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ABSTRACT

We study decentralized learning in two-player zero-sum discounted Markov
games where the goal is to design a policy optimization algorithm for either agent
satisfying two properties. First, the player does not need to know the policy of
the opponent to update its policy. Second, when both players adopt the algorithm,
their joint policy converges to a Nash equilibrium of the game. To this end, we
construct a meta algorithm, dubbed as Homot opy—-PO, which provably finds a
Nash equilibrium at a global linear rate. In particular, Homotopy-PO inter-
weaves two base algorithms Local-Fast and Global-Slow via homotopy
continuation. Local-Fast is an algorithm that enjoys local linear convergence
while Global-Slow is an algorithm that converges globally but at a slower sub-
linear rate. By switching between these two base algorithms, Global-Slow es-
sentially serves as a “guide” which identifies a benign neighborhood where
Local-Fast enjoys fast convergence. However, since the exact size of such
a neighborhood is unknown, we apply a doubling trick to switch between these
two base algorithms. The switching scheme is delicately designed so that the
aggregated performance of the algorithm is driven by Local-Fast. Further-
more, we prove that Local-Fast and Global-Slow can both be instantiated
by variants of optimistic gradient descent/ascent (OGDA) method, which is of
independent interest.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) which studies how a group of agents interact with
each other and make decisions in a shared environment (Zhang et al., 2021a) has received much
attention in recent years due to its wide applications in games (Lanctot et al., 2019} Silver et al.,
2017 |Vinyals et al [2019)), robust reinforcement learning (Pinto et al., 2017} Tessler et al., 2019
Zhang et al., [2021b), robotics (Shalev-Shwartz et al., 2016; Matignon et al.l 2012), among many
others. Problems in MARL are frequently formulated as Markov Games (Littman, |1994; Shapley,
1953). In this paper, we focus on one important class of Markov games: two-player zero-sum
Markov games. In such a game, the two players compete against each other in an environment
where state transition and reward depend on both players’ actions.

Our goal is to design efficient policy optimization methods to find Nash equilibria in zero-sum
Markov games. This task is usually formulated as a nonconvex-nonconcave minimax optimiza-
tion problem. There have been works showing that Nash equilibria in matrix games, which are a
special kind of zero-sum Markov games with convex-concave structures, can be found at a linear
rate (Gilpin et al., 2012; |Wei et al., 2020). However, due to the nonconvexity-nonconcavity, theo-
retical understanding of zero-sum Markov games is sparser. Existing methods have either sublinear
rates for finding Nash equilibria, or linear rates for finding regularized Nash equiliria such as quantal
response equilibria which are approximations for Nash equilibria (Alacaoglu et al., 2022} Cen et al.,
20215 Daskalakis et al., [2020; [Pattathil et al.l |2022; |Perolat et al.l 2015} [Wei et al., 2021} |[Yang &
Ma), 2022 [Zeng et al.l 2022} [Zhang et al.,|2022;|Zhao et al.,2022). A natural question is:

Q1: Can we find Nash equilibria for two-player zero-sum Markov games at a linear rate?
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Furthermore, in Markov games, it is desirable to design decentralized algorithms. That is, when a
player updates its policy, it does not need to know the policy of other agents, as such information is
usually unavailable especially when the game is competitive in nature. Meanwhile, other desiderata
in MARL include symmetric updates and rationality. Here symmetry means that the algorithm
employed by each player is the same/symmetric, and their updates differ only through using the
different local information possessed by each player. Rationality means that if other players adopt
stationary policy, the algorithm will converge to the best-response policy (Sayin et al., 2021} [Wei
et al.| 2021). In other words, the algorithm finds the optimal policy of the player.

In decentralized learning, each player observes dynamic local information due to the changes in
other players’ policy, which makes it more challenging to design efficient algorithms (Daskalakis
et al.; 2020; Hernandez-Leal et al.l 2017 [Sayin et al., [2021). Symmetric update also poses chal-
lenges for the convergence. (Condon| (1990) shows multiple variants of value iteration with symmet-
ric updates can cycle and fail to find NEs. Gradient descent/ascent (GDA) with symmetric update
can cycle even in matrix games (Daskalakis et al.| 2018; Mertikopoulos et al., 2018). Thus, an even
more challenging question to pose is:

Q2: Can we further answer Q1 with a decentralized algorithm that is symmetric and rational?

In this paper, we give the first affirmative answers to Q7 and Q2. In specific, we propose a meta
algorithm Homotopy-PO which provably converges to a Nash equilibrium (NE) with two base
algorithms Local-Fast and Global-Slow. Homotopy—-PO is a homotopy continuation style
algorithm that switches between Local-Fast and Global-Slow, where Global-Slow be-
haves as a “guide” which identifies a benign neighborhood for Local-Fast to enjoy linear con-
vergence. A novel switching scheme is designed to achieve global linear convergence without
knowing the size of such a neighborhood. Next, we propose the averaging independent optimistic
gradient descent/ascent (Averaging OGDA) method and the independent optimistic policy gradient
descent/ascent (OGDA) method. Then, we instantiate Homotopy—PO by proving that Averag-
ing OGDA and OGDA satisfy the conditions of Global-Slow and Local-Fast, respectively.
This yields the first algorithm which provably finds Nash equilibria in zero-sum Markov games at a
global linear rate. In addition, Homot opy—PO is decentralized, symmetric, rational and last-iterate
convergent.

Our contribution. Our contribution is two-fold.  First, we propose a meta algorithm
Homotopy—PO which is shown to converge to Nash equilibria of two-player zero-sum Markov
games with global linear convergence, when the two base algorithms satisfy certain benign prop-
erties. Moreover, Homot opy—PO is a decentralized algorithm and enjoys additional desiderata in
MARL including symmetric update, rationality and last-iterate convergence. Second, we instantiate
Homotopy-PO by designing two base algorithms based on variants of GDA methods, which are
proved to satisfy the conditions required by Homotopy—PO. In particular, we prove that the ex-
ample base algorithm OGDA enjoys local linear convergence to Nash equilibria, which might be of
independent interest.

1.1 RELATED WORK

A more comprehensive literature review is moved to Appendix [A] due to the space limitation. Of
particular relevance are two decentralized algorithms |Daskalakis et al.[(2020) and Wei et al.| (2021}).

Daskalakis et al.|(2020) consider an independent policy gradient descent/ascent algorithm which is
a natural extension of single-agent policy gradient descent to two-player zero-sum Markov games.
They utilize the two-sided gradient dominance to prove a sub-linear convergence rate of the gradient-
descent-ascent (GDA) method. This is the first non-asymptotic convergence result of GDA for find-
ing Nash equilibria in Markov games. However, their method is asymmetric, where one-player takes
much smaller steps than its opponent. And their convergence results are base on average policies
with no explicit guarantee for last-iterate convergence. Wei et al.| (2021) propose an actor-critic
optimistic policy gradient descent/ascent algorithm that is simultaneous decentralized, symmetric,
rational and has O(1/+/%) last-iterate convergence rate to the Nash equilibrium set. They use a critic
which averages the approximate value functions from past iterations to tame nonstationarity in ap-
proximate Q-functions and get better approximations for policy gradients. A classical averaging
stepsize from |Jin et al.| (2018) is utilized by the critic so that the errors accumulate slowly and last-
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iterate convergence is obtained. However, the critic using such choice of stepsizes throughout the
game also destroys linear convergence since relatively large errors from past iterations cannot decay
fast enough and will harm the accuracy of more recent steps.

2 NOTATIONS AND PRELIMINARIES

For integers n < n/, we denote [n : n'] = {n,n+1,--- ,n'} and [n] = {1,--- ,n}. We use ||-||
to denote the Euclidean norm, and || - ||,, denotes the £,-norm. For any vector z € R? and closed
convex set C C RY, let P¢ (z) denote the unique projection point of & onto C. In addition, the
distance between x and C is denoted by dist (x,C) = ||z — Pe (x)].

Markov game. A two-player zero-sum discounted Markov game is denoted by a tuple MG =
(S, A,B,P,R,v), where S = [5] is the state space; A = [A] and B = [B] are the action spaces
of the min-player and the max-player respectively; P : S x A x B — Ag is the transition kernel,
R ={R,} s C [0,1]"*5 is the reward function, and v is the discount factor. Specifically, at state
s, when the min-player takes action ¢ and the max-player takes action b at state s, P(s'|s, a, b) is
probability that the next state becomes s’, R¢(a, b) is the reward received by the max-player, and the
min-player receives an loss —R(a,b). We assume that the rewards are bounded in [0, 1] without
loss of generality.

Let x = {z,},.g and y = {y,},s denote the policies of the min-player and the max-player,
where ¢, € A 4 and y, € Ag. The policy spaces of the min-player and the max-player are denoted
by X = (AA)S, Y = (AB)S. Let Z = X x ) denote the product policy space. The policy
x € X (y € )) is treated as an AS-dimensional (BS-dimensional) vector, and the policy pair
z = (x,y) is treated as an (A + B)S-dimensional vector where z, = (z,,y,) represents an
(A + B)-dimensional vector by concatenating = and y.

The value function under the policy pair (x, y) is defined as an S-dimensional vector with its en-
tries representing the expected cumulative rewards: V¥ (s) = B, ,[S7% 7' Ry (at, bt) [0 = s].
Define V®1 (V%) as the value functions of = (y) with its best response, i.e., V®(s) =
maxy ey V&Y (s), VI¥(s) = mingcx V¥ ¥(s). For state s € S, define the Bellman target oper-
ator @, : RS — RA*B guch for vector v € RS,

Q,[v](a,b) = Ro(a,b) +v > P(s']s,a,b) v(s).

s’eS
The Q-function Q™Y = {Q7Y}, s is defined as a collection of A-by-B matrices with Q%Y =
Q.[V*Y]. The (state) visitation distribution is defined as d%¥(s) = 3% y'Pr™¥[s* = &'|s0 =

s]. For any distribution p € Ag, we abbreviate V®¥(p) = > _sp(s)V*¥(s), dy¥(s) =
Y vesP(s')d? (s). From Gilpin et al. (2012), there is a problem-dependent constant ¢ > 0
such that for any policy pair z = (z,y) € Zand s € S,

T A%,/ . 1T A% . *
g @, Quyy — min @, Quy, = oy - dist(zs, Z7). (1)
Nash equilibrium. The minimax game value of state s is defined as v*(s) =

mingex maxycy VY (s) = maxycy mingex V¥ (s). A policy pair (z, y) is called a Nash equi-
libirum (NE) if and only if: for any s € S,

Voi(s) = VI¥(s) = v*(s).
Define the minimax Q-functions as Q = @ ,[v*]. Define the sets X and Y as

X! =argmin max (z., Qly’), VX =argmax min (z, QIy.).
zleA, YLEAB y €Ap TLEAA

Then X7 and Y are non-empty, closed and convex. Denote Z; = X x V. Let X* = [[ .5 XS,

V* = [les Vi, 2 = [l,es 25 A policy pair (z*, y*) attains Nash equilibrium if and only if

(z*,y*) € Z*, ie., (xf,y%) € Zf forany s € S (Basar & Olsder, 1998}, [Filar & Vriezel 2012).

