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ABSTRACT

The evaluation of large language models (LLMs) is increasingly performed by
other LLMs, a setup commonly known as “LLM-as-a-judge”, or autograders.
While autograders offer a scalable alternative to human evaluation, they are not
free from biases (e.g., favouring longer outputs or generations from their own
model family). Here we propose a statistical framework based on Bayesian gen-
eralised linear models (GLMs) that enables researchers to address their primary
research questions (e.g., LLM capability or risk assessment), while simultane-
ously identifying, quantifying and mitigating various biases in their autograders.
Our approach can be applied to various evaluation formats (e.g., absolute scores
or pairwise preferences) and augments traditional metrics (e.g., inter-rater agree-
ment) by providing precise uncertainty estimates and clarifying sources of dis-
agreement between graders. This framework also enables efficient counterfactual
simulations without costly re-evaluation (e.g., assessing agreement after removing
systematic biases). We demonstrate these capabilities through simulated exam-
ples, with all methods available in an open-source software package. Overall, we
introduce a novel framework for autograder evaluation which allows researchers
to detect, quantify and correct for various biases in a systematic way.

1 INTRODUCTION

Imagine a typical scenario: a researcher, Florence1, is assessing how well an LLM does on a given
task. Outside of true/false questions, the outputs can be quite complex, e.g., open-ended answers,
agentic trajectories or intrinsic preferences. Techniques have been developed to assess these outputs,
e.g., scoring rubrics or collecting preferences. Due to the high stochasticity of LLMs, typical LLM
evaluations require collecting a lot of samples meaning that manually scoring each response would
be very time-consuming. Florence, like many researchers, decides to build autograders to automate
this task. As she is interested in grading open-ended questions, she creates a rubric and prompts
an autograder to apply it. Being a careful researcher, she wants to assess how well the autograders
scores align with her own. As commonly done, she decides to assess this using an inter-rater agree-
ment, e.g., Krippendorff’s ↵ (Tam et al., 2024; Bavaresco et al., 2025). She might get a value close
lower than zero, indicating substantial disagreement between her and the autograders. But what does
this mean? Is this just random noise or is there a way to explain this disagreement?

Recent studies suggest that such disagreement may not just be noise, as autograders can exhibit sys-
tematic biases. For instance self-bias, where LLM-based graders assign higher scores to responses
generated by the same LLM family (Panickssery et al., 2024; Liu et al., 2024b), or more broadly to
machine-generated content over human-written responses (Liu et al., 2023). Another common issue
is length bias, where longer answers are preferred regardless of their actual quality (Zheng et al.,
2023; Dubois et al., 2024). Additional biases include preferences for certain writing styles, answer
structures, or the presence of certain keywords (Koo et al., 2024; Wang et al., 2024; Stureborg et al.,
2024; Wu & Aji, 2025).

Through careful observation of the outputs, Florence might identify that the autograders consistently
assigns lower scores than she does. She suspects that there is actually no fundamental disagreement
on what constitutes good or bad responses, but rather slightly different scoring thresholds. One way
to test this would be to adapt the scoring rubric to encourage higher scores and rerun the evaluation,

1In tribute to the pioneering work of two Florence Nightingales in statistics: the 19th-century nurse who
applied statistical methods to public health and the 20th-century statistician
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but this approach would be resource intensive. A more efficient alternative is to simulate a counter-
factual: what would the scores look like if we removed the systematic shift? By adjusting for this
bias in the existing data and recomputing Krippendorff ↵ on the simulated scores, Florence can test
her hypothesis without collecting new data. Doing this, she might find a higher value which would
confirm that the apparent disagreement was largely due to a systematic shift rather than fundamental
differences in quality assessment.

