editing benchmarks (Wasserman et al., 2024), we
evaluate the success of object insertion by considering both how well the original scene is preserved
and how accurately the target object is inserted. Using an object detector (Zhu et al., 2021) we
separate the background, which ideally should remain untouched, and the foreground, where the
newly inserted object appears.

To measure background preservation, we compute the Structural Similarity Index Measure
(SSIM) (Wang et al., 2004) on the background region. To assess the accuracy of the object, we
measure the CLIP similarity (Radford et al., 2021) between the cropped object and the text “an
{object class}”. If no new object is detected, we assign a CLIP score of 0 to reflect the failure to
properly insert the object.

For the PIPE dataset, we also evaluate the diversity of edits by calculating the average LPIPS dis-
tance (Zhang et al., 2018) across 10 different edits per background-object pair. High LPIPS indicates
that a model can generate diverse results from the same instruction, highlighting approaches that are
limited to producing a single edit.

Results. We compare instruction-finetuned image editing models, location models paired with
strong inpainting models, and our approach in Figure 4. Our approach substantially outperforms
all baselines by leveraging a dedicated location model for inpainting, which effectively reduces
background distortions while maintaining high-quality object generation.

By design, localized inpainting is an effective strategy for preserving the background, but it is no-
table that even a random location model outperforms the best instruction-finetuned method on back-
ground SSIM. Since the key difference between our approach and other location modeling baselines
lies in the plausibility of the predicted locations, the figure suggests that an accurate placement
directly impacts the quality of inpainting results.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Evaluation on the PIPE benchmark.

BG SSIM FG CLIP LPIPS

InstructPix2Pix 0.5679 0.2670 0.3865
MagicBrush 0.6118 0.2579 0.0986

HIVE 0.5635 0.2047 0.1886
Diffree 0.6170 0.2517 0.1210

Paint-by-Inpaint 0.7281 0.2672 0.0700

Ours 0.8075 0.2774 0.1824

Ours vs. InstructPix2Pix

Ours vs. Paint-by-Inpaint

Ours vs. MagicBrush

Ours vs. FasterRCNN

86.3

68.1

66.5

53.7

3.9

22.1

23.5

26.3

Figure 5: User study results on edited images
(OPA). Left, blue: ours preferred. Right, red:
baseline preferred. Middle, grey: no preference.

The instruction-tuned models often face a trade-off: they either preserve the background well but
fail to generate the object convincingly, or they successfully generate the object but significantly
alter the surrounding scene. This inconsistency may stem from the fact that these models address
both the placement and generation tasks simultaneously, leading to suboptimal object locations. In
contrast, using a dedicated location model allows one model to focus on spatial reasoning, while the
inpainting method concentrates on rendering realistic objects.

We further evaluate our approach on the PIPE test set (Wasserman et al., 2024), which contains
images with specific objects removed. Using the same metrics reported in Table 1, our results are
consistent with those observed in the OPA test set. Notably, Paint-by-Inpaint (Wasserman et al.,
2024) lacks diversity, frequently generating identical outputs, as shown in Figure 8. This is likely
due to training on datasets created by object removal through inpainting. Moreover, we appreciate
how InstructPix2Pix and HIVE achieve very diverse edits. However, we notice that this result is
typically achieved by generating entirely new images, rather than editing the input scene, as also
testified by their low background SSIM scores.

User Study. To further validate that our model’s insertions are favored by human observers,
we perform a user user study comparing our method to the four strongest baselines. We show
pairs of edited OPA images and ask users to indicate which of the two is the better edit, for 46
participants, each of which ranks 40 image pairs. For further details, see Appendix Section F.
Results are shown in Figure 5. Participants preferred edits generated by our approach over those
from baseline approaches, indicating that our metrics agree with human preference, and that better
edit quality can be achieved through precise location modeling. Additional qualitative examples can
be found in Figure 7, Figure 8, and Appendix Section G.

4.3 LOCATION MODELING

Baselines. We compare our generative location model against two discriminative approaches that
classify locations as plausible or implausible, namely ContextCNN (Dvornik et al., 2018) and Faster-
RCNN (Ren et al., 2015), as described in Section 4.2. Additionally, we compare to two object
placement baselines (Zhou et al., 2022; Niu et al., 2022) that perform placement of specific object
segments rather than generic class labels. We use the official implementations relying on foreground
segments available within the OPA dataset. Note that a direct comparison to these two methods is
challenging, as our method does not use the object segment, and it is hard to say whether access to
one makes the task harder or easier. Still, we include these baselines for completeness.

