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ABSTRACT

Recent theoretical advances reveal that the Hadamard product induces non-
linear representations and implicit high-dimensional mappings for the field of
deep learning, yet their practical deployment in efficient vision models re-
mains underdeveloped. To address this gap, we introduce the Adaptive Cross-
Hadamard (ACH) module, a novel operator that embeds learnability through
differentiable discrete sampling and dynamic softsign normalization. This en-
ables parameter-free feature reuse while stabilizing gradient propagation. Inte-
grated into Hadaptive-Net (Hadamard Adaptive Network) via neural architecture
search, our approach achieves unprecedented efficiency. Comprehensive experi-
ments demonstrate state-of-the-art accuracy/speed trade-offs on image classifica-
tion task, establishing Hadamard operations as specific building blocks for effi-
cient vision models.

1 INTRODUCTION

Since AlexNet revolutionized computer vision (Krizhevsky et al., |2012), deep convolutional neural
networks (CNNs) have advanced rapidly. Subsequent innovations mitigated gradient explosion via
residual connections (He et al., [2016) and integrated self-attention into vision architectures (Doso-
vitskiy et al., 2020), gradually shifting model design toward greater depth for performance gains.

Conversely, lightweight networks (Howard et al., [2017; Zhang et al., [2018; Ma et al., [2018; |Han
et al.l |2020) pursued efficiency. These models widely adopted the inverted bottleneck structure
(e.g., MobileNets (Howard et al.| 2017; Sandler et al., 2018} |Howard et al., 2019; |Qin et al., |2024)),
ConvNext (Liu et al} [2022; Woo et al.| [2023)), which expands channel dimensions within blocks
rather than compressing them. This design enables residual operations in lower-dimensional spaces,
reducing computation while mitigating representational redundancy in high dimensions.

However, the inverted residual structure’s dependency on repeated channel expansion/reduction
operators inevitably introduces computational redundancy. Although effective, its dimension ex-
pansion phase requires significant convolution operations to project features into high-dimensional
spaces, where substantial similarity exists across newly generated channels. GhostNet (Han et al.,
2020; [Tang et al., 20225 [Liu et al., [2024) reveals this critical inefficiency, demonstrating that a large
portion of expanded channels exhibit high linear correlations, and thus can be inexpensively syn-
thesized via learned linear transformations of primary features rather than redundant convolutions.
This breakthrough established the first generalized framework for feature reuse, bypassing costly
dimension-specific operations. Subsequent works like FasterNet (Chen et al.| 2023) further refined
this paradigm, implementing feature reuse via partial convolution operators that selectively merge
spatially neighboring features.

Our work revisits feature recombination efficiency from an orthogonal perspective: instead of gen-
erating or filtering features, we exploit the intrinsic nonlinear representational capacity of learnable
Hadamard products to achieve ultra-efficient feature fusion. The Hadamard product (a.k.a. element-
wise multiplication), as a highly practical method, has long garnered significant attention in the fields
of deep learning. Recently, it became a new learning paradigm in the field of lightweight network
design owning to effective performance and concise computation. Its principle is straightforward,
for two identical matrices A, B:
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Figure 1: The trade-off between FLOPs/latency and top-1 accuracy. These diagrams compare
the efficiency among different state-of-the-art models with ours Hadaptive-Net in image classifica-
tion task. Detailed experimental configurations are provided in section @

Recent theoretical advances reveal that stacked Hadamard products can induce nonlinear representa-
tions and implicitly high-dimensional mappings when deeply cascaded (Ma et al.| |2024). Capitaliz-
ing on these insights, we propose the Adaptive Cross-Hadamard (ACH) module. This novel operator
transcends conventional Hadamard usage by embedding learnability through two key mechanisms:
(i) channel attention-guided feature gating, and (ii) differentiable discrete sampling. Thus, ACH es-
tablishes Hadamard products as foundational deep learning operators while enabling parameter-free
feature reuse.

To effectively deploy the ACH module, we construct Hadaptive-Net (Hadamard Adaptive Network)
through differentiable neural architecture search (NAS), jointly optimizing model topology and ACH
integration points. For efficient on-device execution, we further develop tailored GPU acceleration
strategies addressing computation scheduling challenges. In comparative experiments, Hadaptive-
Net outperforms state-of-the-art efficient models, achieving higher accuracy with lower computa-
tional costs (fig.[I).

2 RELATED WORK

This section reviews two types of previous studies related to this work: the application of Hadamard
product and efficient model design.

2.1 RESEARCHES IN HADAMARD

It can be learned from |Chrysos et al.| (2025) that the taxonomy for applying the Hadamard product
in deep learning is divided into four categories: high-order interactions, multimodal fusion, adaptive
modulation, and efficient operators. Ma et al.| (2024) and |Chen et al.| (2022a) reveal its ability to
implicitly induce high-order nonlinear mappings. As an example of multimodal fusion, Kim et al.
(2017) uses the Hadamard product to achieve low-rank bilinear pooling as an approximation of full
bilinear pooling. Adaptive modulation—also referred to as the gating mechanism, such as in LSTMs
(Hochreiter & Schmidhuber, |1997) —is a widely adopted application of the Hadamard product. For
instance, HAda (Wang et al., 2024) employs it to scale weights generated by a hypernetwork in
multi-view learning scenarios, while HiRA (Huang et al.| 2025) applies it to construct high-rank
weight updates during the fine-tuning of large language models. MogaNet (Li et al.,|2024) also uses
the Hadamard product to adaptively focus on informative features by fusing multi-scale depthwise
separable convolutions with varying dilation rates.

The forms of efficient operators are quite diverse. To mitigate the O(n?) complexity of Trans-
formers, some approaches replace matrix multiplications in attention mechanisms with Hadamard
products, as seen in FocalNet (Yang et al.| [2022)) and HorNet (Rao et al. [2022). |Gu & Dao (2023)
and|Zhu et al.|(2024)) adopt the Hadamard product as a core operator for ultra-efficient feature expan-
sion and nonlinear fusion via channel-wise cross-products. However, existing methods suffer from
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Figure 2: Illustration of the ACH module. Input features X undergo linear transformation and
batch normalization. An ECA module generates channel-wise scores, with Gumbel-Topk sampling
(training) or top-k selection (inference) determining active channels. Selected features Z undergo
cross-Hadamard product, normalized by dynamic softsign, then concatenated with original features.

critical limitations: fixed combination rules (inter- or intra-channel) restrict optimization flexibility,
and predefined operations limit interpretability. We therefore propose enhancing Hadamard prod-
ucts with learnable channel expansion capabilities, transforming them into dedicated deep learning
operators that leverage inherent nonlinearity while overcoming previous rigidity.

2.2  EFFICIENT MODEL DESIGN

The pursuit of efficient architectures has driven continuous innovation: from SqueezeNet’s pioneer-
ing use of pointwise convolutions (Tandola et all, 2016), to MobileNetV1’s depthwise separables
(Howard et al,[2017), MobileNetV2’s inverted bottlenecks (Sandler et all,[2018)), and ShuffleNet’s
channel shuffling (Zhang et al 12018} Ma et al.L2018). Neural Architecture Search (NAS) further ad-
vanced efficiency in MnasNet (Tan et al., 2019), EfficientNet 2019), and MobileNetV3
(Howard et al} [2019), culminating in MobileNetV4’s universal inverted bottlenecks (Qin et al.
2024). Concurrently, vision transformers inspired hybrid designs like Mobile-Former (Chen et al.