By performing such analyses, researchers can transform vague notions of autograder unreliability
into precise and actionable insights about specific biases. To achieve this at scale, researchers need a
framework that can decompose disagreement into interpretable components, quantify each bias with
uncertainty, and predict how removing specific biases would affect evaluation outcomes without
requiring costly re-evaluation. Our Bayesian GLM framework provides exactly these capabilities:
(1) jointly modeling multiple bias sources (self-bias, length bias, grader severity, item effects) to
identify which biases are present and their relative importance, (2) providing posterior distributions
that quantify not just whether biases exist but their precise magnitude and uncertainty, (3) supporting
both absolute scoring and pairwise preference formats to handle diverse evaluation setups, and (4)
enabling counterfactual simulations that reveal how evaluation outcomes would change if specific
biases were removed.

In the following sections, we will demonstrate this framework by addressing five common eval-
uation challenges. To facilitate wider adoption, all statistical models presented in this paper are
implemented in the open-source HiBayes package.

2 METHODS

We begin by explaining how autograder scores can be compared to human scores and how this
comparison can be integrated into an LLM evaluation analysis (Question 1). We then show how
to assess whether the graders are biased towards certain models being evaluated (Question 2), how
to quantify individual differences in the case of multiple graders (Question 3), and how to analyse
item-level patterns (Question 4). Finally, we show how this framework can be applied to pairwise
judgments settings, how to quantify intransitive (e.g., cyclic) preferences and how to assess whether
graders have biases towards longer formats (Question 5). For a summary of the evaluation questions
along with their corresponding formalisations, cf 1.

2.1 HOW DO SCORES FROM AN AUTOGRADER COMPARE TO SCORES FROM AN EXPERT?

Florence needs to assess how well two LLMs do at answering open-ended questions. Because she
is automating their grading with autograders, she essentially needs to answer two questions: 1)
Is LLM A or LLM B better at answering open-ended questions? 2) Can my autograder reliably
evaluate LLM responses relative to a human annotator?

A GLM framework allows to answer these questions with a single analysis. Suppose that each LLM
answered N = 50 items which were each graded by Florence and an autograder on a scale from
1-10 (simulated scores depicted on Figure 1).

GLMs extend linear regressions to handle non-normal outcomes while preserving the familiar re-
gression structure. This is particularly useful as it allows researchers to include multiple predictors,
control for potential confounders, and isolate the contribution of each variable to an outcome.

To answer the questions above, Florence can fit a regression model with an intercept �0, which
represents the overall average latent score, a coefficient �1 which quantifies the effect of the grader,
and coefficient �2 which quantifies the effect of LLM A versus LLM B on the score (cf., linear
predictor �i in Equation 1).

�i = �0 + �1 · xgrader
i + �2 · xLLM

i

scorei ⇠ OrderedLogistic(�i, c)
(1)

In this model, the linear predictor �i combines the effects of both the grader type and LLM identity.
Because scores take discrete values from 1-10, we use an ordered logistic likelihood function. The
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Figure 1: Addressing Question 1: how do scores from an autograder compare to scores from an
expert?. Left panel: Simulated scores for LLM-generated answers graded by a human expert (Flo-
rence) and an autograder. Right panel: Posterior distributions of estimated effects. The horizontal
blue lines represent 95% credible intervals. The dashed red vertical line indicates a null effect
(� = 0). The coefficient for autograder minus human is negative, with a credible interval that does
not include zero, indicating that the autograder tends to assign lower scores. The coefficient for LLM
A minus LLM B is similarly positive, suggesting that LLM A receives higher scores than LLM B
on average.

linear predictor produces a continuous latent value, which the ordered logistic model maps to dis-
crete 1-10 scores through estimated cutpoints c. These cutpoints are estimated during model fitting
along with the � coefficients (cf. Appendix A.3). The variables xgrader

i and xLLM
i encode the identity

of the grader and the LLM respectively. Each variable takes a value of +1 or �1 (i.e., effect coding)
to distinguish between the two levels (e.g., autograder vs. human, LLM A vs. LLM B).