We denote the closure of the NE set’s neighborhood as B(Z*,¢) = {z € Z : dist(z, Z*) < c}.
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Interaction protocol. In each iteration, each player plays a policy and observes the marginal reward
function and the marginal transition kernel, i.e., in iteration ¢, the min-player plays z* € X, while the
max-player plays y* € ). The min-player receives the marginal reward function 7, : Sx.A — [0, 1]
with 7% (s,a) = > ,c5 yL(b)Rs(a,b) and marginal transition kernel P%, : S x A — Ag with
PL(s'|s,a) = 3",z YL(b)P(s'|s, a,b), while the max-player receives 7} and P} which are defined
analogously. Each player is oblivious to its opponent’s policy.

3 A HOMOTOPY CONTINUATION ALGORITHM WITH GLOBAL LINEAR
CONVERGENCE

We propose a decentralized algorithm with global linear convergence by (1) proposing a meta algo-
rithm which can achieve global linear convergence with two base algorithms, (2) providing examples
for the base algorithms. The analysis for the example base algorithms are in Section[dand Section[3]

3.1 A HOMOTOPY CONTINUTATION META ALGORITHM

We present a homotopy continuation meta algorithm. It can achieve global linear convergence by
switching between two base algorithms: Global-Slow base algorithm (Global-S1low) and Local-
Fast base algorithm (Local-Fast). Global-Slow is globally convergent, but only attains a
O(%) rate. Local-Fast is not necessarily globally convergent but attains a linear convergence
rate in a neighborhood of the Nash equilibrium set.

Global-Slow base algorithm: by calling Global-Slow([T} : T3], 2,n) during time interval
[Ty : Ty] where z = (&, 9) is the initial policy pair, the players play policy pair z* = (z*, y*) for

each iteration ¢ € [T} : T5], and compute an average policy pair Tl - (E[T“TZ] , Q[T“Tz]) at the
end of iteration 7% such that 2%, ZlTTel satisfy the following two properties:
o global convergence: there is a problem-dependent constant C’ > 0 such that
~[T1: C'log(T, —Th + 1
diSt(Z[Tl'T2],Z*) < Og( 2 1+ ) (2)

T (T +1)
This property means the average policy produced by Global-Slow converges to the NE set at a
sublinear O(1/T) rate.

e geometric boundedness: there exists a problem-dependent constant Dy > 0 (possibly Dy > 1)
such that if n” < 1, then for any ¢ € [T} : T3],

dist?(z%, 2*) < DE1 - dist?(z, 2¥), (3)
dist?(z!") 2%y < DT L dist? (2, 2%). 4)
=[Th:T3)

This property ensures that the iterate z* at any intermediate time ¢ and the average policy 2z
do not diverge faster than geometrically from the NE set. In Global-Slow, {2}, [Ty :T>] Are the

policy pairs played during [T} : T3], while 2ITTE) iy mainly be used as the initial policy in the

next switch to Local-Fast in the meta algorithm Homot opy—PO (Algorithm|I).

Local-Fast base algorithm: by calling Local-Fast([T} : T2], 2, n) during time interval [T} : Ty]
where z = (Z,9) is the initial policy pair, the players play policy pair 2! = (z!,y") for each
iteration ¢ € [T} : T»] such that 2! satisfies the local linear convergence property:

e local linear convergence: there exist problem-dependent constants ¢y € (0,1) and dp,I'g > 0
such that if dist?(2, Z*) < don*, then for any ¢ € [T} : Ty

dist®(z%, 2%) < Tg - (1 — con?) " Didist? (2, 2*). (5)
In other words, if initialized a neighborhood of Z* with radius \/dgn?, Local-Fast converges to
Z* at a linear rate.

With these base algorithms, a naive and impractical approach is to run Global-Slow first un-
til z* reaches B(Z*,/don*), and then, run Local-Fast to achieve linear convergence. How-
ever, the problem is we do not know the value of 69. That is, when running the algorithm, since
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Z* is unknown, it is impossible tell whether the algorithm has reached the benign neighbor-
hood for Local-Fast to enjoy the linear rate . Thus, we cannot decide when to switch from
Global-Slowto Local-Fast.

Algorithm 1: Homot opy—PO: a meta-algorithm with global linear convergence

Input: iterations: [0 : 7', initial policy pair: 2° € Z, stepsizes: 0,7’ > 0
setk = 1,flof =—1,z"1 =20
while Z:~! < T'do
Ik = Z]fl +1, fgs = min{l’éS +2k -1, T}, Ik = fgs +1, f{; = min{Z} + 4* - 1,7}

during time interval [Z%, : Z% ], run Global-Slow([ZE, : ZF, 2% /) and compute an

PR VA2
average policy z" ==
durine time i k. Tk k. Thy olTeTh]
uring time interval [Z;% : Z;], run Local-Fast([Z; : Zjf], 27 7= n)
k—k+1
end

To overcome this problem, we propose a homotopy continuation method Homot opy—-PO which
smartly switches between Global-Slow and Local-Fast. The pseudocode is in Algorithm [I]
In Homot opy—-PO, we split [0 : T into the segments:

0:T] = I} TN U [T - T U~ U [ZE TR U [Zf - T U -

where [ZF, : fgs] is the time interval of the k-th call to Global-Slow and |[I§S : fggH = 2%,

[Zk : ZF] is the time interval of the k-th call to Local-Fast and |[Z} : Z%]| = 4. The switching
scheme of Homot opy—-P0O method can be summarized as below: starting from k = 1,

o (Step 1) during time interval [Z%, : ], run GLlobal-Slow for |[ZF, : 7% ]| = 2" iterations with

the initial policy P (for k > 1, it is the last-iterate policy of the last call to Local-Fast)

o (Step 2) during time interval [Zf; : Z}{], run Local-Fast for |[Zf; : Z]| = 4* iterations with the

k .7k
initial policy 2 e=Tesl that is the average policy of the last call to Global-Slow

o (Step 3) k < k + 1, goto Step 1.

Now, we elaborate on how Homot opy—PO achieves global linear convergence given a Global-Slow
base algorithm and a Local-Fast base algorithm. Specifically, there are two hidden phases which are
oblivious to the players and only used for analysis. The two phases are split by k£* = max{k}, k5},
where 21 = O(1/(V/don*)) and 2*2 = O(; log(Dol)) = O(1/(con?)). The value of k* is
unknown to the players.

Hidden Phase 1. In the beginning, G1lobal-S1low behaves like a “guide” in the sense that its aver-

age policy E[ISSZISS} is getting closer to the NE set as k goes. For small &, dist(2z?, Z*) could possi-

k ‘~k . . ..
bly increase when running Local-Fast. However, since the average policy 2 Te) i the initial

policy of the k-th call to Local-Fast, by the global convergence as in (), for k& > k7, E[I;:Igs]
will reach B(Z*,\/&on*). Thus, after k > k7, each time when we switch to Local-Fast, it will
exhibit linear convergence during time interval [Z}} : ZF].

Hidden Phase II. After £ > kj, Local-Fast enjoys fast linear convergence and becomes the
main contributor to the convergence (see segments AB, C'D in Figure . Thanks to the fast con-
vergence of Local-Fast, in this phase, dist(z?, Z*) can be much smaller than C’/t. Note that

we use zZit  as the initial policy of the k-th call to Global-Slow. Thus, Global-Slow could
possibly cause dist(z?, Z*) to increase. However, instead of bounding dist(z?, Z*) by (@), now (3)
can provide a tighter bound for dist(z*, Z*) when calling Global-S1low during Hidden Phase
II. (@) implies that dist(z’, Z*) increases at most geometrically when running Global-Slow
(see segments BC, DE in Figure . After 28 > O(ﬁlog(Dofo)) (k > k3), the possi-
ble increase of dist(z?, Z*) caused by Global-Slow is much less than the decrease caused by
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Local-Fast, and thus, can be “omitted”. More specifically, in AB, distQ(zt, Z*) converges
at rate of 1 — con? for |[ZF : Z]| = 4% iterations, while in BC, dist?(z?, £*) diverges at rate
of Dy for |[ZEF! fgjlﬂ = 2k+1 jterations. Then, since 4%/2*+!1 = 2*=1 if one step in-
crease of Global-Slow is much smaller than 2¥~! steps of decrease of Local-Fast, i.e.,
Do(1 = cgn?/2)2" " < 1, then, we obtain the global linear convergence (see the line AC in Fig-
ure|[I)).

Hidden Phase I has at most O(4F")

steps, where 0(4’“*) is polynomial in log(dist(z!, Z*)) ~ - global linear rate
C',1/co,1/00,1/n,1/n" and only loga- T Gromartien

rithmic in Dy, I'g. Then, it enters Hidden Phase
II and linear convergence begins. This yields
the global linear convergence. The formal
proof is deferred to Appendix [E]

k Tk Tk+1 Th+1 Th+1 Thtl Th+2 Th+2
Li; If I I I Iy Iy s
- .

Theorem 1 Let {z" = (', yt)}te[O:T]
be the policy pairs played when running
Homotopy—PO (Algorithm [I).  Then, there
exists a problem-dependent constant D <
O(poly(C’,1/co,1/80,1/n,1/0')) such that
for any t € [0 : T], we have dist®(z?, 2*) <

t—D
25 max{Ily,1} - (1 - M) , Where the

k-th call to (k+1)-th call to (k+ 1)-th call to (K + 2)-th call to
Local-Fast Global-Slow Local-Fast Global-Slow

48
value of C', cq, 0y, g can be found in the defi-
nitions of Global-Slowand Local-Fast. Figure 1: An illustration of upper bound for
log(dist(z%, Z*)) in Hidden Phase II.
As D is independent of ¢, Theorem [I]
guarantees the global linear convergence of
Homotopy—-PO.

3.2 EXAMPLES OF BASE ALGORITHMS

We introduce the averaging independent optimistic gradient descent/ascent (Averaging OGDA)
method and the independent optimistic policy gradient descent/ascent (OGDA) method which will
serve as examples for Global-Slow and Local-Fast respectively. Both Averaging OGDA and
OGDA are symmetric, rational and decentralized algorithms. The pseudocodes are in Appendix [G|

Example of Global-Slow base algorithm (Averaging OGDA). By running

Averaging—-OGDA([Ty : Tk|,z,n') with initial policy Z = (&,9y), the min-player initial-
izes 7' = 2T = Z and V71 (s) = V19(s), the max-player initializes §*' = y”* = § and
v (s) = V®T(s), and they update for t € [T} + 1 : T3] as follows:
t—1 , t—1
. i—Ti+1 _j % i—Ty+1—j
Vi(s)=min » ;"7 ""gl(a),  Vi(s)=max > ay7q @),
Jj=T1 J=T
t ~t—1 rot—1 t_ it gt ©)
Ty = PAA T -n 25 ) Ys = PAB Ys +n qs )
%Z = PA_A (ii_l - 77/22) ) gi = PAB (gi_l + 77/7;) y

where ¢/ = Q,[V7]yl, ¢} = Q.[V’] T2/, and Q,[] is the Bellman target operator defined in the
introduction part. The min-player and the max-player compute the average policies

T2 T2
STTs] t—T1+1 .t ~[T1:To] t—Th+1 .t
T = Z Q41T Y = Ty—Ty+1 (N
t:Tl t:Tl
We use the classical averaging stepsizes {aJ} from Jin et al| (2018): «; = g—ﬁ, al =

aj HZ:H_I 1—ap) 1<j<t—1), ol =, with H = % In Averaging OGDA, z!, y!
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are the policies played at iteration ¢t € [T} : T3], and z' Vv, ﬂt,vt are local auxiliary variables
help to generate such sequences of ¢, y*. The global convergence and geometric boundedness of
Averaging OGDA are shown in Section[d] The RHS of (2) in the definition of Global-S1low can
be directly extended to different convergence rates and more algorithms such as [Wei et al.| (2021}
with a different initialization can serve as the generalized Global-Slow. More details are in

Appendix [H]

Example of Local-Fast base algorithm (OGDA). By running OGDA([T} : T3], Z,n) with initial
. ~ o~ o~ . ~T T ~ ~T4
policy z = (&, y), the min-player initializes £'* = ! = %, the max-player initializes y' ' =

yTt = g, and they update for t € [T} + 1 : T3] as follows:

~t— _ _ ~t— SN T
l=Pa, (87 =@y Y), = Pa, (8 (@) ),
~ ~f— ~ ~t— T
# =P, (37 - nQlyl), gl =Paq (37 +0(Q) L),

where we abbreviate Q° = Q:t’yt fort € [T1 : Ty]. In OGDA, z!, y* are the policies played at

iteration ¢t € [T} : T5], while Et, :T/t are local auxiliary variables. OGDA can be considered as a
natural extension of the classical optimistic gradient descent/ascent to Markov games because when
there is only one state (S = 1), it reduces to the classical OGDA method for matrix games.