Evaluation Metrics. The OPA test set provides plausible (positive) and implausible (negative)
locations for objects given an image. However, due to the sparse nature of these annotations, it is
impossible to sample locations until every ground-truth bounding box is matched with a prediction.
Therefore, we evaluate location models based on a “hit rate” metric, which compares the rate of each
predicted box being a plausible or implausible location. Specifically, we measure the True Positive
Rate (TPR) and False Positive Rate (FPR) for a given set of predicted locations. Given K predicted
locations, we match them to the ground-truth labels using the Hungarian algorithm (Kuhn, 1955),
where the cost function is the inverse of the intersection over union (IoU).

True positive predictions are defined as predictions assigned to positive labels with an IoU above 0.7,
while false positive predictions are those assigned to negative labels under the same IoU threshold.
Any positive or negative ground-truth locations that are not matched are counted as false negatives

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Positive

GT Boxes

Negative

GT Boxes

Correct

Predictions

Add a boat

Incorrect

Predictions

Ignored

Predictions

0.00 0.01 0.02 0.03 0.04 0.05 0.06
False Positive Rate

0.00

0.05

0.10

0.15

0.20

Tr
ue

 P
os

iti
ve

 R
at

e

Ours
w/o DPO
FOPA
GracoNet

FasterRCNN
ContextCNN
Random

Figure 6: (Left) Example evaluation scenario. Predicted boxes are counted only if a positive or
negative ground-truth box meets an IoU above the threshold. (Right) TPR-FPR curves. Each line is
constructed by sampling {10, 20, . . . , 100} locations. Top-left is better.

and true negatives. Predictions that do not correspond to any labeled locations are ignored, as
their true labels cannot be determined. We refer the reader to Figure 6 (left) for an example of
such assignments. TPR and FPR are then computed using standard definitions. Intuitively, TPR
represents the rate of a predicted location being a correct (positive) location, and FPR represents the
rate of a predicted location being an incorrect (negative) location.

Results. We plot the TPR and FPR for different number of sampled locations K = 10, 20, . . . , 100
in Figure 6 (right). Our generative location model consistently achieves a higher TPR at the same
FPR, appearing in the top-left region of the plot. In contrast, discriminative baselines (Dvornik et al.,
2018; Ren et al., 2015) fail to reach a high TPR, even after predicting 100 locations, possibly due to
the penalization of unlabeled positive locations during training. Our generative approach avoids any
assumption about unlabeled locations, allowing it to achieve higher accuracy in identifying plausible
ones. This finding suggests the effectiveness of generative modeling in scenarios where the sparsity
in annotations hinders training a discriminative model.

4.4 ABLATION STUDY

DPO Training. Training a generative location model exclusively on positive locations already
demonstrates strong performance, as shown in Figure 6 (right). However, incorporating negative
labels further enhances accuracy by explicitly guiding the model on where not to predict object lo-
cations. Notably, unlike existing location modeling techniques, which assume non-labeled locations
as negative even when negative labels are present, our approach leverages only the negative labels
provided by annotators. This ensures more precise predictions, as it avoids the potential inaccuracies
introduced by assuming non-labeled locations are negative.

Alternative Inpainting Methods. Our location model is not tied to a single inpainting method and
can incorporate various inpainting techniques (Xie et al., 2023; Ju et al., 2024; Cao et al., 2024).
To illustrate this, we use the same predicted locations to render objects with the inpainting model
of GLIGEN (Li et al., 2023). The resulting images rendered achieve a background SSIM of 0.6511
and foreground CLIP of 0.2833, compared to a performance of 0.7184 background SSIM, 0.2849
foreground CLIP, when using PowerPaint. Obtaining similar foreground CLIP score indicates that
inpainting is often successful even with the older GLIGEN model. We therefore expect that our
approach benefits from future advancements in inpainting techniques as well.

5 DISCUSSION

Inference Cost. Our location model introduces a minimal overhead to the overall object insertion
process. To measure this, we compare the inference time of the location model relative to the
time required for rendering the image (i.e., inpainting). On an average across 100 runs, our model
takes 0.03 seconds to sample a single location on a Nvidia Tesla V100 GPU, a minor addition
compared to the 7.10 seconds needed to render an image using a 50-step diffusion reverse process

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Ours + PowerpaintOriginal Image InstructPix2Pix Paint-by-Inpaint

A
d

d
 a

 f
o

rk

MagicBrush

A
d

d
 a

 c
h

ai
r

A
d

d
 a

 b
o

o
k

A
d

d
 a

 w
in

e
g

la
ss

A
d

d
 a

 f
ir

e
h

y
d

ra
n

t
A

d
d

 a
 s

h
ee

p

Figure 7: Comparison between our method + powerpaint, and instruction-guided image editing
models on the OPA dataset. Best viewed electronically.