After fitting, we can make two inferences based on the effect sizes of the coefficients �1 and �2

(right panel of Figure 1):

1. The “Autograder minus human” effect is negative with credible intervals excluding zero,
indicating that the autograder gives lower scores than the human expert

2. The “LLM A minus LLM B” effect is positive with credible intervals excluding zero, indi-
cating that LLM A receives higher scores on average than LLM B.

Crucially, because the GLM accounts for both sources of variation simultaneously, Florence can
confidently select LLM A for her task while remaining aware of the autograder’s conservative scor-
ing tendency. This illustrates how a GLM framework enables researchers to both answer substantive
research questions and validate their evaluation methods within a single, principled analysis.

2.2 DO AUTOGRADERS FAVOUR THEIR OWN GENERATION?

Recent literature has raised concerns that autograders may demonstrate self-bias, a tendency to as-
sign better scores to outputs generated by the same base model (Panickssery et al., 2024; Liu et al.,
2024b; Koo et al., 2024) or outputs from models vs. humans (Liu et al., 2023). Similarly to above,
a GLM framework allows to quantify autograder self-bias while evaluating LLMs.

Florence is concerned that her autograder (from model family A) might unfairly favour outputs from
LLM A (also from model family A). To assess such self-bias, she uses a second autograder (from
model family B). She wants to investigate whether responses from LLM A receive higher scores
when graded by the autograder A compared to when graded by autograder B (and vice versa). The
resulting data are shown in the left panel of Figure 2.
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Figure 2: Addressing Question 2: Do autograders favour their own generation?. Left panel: Sim-
ulated scores for LLM-generated answers by LLM A and LLM B. Scores were given by a human
expert (green) and autograders (yellow and red). Right panel: Posterior distributions of estimated
effects from the GLM. The horizontal blue lines represent 95% credible intervals, and the dashed
red vertical line indicates a null effect (� = 0). The grader effect �1 shows how each grader devi-
ates from the average score across all graders and LLMs. The LLM effect �2 is positive, indicating
that LLM A generally receives higher scores than LLM B. The graderLLM terms �3 represent a set
of parameters (one for each graderLLM combination). Autograder A seems to have a tendency to
prefer LLM A vs LLM B, suggesting a potential self-bias.

We extend the previous model (Equation 1) by adding a term that captures whether specific graders
systematically favour outputs from specific LLMs. This is implemented as a set of graderLLM
interaction effects2, denoted by �3.

�i = �0 + �1,gi + �2 · xLLM
i + �3,gi,`i

scorei ⇠ OrderedLogistic(�i, c)
(2)

As we now have more than two graders, the main effect coefficients �1,1,�1,2,�1,3 represent each
grader’s deviation from the grand mean score, estimated using effect coding. The LLM variable still
has two levels and is binary-coded as before (see Equation 1). The interaction term �3,j,k represents
a set of parameters estimated using index-based coding, with one distinct coefficient independently
estimated for each grader j and LLM k combination.

After selecting the best-fitting model using model comparison techniques (Figure 7) in Section A.3),
we examine the estimated effects (right panel of Figure 2. The interaction parameters �3 show that
Autograder A assigns somewhat higher scores to LLM A than to LLM B (positive vs. negative
effects), suggesting potential self-bias toward outputs from its own model family (although this is
not definitive as the credible intervals overlap with zero).

With these findings, Florence confidently answers her main question (LLM A performs better on
open-ended questions), uncovers that the autograders assign lower scores than she does, and identi-
fies a potential self-bias from Autograder A.

2.3 DO AUTOGRADERS DIFFER SYSTEMATICALLY FROM HUMAN EXPERTS?

Florence might ask a few colleagues to help grade some of the responses (Human X, Y and Z in the
left panel of Figure 3.), and try different an additional autograder (Autograder A, B and C in the left
panel of Figure 3.).