®)

The proof for local linear convergence of OGDA is of independent interest and shown in Section [3}

3.3 GLOBAL LINEAR CONVERGENCE

We can instantiate the meta algorithm Homotopy—PO by using OGDA (B) as Local-Fast and
Averaging OGDA (6) as Global-Slow. This gives the provable global linear convergence for
zero-sum discounted Markov games as in Theorem[2] In practice, Homot opy—PO can also exhibit
linear convergence. Our numerical experiments are in Appendix [[|due to the space limitation.

Theorem 2 (Global Linear Convergence) Let {z! = (z?, yt)}te[O:T] be the policy pairs played
when running Homotopy—-PO (Algorithm [I), where Local-Fast uses OGDA with n <

%, and Global-S1ow uses Averaging OGDA with ) < 16#{“143}. Then, there exist
problem-dependent constants ¢ € (0,1) and M > 0 such that for any t € [0 : T,
1652 _ M10g®(SAB/(cqnn’))
dist? (2!, 2%) < . (11— ch)t 2 ) )
-7

where ¢ = Q(c% /poly(S, A,B,1/(1 — 7))

~—

and M = poly(S,A,B,1/(1 —~),1/cy).

Decentralized implementation. Since both OGDA and Averaging OGDA are symmetric, ratio-
nal and decentralized, our instantiation of Homot opy—PO is naturally a symmetric, rational and
decentralized algorithm. Pseudocodes and more details can be found in Appendix

Linear rate comparison with matrix games. For the convex-concave matrix games, |Gilpin et al.
(2012) and [Wei et al. (2020) propose centralized/decentralized methods with global linear rates
of (1 — O(p(@)))! and (1 — O(p(G)?))! respectively, where ¢(G) is a certain condition mea-
sure of matrix G. Details of p(G) are in Lemma The constant ¢4 in (I can be naturally
defined as ¢y = minges ¢( Q%) (see Corollary [2). Thus, the global linear convergence rate for
zero-sum Markov games in Theorem [2]is comparable to solving matrix games up to polynomials in
S,A,B,1/(1— 7).

4 GLOBAL CONVERGENCE AND GEOMETRIC BOUNDEDNESS OF
AVERAGING OGDA

We show that the Averaging OGDA (6) method has O(log T'/T') global convergence rate and geo-
metric boundedness. Thus, Averaging OGDA can be serve as Global—-Slow in Homotopy—-PO.

Global convergence. The proof for global convergence of Averaging OGDA adapts several stan-
dard techniques from Markov games (Zhang et al., 2022} [Wei et al., [2021). We attach its proof in
Appendix for completeness.
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Theorem 3 (Global Convergence) Let 2 2Tl = (z [T3:T2) A[Tl'TQ]) be the average policy (7)) gen-
erated by running Averaging—-0OGDA([T} : Ts], Z,n') withn’ < m There is a problem-
VS(A+B)

dependent constant C' = O(~=r & L %) such that 21T sutisfies

! . —
dist ( [T1:T%) Z ) C IOg (T2 T1 + ].) (10)

- o (La-T1+1)

This gives the 6(1 /T) global convergence rate of Global-Slow. This property guarantees that
Global-Slow canserve as a “guide” in Hidden Phase I as described in Section [3.1]

Geometric boundedness. The proof of geometric boundedness mainly relies on the stability of
projected gradient descent with respect to the NE set (Appendix [B). We will prove that the in-
crease of dist(z?, Z*) is at most geometric by providing mutual bounds among {dist (z¢, Z*)},
{dist(Z*, 2*)}, {||Vt — V'), {max; gL (b) — min, gtg(a)} inductively. The formal proof is in
Appendix [D.2]

Theorem 4 (Geometric Boundedness) Let {z'}, [Ty T) 2102 b the policy pairs played and the

average policy pair generated by running Averaging—OGDA([Ty : Ty], z,n') withn’ < 1, then
2

there is a problem-dependent constant Dy = O( %) (possibly Dy > 1) such that for any

te [Tl : TQ],
dist?(z%, 2*) < DET0 - dist?(z, 2%). (11)
dist?(z1 T2 2%y < DT~ . dist? (3, 2%). (12)

This property is important in our proof for the main theorem (Theorem [2). It means that when
running Global-S1ow in Hidden Phase I, though dist(z¢, Z*) can possibly increase due to Do >
1, dist(z*, Z*) can only increase geometrically (see segments BC, DE in Figure .

5 LocAL LINEAR CONVERGENCE OF OGDA

We show that OGDA (8] has local linear convergence. Thus, OGDA can be used as the base algo-
rithm Local-Fast in Homotopy—-PO. To prove the local linear convergence, we provide a novel
analysis for OGDA which starts from the following two observations.

Observation I (Lemma[7) saddle-point metric subregularity (SP-MS) can be generalized to Markov
games, i.e., for any policy pair z € Zand s € S,

Vei(s) = VIY(s) > ¢, - dist(z,, Z%). (13)
Observation I guarantees the progress of projected gradient descent/ascent (PGDA) is substantial.

Observation II (Appendix [B] Lemma [I0) when running OGDA (8], the change in policy pair be-
comes smaller when z*, Z" are approaching the NE set, i.e.,

||Zt+1 - Zt||2 + Hzt _ E(t71)||2 S O(dist2(2t717z*) + Hztfl _ thlHQ). (14)

Observation II implies the stability of state visitation distribution. Intuitively, it can help us relate
Markov games to matrix games in a neighborhood of the NE set.

Theorem 5 (Local Linear Convergence) Let {zt}te[Tlth] be the policy pairs played when running
5
OGDA([Ty : T3], Z,n) with stepsize n < %. Then, there are problem-dependent constants
€ (0,1), &g > 0 such that if dist® (2, 2*) < don", then for any t > Ty,

: 85 o\ T o .
dist?(2%, 2%) < T—= 1- VTE dist*(z, Z2%), (15)
-

where cy = Q(c% /poly(S, A, B,1/(1 —~))) and o = Q(c% /poly(S, A, B,1/(1 — ))).
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We provide a proof sketch below. The formal proof is in Appendix [C]

Proof sketch of Theoreml We denote the projections by ' = Py (Z"), §"* = Py (¥"), 2 =

Pz« (z t) Let py be the uniform distribution on S. Our proof for the local linear convergence of
OGDA has the following steps.

Step I: One-step analysis (Appendix[C.T). The main obstacle in adopting standard analysis for nor-
mal form games to Markov games lies in the fact that as Markov games are nonconvex-nonconcave,

it may happen that <a:1;+1 z", Qi t+1> + <’gs — oyttt (QtSH)T t+1> <0.

To overcome this problem, our strategy is to consider a weighted sum of <:1:§+1 T, QM y t+1>

and <§g —yitl (QZH)—r :1:2+1>. As (™, y"™) attains a Nash equilibrium, V="

i
Ly

(Po) —
yEyt (Po) > 0. Then, by applying performance difference lemma (Lemma, we have
~tx ~ix T
Z dt+i(s) <‘1’§+1 7, Qi t+1> n dZH(S) <yz — gt (@) m§+1> >0, (16)
seS

(t—1)% .t *
s

where d.(s) = 2, V' (s) and d'(s) = d% 7" (s) for t > T,

Since Q" is smooth in z*, we can adopt standard regret analysis for optimistic gradient descent in
normal form games to bound { &!*! — Z'*, Q§+1y§+1> and (' — ytt1 (Qt“) §+1>. This

yields the following inequality (which is equivalent to Lemma 4

~ YN - ~
t+1 t t ot t )2 t+1 4192 )2
e TRE = 2P - CalIF = 2P E - 2, gy,
Step III: stability of d’., d, Step II: progress of PGDA
where C, = 12, 0 = Y__sdl(s)dist*(ZL, A7) + d;(s)distQ(ﬂ’;,ng), ot =
S oes diL(s )dlst 2(3L, X2)+di (s)dist? (), V7), and AL = ©14C) Hzt —zt’ Asdi(s) >
dft*’y{“( ) > 122, to show the local linear convergence of OGDA, it suffices to show that for A*.

Step II: Progress of projected gradient descent (Appendix [C.2). We combine (I3) from Obser-
vation I and standard analysis of pro_]ected gradient descent (Lemmal[3)) to essentially show that there
exists a problem-dependent constant ¢/, = O(c%.n?/poly(S, A, B,1/(1 — v))) such that

Calll=" T =22 + 5 - 2'?) > ¢, - O, (18)

Step III: Stability of visitation distribution near the NE set (Appendix [C.3). Using (14) from
Observation II and the non-expansive property of projections onto convex sets, we will show Hthr1

22+ |z -z <o (A1) . Then, as d.(s), d},(s) in (T6) are continuous in z* and Z',
we can find a problem-dependent constant § = O(cin*/poly(S, A, B,1/(1 — v))) such that if
A*=1 < §, then O can be bounded by

6' < (1+ et (19)

Step IV: Induction (Appendix[C.4). By (17), (I8), (I9) from Steps L, 11, III above, intuitively, we
can deduce that when A*~! < §, the “one-step linear convergence” is achieved

O T (R U e YL
2 2 2 2
t : C/Jr 1 t ~t (2 C/Jr t
<A —min{ S, 107 + Oy E - 7) = (1- S

By a coupled induction with Step III, given the initial policy 2 in the neighborhood B(Z*,/$) of
the NE set, the policy pair 2! will always stay in B(Z*, Vo ). Then, A? converges linearly.

This yields the local linear convergence of OGDA as in Theorem 5}
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A FURTHER RELATED WORK

Sampling-based two-player zero-sum Markov games. Finding Nash equilibria of zero-sum
Markov games in sampling-based/online setting is receiving extensive studies in recent years (Zhang
et al., 2020; [Liu et al., |2021; Bai et al., [2020; Ba1 & Jin, 2020; |Brafman & Tennenholtz, 2002} [S1d-
ford et al.,2020; Tian et al., 20215 |Wei et al., 2017 |Xie et al.,|2020;(Chen et al., [2022; L1 et al., 2022).
In this paper, we are more concerned with known model or perfect recall settings. Specifically, our
focus is on how to design efficient policy optimization methods to solve the minimax optimization
problem formulated by zero-sum Markov games. Therefore, these works are not directly relevant to
us.