2022b) and EdgeViT 2022).

Feature reuse mechanisms provide complementary efficiency: GhostNet revealed channel-wise re-
dundancies in conventional convolutions, replacing redundant features via linear transformations
(Han et al| 2020; Tang et all 2022). FasterNet constrained convolution ranges 2023),

while GhostNetV3 (Liu et al., [2024) and MobileOne (Vasu et al., 2022) adopted RepVGG’s repa-
rameterization (Ding et al.,[2021) to merge parallel branches.

3 METHODOLOGY

This section establishes a hierarchical framework for the ACH module, progressing from mathe-
matical foundations to architectural deployment. First, we formalize the Hadamard product’s role
in channel expansion. Second, we introduce differentiable discrete sampling via Gumbel-TopK
with adaptive temperature annealing, enabling end-to-end channel selection. Third, to stabilize dy-
namically generated features, DySoft normalization replaces statistical normalization with bounded
sigmoidal activation. Finally, we integrate ACH into Hadaptive-Net through gradient-based NAS.

3.1 HADAMARD FOR CHANNEL EXPANSION

Inspired by the properties of high-dimensional mapping and non-linearity, we observe that the
Hadamard product aligns well with the characteristic of neural networks that gradually increase
channel dimensions while reducing spatial dimensions. This suggests that the Hadamard product is
particularly suitable for channel expansion.
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Specifically, we compute the Hadamard product for pairwise combinations of input channels while
retaining the original feature maps. This can be expressed as:

Y =Xo{X;0X;|{(j)e{l,2,....,.C}i #j}}
1
st. X e ROXHXW vy GIRC(C;DXHXW M

where X represents the input feature map, X; and X; denote the i-th and j-th channels of X, ©
denotes Hadamard product, and & denotes channel-wise concatenation, respectively. This approach
can be seen as putting the initial features X and the features after transformation into the same
feature space. More specifically, the stitched feature vector can be understood as a high-dimensional
vector, and the original feature space can be regarded as a set of bases, providing interpretability for
the composite features that carry implicit high-dimensional information.

Based on these insights, we designed the Adaptive Cross-Hadamard module, which is illustrated as
fig. 2} The design details and learnable methods of the module will be discussed in the following
sections.

3.2 DIFFERENTIABLE DISCRETE SAMPLING

As feature maps propagate through deep networks, their channel dimensions expand dramatically,
causing the number of possible channel interactions to grow quadratically. This combinatorial ex-
plosion makes exhaustive pairwise computation prohibitively expensive. Even for modest channel
counts, practical implementations require selecting a fixed subset of channels for efficient process-
ing. We thus reformulate eq. (1)) as:

YZX@{ZZ'@ZJ [ {(i,5) € {1727""0(5)}7i5£j}}
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st. Z={X,|keS}

where S represents a sequence of chosen channels’ indexes and C'y) indicates the amount of chosen
channels.

However, this selection process is inherently discrete, posing a challenge for gradient-based opti-
mization. Thus, we introduced Gumbel-Topk trick (Gumbel, |1954)) for selecting procedure. For-
mally, we donate scores of each channels as a vector £, which is obtain from an ECA module (Wang
et al.l [2020):

£ =ECA(X) = P(X) « W +b 3)

where P denotes adaptive average pooling, * denotes a 1D convolution operation. Then calculate
the probability distribution as below:

<§c + 00)
exp | ——
=
M, = eC
c € too) )
D=1 OXP | T

s.t. 0; = —log(—log(u)), u ~ Unif [0, 1]

where o; are i.i.d sampled from Gumbel distribution, M denotes a probability distribution vector
resulted from softmax, and 7 denotes temperature parameter that controls the smoothness of the
softmax output, respectively. The Gumbel-distributed perturbations o; inject controlled stochasticity
into the discrete selection process, ensuring channels temporarily still receive gradient feedback.
This prevents over-reliance on initial channel selections while maintaining alignment with the ECA’s
distribution across forward passes. The temperature parameter 7 governs output sharpness: higher
values yield softer selections, while 7 — 0 produces one-hot behavior.
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While M is continuous and differentiable, it leads to a discrete and nondifferentiable vector M,
With straight through estimator (STE) technique (Bengio, [2013):

C

MY = Is(c), S = top-k(M,k = C(;)) c€[1,0] forward %)

oL oL oM L 'asoftmax(ﬁ/T)
o0& OMH  9¢  OMH ¢

backward (6)

where I 4(z) denotes the indicator function, discrete M* could conduct data stream during training
and gradient could skip through M to M during backpropagation. Since hyperparameter 7 mod-
ulates the intensity of continuous values influence the selection of discrete values through softmax,
Consequently, the adjustment of 7 should be responsive to gradient variations. Instead of relying on
a global parameter scheduler, the ACH module employs adapting 7 dynamically based on the norm
of historical gradients, thereby preserving the end-to-end training characteristics:

T 4 CLAMP (7 - (1 + «-sign(|lgrad||z — Thist)) , 0.01, 4.0) 7
Thist < |lgrad|2
This design specifically addresses layer-wise heterogeneity through dynamic responsiveness: 7 in-
creases when current gradient norms exceed historical values (enhancing exploration for diverse
features), while decreasing when gradients diminish (accelerating semantic-specific convergence).
Refer to appendix [A.T]for the detailed procedure applied during each training epoch. To continuesly
maintain gradient propagation, following steps require matrix operations:

M/&c =0(c,8s) Vse[1,Cyl],ce[1,C] (8)
M, =M,oM* se(C )

where M denotes a one-hot mapping matrix from input channels to selected channels, §(a, b) denotes
Kronecker delta function. Given eq. (2) and eq. (9), we can finally obtain Y in eq. (2) with gradient
computation graph:

st. Z=M-X
For inference stage, it directly takes the first few bits of the output of the ECA module and uses this
as the index to extract the channels that need to be calculated, saving unnecessary calculation.

3.3 DYSOFT NORMALIZATION

The cross-Hadamard product creates input-adaptive channel combinations that enhance nonlinearity
but produce unstable output distributions. Unlike conventional convolutions that rely on statistical
normalization, this dynamic behavior renders batch normalization (loffe & Szegedy, [2015)) ineffec-
tive and risks gradient explosion. Inspired by recent success of activation-based normalization in
Transformers (Zhu et al.} 2025)), we propose DySoft, a dynamic softsign normalization that intrinsi-
cally bounds outputs while maintaining hardware efficiency:

axr

- . 11
T Jaa] w+b (11)

Y

where a, w, b denote learnable factors of an affine transform. Empirical comparisons table [1| show
softsign outperforms tanh and algebraic sigmoid variants in stability and computational efficiency,
making it ideal for mobile deployment. The indispensability of DySoft is discussed in appendix[A.2]
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Table 1: Comparison of dynamic sigmoidal Table 3: Neural Architecture Search Confi-
curves. The experimental conditions are the ex- dence Distribution. Showing selection confi-
dence between Ghost and ACH variants. Un-
derlined channels indicate downsampling layers.
Fixed layers (no search) marked with hyphens.
Values below 0.01% are indicated as <0.01%.
DySig, DyAlge represent dynamic sigmoid and
algebraic sigmoid, as the abbreviation DySoft,

perimental results of replacing the normalized
layers of all cross Hadamard products of the
small model finally determined in sectionE}