2Strictly speaking, this is not a single interaction effect (e.g., �3 · Xgrader · XLLM), but a set of parameters
estimated independently using index-based coding (where each graderLLM combination has a unique integer
index). This allows direct comparisons across specific combinations rather than relying on a single coefficient.
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Figure 3: Addressing Question 3: Do autograders differ systematically from human experts?. Left
panel: Simulated scores on LLM A and LLM B answers, as graded by multiple human experts
(green) and autograders (yellow and red). Right panel: Posterior distributions of estimated effects
from the hierarchical model. The horizontal blue lines represent 95% credible intervals, and the
dashed red vertical line indicates a null effect (� = 0). Individual grader effects show how each
grader deviates from their respective group-level average (human or autograder). Group-level means
for human and autograder graders (µgraderType) indicate that, on average, human graders assign higher
scores than autograders.

She might then be interested in assessing: 1) whether autograder scores, on average, differ system-
atically from human scores, and 2) how much individual graders vary within each group.

To capture both group-level and individual-level differences, we can define what is known as a hier-
archical GLM (cf. Equation 3). In this model, each grader has their own scoring tendency (�graderi ),
drawn from a group-level distribution (human or autograder). This allows to estimate group-level
means for humans versus autograders while also capturing how individual graders deviate from their
group’s average. Through partial pooling (sharing information across graders of the same type), the
model makes efficient use of limited data, which is particularly helpful when some graders have few
observations.

�i = �0 + �1,gi + �2 · xLLM
i

scorei ⇠ OrderedLogistic(�i, c)

�1,gi ⇠ N (µgraderTypei ,�
2
graderTypei

)

µgraderTypei ⇠ N (0, 3)

�2
graderTypei

⇠ HalfCauchy(1)

(3)

As before, �2 is a scalar coefficient applied to xLLM
i 2 {�1,+1}, which indicates whether the

response was generated by LLM A or LLM B. Unlike before, �1,gi represents the effect of the in-
dividual grader who assigned score i, and is drawn from a group-level distribution based on grader
type (human or autograder). Specifically, �1,gi ⇠ N (µgraderTypei ,�

2
graderTypei

), where µgraderTypei rep-
resents the average score tendency for each grader type, and �2

graderTypei
captures variability within

each type. The prior distributions for the group-level means and variances (µgraderType and �2
graderType)

are specified in Section A.2. This hierarchical structure enables the model to estimate both the aver-
age difference between human and autograder scores and the variation among individual graders.

To formally assess whether this group-level difference exists, Florence should of course compare
this hierarchical approach against a simpler flat model (cf. Figure 8 in Section A.3 for a model
comparison). Here we select the hierarchical model to demonstrate how to examine both group-
level differences between grader types and individual grader characteristics.

In the right panel of Figure 3 we see the individual grader effects (�1; Autograder AC and Human
XZ in the plot) and the group-level means (µgraderType; human mean and autograder mean in the plot).
Using this method, Florence can confidently conclude that there is a general tendency for humans to
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Figure 4: Addressing Question 4: How do scores differ at an item level?. Left panel: Simulated
scores for each item (14), grouped by LLM and grader identity. Each cell shows the distribution of
scores assigned by a given grader to responses from a particular model on a given item. Right panel:
Posterior distributions of estimated effects from the item-level GLM (Equation 4). The plot shows
main effects for grader and LLM identity (top), item main effects (bottom), and graderitem interac-
tions (middle). Horizontal blue lines represent 95% credible intervals, and the dashed red vertical
line indicates a null effect (� = 0). Item 1 has a strong positive effect, suggesting it consistently
receives higher scores. In contrast, Item 4 has a negative effect, indicating that it receives lower
scores. Grader - item interaction terms are small and uncertain, indicating no evidence of systematic
grader disagreement on specific items.

give higher scores than autograders. Additionally, she can visualise individual-level differences and
make informed decisions. For example, she might observe that Autograder C produces scores that
are more closely aligned with those of the human graders. If consistency with human judgment is a
key objective, she may choose to use this autograder in future evaluations.