Minimax optimization. Zero-sum Markov games are usually studied as minimax optimization
problems. Finding Nash equilibria/saddle points in convex-concave and nonconvex-concave prob-
lems have been extensively studied (Lin et all 2020b; Tseng, [1995; Mokhtari et al.l |2020azbj
Thekumparampil et al., 2019; [Lu et al., 2020} [Nouiehed et al., 2019; [Kong & Monteiro} [2021}; [Lin
et al., [2020a).

Due to the nonconcexity-nonconcavity of zero-sum Markov games, existing tools in convex-concave
and nonconvex-concave optimization are hard to be adapted here. For nonconvex-nonconcave op-
timization, Nouiehed et al.| (2019); [Yang et al.| (2020) study two-timescale/asymmetric gradient de-
scent/ascent methods under the PL condition, where two-time-scale/asymmetric refers to that one-
player chooses a much smaller step than its opponent, or one-player waits until its opponent finds
the best response. [Daskalakis et al.| (2020) establish the two-sided gradient dominance condition
for zero-sum Markov games, which can be related to the two-sided PE condition. And they utilize
this gradient dominance property to study the finite-time performance of two-timescale gradient de-
scent/ascent (GDA) algorithm in zero-sum Markov games and prove its sub-linear convergence rate.
Z/hao et al.|(2022) consider function approximation and propose another two-timescale method that

finds a NE at O(1/t) rate.

Matrix games. Matrix games are a special kind of Markov games with single state. Since matrix
games are naturally convex-concave, global linear convergence has been achieved in finding Nash
equilibria in matrix games (Gilpin et al.l [2012; |Wei et al., 2020). The linear convergence of their
algorithms relies on the following fact: the duality gap of one policy pair can be lower bounded
by its distance to the NE set multiplied by a matrix condition measure (see Lemma [22| for more
details). This property is called saddle-point metric subregularity (SP-MS) in |Wei et al. (2020).
Similar techniques have been extended to extensive form games and get linear convergence (Lee
et al., [2021}; |[Piliouras et al.,[2022).

Averaging techniques. Averaging techniques are usually used to tame nonstationarity in approx-
imate Q functions, where the players utilize information from past iterations to obtain better ap-
proximations for value functions and policy gradients. [Wei et al.| (2021)) propose an actor-critic
OGDA method which uses averaged value functions to get more accurate policy gradients, and then
achieve a O(1/+/t) last-iterate convergence rate to the NE set. Zhang et al.|(2022) propose a mod-
ified OFTRL method, where the min-player and the max-players employ a lower and upper bound
for value functions separately. The lower and upper bounds are computed from approximate Q-
functions in past iterations. Their method has O(1/t) convergence rate for the average policy. |Yang
& Ma|(2022)) show that the average policy of an OFTRL method whose approximate Q-functions are
also averaged from past estimates can find Nash equilibria at the rate of O(1/t) with no logarithmic
factors.

Regularized Markov games. Adding regularizer can greatly refine the structures of matrix games
and Markov games and is considered a powerful tool to tackle nonconvexity-nonconcavity of
zero-sum Markov games. |Cen et al| (2021) study entropy-regularized matrix games and achieve
dimension-free last-iterate linear convergence to the quantal response equilibrium which is an ap-
proximation for the Nash equilibrium. They further connect value iteration with matrix games and
use the contraction property of the Bellman operator to prove the linear convergence to the quantal
response equilibrium of the Markov games. By choosing small regularization weights, their method
can find an e-Nash equilibrium in O(1/¢) iterations. |Zeng et al.|(2022) also consider adding entropy
regularization to help find Nash equilibria in zero-sum Markov games. They prove the O(¢t~'/3)
convergence rate of a variant of GDA by driving regularization weights dynamically to zero. How-
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ever, to obtain Nash equilibria, the regularization weights have to be reduced to zero in the learning
process. The time complexities of existing regularized methods are usually inversely proportional
to the regularization weights. Reducing such weights to zero could possibly lead to sub-linear rates.

B STABILITY OF PROJECTED GRADIENT DESCENT/ASCENT WITH RESPECT
TO THE NASH EQUILIBRIUM SET

In this section, we show the stability of the distance to the Nash equilibrium set after one step of
projected gradient descent/ascent. The results in this section are important in our proofs for the local
linear convergence of OGDA and the geometric boundedness of Averaging OGDA.

The following lemma shows that projected gradient descent/ascent is very “stable” on the NE set.
More specifically, if the players have attained a Nash equilibirum, then, their policies will remain
invariant by doing projected gradient descent/ascent.

Lemma 1 For any Nash equilibrium z = (z,y) € Z*, let £, y™ be the variables after one step
of projected policy gradient descent/ascent with stepsize n > 0, i.e., fors € S

27 = Pas (@ —nQiy.). yi = Pay (v, +1(Q1) a.).

Let 2zt = (z+,y™T), then, 2T = 2.

Proof of Lemmal[l| Let u; = Qjy,. By Lemma|l9} z; € argmin, ca , (T, Q;Y,) . Equiv-
alently, supp (zs) C argmin, u’(a), where supp(z;) is the index set of the nonzero entries in
Ts.

Next, we will show 7 = x. Since ! is the projection onto A 4 and Slater’s condition is naturally
satisfied in the simplex constraint, by the KKT conditions,

zi(a) = zs(a) +nuia) — Ao+ Aa =0,

Mol (a) =0, Va € [A],

Ao >0, Va € [A],

zl(a) >0, Va € [4],

> af(a)=1

a€[A]
Then, for a € [A], Ay > 0 only if z}(a) = 0; otherwise, 1 (a) = x4(a) — nu*(a) + \o. Thus,
zl (a) = max {z,(a) — nui(a) + Mo, 0}.

S

If Ao = 7 - mingea) u}(a), then by combining with supp (z) C arg min, u}(a), we have
max {z,(a) — nui(a) + Ao, 0} = x(a),
ie., > ,max{z.(a) —nuj(a)+ Xo,0} = 1. Thus, for \g > 7 - mingcia uj(a) or
Ao < - mingepq ui(a), we will have 7 max{z,(a)—nuj(a)+ Ao,0} > 1 or
2o max {zs(a) —nu;(a) + Ao, 0} < 1, respectively. To meet the condition -, 4 7 (a) = 1,
we have to let \g = 7 - min,ep4) u}(a). Now,
z! (a) = max {z(a) — nui(a) + Xo,0} = z4(a), Va € A.
Analogously, yI = y,. O
The following lemma is a perturbed version of Lemmal[I]
Lemma?2 Forany z = (z,y) € Z, z = (Z,y) € Z and matrices {QS, @S} s C RAXB,
se

let ™,y be the position after one step of projected policy gradient descent/ascent with stepsize
n>0ie,forseS

N\ T
wj :PAA (is_anys)5 y;—:PAB (§S+n(QS> ws) .

15



Published as a conference paper at ICLR 2023

Let zt = (xt,y™T), then,

Hz*——ZHQ§8dm¥(2,2*)+4n2§:13 max |Q,(a,b) — Q*(a,b)

(a,b)e AxB
2
125" 4 ‘ b) — Q*(a, b
+4n ZS Clex Q. ) — Q:(a,b)
4 A B
JL@EL%iquLZW
(1-7)

Proof of Lemma 2] Denote * = Px- (z), y* = Py (y), z* = (z*,y*); ° = Pa- (2),
¥ =Py (y).2 = (z",7").
Letus = Q,y,, ui = QLy*, then

lul = usll < VB lul - usll
S\/E( max [Q(a,b) — Q(a,b)] [y,ll, + max [Q(a,b)][ly, - yl‘lll)

(a,b)e AxB (a,b)e AxB

VB max Q) - Q:ab) +

dist (y,, VI),
(a,b)€AXB 5 (y,,V2)

ie.,

2
|@—um%n(3 max wx%m—ommﬁ+fgzm€wwm0. (20)

(a,b)eAxB (1 _ ’Y)
By Lemma (", y*) is also a Nash equilibrium. Denote Z, " = Pa, (T — nQy?). Then, by
Lemmal[I]
T =% 21)

S
By triangle inequality, we have
ot - &) <=t - &2 + | - &2 + |70 - &)
= ||PAA (£s —nus) — Pa, (%: — nu:) H + 0+ dist (zg, XY)
<||@s — 25| +nllws — wlll + dist (25, X))
=2dist (5, X)) +n||lus — ulll,

where the first equality is by (21)) and the second inequality comes from the fact that for any @, b €
R4, [Pas (@) = Pa, (b)] < fla — bl|.

Taking square and summing over s € S and combining with (20) yield that

|2+ — &||° <8dist® (7, ")

2
+mf@% Imxl%mM—Q%mV+BﬂM%%V0.
se

S(a,b)E.AXB (]_ —fy)
Analogously,

|y — 3| <8dist? (g,")
2
(142dist2 (m, X*)> .

+4772 <A max ‘@S(a,b) — Q:(a,b) ’ + )

S (a,b)eAXB

Then, the result follows by summing up the bound for ||z — §||2 and ||y T — g~/||2 O
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C PROOF FOR LOCAL LINEAR CONVERGENCE OF OGDA

In this section, we prove the local linear convergence of OGDA (Theorem E])

For notational simplicity, we assume 77 = 0 in the analysis below. Recall the OGDA algorithm
(11 = 0): the min-player and max-player initialize

#=2"=2, 3°=y"=7. (22)
and the min-player updates for t > 1 as follows
' = Pa, (mi LpQtlyt 1) (23a)
3= Pas (37 - 1Qlyl), (23b)
while the max-player updates for ¢ > 1 as follows
~t— RN
YL =Pa, (yi Fn(QUY) =l 1), (24a)
~ o T
gl =Pas (37 +0(Q) at). (24b)

Here, we denote

Q. =Q" ", vt>o.

S

The policy «* and y? are played by the min-player and the max-player at iteration ¢. And z', 9y are
local auxiliary variables to help generate the policies ! and y°.

Since we initialize ° = Z, y° = ¥, we drop the notation of Z, 3 below and directly use z°, y° to
denote the initial policies.

The OGDA method is a decentralized algorithm, its decentralized implementation is in Algorithm 2]
(for the min-player) and Algorithm 3] (for the max-player) of Appendix

To prove the local linear convergence of OGDA, we first introduce some notations and auxiliary
variables.

Additional notations and auxiliary variables. We use 1,0 to denote the all-ones and all-zeros
vectors or matrices, whose dimensions are determined from the context. 1; is the i-th standard basis
of the Euclidean space, i.e., the i-th entry of 1, equals one, and the others entries equal zero. The
operators >, >, <, < are overloaded for vectors and matrices in entry-wise sense.

We denote the policy pairs 2zt = (!, y"), 2" = (it @t) and denote the projections onto the Nash

equilibrium sets as Z." = Px- (L), Y. = Py: (y.), 20" = Pz: (2!). Since z*, §', Z" are
treated as concatenated vectors, we have from the elementary property of the /5-norm that ’zv';* =

(~Z*»§2*)’ Stk _ = Py (mt) _ {%?} ’ gt* — Py (ﬂt) _ {gz*} ’ Ft* _ Ps. (Et) _
sES seS
{20} L andz" =@ 5",
) ses
Let pg be the uniform distribution on S. Then, we denote the state visitation distribution under the

policy pairs (21", y*) and (zt, 5" V) as

TtV

t T t t zt gt—b=*
dy(s) =dp, ¥ (s), dy(s) =dp, " (s) (25)
It follows by definition that for any s € S,
1—v 1—7v
o Sdi(s) <1, o <dy () <1

Define weighted sums of distances

Z d! (s)dist? (ii, XS*) + d;(s)distQ (52737;‘) ,
sES
&t = Y di ()it (a1, 47) + i (o)ist? (3.3

SES

(26)

17
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and potential functions

A = dist® (zo Z2*) = distQ(E, Z*),
A—ete 27)

Z—Z

,tZl.