O
u

rs
 +

 P
o

w
er

p
ai

n
t

P
ai

n
t-

b
y
-I

n
p

ai
n
t

M
ag

ic
B

ru
sh

In
st

ru
ct

P
ix

2
P

ix

Add a couch

Figure 8: Comparison between our method + powerpaint, and instruction-guided image editing
models on the PIPE dataset. Additional results are available in Section G. Best viewed electronically.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Ours + Powerpaint Paint-by-Inpaint

Add an apple… on the top-righton the top-left on the top-left on the top-right

Figure 9: Controlled location sampling for positional instructions, achieved by restricting the al-
lowed sampling region. Instruction-tuned models often fail to follow positional instructions.

Predicted location Edited image

Figure 10: Example failure case observed when inpainting large areas, for instruction “add a horse”.

for a StableDiffusion v2.1 checkpoint (Rombach et al., 2021). Paying a small upfront cost for
identifying a plausible location leads to a significant improvement in the quality of object insertion.

Controlled Location Sampling. A location model not only automates the process of determining
where to insert objects but also allows users to specify locations that meet particular requirements.
Current instruction-tuned image editing models struggle with positional instructions, such as “Add
an apple to the top-left of the image.” In contrast, our location model can handle these requests by
constraining model outputs to specific areas, such as by sampling only the top-left coordinates. As
illustrated in Figure 9, by factorizing the object insertion process into a location modeling step and
an inpainting step, our approach offers increased control over object placement.

Limitations. Although localized object insertion helps minimize distortions in the background,
predicted bounding box locations may sometimes occlude more of the background than necessary.
As seen in Figure 10, large bounding boxes may lead to unwanted changes in the scene, such as
changes to the background or inadvertently occluding foreground objects. It may also result in un-
realistic background effects, such as missing shadows or reflections. These issues could potentially
be mitigated by predicting fine inpainting masks within the bounding box regions or by developing
inpainting techniques tailored specifically for object insertion, which we leave as future work.

6 CONCLUSION

In this paper, we present a location model that identifies plausible locations for objects to be inserted
within an image. By taking a generative approach, we are able to work with sparsely annotated
location datasets. We also show that it is beneficial to use negative labels via direct preference
optimization. Our experiments suggest that in the task of object insertion, separating the problems
of where to place an object and what to place in the given location, is currently much more reliable
than instruction-tuned insertion approaches.

More generally, we believe that building spatial awareness is a key factor for building reliable models
interacting with the real world. This is true whether a model operates in the image editing setting, as
in this work, or in more complex domains, such as robotics or virtual reality. Our work shows that
a model is able to learn such awareness from example positive and negative annotations. Although
we focus on locations for 2D bounding boxes conditioned on images, we hope to see similar models
scale to handle other scene representations (e.g., depth or semantic layouts) and precise locations
(e.g., 3D bounding boxes or object masks) in the future.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Broader Impact Statement Spatial awareness is crucial for real-world applications where pre-
cise and context-aware object placement is necessary. Improving the reliability of object insertion
methods can benefit numerous fields, such as augmented reality, robotics, and generative data aug-
mentation, by enabling more realistic and practical scene manipulations. However, image editing
methods can also be misused, for example, to manipulate images by inserting individuals into scenes
to damage their reputation. Our method, which specifies only the desired object class rather com-
positing a background image and a specific target object, is hopefully less suitable for such malicious
use cases. Nevertheless, one should consider malicious use cases of image editing methods before
deployment, especially if used in real world or safety-critical applications.

Reproducibility Statement We provide comprehensive details of our architecture and data pre-
processing steps in Section 4.1 and Section D. Our architectures are based on open-source imple-
mentation of GPT-2 (Radford et al., 2019), for example found at this github repo, and uses standard
open source vision backbones to initialize the vision and text encoders. Furthermore, all datasets
used in our experiments (Liu et al., 2021; Wasserman et al., 2024) are publicly available, facilitating
the replication of our work by the community.

REFERENCES

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952. 5

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, 2023. 1, 3, 6

Chenjie Cao, Yunuo Cai, Qiaole Dong, Yikai Wang, and Yanwei Fu. Leftrefill: Filling right canvas
based on left reference through generalized text-to-image diffusion model. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2024. 8

Shang Chai, Liansheng Zhuang, and Fengying Yan. Layoutdm: Transformer-based diffusion model
for layout generation. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, 2023. 3

Sang Hun Cheong, Brian Y Cho, Jinhwi Lee, ChangHwan Kim, and Changjoo Nam. Where to relo-
cate?: Object rearrangement inside cluttered and confined environments for robotic manipulation.
In 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 7791–7797.
IEEE, 2020. 1