Sigmoid  Softsign  Alge. Sigmoid

Formula 20y ] it respectively.
Top1(%) 73.14 73.57 72.80
Channels  Ghost Conf. ACH Variants Conf.
Table 2: Performance Comparison of ACH DySoft DySig  DyAlge
Module Replacement on MobileNetV3. There 32 . - - _
are a total of 11 Inverted Bottleneck modules in 48 - - - -
the network, with indices starting from O in the 2‘21 99 9‘77 0 E)W -0 E)W <0£)1‘7
. (4 . (2 . ‘0 . (4
table. Severgl modules were selected for the ab- o4 99.99%  <0.01% <001% <001%
lation experiment. The first row of the table rep- 9 9987%  <001% <001% <0.01%
resents the replaced layer(s), and the second row 96 99.69 % 0.24%  <0.01% <0.01%
represents the Topl accuracy (%). °/ denotes gg gg'ggg" 8- égg" 8‘1)2;0 8-2?3
.. . . i ) R o . o . 0 . 0
the original unmodified MobileNetV3-S, ‘IB’ de- % 97.379% 0.63% 0.63% 110%
notes Inverted Bottleneck. 9 2.92% 62.02%  658%  28.18%
128 12.78% 43.72%  23.87% 19.62%
0 1 9 s 10 9,10 128 0.34% 70.05%  25.34% 4.24%
! B 1B 1B B 1B 1B 128 1.68% 34.56% 29.40%  34.30%
70.01 69.74 69.74 69.89 7038 71.03 7158 960 ) _ ) _

3.4 HADAMARD ADAPTIVE NETWORK

To systematically validate the efficacy, implementability and architectural compatibility of the pro-
posed ACH module, we construct Hadaptive-Net (Hadamard Adaptive Network), a network family
that serves as a testbed for ACH module. We employ gradient-based Neural Architecture Search
(NAS) (Dong & Yang, |2019) not to produce a single, static architecture, but as a principled method-
ology to discover the optimal integration of ACH modules within a modern, efficient backbone. This
approach allows us to objectively evaluate ACH’s performance and unearth general design principles
for its deployment, mitigating the biases of manual heuristic design.

Our search is informed by a preliminary analysis revealing that ACH is depth-dependent, perform-
ing best in late-stage layers (table [2). We thus designed a search space co-integrating ACH with
GhostNet-style modules, enabling NAS to select the optimal operator per layer. The search re-
sults (table [3) confirm our hypothesis: ACH is preferentially selected over Ghost modules in high-
dimensional spaces. The finalized Hadaptive-Net architectures are derived from these discovered
principles, with full specifications in the appendix [A.3]

4 IMPLEMENTATION

Prior to additional experimentation, we must ensure the cross-Hadamard product, as a novel opera-
tor, attains its theoretical efficiency on CPU/GPU and other hardware.

4.1 COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexities for expanding channel dimension with a feature map of f x f from
m to n dimensions with k X k convolution are analyzed as below. For inverted bottleneck:

(’)(mn : fQ)pointWise conv (12)

For Ghost module, which partially replaces the expensive pointwise convolution with a more effi-
cient strategy:
O(’I’?’LS : fQ)pointwise conv T O((n - 5) : k2f2)cheap op (13)
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Our method preserves the pointwise convolution while delegating channel expansion to Hadamard
product operations:

O(m2 : fz)pointwise conv + O((TL - m) : fz)hadamard (14)

Since m < n, The computational complexity of Ghost module is reduced to > of inverted bot-

tleneck convolution, while our ACH module achieves approximately % of the inverted bottleneck
convolution’s complexity in channel expansion. Derivations are shown in appendix [A.5] Remark-
ably, each Hadamard-derived feature map requires only f2 FLOPs, achieving superior efficiency
compared to conventional approaches.

The emphasis on FLOPs over latency is driven by the necessity to maintain cross-platform com-
patibility and approximate theoretical performance limits. While such a prioritization can be read-
ily implemented and validated in serial processing architectures, heterogeneous computing systems
present significant challenges that necessitate extensive optimization efforts.

4.2 GPU ACCELERATION

While lower theoretical computational complexity typically suggests faster inference speed, the ac-
tual GPU execution involves intricate scheduling by the CPU. The sophisticated channel mapping
process in ACH module often gets decomposed into multiple sub-operations by inference frame-
works, manifesting as frequent CPU-GPU synchronization and repeated kernel launches. The trian-
gular computation pattern of C’> combinations for cross-Hadamard products necessitates specialized
operator design, for which we propose two optimization approaches:

1. Direct-Indexing: Each thread block exclusively handles one Hadamard product. The
closed-form mapping from pairing index p to to matrix indices (4, j) is:

1
i= 3 [(2n —1) — /(2n — 1)? — 8p|
o i-(2n—1-1)
where n denotes number of candidate channels.

2. Parity-Balanced: Assign c thread blocks (c: input channels), evenly distributing irregu-
lar computations via iterative indexing algorithm [2] then compute pairing indices with an
inverse formula:

i-(2n—i—1)

p= B

+(G-i-1)
Table M] demonstrates the acceleration ef-
fects of different optimization approaches
on the Hadaptive-Net—L, which confirms (Native) Direct-Indexing Parity-Balanced
the indispensability of optimization in the Latency (ms) ~ 12.40 7.21 7.13

step of implementation. To approach ex-

treme performance, we analyzed the performance of the two algorithms under different character-
istic scales. Details of the experiments and Parity-Balanced algorithm are shown in appendix [A.5]
Resulting in practical inference scenarios, it’s recommended to employ the parity-balanced approach
for high-channel/small-HW tensors, while considering direct-indexing for spatial dimensions near
32x multiples. For performance-critical applications, custom compilation of tilling strategies match-
ing factors of specific spatial dimensions may be warranted.

Table 4: Acceleration performance.

5 EXPERIMENT

This section demonstrates the applied scenarios of our proposed method. All experiments on ACH
module are modified from the configuration of image classification experiment. All latency bench-
marks were conducted within the ONNX Runtime (developers, |2021)) framework. To demonstrate
the practical optimization potential of our proposed ACH module, we implemented it as a custom
CUDA operator. We stress that this result is presented to showcase the high optimizability of the
ACH operator. It should not be interpreted as a strict, head-to-head speed comparison against base-
line models, which utilize the standard, framework-provided operators native to ONNX Runtime.
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Figure 3: Component-wise ablation.

Ilustration of component-wise ablation variations with

component-accuracy table. (1) and (2) represent removal of pointwise convolution and ECA module,
respectively. (3) represents the replacement of learnable selection with fixed channel combinations,
and (4) represents the substitution of cross-Hadamard normalization with standard batch normaliza-

tion.

Table 5: Replacements of ACH module on ef-
ficient models. We replace the last two layers
of each model. For instance, replacing last two
universal inverted bottleneck modules for Mo-
bileNetV4.

Table 6: Performance of Hadaptive-Net on ob-
ject detection. We employ the SSD object de-
tector to different scales of Hadaptive-Net and
baseline models with COCO (Lin et al.| 2014)
dataset.