2.4 HOW DO SCORES DIFFER AT AN ITEM LEVEL?

Florence now becomes interested in whether variation arises at the level of individual evaluation
items (i.e., open-ended questions). She wonders whether some items consistently receive higher or
lower scores, and whether graders agree more on certain items than others.

To answer these questions, she needs repeated responses for the same items. Until now, we have
assumed that each data point corresponds to a different item. Lets instead imagine that Florences
dataset consists of four items, with each model answering each item 25 times. The data split by
items can be seen in the left panel of Figure 4 (different items are represented by violin plots of the
same colour).

To answer Question 4, we extend Equation 1 by including two additional terms. The first term,
�3,mi , accounts for a main effect of items, capturing whether some items receive systematically
higher or lower scores. The second term, �4,gi,mi , represents a graderitem interaction, allowing us
to test whether particular graders behave differently on specific items.

�i = �0 + �1,gi + �2 · xLLM
i + �3,mi + �4,gi,mi

scorei ⇠ OrderedLogistic(�i, c)
(4)

The term �1,gi captures the main effect of grader gi, and �2 models the effect of LLM identity (e.g.,
whether the response was produced by LLM A or B). As mentioned above, the new term �3,mi rep-
resents the main effect of item mi, which captures whether some questions tend to receive higher or
lower scores overall. The final term, �4,gi,mi , captures grader - item interactions and is implemented
in the same way as the interaction term in Equation 2, i.e., a coefficient for combination. This allows
to directly compare individual combinations and detect whether certain graders are more lenient or
harsh on specific items. As before, all main categorical effects (grader, item) are encoded using
effect coding, so that the resulting coefficients reflect deviations from the overall mean.
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Figure 5: Posterior distributions of Krippendorffs ↵ under different modeling assumptions. The
red cross shows the traditional ↵ computed directly from the observed scores, suggesting strong
disagreement between graders. The blue distribution shows ↵ values estimated from posterior sim-
ulations of a fitted GLM, incorporating uncertainty in the predictions. The green distribution shows
↵ values after removing the main effect of grader identity, revealing what agreement might look like
in a counterfactual scenario where graders do not differ systematically in scoring scale.

After fitting the model, Florence inspects the estimated effects (right panel of Figure 4).

1. Looking at the main effect of item (�3 in Equation 4), she observes that item 1 leads to
higher scores and item 4 to lower scores. This suggests that the former is easier to answer,
and the later more challenging.

2. Looking at the grader - item interaction term (�4 in Equation 4), she does not see evidence
that specific graders differ on individual items.

From these results Florence concludes that while some items appear easier than others, grader dis-
agreement is not concentrated on any particular question. The grader main effects reveals that hu-
mans consistently score higher than autograders, but Florence wonders about the consistency of
their judgments beyond this systematic bias, i.e., do graders at least agree on which responses are
relatively better or worse? Is the disagreement between graders due to fundamental differences in
quality judgment, or merely due to correctable systematic biases?

This is where combining GLMs and inter-rater agreement metrics like Krippendorff’s ↵ becomes
particularly valuable. While GLMs quantify systematic biases and ↵ measures overall agreement, ↵
alone cannot distinguish between random disagreement and systematic biases. For example, if she
were to compute ↵ directly she would get ↵ = �0.2 (red cross in Figure 5), indicating substantial
disagreement, but telling her little about why graders disagree or whether the disagreement is fixable.

The GLM framework offers two advantages here. First, by computing ↵ on posterior samples from
the fitted GLM, Florence can obtain not just a point estimate but a full distribution (blue in Figure
5). Second, and more importantly, GLMs enable counterfactual simulations. Florence can ask:
”What would agreement look like if graders didn’t have systematic biases?” To answer this, she
removes each grader’s estimated bias (the �1 coefficients) from the linear predictor before mapping
to categorical scores, then recomputes ↵ on these bias-adjusted predictions.