Jaemin Cho, Abhay Zala, and Mohit Bansal. Visual programming for step-by-step text-to-image
generation and evaluation. Neural Information Processing Systems, 36, 2024. 1, 3

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
International Conference on Learning Representations, 2021. 4, 5, 17

Nikita Dvornik, Julien Mairal, and Cordelia Schmid. Modeling visual context is key to augmenting
object detection datasets. In Proceedings of the European Conference on Computer Vision, 2018.
3, 6, 7, 8

Haoyang Fang, Boran Han, Shuai Zhang, Su Zhou, Cuixiong Hu, and Wen-Ming Ye. Data augmen-
tation for object detection via controllable diffusion models. In IEEE/CVF Winter Conference on
Applications of Computer Vision, 2024. 1

Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu,
Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and genera-
tion with large language models. Neural Information Processing Systems, 36, 2024a. 1, 3

Yutong Feng, Biao Gong, Di Chen, Yujun Shen, Yu Liu, and Jingren Zhou. Ranni: Taming text-
to-image diffusion for accurate instruction following. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, 2024b. 3

11

https://github.com/openai/gpt-2/blob/master/LICENSE

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hanan Gani, Shariq Farooq Bhat, Muzammal Naseer, Salman Khan, and Peter Wonka. Llm
blueprint: Enabling text-to-image generation with complex and detailed prompts. In Interna-
tional Conference on Learning Representations, 2024. 3

Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance seg-
mentation. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
2019. 5, 15

Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry S Davis, Vijay Mahadevan, and Abhi-
nav Shrivastava. Layouttransformer: Layout generation and completion with self-attention. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2021. 1, 3

Mude Hui, Siwei Yang, Bingchen Zhao, Yichun Shi, Heng Wang, Peng Wang, Yuyin Zhou, and
Cihang Xie. Hq-edit: A high-quality dataset for instruction-based image editing. arXiv preprint
arXiv:2404.09990, 2024. 3

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/
zenodo.5143773. 17

Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. Layoutdm:
Discrete diffusion model for controllable layout generation. In Proceedings of the IEEE confer-
ence on Computer Vision and Pattern Recognition, 2023. 3

Xuan Ju, Xian Liu, Xintao Wang, Yuxuan Bian, Ying Shan, and Qiang Xu. Brushnet: A
plug-and-play image inpainting model with decomposed dual-branch diffusion. arXiv preprint
arXiv:2403.06976, 2024. 5, 8

Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Sigal, and Greg Mori. Layoutvae: Stochas-
tic scene layout generation from a label set. In IEEE International Conference on Computer
Vision, 2019. 3

Diederik P Kingma. Adam: A method for stochastic optimization. International Conference on
Learning Representations, 2015. 17

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955. 7

Orest Kupyn and Christian Rupprecht. Dataset enhancement with instance-level augmentations.
arXiv preprint arXiv:2406.08249, 2024. 1

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab
Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig, and Vittorio Ferrari.
The open images dataset v4: Unified image classification, object detection, and visual relationship
detection at scale. International Journal of Computer Vision, 2020. 5, 15

Donghoon Lee, Sifei Liu, Jinwei Gu, Ming-Yu Liu, Ming-Hsuan Yang, and Jan Kautz. Context-
aware synthesis and placement of object instances. Neural Information Processing Systems, 31,
2018. 3

Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2023. 3, 8

Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. Llm-grounded diffusion: Enhancing prompt
understanding of text-to-image diffusion models with large language models. arXiv preprint
arXiv:2305.13655, 2023. 1, 3

Chen-Hsuan Lin, Ersin Yumer, Oliver Wang, Eli Shechtman, and Simon Lucey. St-gan: Spatial
transformer generative adversarial networks for image compositing. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, 2018. 2

12

https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Proceedings of
the European Conference on Computer Vision. Springer, 2014. 5, 15

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Neural
Information Processing Systems, 2024. 16

Liu Liu, Zhenchen Liu, Bo Zhang, Jiangtong Li, Li Niu, Qingyang Liu, and Liqing Zhang. Opa:
object placement assessment dataset. arXiv preprint arXiv:2107.01889, 2021. 1, 5, 11

Li Niu, Qingyang Liu, Zhenchen Liu, and Jiangtong Li. Fast object placement assessment. arXiv
preprint arXiv:2205.14280, 2022. 2, 3, 7, 16

Jong-Seung Park, Mee Young Sung, and Sung-Ryul Noh. Virtual object placement in video for
augmented reality. In Advances in Multimedia Information Processing-PCM 2005: 6th Pacific
Rim Conference on Multimedia, Jeju Island, Korea, November 13-16, 2005, Proceedings, Part I
6, pp. 13–24. Springer, 2005. 1