Model Top-1 ~ Params FLOPs Backbone mAP@0.5:0.95 mIOU
(%) ™M) M) -

MobileNetV3-S 70.01 1.6l 123 MobileNetV3-S 217 71.2

MobileNetV3-S (repl.)  71.581 1.55] 114/ MobileNetV2-1.0 21.9 70.5

MobileNetV4-S 7315 262 385 GhostNetV3-1.0 227 72.8

MobileNetV4-S (repl) 7219¢ 298T 381l, Hadaptlve-Net-S 221 724

ShuffleNetV2-1.0 6589 136 303 Hadaptive-Net-M 229 73.0

ShuffleNetV2-1.0 (repl.)  71.68% 1.28] 291} Hadaptive-Net-L. 23.2 73.4

StarNet-S1 71.84 268 854

StarNet-S1 (repl.) 7207t 256,  810)

5.1 ABLATION ON ACH MODULE

This experiment evaluates the contribution of each ACH component through controlled ablations:
(1) Whether to keep pointwise convolution layer. (2) Whether to keep ECA module. (3) Learnable
selection or fixed combinations. (4) Dynamic softsign or batch normalization. The baseline model
of this set of experiments is obtained from the best model of the previous set of experiments. Fig.
illustrates the variations of the ablation experiments with presenting the quantitative results, re-
vealing that all the components serve their respective functions. The pointwise convolution provides
fundamental channel-wise information exchange, while the ECA module enables the assessment
of channel importance. These two components establish the essential foundation for the module’s
learnability. Disabling this learnability nearly renders the module ineffective, demonstrating that the
discrete differentiation mechanism can properly provide gradients for the former components.The
employment of dynamic softsign effectively circumvents gradient explosion risks, consequently ex-
hibiting markedly better performance than batch normalization in experimental trials.

5.2 PLUG-AND-PLAY VERSATILITY OF ACH MODULE

The ACH module’s distinct mechanism enhances semantic feature representation, making it ideal for
standalone integration. We validate this by replacing the final two layers of four state-of-the-art effi-
cient networks: MobileNetV3 (Howard et al., 2019), MobileNetV4 (Qin et al., 2024)), ShuffleNetV?2
(Ma et al.| 2018)), and StarNet (Ma et al., [2024), with ACH. As table E] shows ACH improves accu-
racy in all networks except MobileNetV4 while reducing computational costs, confirming its gener-
alizability as a plug-and-play performance enhancer. See appendix [A.6]for deeper analysis.
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Table 7: Comparison of efficient models. This table presents parameter counts, computational
complexity (FLOPs), and latency measurements obtained from the CIFAR-100 (Krizhevsky, [2009)
dataset.

Latency Top-1 Accuracy
Model Params FLOPs | GPU CPU Mobile | CIFAR-100 ‘ ImageNet-1k
M) M) (ms)  (ms) (ms) (%) (%)
MobileNetV3-S (Howard et al.|{|2019) 1.62 56 498  33.21 6.71 70.01 67.42
MobileOne-SO0 (Vasu et al.[[2022) 2.10 275 3.48 30.70 5.11 69.70 71.42
Hadaptive-Net-S (ours) 2.10 131 3.41 29.45 4.28 73.57 73.96
ShuffleNetV2-1.0 (Ma et al.|[2018) 2.28 146 3.58  40.60 4.55 65.89 69.40
MobileNetV4-S (Qin et al.|[2024) 2.62 185 446  24.68 4.31 73.15 73.80
StarNet-S1 (Ma et al.|[2024) 2.68 422 6.00 82.73 7.96 71.84 73.50
Hadaptive-Net-M (ours) 3.09 339 526  39.81 6.47 74.10 78.07
StarNet-S2 (Ma et al.[[2024) 3.43 544 730  94.50 8.41 67.70 74.78
GhostNet-1.0 (Han et al.|[2020) 4.03 140 935 87.59 10.02 72.01 73.21
MobileNetV3-L (Howard et al.|[2019) 4.33 215 6.09 5641 6.66 72.81 75.20
MobileOne-S1 (Vasu et al.[|2022) 4.82 825 7.57  40.76 7.98 72.97 75.90
StarNet-S3 (Ma et al.[[2024) 5.49 754 8.60 112.7 9.87 68.27 77.26
Hadaptive-Net-L (ours) 6.11 669 713  57.62 9.11 74.73 80.79
StarNet-S4 (Ma et al.![2024) 7.22 1050 9.20 134.0 12.24 68.97 78.12
MobileOne-S2 (Vasu et al.||2022) 7.80 1299 9.77  61.19 10.23 73.25 77.41
GhostNetV3-1.0 (Liu et al.|[2024) 8.13 404 1391 180.54 19.07 73.20 73.92
MobileNetV4-M (Qin et al.[[2024) 8.56 827 8.42 4793 9.36 74.66 79.88
MobileOne-S3 (Vasu et al.||2022) 10.15 1896 10.02  81.28 10.36 73.80 78.09
MobileNetV4-L (Qin et al.|[2024) 31.44 2170 10.75  79.94 11.71 74.38 82.92

5.3 IMAGE CLASSIFICATION

We evaluate the performance of Hadaptive-Net on image classification (CIFAR-100 (Krizhevskyl
2009), ImageNet-1K (Deng et al.,|2009)), conducting comprehensive comparisons with other state-
of-the-art efficient models. Our experiments use PyTorch with AdamW optimizer (Ir=0.001,
momentum=0.9, weight decay=1e-4) and CrossEntropyLoss. Training employs cosine annealing
with 5% linear warmup over 200 epochs (batch=64, 224x224 inputs). We conducted the experi-
ments both on CIFAR-100 (Krizhevskyl 2009) and ImageNet-1K (Deng et al.| 2009). Latency tests
use ONNX-converted models (batch=1), 500-run average (Hardware details in appendix [A.4).

Result: Accroding to table [/, Hadaptive-Net achieves superior accuracy in the first two groups
while maintaining relatively low computational requirements. Although MobileNetV4 demonstrates
the best performance in the largest parameter group, this comes at the cost of significantly higher
computational overhead.

5.4 OBIJECT DETECTION

To validate the generalization capability of HadaptiveNet as a backbone network across different
downstream tasks, we conduct object detection experiments using the SSD (Liu et al.l 2015)) frame-
work. All models are trained on COCO train2017 (Lin et al., 2014) with a fixed input resolution
of 320x320 for 120 epochs, employing synchronized SGD optimization (momentum=0.9, weight
decay=>5e-4) and cosine learning rate decay initialized at 0.02. The detection head utilizes focal loss
(v =2.0) for classification and smooth L1 loss for bounding box regression. Evaluation follows the
standard COCO protocol reporting mAP@[0.5:0.95] on val2017. For implementation details see

appendix [A.4]

Result: As shown in table [6] Hadaptive-Net continues the high-level performance of image classi-
fication tasks in the extended task of target detection. This proves that Hadaptive-Net has a more
general feature extraction ability.