This counterfactual ↵ (green distribution in Figure 5) jumps to approximately 0.7, which is sub-
stantially higher than the observed ↵. This reveals that most disagreement stems from systematic
scoring differences rather than inconsistent judgments about quality. The wider green distribution
reflects increased uncertainty after removing predictable grader variation.

Without the GLM framework, Florence would only know the agreement is poor. With it, she can
decompose the disagreement into systematic biases (which can be corrected through calibration)
versus fundamental disagreements about quality. The ability to simulate counterfactuals without
collecting new data makes GLMs particularly valuable for understanding and improving evaluations.
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2.5 DO AUTOGRADERS FAVOUR LONGER OUTPUTS?

So far, we have focused on evaluation settings where graders assign absolute scores. However,
many LLM evaluations rely on pairwise comparisons, where graders are asked to choose which
of two outputs better satisfies a target criterion (e.g., correctness). The same statistical modeling
framework can be applied in this setting, with the outcome modeled as a binary preference. We
use such a setup to illustrate how pairwise comparisons can be modeled and to examine length bias,
which has often been observed in pairwise evaluation settings. Of course, length bias can also be
captured in absolute score setups similarly to other biases in previous sections.

Let’s imagine that Florence wants to compare the quality of outputs generated by three different
LLMs. She chooses a pairwise evaluation format, where each grader (e.g., herself or an autograder)
is repeatedly shown two responses to the same prompt - each generated by a different LLM - and
must select the better response. An example of such data can be seen in the left panel of Figure 6.
Each bar represents a pairwise comparison (e.g., “LLM A vs. LLM B”), and its height reflects how
frequently the first listed model (e.g., LLM A) was chosen. To model this binary outcome, we switch
from the ordered logistic regression used previously to a binomial GLM with a logit link function.
The outcome variable yi indicates whether the first model in the pair was chosen (yi = 1) or not
(yi = 0), and we include a categorical effect in the model to denote the LLM pair being compared.

Florence’s younger brother, always up-to-date with ML controversies, recently told her that some
autograders may systematically prefer longer outputs even if those outputs are not of higher quality,
a phenomenon commonly referred to as length bias (Zheng et al., 2023; Dubois et al., 2024). To
capture this bias, she adds a continuous predictor capturing the token-length difference between
the two outputs. As there are two graders (herself and the autograder), which might have different
biases, she computes one such predictor per grader. To test the existence of the length bias formally,
she compares the model with and without this term (cf. Figure 9 in Section A.3). For demonstration
purposes, let’s look at the model with grader-specific length bias here:

logit(pi) = �0 + �1,⇡i + �2,gi + �3,gi · x
lengthDiff
i

yi ⇠ Binomial(1, pi)

�3,gi ⇠ N (µlengthDiff,�
2
lengthDiff)

µlengthDiff ⇠ N (0, 0.5)

�lengthDiff ⇠ HalfNormal(1.0)

(5)

where yi is a binary outcome indicating whether the first-listed LLM was preferred. The intercept
�0 is the overall tendency to prefer the first-listed model, �1,⇡i captures pair-specific preferences
(e.g., “LLM A vs. LLM B”) where ⇡i indexes the LLM pair, and �2,gi captures grader gi’s overall
tendency to prefer the first-listed model. The predictor xlengthDiff

i is the token-length difference be-
tween the two responses. The grader-specific slope coefficient �3,gi quantifies how sensitive grader
gi is to length differences and is drawn from a hierarchical distribution with mean µlengthDiff and
standard deviation �lengthDiff. Positive values of µlengthDiff indicate a preference for longer outputs.
The hierarchical structure captures both the average length bias across graders and the variability
among individual graders.