We will show the linear convergence of A’ given dist® (2%, 2*) < don* for some problem-
dependent constant §p > 0.

C.1 ONE-STEP ANALYSIS

Our proof for local linear convergence starts from the following elementary lemma, which is derived
by combining a standard analysis of optimistic gradient descent/ascent with the smoothness of Q%Y
with respect to the policy pair (z, y).

Lemma 3 Let {:I:t, z'yt, :T/t} be generated from OGDA 23), 24). Then, for any t > 0, we have

n (@it -3, QUYL
et ~tx]|? 1 ~tx]|? 1 (|~t41 e ])? L e P
<5 (Ja-af - o - ) - e - e - e -2 s
6AA+B)N | 1142
+ ol e |
(1-17)
and
~ T
n (9 - yffa(czz“) 2t
2
~t* At ~t* ~t+1 t+1 t+1 ~t
<5 (oot = fae gt ) - = v | - S =5 o)
16B (A + B)n? Hz”lfthQ
4
(1-17)

ProofofLemma We abbreviate Z'* = x*, Z'* = x* in this proof. By (23b), since Z." is the
projection onto A 4, we have

<a: —z et g ity t+1>20, Yt > 0.

S

Equivalently,
77<52+1 s t+1y2+1> < % (Hmt . 2 ‘ F g 2 HEZ‘H _ & 2) .
Similarly, from (234),
(87 = alt el — & 4 nQlyl) 20, 20
i.e.,
77<113§+1 _ %Z-H’ Q§y§> < % (H%ZH _ 52 2 B HEZH _ $§+1H2 _ Hwi+1 B 52 2) -

18
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Then, we have
(el - el Q)
1 * ~t+1
=n (3.7 — L, QU Y )+ (2l — 3, Qlyt)
+n<$t+1_it+1 QHlyttt — Qly >
S S ?

2 2 2
~t4+1 * ~t4+1 t+1 t+1 ot
e R B e I e B e
t+1 _ t+1 t+1 t+1 t,t
+n(at Q! sts>
1 . 2 . 2 2
~ ~t+1 * i t+1 t+1  ~t
<y (2 -atl - o -zl ) - g ot - g et -2

+an? A QLY — QLyt|L,
By Lemma[21] we have

QY — Qi

< max [Qu(a,b) = @ (e b)] [y, + |Qu(a. )] lyi™ = will,

" (a,b)EAXB (a b)eAxB (31)
<\/A+B||zt+1_zt|| f||yt+1_y§’| 2vVA+ B 241 — 1|
B (1—7)? I T (1-79)?

Then, (28) follows by combining (30) with (3T). And (29) follows by similar arguments. O

We consider weighted sum of (28) and (29) using the state visitation distribution dl(s), di(s)
defined in (23) as the weighting coefficients.

Lemma 4 (One-Step Analysis) Let {mt,it,yt,ﬂt} be generated from OGDA with n <

5
(1—v)2
SVS(ATE)" Then, for any t > 0,

@t+1+1—7‘

e e e (e N e )

2
~t+1
Ft+1 _ zt+1H

(32)

Proof of LemmaMH] Recall that py be the uniform distribution on S. By Lemma[20]

t+1

VETT (o) = VT (o)

t4+1 ~tx t4+1 , t+1

=V (o) = VYT (o) + VT (po) = VI ()
1 ~tx ~tx T
- (dt;—l(s) <$§+1 7, Qitly t+1> 4t (s) <yi+1 7 (@) $Z+1>) .
1 v seS
(33)

As ™ e X*, "™ € Y*, by Lemma , (it*, ﬂt*) also attains Nash equilibrium. Thus, we have

t41 ~tx ~tx o t+1
Ve Y <p0) . VA (po)
tw ~tx ~tx ot =tk o t41

gttt gt z g T T (34)
=VE Y (po) =V ¥ (po) + VT ¥ (po) = VT Y

(po) > 0.
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Substituting (28), (29) into (33)) yields that

(1 —7) (Vzm’?* (po) — V"

1 ~ ~tx||?
32 (d‘;“(s) |7 - & +

t4+1

(p0))

ay(s) gt - u

S

)

sE
1 41 1 ~te]|? 41 1 ~tx]|?
_52 d:c S) Ty — Ty +dy (S)’ys —Ys
sES
1 ~ 2 -
by (areo e - s i it - i)
seS
1 t+1 i1~ t+1 1 ~t|?
_52 d.L (S) T — Ty +dy ()’ys —Ys
sES
16 (A +

(A+ B) T] 1 1 t+1 _ |2
(d2 +d,7(s)) |27 — 2
LB JEREN
t+1 Et*

S S

By combining with the facts that H

> dlst( Hl,X*), di(s) > =2,

Y oses d™(s) = 1 and their counterparts for the max-player, we have

+1 ~tx 5t* t+1
n(l v)( Y (po) =V (po))
<lo - ;@t“ 1= ‘

»zvt+1_zt+1H2_1—’Y‘ t+1 _ 2
2

35
AL () &

-

1~ 1 L= |xt+1 21—y ~t|*, 1— =t 2
<7@t_7@t+1_7‘ b1 _ t+1H _7” t+1 _ Y st t}
<3 z z z + 163 z z R

where the last inequality is by our condition on 7.

By combining (34) with (33) and rearranging, we have
-y
ot+! ‘
TS

<6 et - -1 (e - -2 T).

2
~t41
FtH1 _ Zt+1H

C.2 PROGRESS OF PROJECTED GRADIENT DESCENT

The following lemma is a standard step in the analysis of projected gradient descent.

1—vy . N .
Lemmas$s Ifn < — T A TEY (VAVEY foranyt > 0, let py be the uniform distribution on S, then

y

~t
P

A

2y (Vi’if(s) — VW“(S))2 < (13_65;)2 (‘ - z’f“H2 + ‘

seS

Proof of Lemma Since iiH is a projection onto A 4, for any z, € A 4,

~t+1 ~t t+1, t+1 ./ ~t+1
<ws —$S+77QS ys+ yLg — Ly >207

ie.,

n<§i+1 s ?+1yts+1> < < B gt gl mt+1>
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Then, by combining with the condition on 7,
t+1 LQitlytt t+1 LQitlytt L _ gt ) gttt gyt
77<wsJr — Ly, + > <77< — Ly, str >+77st+ — Ty H H str H

<<§t+17§t z' EZ+1> nva H t+1 ~t+1H

s s s T

-

~1 ~t41
<2 ‘ it~z || +3 Hm?l —z't H :

’ t+1

For any sp € S and ' € X, by Lemmaand the fact that ) s d5 Y (s) =1,

(V7 o) -V ) = T ) (ul @)

sES
n Lyttt t+1 _ t+1 yit!
ST 45" (s)| sup (= + Q.
I—y Z; 0 W < )
<y may (2 et -at)
—1—7 ses s
< (2l - FH +3fatt-a),
ie.,
(4 )7 ) 5 (o -2t oo
-7
Similarly,
pttl ptt1 g t+1 1 ~ ~
n (V H(so) — VY (50)> < T (2’ gt gt it ytHH) G
By (@3) and (94), we have
V= )~ V30| € A e -
(1=2) (38)
. - VB
vyt sy — v ‘ < H 41 _ ~tH .
‘ (s0) (s0)] < 1—~)2 Yy Y
Then, by combining (36), (37), (38) and the condition on 7, we have
- _ 2 2 2
o (VE 0 = VI (0) < s (\ AR I CaaEt ) .
-
The result follows by taking sum over sy € S. O

Next, we extend Lemma 4 of |Gilpin et al.| (2012)) and Theorem 5 of Wei et al.| (2020) from matrix
games to Markov games. Firstly, we prove the following auxiliary lemma, which is used in the proof
of Lemma([7} This lemma is straightforward from the contraction and monotonicity of the Bellman
operator, we attach its proof for completeness.

Lemma 6 For policies x € X and y € Y, if there is a vector v € R® such that for any s € S
(xs, Q,[v]y,) > v(s), then, we have that for any s € S,

V®Y(s) > v(s).

Proof of Lemma@ For any vector u € R®, define the mapping ® : R® — R with

Dlu](s) = (=5, Q,[uly,) -
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Then, for any u, uy € RS, by definition,
| Blur)(s) = Rlug)(s)] <y > D P(s']s,a,b)z(a)y,(b) |[ur(s') — ua(s)]
s’€S (a,b)eAxB
< llr — sl
Thus, we have
[@[wi] — @lus]l|, <7 lur — uol (39)
i.e., ® is a contraction mapping.

Define v; = ®[v] and vy = P®[vy], ... Then, by (39), we have

k1 = Vrlloe < 7 llvk = vh-1lloe <" 01 = vl -

Then, the limit of vy, exists and we denote the limit v, = limy_, o, vi. Obviously, v, is a fixed point
of ® because

v, = lim v, = lim ®vg_1] = O[ lim v_1] = Plv.].
k—o0 k—o0 k— o0

As VEY(s) = (x5, Q4,[V™Y]y,), we have P[VY] = V=¥ je., V*¥ is a fixed point of . By the
contraction property of ® as in (39), its fixed point is unique. Thus,

VEY = o,.

By definition, for any u;, us € R, if w; > wu, in entry-wise sense, then ®[u;] > ®[us] in entry-
wise sense. Since the condition (xs, @ [v]y,) > v(s) for any s € S is equivalent to v1 > v in

entry-wise sense. By induction, we have vy (s) is non-decreasing in k. Combining with the fact that
v, = limg_, o, v, we have that for any s € S,

V®Y(s) = vi(s) > v(s).
O

The following lemma is an extension of Lemma 4 of |Gilpin et al.|(2012) and Theorem 5 of |Wei et al.
(2020) for matrix games to Markov games, it plays an important role in lower bounding the progress
of gradient descent/ascent.