Justification: Maximizing the efficacy of the ACH module likely requires an end-to-end co-design.
We believe the more profound opportunity presented by this study lies in leveraging the principles
of structured, lightweight cross-channel interaction embodied by ACH to redesign bottleneck com-
ponents like Feature Pyramid Networks (FPNs), focusing on efficiently fusing multi-scale feature



Under review as a conference paper at ICLR 2026

information. This represents a highly promising direction for breaking the efficiency bottleneck of
current detectors.

5.5 GENERALITY ON TRANSFORMER

The Multi-Head Self-Attention (MHSA) mechanism in Transformer (Vaswani et al., 2017)) focuses
on the N-dimension, i.e., the relationships between tokens, while the Feed-Forward Network (FFN)
operates on the C-dimension, integrating semantic information carried and aggregated within indi-
vidual tokens. The FFN typically follows a classic inverted bottleneck structure, where the ACH
module can effectively play a role in computational compression.

To maintain research consistency, focusing on computer vision tasks and lightweight design, we have
decided to supplement our experiments with improvements on the MobileViT (Mehta & Rastegari,
2022)) model. Specifically, we replaced the FFN layers of the middle four Transformer encoders in
MobileViTs with the ACH module.

Result: The comparative resqlts Table 8: Replacements of ACH module on MobileViTs.
are shown in table which

demonstrate that replacing half Model Params(M) GFLOPs Topl-Acc Top5-Acc
of the FFN layers with the ACH MobileViT-small 4.55 2.879 71.70 92.16
module yielded significant im- (Replaced) 4.40 2.822 72.42 92.20
provements. Notably, this en- MobileViT-x-small 1.80 1.559 69.98 91.43
hancement was achieved with- (Replaced) 1.74 1.537 70.48 91.71
out increasing the number of pa- MobileViT-xx-small 0.88 0.588 67.62 90.19
rameters or computational com- ~_(Replaced) 0.85 0.579 6742 90.32

plexity (FLOPs), leading to su-

perior performance on the CIFAR-100 dataset compared to the baseline. This experiment substanti-
ates that the ACH module exhibits a promising level of generalizability within deep learning, partic-
ularly for the role of a channel feature extractor. For natural language processing related attempts,

please refer to appendix [A.6]

6 CONCLUSION

This work systematically transforms Hadamard products from auxiliary operations into specific deep
learning primitives, culminating in the development of the novel Adaptive Cross-Hadamard (ACH)
module and its integration into Hadaptive-Net. Theoretical and empirical analyses show ACH’s
superiority over depthwise separable convolutions in computational efficiency and representational
capacity. Lastly, this work establishes Hadamard-based operations as a valuable direction for effi-
cient deep learning architectures, offers insights for integrating novel mathematical operations into
neural network design.

REPRODUCIBILITY STATEMENT

For theoretical verification, refer to appendix [A.5] for computational complexity analysis. For im-
plementation reproducibility, section [] discusses the whole principle of engineering acceleration
algorithm kits. For training details, appendix shows the training configuration of hyperparame-
ters and hardware set. The code to implement the module and models in this paper has been open
source.
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A APPENDIX

A.1 TRAINING MECHANISM

7 Adjustment: We implement distinct temperature control mechanisms for ACH modules versus
NAS due to fundamental differences in their training paradigms. For ACH modules distributed
across network layers, which process heterogeneous features and semantics, we deliberately design
a adaptive regulation algorithm based on gradient norm trends:

Algorithm 1 7 Adjustment via Gradient Norm Tracking

Input: Current gradient tensor grad, scaling factor a = 0.01
Parameter: Historical gradient norm 74, current temperature 7
Output: Updated temperature 7
1: if 735+ # 0 A grad # NULL then
Ao {1 if ||grqu2 > Thist
—1 otherwise
Tnew < T (1 4+a-A)
7 + CLAMP(7;,00, 0.01, 4.0)
end if
if grad # NULL then
Thist < |lgrad||2
end if
return 7

»

R I AN

For differentiable NAS (GDAS), which operates under fundamentally different optimization con-
straints, we retain the GDAS framework’s global annealing strategy:

* Training protocol: Architecture parameters undergo periodic updates separate from model
weights, with gradient clipping (|| V|| < 1.0) ensuring stable convergence.

» Temperature scheduler: Implements predefined decay strategies:

Tmax — (Tmax - 7—min) : %

£
E
= . Tmin
Te Tmax ( Tmax

Tmin + O~5(Tnlax - 7—min) . [1 —+ cos (ﬂ'%)}
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The three formulas represent linear, exponential, cosine annealing, respectively. Consistent with
GDAS methodology, 7 remains within [0.1,4.0] throughout training.

NAS Specifics: The neural architecture search process employs a dual-optimizer framework with
distinct settings for model parameters and architecture parameters. Training executes over 250
epochs with a global batch size of 64, utilizing CUDA acceleration on a single GPU device (ID
0). The primary model optimizer is AdamW with base learning rate 0.003, momentum 0.9, and
weight decay le — 4, coupled with CosineAnnealingLR scheduling for learning rate decay. Archi-
tecture parameters undergo separate optimization via AdamW with specialized learning rate 3e — 4
to accommodate their distinct gradient distributions.

4

ConvBN stem: ks=2,stride=2

3y Table 9: Hadaptive-Net-S architecture details.

Stage 1
ConvBNAct ks=2,stride=2,act=Hardswish Layer Module Arguments
ConvBNAct ks=1,stride=1,act=Hardswish 0 CNA [3, 32’ 2’ 2] {BN’ NOI’IC}
* 1 CNA [32, 48, 2, 2] {BN, HS}
Stage 2 Adap.Bott. - Ghost 2 CNA [48,32, 1, 11 {BN, HS}
Adap.Bott. - Ghost GhostModule 3 AB [32, 64, *Ghost’, 4.0, 2, 2]
* <2 Do Wise €. 4 AB [64, 64, *Ghost’, 2.0, 3, 1]
cp-se Ton 5 AB  [64, 96, Ghost’, 4.0, 2, 2]
AdapBott, . Ghost P.Wise Cony 6 AB [96, 96, "Hada’, 16, 5, 1]
7 AB [96, 96, "Hada’, 16, 5, 1]
Adbypleii = Bkt Adap.Bott. - Hada 8 AB [96, 96, ,GhOSt’, 20, 5, 1]
e ACH Module 9 AB [96, 96, ’Hada,, 16, 5, l]
3 10 AB  [96,96, Hada’, 16,5, 1]
B Dep.Wise Conv 11 AB  [96, 128, *Ghost’, 6.0, 2, 2]
Adbplitiis = Qi P Wise Cony 12 AB [128, 128, ’Hada’, 32,7, 1]
Adap.Bott. - Hada s 13 AB [128, 128, ’Hada’, 32, 7, 1]

14 CNA  [128,960, 1, 1] {BN, HS}

| Head 15 FN [960, 100, 1280, 0.3]

Figure 4: Hadaptive-Net architecture overview.

A.2 DYSOFT INDISPENSABILITY

Quantitative experiments can not explain the indispensability of DySoft since the model without
DySoft training is extremely unstable and has no representative experimental data. However, these
phenomena can illustrate a problem that DySoft is empirically necessary, which could be explained
by probability theory.