Importantly, once we have estimated the probability of choosing an LLM over another, we can
compare these probabilities across pairs. This allows to identify rational (transitive) and irrational
(intransitive) patterns of decision-making, such as cyclic dependencies (e.g., preferring A over B, B
over C, but C over A). Such intransitivities exist in LLM evaluations (Xu et al., 2025). Traditional
models like the BradleyTerry model implicitly assume transitivity and thus cannot capture these
cycles. Recent approaches have proposed either removing intransitivities from datasets (Yu et al.,
2025) or explicitly quantifying them (Zhang et al., 2025; Liu et al., 2024a; Zhao et al., 2024). GLMs
naturally capture these intransitivities alongside grader biases and differences in LLM performance.

Inspecting the estimated effects in the right panel of Figure 6, we observe a positive effect for the
grader-specific length bias parameter (�3), particularly for the autograder. From this, Florence can
infer that the autograder is more likely to select longer outputs, irrespective of their intrinsic qual-
ity, meaning that the autograder implicitly associated output length and perceived correctness. By
explicitly quantifying such biases within the model, Florence can more reliably interpret differences
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Figure 6: Addressing Question 5: Do autograders favour longer outputs?. Left panel: Proportion
of pairwise preferences across three LLM pairs (A vs. B, A vs. C, B vs. C). Preference rate values
represent the fraction of cases where the first listed model was selected over the second. Error
bars represent 95% confidence intervals. Right panel: Posterior distributions of estimated effects
from the GLM for pairwise comparisons (log-odds scale). Horizontal blue lines represent the 95%
credible intervals, and the dashed red vertical line indicates a null effect (�=0). The pair effect terms
represent the relative preference between specific pairs of LLMs, indicating which LLM is generally
preferred. The grader length bias terms quantify each grader’s sensitivity to token-length differences
when making choices. A positive length bias indicates a preference towards longer outputs.

in LLM rankings. For example, if LLM A wins most comparisons but consistently produces longer
outputs, Florence might question: “Is LLM A genuinely better, or simply more verbose? Can I really
trust the autograders judgements?”. Additionally, by examining the estimated LLM pair parameters
(�1), she can verify whether the observed preferences follow a consistent ranking or if there are
intransitive (cyclical) patterns. Here, the estimated parameters indicate a consistent ordering: LLM
A tends to be preferred to LLM B and LLM C, and LLM B tends to be preferred to LLM C. This
integrated statistical framework empowers her to disentangle and quantify these systematic biases
and assess preference consistency, leading to deeper and more reliable conclusions.

CONCLUSION

In this paper, we introduced a statistical framework for evaluating autograders using Bayesian
GLMs. By jointly modelling the evaluation outcome and the scoring process, this approach enables
researchers to assess both LLM performance and autograder behaviour within a single analysis.
Through a series of examples, we followed the journey of a fictional researcher toward evaluating
autograders. We used simulated data throughout to explore a wide range of evaluation questions and
settings, and to illustrate key modelling principles in a controlled and reproducible way.

Specifically, we showed how this framework can quantify various types of biases (e.g., self-bias and
length bias), capture individual-level differences both among graders and items, and improve the
estimation of group-level trends through hierarchical modelling. Crucially, the framework enhances
traditional inter-rater agreement metrics in two ways: it provides uncertainty quantification through
posterior distributions, and it enables counterfactual analysis to understand the sources of disagree-
ment. Researchers can still compute familiar statistics such as Krippendorff’s ↵, Cohen’s , or
Kendall’s ⌧ , but now with credible intervals and the ability to decompose disagreement into system-
atic biases versus fundamental differences in judgment. Additionally, we demonstrated the method’s
flexibility across different evaluation formats, including absolute scoring and pairwise comparisons.

The examples presented are by no means exhaustive. Many other applications and extensions of
GLMs are possible, and we hope this work provides a clear and practical starting point for re-
searchers seeking to adapt the framework to their own evaluation scenarios. To support practical
adoption, we have summarised common evaluation questions and their implementation in a GLM
setup in Table 1. All statistical models presented in this paper are implemented in the open-source
HiBayes package.
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