Quynh Phung, Songwei Ge, and Jia-Bin Huang. Grounded text-to-image synthesis with attention
refocusing. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
2024. 1, 3

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 2, 5, 11, 17, 18

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pp. 8748–8763. PMLR, 2021. 4, 5, 6, 16, 17

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Neural
Information Processing Systems, 2024. 2, 4

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: towards real-time object
detection with region proposal networks. In Neural Information Processing Systems. MIT Press,
2015. 6, 7, 8

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
the masses. Neural Information Processing Systems, 2021. 5

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. 2022 ieee. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, 2021. 3, 10

Shashank Tripathi, Siddhartha Chandra, Amit Agrawal, Ambrish Tyagi, James M Rehg, and Visesh
Chari. Learning to generate synthetic data via compositing. In Proceedings of the IEEE confer-
ence on Computer Vision and Pattern Recognition, 2019. 2, 3

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhi. Attention is all you need. Neural Information Processing
Systems, 2017. 2, 3, 17

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–
612, 2004. 6

Navve Wasserman, Noam Rotstein, Roy Ganz, and Ron Kimmel. Paint by inpaint: Learning to add
image objects by removing them first. arXiv preprint arXiv:2404.18212, 2024. 1, 3, 5, 6, 7, 11,
15

Ross Wightman. Pytorch image models. https://github.com/huggingface/
pytorch-image-models, 2019. 17

13

https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shaoan Xie, Zhifei Zhang, Zhe Lin, Tobias Hinz, and Kun Zhang. Smartbrush: Text and shape
guided object inpainting with diffusion model. In Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition, 2023. 8

Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
dataset for instruction-guided image editing. Neural Information Processing Systems, 2024a. 3, 6

Lingzhi Zhang, Tarmily Wen, Jie Min, Jiancong Wang, David Han, and Jianbo Shi. Learning object
placement by inpainting for compositional data augmentation. In Proceedings of the European
Conference on Computer Vision. Springer, 2020. 2, 3

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, 2018. 6

Shu Zhang, Xinyi Yang, Yihao Feng, Can Qin, Chia-Chih Chen, Ning Yu, Zeyuan Chen, Huan
Wang, Silvio Savarese, Stefano Ermon, et al. Hive: Harnessing human feedback for instructional
visual editing. In Proceedings of the IEEE conference on Computer Vision and Pattern Recogni-
tion, 2024b. 1, 3, 6

Hanqing Zhao, Dianmo Sheng, Jianmin Bao, Dongdong Chen, Dong Chen, Fang Wen, Lu Yuan,
Ce Liu, Wenbo Zhou, Qi Chu, et al. X-paste: Revisiting scalable copy-paste for instance seg-
mentation using clip and stablediffusion. International Conference on Machine Learning, 2023.
1

Lirui Zhao, Tianshuo Yang, Wenqi Shao, Yuxin Zhang, Yu Qiao, Ping Luo, Kaipeng Zhang, and
Rongrong Ji. Diffree: Text-guided shape free object inpainting with diffusion model. arXiv
preprint arXiv:2407.16982, 2024. 1, 3, 6

Siyuan Zhou, Liu Liu, Li Niu, and Liqing Zhang. Learning object placement via dual-path graph
completion. In Proceedings of the European Conference on Computer Vision. Springer, 2022. 3,
7, 16

Sijie Zhu, Zhe Lin, Scott Cohen, Jason Kuen, Zhifei Zhang, and Chen Chen. Topnet: Transformer-
based object placement network for image compositing. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, 2023. 2, 3

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. International Conference on Learning
Representations, 2021. 6

Junhao Zhuang, Yanhong Zeng, Wenran Liu, Chun Yuan, and Kai Chen. A task is worth one
word: Learning with task prompts for high-quality versatile image inpainting. arXiv preprint
arXiv:2312.03594, 2023. 5

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A DATASET STATISTICS AND PREPROCESSING

A.1 PIPE DATASET

The PIPE dataset (Wasserman et al., 2024) was created by removing objects from object detection
datasets (Lin et al., 2014; Kuznetsova et al., 2020; Gupta et al., 2019) using an inpainting model,
resulting in over 600 object classes for insertion and more than 888,000 training pairs of images,
showing scenes before and after object removal. To preprocess this dataset, we pair each background
image with the original location of the removed object. The locations are identified by computing
the pixel-wise difference between the before-and-after images, and extracting coordinates where the
difference exceeds a certain threshold. Despite this thresholding, the resulting bounding boxes can
be noisy, and the background images generated by the inpainting model often contain artifacts. Also,
the PIPE dataset only provides a single positive location for an object for each background image
and does not provide negative labels.