Problem Tracing: Traditional normalization methods, such as BatchNorm (loffe & Szegedy,[2015))
and LayerNorm (Ba et al., [2016)), have a priori assumption that the statistical mean and statistical
variance of the tensors they receive are knowable and traceable, which constitutes the basis of model
convergence. In the process of ACH training and reasoning, we will involve a standard Z; © Z; cross
Hadamard product calculation. In previous machine learning methods, the use of Hadamard product
is usually self referential, that is, Z 2 = 7. Z. In this case, we can easily infer the mean value of
72 = 7 ® Z from the mean and variance u, 02 of Z :

Var(Z) = E[(Z — p)?] = E[2?] — (E[Z])?
E[Z%] = p? + o?

Since tensor Z was processed by normalization from above layer, which approximately satisfies
Z ~ N(u,c?). According to the fourth moment formula of normal distribution:
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E[ZY = p*+6u%0? + 30!

E[Z%] — (E[2?])?

(u* +6p%0® + 30%) — (u* + 02)?
= 20%(2u® + 0?)

g
N
|

If the self referring Hadamard product is deformed, for example ¢1(Z) ® ¢2(Z), Let ¢ here be a
linear transformation operator, the corresponding matrix form is X7, X5 (X € R™*"), bias vectors
are by, by (b € R™), then:

i 2y Xi
E[¢(Z2)] =E[XZ +b] = p- Tjj +E[b]
For variance, since Z can approximate normal distribution, here we assume that its elements are
1.1.d, then there are:

m

Var(¢é( ZVar .iiAZZJ,Uz:Uz.HAn!%
i

Suppose ¢ is a nonlinear transformation operator, which does not directly exist the predictability of
analytical solutions. However, the purpose of normalization method is not to accurately track the
statistical representation of tensors, but to ensure that the statistical representation of tensors remains
stable in the reasoning process.

Let the mapping T : R x R — R x R>q be: (1, 0%) — (1, 0"?). If T unbounded, that is, there
is a sequence (puy, o7) such that | T (ug, 07)|| — oo as long as a layer accidentally reaches the state
(such as disturbance, initialization deviation), the next layer of statistics will be unstable; If T is
discontinuous or the derivative is unbounded (e.g. f(z) = 1,0 is at u = 0), small disturbance can
lead to i/, 0’2 upheaval, resulting in unstable training.

BatchNorm is generally considered in CV tasks. BN independently estimates the mean and variance
of k for each channel:

i, = Bxoplar], 67 = Varep(zy)

And perform channel by channel affine transformation:
Ty — fig

ke
Vo te

This operation does not force statistical consistency between channels, but allows or even encourages
significant statistical heterogeneity between channels:

) =" + B

it st fu # iy, 67 # 67

This property is consistent with the inductive bias of “channel division” in convolutional networks
- different channels can professionally respond to different semantic patterns (such as edge, texture,
color), which is the key basis for its high representation efficiency in visual tasks. In contrast, LN is
normalized in the sample dimension:

c
X =~- 74—6, w=—= ka,a—gzk:g;k_

The implicit priori is that all channels at the same spatial location should have the same statistical
scale, which drives statistical convergence between channels. This assumption is compatible with
the inductive bias of “all tokens are comparable” in the global attention mechanism (such as ViT),
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but in CNN dominated by local receptive fields, it will weaken the channel specific characterization
ability and lead to performance degradation.

Let us consider y;; = x; © x;, its output statistics depend on the joint second moment of the input
channel. Under the heterogeneity distribution induced by BN, let z; ~ N (115, 0%), xj ~ N (15, 032-)
and i.i.d, then:

Elyij] = pip;Var(ys;) = pio? + pio; + ojo;

When the channel statistics differ significantly (e.g. |u;| > |i;| or o; > o), the variance shows
a multiplicative amplification effect, which is far beyond the single channel scale range. The affine
parameters of BN are only channel specific, which can not effectively correct the new statistical off-
set caused by such cross-channel coupling. Otherwise, the pairing process of ¢, j is obtained by the
nonlinear transformation of each input, which makes it impossible for the statistical representation
iterative map 7T’ to find the fixed point.

Although LN normalization may be used inside ACH module, it is very important to understand the
heterogeneity between channels in CV tasks. There is usually a typical CNN trunk containing BN
upstream of the module, so the whole feature learning process has been dominated by the hetero-
geneity of BN a priori. The model’s understanding of image semantics will evolve spontaneously
towards the direction of “channel specialization”. At this time, if a strong cross-channel nonlinear
module with implicit homogeneity assumption is inserted into the reasoning chain, it will lead to a
priori conflict.

Solution: The DySoft we introduced is essentially a variant of the softsign activation function:

axr ax

= —F—— w+b, lim ———==+1
1+ oz az—+oo 1 + |ax|

Y

Due to the boundedness of softsign, no matter how large the input variance o2 is, the output variance
is rigidly limited in the (0, 1) range; When the input is small, it shows approximate linearity and
maintains the characteristics of the signal. The parameter o can dynamically balance the expression
and compression of the layer.

When the cross-Hadamard y;; = x; © x; has variance like 0;,0; > 1, Var(y;;) increased by
O(c*). After accessing DySoft, this trend can be significantly compressed and given boundedness.
In addition, DySoft is also designed based on the hypothesis of channel heterogeneity, which is
a priori compatible with the heterogeneity of BN. Its w, b parameters are channel specific, and can
independently learn the scale and offset for each cross-Hadamard product channel. At the same time,
it does not destroy the channel professional representation established by the upstream BN, and only
makes local intervention on the ”danger signal”, thus realizing the organic unity of characterization
and stability.

In summary, DySoft is a learnable statistical compression gating (SCG) module, which achieves
hard variance clamping for high square error input through bounded nonlinear mapping S(u) =
u/(1 4 |u|) and restores the characterization capacity in combination with channel specific affine
transformation. Without violating the heterogeneity prior of batch normalization, the design ef-
fectively inhibits the growth of multiplicative variance caused by cross channel nonlinearity (such
as cross Hadamard product), and makes the statistical map T : (i, 0?) + (i’, 0’%) bounded and
smooth, so as to meet the core condition of “knowability”, providing a stable and convergent statis-
tical target for the normalization layer.

A.3 HADAPTIVE-NET CONFIGURATION

This section mainly shows the results of three groups of NAS experiments and the decision of final
Hadaptive-Net structure. See tables[I0]to [I2]for NAS experiments details.

Hadaptive-Net adopts a hierarchical backbone architecture comprising a stem followed by four dis-
tinct stages, as shown in fig. ] To implement Ghost and ACH module with adaptability, we desgin
the Adaptive Bottleneck that can decide the expansion layer of the bottleneck manually. The net-
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Table 10: Neural Architecture Search Result (a).

67.55% topl-acc as result.

Compared with different kernel sizes. Reaching

Channels Ghost Conf. ACH Conf. Blank
2 3 3 5 7
32 R R - -
48 _ - - -
32 - - - -
64 54% 46% - - - -
64 - 24% - 76% - -
96 52% 48% - - - -
96 27% 14% 9% 50% - -
96 25% 21% 28% 26% - -
96 20% 17% 23% 17% - 23%
96 19% 19% 23% 17% - 23%
96 20% 20% 20% 18% - 22%
128 37% 28% 17% 17% - -
128 - - 35% 33% 33% -
128 - - 60% 27% 13% -
128 - - 1% 1% 1% 96%
128 - - 1% 1% 1% 96%
128 - - 1% 2% 1% 96%
960 - - - - - -
Table 11: Neural Architecture Search Re- Table 12: Neural Architecture Search Result

sult (c). Shows the distribution of ACH con-
figurations across different channel sizes. Val-
ues represent percentage confidence (rounded
to nearest integer). -’ indicates layers that
were not searched. Format: ACH-[chosen_dim]-
[kernel_size]. Reaching 67.73% topl-acc as re-
sult.