Lemma 7 There exists a problem-dependent constant c,. > 0 such that for any z = (z,y) € Z
ands € S,

VET(s) = VIY(s) > cy - dist(zs, Z7).
Proof of Lemma[7] Recall that v*(s) is the minimax game value at state s and Q% = @Q,[v*]. For
any s € S, choose

Y, € argmax (s, QLy.), T, € argmin (z, Qly,).
YL,EARB T EA 4

Then, by Shapley’s theorem (Lemma [I9), X x V! is the NE set for the matrix game
mings max,, z'" Qly'.
(s, Q5Ys) = 07 (5), (@5, Qiys) < 07(s). (40)

Then, by Lemma forany s € S, there exists a constant p( Q%) > 0 depending only on the matrix
Q7 such that

(s, Q5Y,) — (s, QCy,) = 9(Q) - dist(zs, Z). (41)

Define the policies Z = {Z},. s and § = {¥,} 5. Combining [@0) with Lemma 6]yields that for
any s € S,

V2Y(s) > v¥(s), VBY(s) < v*(s).
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Then, by definition, in entry-wise sense,
QY7 = Q=) > Q7).
By combining the above equations, we have for any s € S,
VET(s) = VI¥(s) > VB (s) — VBY(s)

= (20, Q279,) — (8., @2y.) = (2, Q715 ) — (7., QIV*¥]y, )

> (x5, Q,[v"]Y,) — (@6, Qs [0"]y,) = (w5, QCY,) — (Ts QiJ

>p(Q3) - dist(zs, Z7),
where the second last inequality is by {@0), the last inequality is by @I).
Then, the proof is completed by (T). (]
By combining Lemma|[5]and Lemma[7] we provide lower bound for the progress of projected gradi-
ent descent (PGD).
Lemma 8 (Progress of PGD) Let {zt, Et} be generated from OGDA withn < 1 — =, then for

>0

any t > 0, we have

~ nc
27 st o - 3 > B T

Proof of Lemma(8] By Lemma[5]and Lemma([7} we have

27 = 2 E P 3 (V) - v ()
seS

e =IO ¢ By =
ST 23t 2e) > o D T S gt
=7 369 st(2, 27) = ——¢s

where the last inequality above comes from the fact that d’,(s) < 1, d;(s) <lforanyseS. 0O

C.3 STABILITY OF STATE VISITATION DISTRIBUTION NEAR THE NASH EQUILIBRIUM SET

The main motivation behind the proofs in this section is Lemma [T} which shows that projected
gradient descent is very “stable” on the NE set.

The following lemma is a perturbed version of Lemma [I| It is extensively used in the proof of
Lemma IO} Its proof follows by Lemma [2]and Lemma [2T| with a simplification of coefficients.

Lemma9 Forany z = (z,y) € Zand z = (z,y) € Z, let ™+, y™ be the policy after one step
of projected policy gradient descent/ascent with sepsize n > 0, i.e., for s € S

ot = Pay (@~ 1@y, vl = Pag (0. +0(QF") =)
Let z+ = (z*,y™), then,
A+ B)’n?
Mdisf (z,2%).
(1=2)

Proof of Lemma[9 Denote z* = Py« (), y* = Py~ (y) and z* = (z*,y*). By Lemma 19
(z*, y*) attains Nash equilibrium and Q% 'Y = Q. By (O1), we have

2% - Z||” < 8dist? (2, 2*) +

A+ Bz —z¥|
*Y(a,b) — Q% (a,b .
QY a) - Qe < Y
Then, by combining with Lemma[2] we have
. . 8S (A+ B) n?
|zT - zH2 < 8dist® (2, 2*) + <(1+)2177dist2 (z,27).
-
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(]
The following lemma uses LemmaHto show that when A? i -z H ’ ittt
will be small, which implies the difference between ©' and O will also be small.
Lemma 10 Consider the sequence { } generated from OGDA with stepsize n < 3 \/%l)j B

There is a problem-dependent constant 61 = O (%) > 0 such that for any T > 0and t > 1,
if At=1 < 7261, we have

’(:)t — Gt‘ < 7O
Proof of Lemma m By the condition on 7, we have % < 1. Denote ¢/ %, = %

and define the problem-dependent constant

_ (1—v)* B (1—~)°
0= S2(A + B)(1704¢ + 226¢") 0 <S3(A + B)) ' (42)

We also denote & = 726, below.

The positive constants ¢y, ¢a, - - - , ¢7 below are all polynomials in S, A, B,1/(1 — ), the definition
for each of them follows from the line it first occurs.

Since d’,(s), d;(s) > 1_T'Y = ¢/, the condition A'~1 < 725, = § implies that

dist?2 ( ~t—1 Z*) < t_l—zt_lHZSCH(S.

Then,
dist? (2'71,2%) < 2dist? ( it Z*) +2 Hfzvt_l — zt_IH <2(d +")é.
By applying Lemma|§|with Z:=2"" z:= 2" wehave
¢ zt-1? / / 7 def
z'—z <8 +2(c+ ") = 0. (43)
Thus,

dist” (2, 2*) < 2dist” (', 2")

-z 1” <2 +201)6 € 5. (44)

By setting 2 := 2" "', z := 2" in Lemma@ we have

2
\zt—zHH < (8¢ + )6 X 0. (45)
Therefore,
2
dist? (', 27) < 2dist? (37, 27) +2 H _3t 1” < (2 +2¢5)8 5. (46)
Again, utilize Lemma@with z:=2' z:= 2!, we have
t+1 ~t 2 def
’z +_3 H < (8ca + )6 % e5. 47)
Thus,
t+1 ]2 t+1 ~t Ft-1 ~t—1 |12
Hz —zH <3 ’z —z H z —z
(48)
<3 (85 + c3 +01)5 é cg0.
Now we can bound
2
|2 =27+ 1 = 2 < (e + )6 ero 49)
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Since X is a convex set, the projection onto it is non-expansive, i.e., ‘iz* — igt_l)* =
O I [ e
) - ) -2
RIS S e S
Analogously,
H(mtﬂ’yt*) B < ,y(t 1)*) ‘ < H 3t 1” T Hthrl _ thz < ¢,
By Lemma[21]and 23)), for any s € S,
|57 (s) = di(s)| = |dp, 0 (s) - g, (s)
~tx (t—1)* 50
_VATE|(a ’y”l)—(m )| _ varmes e
- 1—7 - 1—+v '
Similarly, we also have for any s € S,
t+1 t (A+ B)cro

What remains is to bound the term 7V<A+B)°7 n the RHS of (30) and (31). Using @3)-{@9), we
have

 (by @3)) c1 =10 + 2¢”

o (by @) co = 22¢ + 4"

* (by @) c3 = 30¢ + 4¢”

* (by @6)) cy = 62¢ + 8¢

* (by @7)) c5 = 518/ + 68¢”

« (by @) cs = 1674¢ + 222¢"
« (by @) c; = 1704¢ + 226¢”

By the definition of d; in (#2)) and our notation § = 72§y, we have

(A+ B)cr0 B 7(1—7)
1—7 s

Then, by combining with (30), we have |d.(s) — d5" (s)| < w By combining with the fact
that d’ (s) > 157, we have

|di(s) — 5" (s)] < Tdy ().
Analogously, for any s € S,

‘d;(s) - d;+1(s)| < TdZ(S).
Then, the result follows by the definition of O and O in (28). O
C.4 PROOF OF THEOREM[3]

By Lemma 8] we have

45

2 2
A zH'lH + Hz“‘l — EtH ) > cgn? 0!, (52)
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where

2 3
_al-v° (53)
&7 T aas?

Then, combining (52)) with Lemmaand the definitions of A?, ©, ©" in (7). (26) yield that for any
t>1,

U=l il ISl (BN R EEE Y
(54
§At+étf@t 7 HNt H — cgn? O,
Define
. (I—9)es ¢ 1
comln{ 5 55 > 0. (55)
Recall the problem-dependent constant §; > 0 defined in Lemma|[I0] we define
o = cgd1 > 0. (56)

Now, we prove A'™! < (1 — ¢)" A’ by induction. For the case t = 0, firstly, by the definitions of
A°, Y, @0 in,@)andthefaetthatl_—” <d'(s ) <1, 1 Y < dt( ) < 1, we have

AP> 80 @0 > T\
S
Then, by combining with Lemma@ (]3_7[) and the fact that 2° = 29, we have

1— 2
AL < A — egn?@° < (1 - (Z,)CW) A% < (1= con?) AL

If we have shown A7 < (1 — ¢o)? AJ for j = 0, - — 1, we next prove it for ¢. By induction
hypothesis,

At—l S AO S 50774 _ (00772)261.
By Lemma([I0]
o < (14 con?) O

Then, by combining with (54)) and the fact that co < cg/2, co < 1/2 from the definition of cg in (33),
we have

At+1 <At 2@15 _ B
SAT A+ con 165

1
<A? — min {conz, 2} (@t bt ‘
= (1 — c0772) A

By induction, we have for any ¢ > 0,

2
~t
z'— 2| —2con?e!

Z—Z

)

AP < (1 conz)t A°.
Using the fact that 1_?7 <d'(s) < 1,122 < gt ,(5) < 1 and the definition of At in 27), we have

dist? (2%, 2*) < 2 (dist2 (zt,z*) gt ) < %At
8S t 85 ) i
Sl_,y (1—con®) A < —— T—~ (1 — con? ) dist? (2°,2%)
8

R — (1 —con ) dist? (2, 2%),
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where Z = (Z, y) is the initial policy pair 22).
This completes the proof for local linear convergence of OGDA.
As for the order of ¢y and dy, by (33) and (33),

1— 402
w=0 ("), 57
By Lemma =0 (53(21)3)) Then, by (57) and (36),
(1 _ )13 i
= — T, 58
% O<S9(A+B) 8

5 5
Since we need n < O(%) in Theorem by setting n = O(\é%}r;)), we have the linear
convergence rate

1—c¢ 7]2 =1—-0 ﬂ
0 S4(A+ B)?
and to have linear convergence, dist(z”*, Z*) needs to satisfy

(1—7)%c2
dist(2Tt, 2*) < /oot = <M>

(A+ B)2

D PROOFS FOR GLOBAL CONVERGENCE AND GEOMETRIC BOUNDEDNESS OF
AVERAGING OGDA

In this section, we prove that the Averaging OGDA method introduced in (6) of Section[3.2]can serve
as Global-Slow in the meta algorithm Homotopy—-PO. The proof of global convergence (The-
orem [3) is in Appendix The proof of geometric boundedness (Theorem[d) is in Appendix

To begin with, let us recall the Averaging OGDA method: The min-player initializes
g =2l =&, VIi(s) = VIU(s) = VI (o) (59)
while the max-player initializes

g =y =5V () = V() = VI (s). (60)

The min-player updates for ¢ > T as follows:

V'(s) = min S a7 gl (a), (61a)
j=T1
ol =Pa, (87 =g ™), (61b)
—Pas (37 - nd'). ©610)
where
4’ = Q,[VyL, (62)

and @[] is the Bellman target operator defined in the introduction. Meanwhile, the max-player
updates for t > T as follows:

t—1
—t
Vi(s) =max > of "7/ "'gl(b), (63a)
Jj=T
yl =Py (B0 + @), (63b)
¥e = Pas (3" + ) (630)
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where
7= (Q) .

At the end iteration 75, the min-player and the max-player compute the following average policies
respectively

T
STTe] t— T1+1 2t ~[T1:Ta] __ t—T1+1
z E ap 1T, Y = E ar, -1y

t=T, t=T1

The min-player plays policy ! and the max-player plays policy y* at iteration ¢. The variables z',
Viand 3, V" are all local auxiliary variables to help generate the policies ! and y*.

Averaging OGDA is a decentralized algorithm whose decentralized implementation is in Algo-
rithm 4] (for the min-player) and Algorithm [5] (for the max-player) of Appendix [G|

D.1 GLOBAL CONVERGENCE RATE OF AVERAGING OGDA

Our task in this section is to prove the global convergence of Averaging OGDA (Theorem [3)). To
this end, we need to bound dist? ( [T2:T2] Z*) by O(log(T> — T4)/(T» — T1)). Our roadmap can

be depicted as follows:
cmma emma Lemma@
dist? ( T:T2] g ) L @HV VtH Lempal@g Tt " 0(1/(T, - Th))

The regrets above are defined as
Tty ; J=T1+1 /.1 J VAP
Regm (S) - E,Hélg CY157T1+1 <:L‘5 — Ty, Qs[K }ys> )
s Aj:Tl
t

: T1+1 i
Reg,"(s) = max > ai-q i1 (2l Q] (v~ w))
¢ Jj=T

Regt = = max (Reng (s) — Regl'*(s)).