A.2 OPA DATASET

The OPA dataset was created by manually annotating samples from the COCO dataset (Lin et al.,
2014), resulting in 47 object categories for object placement. The dataset is intended for the task of
finding locations to copy-paste images of objects, and therefore includes background images, object
images with transparent backgrounds, and labeled plausible/implausible locations for placing the
objects. Since our focus is on object location modeling rather than the insertion of object images,
we ignore the object images and restructure the dataset to include pairs of background images and
their corresponding object locations. This restructuring yields 1,496 training samples and 184 test
samples. While the number of images is relatively small, each sample contains around 40 annota-
tions, making it a richly annotated dataset. In total, the OPA train set contains 21,376 positive labels
and 40,698 negative labels.

Despite having an average 40 annotations for each sample, this accounts for fewer than 1% of the
typical number of anchor boxes used in object detectors, leaving most locations unlabeled. Further-
more, as illustrated in Figure 11, not only are the number of bounding boxes across samples highly
imbalanced, but the distribution of positive and negative labels for each sample is extremely incon-
sistent. This sparsity and imbalance make it extremely challenging to train discriminative models
that classify locations as plausible or implausible. Our generative approach bypasses this issue by
modeling the distribution of plausible locations, using negative labels only for DPO.

Unique Samples

100

200

300

400

500

N
um

be
r o

f B
ou

nd
in

g
B

ox
es

Number of Bounding Boxes per Sample

Positive
Negative

Figure 11: Distribution of positive and negative bounding boxes in the OPA dataset. We randomly
select 100 samples (images and their annotations) from the training set for visualization.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Random Manual Annotation

0.16

0.18

0.20

0.22

0.24

Fo
re

gr
ou

nd
 C

LI
P MagicBrush

Figure 12: Inpainting quality with respect to the quality of the location. The success of inpainting
approaches for object insertion is highly dependant on the quality of the location.

B DOES LOCATION MATTER?

To demonstrate that the quality of locations directly influences the quality of generated objects,
we present a proof-of-concept experiment in Section 12. For each image in the OPA dataset, we
uniformly sample 10 random locations and then interpolate between these random locations and
manually annotated ones, performing inpainting at six distinct interpolation points. To evaluate the
success of inpainting, we measure the foreground CLIP similarity (Radford et al., 2021) between the
cropped object and the text “an {object class}”. For reference, we also include the performance of
MagicBrush, which inserts objects without explicit location modeling. As the inpainting locations
become more precise, the fidelity of generated objects increases, underscoring the importance of
accurate locations. Inpainting in incorrect locations often results in failed insertions, motivating the
development of a dedicated location model to provide spatial awareness for inpainting models.

C ALTERNATIVE APPROACHES FOR LOCATION MODELING

Vision-language models (VLMs) can also be used to predict plausible locations for object placement
based on image inputs. Although these models can generate bounding box coordinates as part of
their responses, we find that they are largely ineffective at predicting meaningful locations, with their
bounding box outputs being comparable to random guesses. Specifically, we use LLaVA-13B (Liu
et al., 2024) using the following prompt:

USER : <image>I f a new {o b j e c t n a m e} would a p p e a r i n t h i s scene ,
what would be t h e c o o r d i n a t e s o f t h e {num samples} d i f f e r e n t
p l a u s i b l e l o c a t i o n s ? ” Answer i n JSON f o r m a t

{
p l a u s i b l e l o c a t i o n 1\” : [x1 , y1 , x2 , y2] ,
p l a u s i b l e l o c a t i o n 2\” : [x1 , y1 , x2 , y2] , . . . ,
p l a u s i b l e l o c a t i o n {num samples } : [x1 , y1 , x2 , y2]

} .
Ou tpu t must on ly i n c l u d e t h e JSON f o r m a t and no o t h e r t e x t .
ASSISTANT : In t h i s scene , {num samples} most p l a u s i b l e l o c a t i o n s
o f a newly i n s e r t e d {o b j e c t n a m e} a r e :

We also compare against object placement approaches (Zhou et al., 2022; Niu et al., 2022) that
predict locations based on both the background image and a tightly masked image of the object.
Since these models are provided with the exact aspect ratio of the object, they only need to predict
the location and scale of the bounding box. As previously mentioned in Section A, the OPA dataset
includes object images, allowing us to measure the TPR and FPR on the same test set. Despite having
the advantage of having provided with ground-truth aspect ratios, these models are outperformed by
our location model, which demonstrates superior performance even without access to object images.
A full comparison of these location models are plotted in Figure 13.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0.00 0.01 0.02 0.03 0.04 0.05 0.06
False Positive Rate

0.00

0.05

0.10

0.15

0.20

Tr
ue

 P
os

iti
ve

 R
at

e

Ours
GracoNet
FOPA
ContextCNN
FasterRCNN
LLaVA 13B
Random

Figure 13: TPR-FPR curves compared with object placement approaches and LLaVA.