Channels ACH Conf.
16-3  16-5 32-3 483
32 _ - - _
48 - R R -
32 - - - -
64 _ - - _
64 - - - -
96 - - - _
96 68% 12% 20% -
96 4% 13% 43% -
96 47% 16% 37% -
96 35% 20% 45% -
96 45% 15% 39% -
128 - - - _
128 19% - 52%  29%
128 28% - 32% 40%
128 36% - 41% 22%
128 40% - 30% 30%
128 51% - 23% 26%
960 - - - -

(b). Shows the distribution of ACH configura-
tions across different channel sizes. Values rep-
resent percentage confidence (rounded to near-
est integer). ’-’ indicates layers that were not
searched. Since training ACH modules requires a
lot of iterations to be effective, the network tends
to skip them during training. Reaching 66.23%
topl-acc as result.

Channels ACH Conf. Blank
16 32 48
32 R R R _
48 R - - _
32 - - - -
64 R R R _
64 - - - -
96 R - - _
96 14% 9% - 68%
96 14% 13% - 65%
96 16% 13% - 62%
96 13% 15% - 61%
96 13% 14% - 60%
128 R - - _
128 1% 1% 1% 98%
128 1% 1% 1%  98%
128 1% 1% 1%  98%
128 1% 1% 1% 98%
128 1% 1% 1%  98%
960 - - - -

work begins with a linear convolutional layer as the stem, followed by fixed two conventional con-
volutional layers in Stage 1 for initial feature extraction. Stage 2 incorporates two fixed Adaptive
Bottlenecks utilizing Ghost module as expansion layers, enabling rapid downsampling. Stages 3
and 4 employ Ghost Ada.Bott. for downsampling layers and Hadamard Ada.Bott for repeated resid-
ual blocks, with particular emphasis on parameter concentration in Stage 3, following ConvNeXt’s
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design philosophy. The kernel sizes progressively increase across stages, with non-downsampling
layers configured as 1 x 1,3 x 3,5 x 5, and 7 x 7 respectively.

Refer to table [J] for detailed description of layer level architecture configuration. CNA denotes
combinition of convolution, normalization and activation layers. AB denotes adaptive bottleneck,
which could be subdivided into Ghost module or ACH (Adaptive Cross-Hadamard) module. Hada
denotes the ACH module. BN denotes batch normalization. HS denotes hardswish activation. FN
denotes full connection layer. All first two arguments represent input/output channel. All last two
arguments represents kernel size and stride size, respectively.

A.4 EXPERIMENTS DETAILS

The following is a detailed description of the experimental part of this paper.

Hardware Configurations: Latency tests conducted on:

* Desktop GPU: NVIDIA RTX TITAN (24GB GDDR6, CUDA 11.6)
¢ Server CPU: Intel Xeon Gold 5218 (2.3GHz, 16C/32T)

* Mobile SoC: Qualcomm Snapdragon 870 (4xCortex-A77@2.4GHz + 1xA77@3.2GHz,
Adreno 650)

All tests used ONNX Runtime 1.16.0 with default execution providers.

Object Detection - Training Protocol: The base learning rate of 0.02 corresponds to a batch size of
64 distributed across 5 GPUs, scaled linearly according to the batch size. We apply 3-epoch linear
warmup and reduce the learning rate to le-5 via cosine scheduling. Data augmentation includes
random HSV color jittering with hue delta limited to 18 degrees and saturation scaling between
0.5-1.5, followed by random canvas expansion up to 2x original size and IoU-based cropping with
thresholds sampled from [0.1,0.3,0.5].

Object Detection - Architecture Specifications The SSD detector generates 6 default boxes per
feature map location with aspect ratios spanning [1:1, 1:2, 1:3, 2:1, 3:1]. Feature maps are extracted
from five backbone stages with strides of [8,16,32,64,128] pixels respectively, corresponding to
spatial dimensions from 38x38 down to 1x1. During focal loss computation we set the a-balancing
parameter to 0.25 after empirical validation across the range [0.1,0.5].

A.5 IMPLEMENTATION DETAILS

This section will supplement the derivation of previous computational complexity analysis and im-
plementation details of GPU acceleration algorithm mentioned in the original text.

With egs. (12) to (I4)), we can derive the ratio of Ghost Module complexity to that of the standard
pointwise convolution:

. m-s-f24+(n—s)-k%- f? s n—s k?
Ratioghest = fm(an) ! :E—’_ n +E (15)

Since s is often chosen as a fraction of n (e.g., s = n/2), the term

5 is approximately a constant

2 .
LIS
m

(e.g., 1/2). Since k? is small (e.g., 9 for a 3 x 3 kernel) and m can be relatively large, the term

often negligible. Under the condition m < n, the simplified complexity ratio is:

Ratioghes & — (16)
n

Similarly, we calculate the efficiency ratio by comparing ACH module complexity to the standard
pointwise convolution:
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Giga-FLOPs vs. Input Channels (C;) (Ratio=4) Giga-MACs vs. Input Channels (C,) (Ratio=4)

Module Type

Computational Complexity (Giga-FLOPs)

Computational Complexity (Giga-MACs)

368 432 512 16 80 144 368 432 512

224 288 224 288
Input Channels (C) Input Channels (C1)

Figure 5: Comparison of computational efficiency under different input channel sizes

GFLOPs Comparison for Modules (C1=64) GMACs Comparison for Modules (C1=64)

st

Figure 6: Comparison of computational efficiency under different expansion ratios

¥ (GFLOPS)

Compi

) m?-f2+mn-m)-f2 m?*4+n-m m 1 1
Ratioacy = fm~§l-f2 H - m-n :;—FE—F% an

Given the constraint m < n,1 < m,1 < n, the terms % and % become very small and can be
considered negligible. Thus, the simplified complexity ratio for the ACH module is:

Ratiopcy =~ m (18)
n

For this theoretical analysis, we have carried out several groups of measured data on different input
channel sizes and amplification ratios to confirm that ACH module has a very strong reasoning speed
compared with the standard point-by-point convolution and ghost module.

The experiment is carried out for two specific situations: fixed 4-fold scaling ratio, 16-512 different
input channel sizes; Fixed 64 input channel size, 4-24 times scaling ratio (224%224 per frame). We
counted the Multiply-ACCumulate Operations (MACs) and Floating Point Operations (FLOPs) of
the two groups of experiments as illustrated in figs. [5]and[6]

This ratio can be shown intuitively in the above experimental results. From the experimental results,
the computational complexity ratio under different channel sizes is relatively fixed, while different
scaling ratios, which is m/n, show a linear relationship.

Previous section[d.2]presented two GPU acceleration algorithms for ACH operators. One algorithm,
the Direct-Indexing, is implemented as the name suggests. Another algorithm, the Parity-Balanced,
could be written as algorithm 2]

To systematically evaluate these methods under varying tensor configurations (batch/channel di-
mensions versus spatial sizes), we conducted comparative experiments using square matrices (same
sized height & width). See fig. [7]for the experiment details and results.