More specifically, we bound the distance dist(z [T2:T2] , Z*) in the following steps:

L (Lemmaboundmg dlSt( [T1:T%] Z* byO HVT2+1 KT2+1H )I

oo

s (577 27) <0 [P )

2. (Lemma bounding O( HVT2+1 KTﬁlH ) by regrets:

Ts
[774 VT < ResT T () (3 Res 4 P VT )
o0 -1 t=T,

3. (Lemma[T4) bounding the regrets:

1
Re T :t < O <)
AT

The following fact about a{ can be found in Section 4 of Jin et al.| (2018)). It will be used extensively
in our proofs below.
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Fact 1 The stepsize a{ satisfy:
() o =1+ 4 Vt>1.
(ii) Yol =1,V > 1.

(iii) o} < apand o, < o, Vt>1,1<j<t.

Firstly, we show that the local auxiliary variables V*(s), Vt(s) are lower and upper bounds for
v*(s). Then, to bound HVt —v*|| and HKt —v*|| . it suffices to bound HVt — KtH .

Fact2 Foranyt € [Ty : Txland s € S,

0<Vi(s) <v*(s) <V (s) < ——,
0< miﬁl q' (a) <v*(s) <maxqi(b) <
acA—*$

Proof of Fact[Z] By (61a), we have
Vi(s) =V
By the definition of ¢’ in ©2),

. t o . / t1,,t
gélggs(a) - z?églA <m3’ G[K }y9> '

Recall that by Lemma v*(s) = min,, max, (xs, Q;y,)and Q = Q,[v*].
Suppose V7 (s) < v*(s) forany s € S and j € [T} : t], then we have
: J _ : / , Vj 7 < : / ] *7 ..t
min g(a) = min (25, Q,[V7]yl) < z{ggA<ws, S[07lys)

< minmax (&), Q7yl) = 0" (s),

which leads to V' (s) < v*(s) for any s € S.
Then, it follows by induction that V*(s) < v*(s), minge4 gi(a) < v*(s) forany ¢t € [T} : T»] and
s € S. Analogously, Vt(s) > v*(s), maxpep qL(a) > v*(s) forany t € [Ty : Th] and s € S.

It also follows by induction directly that the value of V*(s), V' (s), minge . q'(a), maxpep G, (a)
stays in [0, 1] .

O

The following lemma shows that to bound dist? (E[T“TQ] V2 *), it suffices to bound HVt -yt

o0

Lemma 11 There is a problem-dependent constant C = \C/—f

I TuTe] _ (Q[TliTﬂ’ ’Q[Tl:Tﬂ) satisfies

> 0 such that the average policy

dist (2”“”,3*) <C. HVTQH —KTWH

o

Proof of Lemmal|I1] Recall that Q% = Q,[v*]. By (62) and Fact[2}

T2 T2
. t—T14+1 _t _ . t—T1+1 / t t
gélﬂ Qo ﬂs(a) —z?élilfl O,y <ms’ S[Z]ys>
t=T1 t=T1

T
: t—T14+1 / * ot
< min Q- t x .
_w;eAAt ~ To—T1 < s Q8y3>
=11
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Analogously,
T2 T2
=Ty +1—=t 7y _ t—T1+1< t Tt />
max o b) = max o x 14
s To—Ty q,(b) v ER To—Ty o Qs[V 1y
t=T t=T
T2
t—T1+1
> max ) g (T QUyL)
Ys Bt:Tl
Thus,
To+1 To+1
V(s) =V ()
T2 T2
t— T1+1—t . t—Ti+1 ¢
=max o, b) — min « a
has q,(b) R T,—Ty ﬂs( )
t:Tl t= Tl
T>
t—Ti+1 / t * T1+1
> max ot x — mln a x
_y;EAB To—T4 < sasts @ EAL < st >
t=T, t=T,
_ PVARIDY : w ~[T1:T5)]
= max <:1:S ,Qlyl ) — min Y .
y§€A5 ZSGAA

By (I,

max (2", Qyl) - min (ol @) > ey dist (207, 27)

yLEAB T EA L

The positiveness of ¢ is guaranteed by Lemma [22]

LetC = ﬁ, then,
c+

7], (& i) - iy (o i)

o s€S \yLEAB T’ e

z€

>maxcy - d1st< [T3:T] Z:) = dlst( [TTa] |z )

SES C
(|
The following lemma mainly uses Fact (1) and induction to show that HVTZH — ZT2+1 H can be
bounded by weighted sum of the regrets.
Lemma 12 The value functions V et , yTett satisfies
ytl T +1H Ty Ty 2y(H+1) Tyt T
-V < Re + Re + V — V')
H = =8 Q-7 (T-Ti+1) tZT:I & ” loc)
Proof of Lemma|12} By Fact[2]and the definition of the operator @[], we have
—t
V(a,b) — Q. [V ,b) —H
wmax (@7 0) - Q' (0.)) < vl (64)

The following relation follows by definitions of V* in and gi in (62),

t

j—T1+1 4 _ : j—T1+1 / g
ggn E : ay_ T1+1q a) = m,nelglA Q41 < SV7y >
J=T1 ° j=T
Analogously,
t t
Tt Ti+1 j—Ty+1 i I
_ j—T1+ _ j—Ti1+ j /
Vi(s) =max ) - {1 @a(b) = max ) oqpi <w Q.[V }ys>~
J=T s Jj=T
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Summing up the above two equations yields that

— min

j—T1+1 j j
ag—Tll-&-l <m,97 Qs[zj]yj€>

/€A
° Aj:Tl

zl, Q. [V7]yl)

VI (s) = V()
t
j—T1+1 j =]
= max 3 ol 11 (21 Q. lul)
s =11
t .
j—Ti+1 /[ j 7 j
< mex ), oqn (2, Q.[V] (v, — )
s =11
t
. i—Ty+1
T el eA, @ gy (T —
° J=T1
T1+1 j <77 i i
£ B (ot (U7 - @) )
j=T1

<Reg,""(s) — Regz"(

+VZ

J=T1

where the last inequality is by (64). Thus,

—t+1
v

j—T1+1 7.7_ 7
t T +1 HV K

t
_Zt+1 S Reng:t +’Y § a‘z:gill VJ —K]
o J=T 0
=41

)
oo

Taking sum on both sides of the above equation and combining with Fact[T] (i) yield that

> [

n <zRegT1

S ZZ Reng:t

t=T1

< Z Reg™t
< Z Reng

S 22: Reng:t

t=T,

where the last inequality is from the fact that H =

After rearranging, we have

31

i HVH-I 7Kt+1H (Z Reg 1 +

t=T

(65)
o3 E e -v
t= T1J Ty e
+7 Z Zafi%ill HVj — V7
jle t=j o
+'yz <1+ >Hv —VJH
+7(1+ )ZHV VJH
P 7w
1+’Yj=T1 o
’y-
vy
HVTI ~vh ) (66)
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Since aT T1T+i1 < ap-141 < TH7T+1 for any j € [T} : t], by setting ¢ := T% in (63) and

substituting (66), we have

Pt T2+1H < RegTi T H+1 H jH
[P -y < Res +T2_T1+12v -V

H+1
T —-T1+1

(12 (3w 2 -

. 2v(H +1) T T
<Reg T2 4 § Reglt + ||V ' =y )
- & (1 — "}/) (T2 - Tl + 1 <t T & H o]

SRengtTQ _|_ ’Y

)ofpn

y

O
The next lemma is used to derive Lemmal[T4]
Lemma 13 Foranyt € [T} : To — 1ljand s € S,
2
t ot 2 <SB'72 (-1, 41) 2B? t 12
a4, - g, —+ 7 lys — v
(1-7) (1-7)
—t  —t+1]|2 <8A'72 (OéthlJrl)z 2A? t t+1(]2
g —a|| ; 7 [z — =
(1=2) (1=7)
Proof of Lemmal|I3] By (62)) and Fact[2] we have
2
t_ gt <2B Vi(a,b) — Q. [VI*](a,b
g - a7 2B max Q.00 — QU (a0 |y
232 yitl 20,0t o t+1]|2
+28° max Q7 v — v (67)
2
2 (|1t t+1(2 2B t t+11]2
2By [V -V + 7 [yl — v
(I=7)
By Fact , < ﬁ Then, by the definition of V* in (6Ta)), for any s € S,
t
¢ Ti+1 g Ti+1 _j
[V F(s) = V()] < Z al” 419 — Z o T1+ g,
J=T j=T oo
Ty+1 =Ti+1 T1+1 j
<ai” Tiil‘ tHH + Z ‘ i T i 1412
1
ST (-1 +1— (1 —r 1))
<2at—T1+1
I—v
where the third inequality uses the facts that Z P at = 1 and at 1 < at, at < o4 for any
1<j <t
Thus,
S e (68)

By substituting (68) into (67), we have

2
¢ t+1H2 < 8B~ (-1, +1) 2B?

—q + yl —y 7
‘ o)y 25yt -t

gS S
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The bound for || g, — gt || follows analogously. (]

We bound the regrets in the following lemma. Its proof is mainly from combining standard analysis
in RVU property (see for instance Rakhlin & Sridharan| (2013)); Syrgkanis et al.| (2015)) and with
Lemma

Lemma 14 Foranyt € [T} : To), ifn < m, we have

136 (A+ B
Reng = # t7T1+1-
n(1—7)°

Proof of Lemma Choose an arbitrary point z} from A 4. Since iiH is the projection onto A 4,
we have

(wp -2 @ — Bl gt ) 20, Ve e [ Ty - 1],

S S S

Then, we have

2 2 2
~t41 41 1 t * ~tFl s S+l ot
77<$s qu ><2<H$ — Ty _H:cs — T H:Bs - T, )
Analogously,
R o B Lt ~t ~t+1 1|2 1 ~t])?
n{zs —x, ,4,) < 3 T, —x, | — |z, —=x, — |z — x, .