D ARCHITECTURE AND IMPLEMENTATION DETAILS

D.1 ARCHITECTURE OF THE LOCATION MODEL

Our location model is based on a GPT-2 small architecture (Radford et al., 2019), consisting of 12
layers of Transformer blocks (Vaswani et al., 2017). For image and object class encoding, we use
a pre-trained ViT-B model (Wightman, 2019; Dosovitskiy, 2021) for the image encoder and a ViT-
B CLIP text encoder (Ilharco et al., 2021; Radford et al., 2021) for the object class. The images
are converted into 196 embeddings, while the text is transformed into a single embedding, creating
a sequence length of 197 when combined. These 197 embeddings are prepended to our location
model before predicting the coordinates. To quantize the coordinates, we use 512 bins for both
height and width, resulting in a vocabulary size of 514, including the start-of-sequence (SOS) and
end-of-sequence (EOS) tokens.

The location model, including the ViT-B backbone, comprises a total of 411 million parameters,
and loading the weights in float16 precision requires just 2.05 GB of VRAM. Running the model
with batch size 1 in float16 precision requires an additional 1.93 GB of VRAM for the activations,
meaning the model can easily be run on consumer-grade hardware. On a Nvidia Tesla V100 GPU,
inference runs in 0.03 seconds. For editing images, we first sample locations, unload the model
from the GPU, and perform inpainting, ensuring no additional memory overhead beyond what the
inpainting model requires.

In comparison, the PowerPaint inpainting model has three components: a VAE with 83.7 million
parameters, a text encoder with 123.1 million parameters, and a UNet with 859.5 million parameters.
Although the location model is nearly half the size of the UNet in terms of parameters, it is used
only once in advance (similar to the VAE and text encoder), whereas the UNet is used at every
reverse step. On the same GPU, the it takes 7.10 seconds to perform 50 reverse steps, meaning
the inference overhead of the location model is 0.4%, an acceptable cost for the improvement in
generation quality.

D.2 TRAINING DETAILS

We train the model using the Adam optimizer (Kingma, 2015) for training the location model and
Stochastic Gradient Descent (SGD) for DPO training. The model is trained on the PIPE dataset for
30,000 iterations with a learning rate of 1e-4, incorporating a linear warmup over the first 1,000
steps. Subsequently, we fine-tune the model on the OPA dataset for 3,600 steps and perform DPO
for an additional 4,600 steps. For batch size 64, the model can be trained on a single Nvidia V100
GPU.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0.01 0.02 0.03 0.04 0.05 0.06
False Positive Rate

0.05

0.10

0.15

0.20

Tr
ue

 P
os

iti
ve

 R
at

e

Top-10
Top-50
Top-100

Figure 14: Location modeling performance for different top-k parameters used during sampling.
Higher numbers of k leads to diverse predictions, often at the cost of accuracy.

D.3 SAMPLING FROM THE LOCATIONS

Our autoregressive layout model can follow sampling techniques similar to those used for text gen-
eration using Large Language Models (LLMs) (Radford et al., 2019). We sample among the top-k
probabilities scaled with a temperature of 1.0. As illustrated in Figure 14, we find that the higher val-
ues of k promotes diversity and thus achieves a higher True Positive Rate (TPR), but also increases
the False Positive Rate (FPR). For the main experiments, we use k = 50 during sampling.

E DIVERSITY OF THE SAMPLED LOCATION

An essential aspect of location models is their ability to identify diverse plausible locations, as
multiple potential placements often exist for a given object. To quantify this diversity, we apply
Non-maximum Suppression (NMS) to the predicted locations and count the remaining bounding
boxes. Specifically, we perform a standard NMS with a threshold of 0.7 on a set of 100 predicted
locations for the same object in the same scene. We observe that 82.5 bounding boxes remain after
performing NMS, which highlights the diversity of our location model.

F HUMAN EVALUATION

We use four baselines in our user study: three instruction-finetuned models, and the strongest loca-
tion modeling baseline (i.e., Faster-RCNN trained on OPA + Powerpaint).

Participants were presented with the original image, an instruction (“Add a {object class}”), and
two edited images: one generated by our approach and the other by an instruction-tuned editing
model or location modeling baseline. For each image, we randomly swap which method is shown
on the left or right side. Each participant was asked to evaluate which of the two edited images
better adhered to the editing instruction and maintained the overall coherence of the scene. In total,
we collected 1,840 responses from 46 participants, with each individual comparing 4 × 10 pairs of
randomly selected samples.