Both algorithms demonstrate relatively stable performance across varying batch sizes, indicating
comparable parallelism in channel-agnostic scenarios. Despite both are expanding dimensional-
ity, the parity-balanced approach exhibits superior optimization for high-channel tasks compared to
high-batch scenarios, owing to its specialized load balancing for channel-dense tensors.

20



Under review as a conference paper at ICLR 2026

size size
1 22 43 64 1 22 43 64
1 371
2 2
o)
< c
8 IS
< <
° <
o
43 4 45
64 L 66 -
| | | m
-1 0 1 -1 0 1
(a) ()

Figure 7: Normalized difference heatmap of optimization approaches runtime. Color-coded vi-
sualization of relative performance between direct-indexing (A) and parity-balanced (B) approaches
using ﬁ, where red indicates A is slower (B more efficient) and blue indicates the opposite. (a)
Batch size versus spatial dimensions scaling. (b) Channel count versus spatial dimensions scaling.

For feature maps with smaller spatial dimensions, the parity-balanced approach significantly outper-
forms direct-indexing due to: (1) The balanced approach’s input tensor reuse pattern enhances L1/L.2
cache hit rates in GPU global memory, reducing memory access latency while increasing arithmetic
intensity per thread block through reduced thread block maintenance. (2) While appearing to intro-
duce serialization, the balanced method effectively concentrates inevitable serial processes within
individual thread blocks, as GPU core counts cannot simultaneously satisfy all computational de-
mands for dimensionally dense small tensors, thereby avoiding context-switching overhead. (3)
Direct-indexing requires separate thread block allocation per matrix computation, leading to under-
utilized warp resources when small matrices cannot fill the thread block size.

When spatial dimensions approach integer multiples of 32 (thread block dimension), direct-indexing
prevails due to thread blocks achieve near-saturation load conditions with peak artificial intensity,
and the method’s end-to-end processing better aligns with hardware scheduling optimizations.

Algorithm 2 Parity-Balanced Indexing Strategy
Input: Channel count ¢

Parameter: Thread block group ID id

Output: Choosen channels i, j

1: forit < 0toc—1do

2:  if it <id A —((id — it) mod 2) then

3 14— 1t,j +id

4:  elseifit > id A (id — it) mod 2 then

5 1< id, j « it

6. else

7 continue

8 end if

9 Compute Hadamard product for matrices ¢ and j
10: end for

A.6 EXTENDED EXPERIMENTS

Grad-CAM: To further elucidate the role of the ACH module in enhancing the model’s represen-
tational capacity, we designed two sets of comparative experiments using Grad-CAM visualization
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Figure 8: Network visualization via Grad-CAM across layers (1). Simple scenario: ladybug.

Downward arrows denote downsampling layers.
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Figure 9: Network visualization via Grad-CAM across layers (2). Complex scenario: mushroom.
Downward arrows denote downsampling layers.

to examine the changes brought by the ACH module compared to a conventional convolutional net-
work. For clearer and more intuitive comparison, we adopted as the baseline a modified version of
Hadaptive-Net-S in which all ACH modules were replaced with Ghost modules, in order to demon-
strate the feature extraction pattern under purely linear transformations.
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Table 13: Replacements of ACH module on BERT.

Layers Modify In-Out-Channel ~Mid-Channel SST-2 MNLI-10%
BERT-6  FFN (fixed channel) 764 764 64.7 36.7
BERT-6 ACH Module 764 2043 76.2 41.8
BERT-6 FFN 764 2048 80.3 46.7

BERT-12  FFN (fixed channel) 764 764 53.1 34.3
BERT-12 ACH Module 764 2043 75.9 41.2
BERT-12 FFN 764 2048 80.6 45.5

The first experiment, which is shown as fig.[8] involves a simple scenario, where a ladybug is clearly
distinguishable from the background. The baseline model exhibits a standard processing pattern that
progresses from texture analysis to focal emphasis. In contrast, Hadaptive-Net not only extracts tex-
ture more accurately, but also achieves target focus with fewer layers, while performing more precise
edge segmentation. After the final downsampling step, the baseline model continues attempting to
focus on the main subject, whereas Hadaptive-Net begins to attend to the edges of withered leaves,
suggesting an attempt to capture higher-level semantic correlations.

The second experiment, which is shown as fig.[0] presents a more complex situation, where a mush-
room exhibits some color overlap with the background. Compared to the baseline, Hadaptive-Net
transitions more rapidly from the edge extraction phase to the target focusing phase, and explores a
larger spatial area, indicating a larger effective receptive field.

In summary, the introduction of the ACH module not only reduces computational complexity but
also endows the model with more powerful semantic representation capabilities.

NLP Attempt: We tried to extend ACH module to NLP. We conducted a comparative test on the
6-layers and 12-layers BERT (Devlin et al.| 2019). The accuracy of the BERT model using differ-
ent channel feature extractors (FFN, ACH module and standard FFN with unchanged middle layer
dimension) was tested in SST-2 (Socher et al.,[2013)) and 10% MNLI datasets (Williams et al., 2018]).

The models were evaluated on two standard natural language understanding benchmarks: the Stan-
ford Sentiment Treebank (SST-2) for binary sentiment classification and the Multi-Genre Natural
Language Inference (MNLI) dataset for textual entailment. For SST-2, the model was trained and
evaluated on the full dataset. To assess performance in a low-resource setting, the model was trained
on a 10% stratified subset of the MNLI training set and evaluated on the full matched validation set.

The training configuration was consistent across both tasks. Models were trained for 3 epochs with
a global batch size of 32 and evaluated with a batch size of 64. The optimization used a learning rate
of 2e-5 with a linear warmup over the first 10% of the training steps and weight decay of 0.01. The
models, which followed a BERT-base architecture (12 layers, 12 attention heads, 768-dimensional
hidden states), were initialized with random weights. Input sequences were tokenized using the
‘bert-base-uncased‘ tokenizer with a maximum length of 128 tokens. The sole evaluation metric
was classification accuracy, calculated as the percentage of correctly predicted labels against the
ground truth. All experiments were run on a single GPU without mixed-precision training.

As a result in table [T3] the performance of ACH module was not stunning enough to exceed the
BERT baseline. However, from the perspective of the motivation of compressing the calculation
scale, ACH module still plays a big role. Only adding a small amount of cross-Hadamard product
in one step can approach the FFN without channel depth to a better level, revealing its potential as a
unique algorithm in the field of NLP.

As we are mainly engaged in CV related work and lack relevant experience in NLP field, the ex-
perimental setup may be a little rough. If there are any problems, readers are welcome to correct
them.

B THE USE OF LARGE LANGUAGE MODELS

In the preparation of this work, the author(s) utilized a Large Language Model (LLM) primarily to
aid in polishing and refining the writing. The tool was used for purposes such as improving gram-
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matical correctness, enhancing sentence fluency, and rephrasing for clarity. All ideas, theoretical
analyses, experimental designs, results, and conclusions remain entirely those of the author(s). The
final manuscript has been thoroughly reviewed and edited by the author(s), who take full responsi-
bility for all content presented herein.
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