G QUALITATIVE RESULTS

We provide additional image editing results from the PIPE dataset. In our observations, instruction-
tuned models often lack diversity in their final edits when they successfully insert objects. When
these models fail to insert objects, they either leave the image unchanged or modify too much of the
scene, which are both regarded as a failure to insert objects.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Add a bird

O
u

rs
 +

 P
o

w
er

p
ai

n
t

P
ai

n
t-

b
y
-I

n
p

ai
n
t

M
ag

ic
B

ru
sh

In
st

ru
ct

P
ix

2
P

ix

Add a car

O
u

rs
 +

 P
o

w
er

p
ai

n
t

P
ai

n
t-

b
y
-I

n
p

ai
n
t

M
ag

ic
B

ru
sh

In
st

ru
ct

P
ix

2
P

ix

O
u

rs
 +

 P
o

w
er

p
ai

n
t

P
ai

n
t-

b
y
-I

n
p

ai
n
t

Add a cake

M
ag

ic
B

ru
sh

In
st

ru
ct

P
ix

2
P

ix

Figure 15: Additional samples of object insertion results in the PIPE test set.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Add a boat
O

u
rs

 +
 P

o
w

er
p

ai
n

t

P
ai

n
t-

b
y
-I

n
p

ai
n
t

In
st

ru
ct

P
ix

2
P

ix

M
ag

ic
B

ru
sh

Add a chair

In
st

ru
ct

P
ix

2
P

ix

M
ag

ic
B

ru
sh

O
u

rs
 +

 P
o

w
er

p
ai

n
t

P
ai

n
t-

b
y
-I

n
p

ai
n
t

Add a train

O
u

rs
 +

 P
o

w
er

p
ai

n
t

P
ai

n
t-

b
y
-I

n
p

ai
n
t

M
ag

ic
B

ru
sh

In
st

ru
ct

P
ix

2
P

ix

Figure 16: Additional samples of object insertion results in the PIPE test set.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Add a dog Add a suitcase Add a fire hydrant Add a person

Figure 17: Bounding box proposals for various images and object categories from OPA.

Add a remote Add scissors Add a laptop Add a cup

Figure 18: Bounding box proposals for various images and object categories from OPA, for cluttered
scenes. Placement is more challenging if there is less empty space in the scene.

We also report additional visuals showing bounding box proposals for given images in Figure 17 and
Figure 18. These figure highlights the diversity of the sampled locations from a location model, and
show the behavior of the location model in cluttered scenes, where placement is more challenging.

Additionally, we show qualitative samples highlighting generalization capability in Figure 19. As
the class is encoded using a CLIP text encoder, we can condition on class labels that are not present in
the data and expect a reasonable output if the corresponding CLIP embedding is sufficiently close to
existing categories. We show that we can add another instance of an already present object without
our bounding box prediction coinciding with the existing instance, and that we can add instances
from other classes in OPA and out-of-domain classes.

Finally, we show some additional failure cases of the location model in Figure 20. These can occur
when the object category does not well in the scene, for example adding an airplane to a scene
without much visible sky. As the inpainting model is not aware of existing objects, this can lead to
occluded objects being removed from the scene.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Original image Add unseen class: pirate shipAdd repeated class: seaplane

Original image Add unseen class: flying carAdd in-domain class: carAdd repeated class: cow

Add in-domain class: boat

Original image Add unseen class: lion cubAdd in-domain class: lionAdd repeated class: elephant

Figure 19: Qualitative examples showcasing generalization ability. We ask our model to add one
more instance of an already present class (repeated), an instance of a different class (in-domain),
and an instance of a class that does not exist in the OPA dataset (unseen).

Add a boatOriginal Add an airplaneOriginal

Figure 20: Failure cases of the location model leading to downstream issues during inpainting.
When the space in which an object class can reasonably be placed is small, the predicted location
may be incorrect, and the resulting inpainted object can inadvertently overwrite other objects.

22

	Introduction
	Related Work
	Method
	Generative Location Modeling
	Leveraging Negative Labels via Direct Preference Optimization

	Experiments
	Datasets and architecture
	Object Insertion
	Location Modeling
	Ablation Study

	Discussion
	Conclusion
	Dataset Statistics and Preprocessing
	PIPE Dataset
	OPA Dataset

	Does Location Matter?
	Alternative Approaches for Location Modeling
	Architecture and Implementation Details
	Architecture of the Location Model
	Training Details
	Sampling from the Locations

	Diversity of the Sampled Location
	Human Evaluation
	Qualitative Results