Then, by combining the above two equations, we have
t+1 t+1
n <ws+ —z5,q'" >

= <i§+1 x?, qt+1> +1 <wi+1 - %§+17g‘;> +1 <wi+1 —z gt - g‘;>

R N e I s ey
+n <m§+1 — & gttt - QZ>
S S Rl
where
apt == far -t - g et gt ot ot -

By taking sum on both sides of the above equation, we have

t—T1+1 ¢
ZO‘ T1+1< _méaQ>

t=T1
1 2
«a « 2
To—T1+1 T * T To—T1+1 || xT1 *
S 2 H:BS _m5||1H2 oo+ 2 z —(IIS
T>—1 t T1+2 at_T1+1 T>—1
+ T1+1 To—T1+1 ~t at T+2 At+1
2 : : : —T1+1 (69)
t=T1+1 t=T,
alk T2—1 Tr—1
To—T1+1 2 t—T1+2 t T1+1 t Ti+2 t+1
S 5 tonomat > (O‘TQ—T1+1 Tl ) + D ot Al
t=T1+1 t=T1
a To—1
T2—T1+1 t—T1+2 t+1
<SR 2anpa+ ) o TTLAY
t=T4
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Analogously, for any y% € Ag,

To—1
t—T1+1 —t QT —Ty+1 t—T142 t+1
nZa Cr (e — YL ) <+ 20 na + ol T AL (70)
t=T4 v t=T1
where
t+1 _ ~t+1 t+1 t+1 -t 41 —t][?
Ay 4H —y! H 2’ —gt| gt —at|-
Since H > 1, we have o, "% | /o T4 | < 2. Then, by combining with the condition on 1 and
2
2 ~ -
th §2Hm fth +2Hmt7mt , we have
t—T1+2 t—T71+1
_n-mii1 Hmt+1 _g 2 0n 1 H?it _ gt 2
2 4
Je" t T1+2 max { A%, B2l p 9
+ T1+1 { } Hmt+1 _ $tH (71)
(1—7)?
t—Ty+2
« 12 _ 2 2
< S (ol o ol o)

Then, by combining the definitions of AL and Al*! with Lemma we have

Ts—1
T (AL A
t=T1
2 2 2
S804T2—T1+1 max{;‘l ,B }77 (HmTlJrl 7xT1H2+ ||yT1+1 7yT1||2>
(1-17)
E— T2 32(A+ B)v? (-1,41)°
+ Yo T, T (72)
t=T1 _7)
To—1 2
32(A+B)y? H+1
Dagygpt PAFBENSS (L
2741 ( '7) et 27 H+t-T,+1
)" (

<

32(A+B)y? (H+1)
2+ ar,— ,
( (1-7)° H e

where the first inequality also uses and the max-player’s counterpart of (7I), the second in-
equality is by the condition on 7 and Fact[T]

By combining (69), (70), (72),

. 1 2 32(A+ B)+? (H+ 1)
Rengsz <- +6+ ( - )’y - ( i ) ) ATy —T1+1
n

L7 (1—)° H
136 (A+B)H
<(—gaT2—T1+1 .
n(1=7)
The bound of Reg”*™ for t € [T : Tp] follows by similar arguments. O

Now, we can prove the global convergence of Averaging OGDA (Theorem [3) by combining
Lemma|[[1] Lemma[12]and Lemma[T4]

Proof of Theorem 3| By Lemma|[I2] Lemma[I4] we have
e

_136¢ A+B)
n(1—7)?

2y (H + 1) <§: 136(A+B)H o HVTI _n
t—11 Y
T1 (

T27T1+1

(1= (T2 -T1 +1) n(1—7)?

)
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Since ZtTiTl 41 < (HH)leO%ngTlH)’ we have
HVTQH B VT2+1H < 408(H +1)3 (A+ B)log (Ty — Ty + 1) n 2y(H+1)
- oo (1= (Ta—T1+1) (1= (T =T, +1)

By Lemmal|[IT] we have
it (204 2)
<& 408(H +1)3(A + B)log(Ty — Ty + 1) N 2y(H +1)
- nl—7)3 (T -1 +1) (1=7)°(To =Ty +1)

C/ lOg(T2 — T1 + 1)
T](TQ — T1 + 1) ’

where

 3280C(A+B)  3280v/S(A+ B)

= (1 —~)8 cy(1—=7)°

O

Remark 1 The initialization V' = Vviy™ and VTl = Vets only used to show the geometric
boundedness in Theorem When Averaging OGDA is used independently rather than called in

Homotopy—PO (Algorithm , we can simply choose V1! (s) = 0and 7= ﬁ forany s € S.
The global convergence rate in Theorem 3]still holds.

D.2 GEOMETRIC BOUNDEDNESS OF AVERAGING OGDA

In this section, we prove the geometric boundedness of Averaging OGDA (Theorem [4).

The geometric boundedness of averaging OGDA essentially relies on the stability of projected gra-

dient descent/ascent characterized in Lemma Intuitively, when {zj }j ey A€ close to the Nash

equilibrium set, {Kj(s),vj(s)} _— will be close to v*(s). Thus, min, ¢’ (a), max;, g% (b) will
JE[Ty:t -5
also be close to v*(s). Then, by Lemma 21 will not be far away from the Nash equilibrium set.

Our proofs in this section can be summarized as: providing mutual bounds among {dist (2%, Z*)},
{dist (Et, Z*) }, {Hvt -V }, {maxb q.(b) — min, q° (a)} by induction.
0o £s

The following fact shows that HVTI —yh

can be bounded by dist (z7*, Z*).

o0

. . 1T .
Lemma 15 The approximate value functions V', V"' satisfy

max {m, \/@}
<
oo (1-7)?

-y

dist (le , Z*) .

ProofofLemma By Fact VTi(s) < v*(s) < VTI(S). By Lemma VYT (s) = v*(s).
Since the min-player initializes V! (s) = V1¥"" (s), by combining with Lemma , we have

< \/EHyTl — yT* < v/ Bdist (yTl,Z*)

B (1-7)° B (1-79)°

vi(s) = VTi(s) = VIV (5) - VT (o)

Analogously,

< VAdist (:BTl , X*)

V) -t < T
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The result follows by summing the above two equations and combining with the fact that
diSt(zT17Z*) < ﬂdist(le,X*) + \/idist(yTl,y*). -

The following lemma follows directly by the definition of V*, V' in (6T4), (63a) and the fact that
Z;Zl al =1.

Lemma 16 Foranyt € [T} :To —1llands € S

1% ~V < 7(b) — i(a)) .
(s) =V (s) < jax (rgleag 7, (b) — min qs(a))

The following lemma bound the expansion of dist (z¢, Z*). Its proof mainly uses Lemma

Lemma 17 Foranyt € [Ty + 1 : Ty — 1], we have

42 (= 2 (=1 % 2 *t_tz
dist” (2", 2% ) <18dist” (2"~ ", 2" ) + 8 Smax {A,B} ||V -V

o0
A, By
+ 8772ma(‘)1({_’y)2}d15t2 (Zt, Z*) )
_ 2
dist? (21, 2%) <324dist? (21, 2*) + 15202 max {4, B} [V — 1"
A, BY?
sz A BY 2 (o 2.

(1—7)°

In addition,

8n?Smax {A%, B*}  4n?max {A, B}’
(1- ’y)4 (1—7)2

dist® (2711, 2%) < (8 + )dist2 (z7,2%).

_ 2 _ 2
ProofofLemma By Fact we have HKt —v* io + HVt —v* < HVt — KtH . Then,
o0 o0

2
B V(a,b) — Qi(a.b)” + A Q,[7)(0.) - @3(a.b)
(a,gleaj{xs‘QS[i](a ) — Qi (a )‘ + (a,lf?eaj{xs Q.[V')(a,b) — Qi(a,b)
2 _ 2
) SmaX{A,B}HVt—Zt
0 oo

L

<~? max {A, B} (HVt —o*
Then, by Lemma[2] we have
2 - 2
Hzt - EHH <8dist? (zt‘l,z*) + 45%S max {A, B} Hvt - th

,max {A, B}’
(1-7)°

2 .
<8dist? (Et, z*) + 42 S max {A, B} Hvt vt

+4n dist® (2, 2%) .

2
t+1 >t

z z

e}

ymax {A, B}2
(1=7)°

|27+ - ZT1H2 <8dist? (27, 2*) + 4n*S max { A, B} HVTl -yn i

oo

+ 4n dist? (zt, Z*) .

4 ,max {A, B}?
pmaxdA, BY
(1-79)°
The bound of dist?(2', 2*) follows by the fact that dist? (zt,z*) < 2dist? (Et_172*) 4

dist? (zT1 , Z*) .

2
2 Hzt - ZtﬂH . The bound of dist*(2'*!, 2*) follows by the fact that dist® (z!*1,2*) <
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2
2dist? % Z*) +2 Hzt‘H —Z'|| . The bound of dist?(z71*, Z*) follows by combining with
Lemma g

The following lemma is straightforward from the definitions of gi and g°.
Lemma 18 Foranyt € [T} : To) and s € S,

| e {m, @}

o 1—’y

max q-(b) — min q HV v dist (25, 27) .

beB acA

Proof of Lemmal[[8] For any s € S, we have
* _ . t — 3 *],,t% _ . t1,,t
v*(s) gg}ggs(a) min (Q,[v7]y.") (a) — min(Q,[V']y;)(a)

S H Q * t* _ t t HOO
< ;Ileaich\Q ) Q.[V'(a,b)| ||y L e B!Q VA vl — w2l
<o v+ “_idist (v, 37).
Analogously,
max q.(b) —v*(s) < HVt —o* . + 1\/_nydist (xt, 7).

Then, the proof is completed by combining the above two equations with the facts that
dist(z, Z2¥) < V2dist(zs, X*) + V2dist(y,, V*). O

Now, we can prove the geometric boundedness of Averaging OGDA (Theorem [) by combining
Lemma[I6] Lemma|[T7] Lemma [T8]inductively.

Proof of Theorem 4, By Lemma [I5]

HVTl —Vh| < Gudist (27, 27), (73)
where
max {\/ﬂ, \/ﬁ}
R T
By Lemmal(T8§]
max (rileag q.(b) — (rlrg‘lgs > HV -V 7t Codist (21, 27), (74)
where
max { V24, V2B }
Cy = 1=~ .
By Lemma and the fact that /A1 + Ay + A3 < /A, + /Ay + /A3, we have
dist (271!, 2*) < Dydist (2™, 2%), (75)

dlst( t+1 z*) < Dydist (zt,z*) 4Oy va —f“” +Cydist (2171, 2%), (76)

dist (242, 2*) < Dadist (zt,z*) oA HV”I —zt“H + Codist (241, 2%), (77)
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where

Dy = \/8 + Snzsma"{Aj»BZ} 4n? max{A;B}27

(1—7) (1—7)
A B
Dy =18, C5 = nv/8Smax {A, B}, Cy = M’
-7

Dy = /324, Cs = /1528 max {A, B}, Cs = \/@ninaj{A,B}_

Define

D = max {Dy,Cy + Ca,1+ Co, Dy + C3 4 Cy, D3 + C5 + Cg } .
Next, we prove (78) by induction

max {dist (2311, 27) , dist (Ei, Z:) ,

7‘7 . - . .

V| (o) - min )}
< DI=TiH1 . gist (le,Z*) .

The case of j = T} follows by (73)), (74), [73).

Now, suppose that we have shown (78) for j € [T} : t]. Then, by Lemma [16| and the induction
hypothesis (78),

—t+1
HV 71&%1’

By combining the above equation with and the induction hypothesis (78)),

< DT gisg (le,Z*).

o0

—t gy st < H*t_ t : t ox ’
max (rgleaéc q. ™ (b) min g, (a)) < ||V = V' + Codist (2, Z7) N
< (14 Cy) DT+ dist (z™,2%).
By combining the above two equations with (76)), and the induction hypothesis (78],
dist (24, 2") < (D2 + Gy + 1) D' T4 dist (274, 27),
dist (272, 2*) < (D3 + C5 + C) DT dist (210, 2%).

By the definition of D, we have proved (78) for ¢ + 1. By induction, (78) holds for any ¢ € [T} : Tb).
The following relation is implied by (78)) directly

dist (2%, 2*) < DT . dist (le,Z*) = DTt . dist (z,2%), (79
where z = (&, ) is the initial policy pair (39), (60).
Then, (TT)) follows by setting Dy = D2,
By definition, we have Dy = O(S(A + B)?/(1 — ~)*) under the condition n < 1.

By Shapley’s theorem (Lemma([T9), Z; = X7 x YV is the set of Nash equilibria of a matrix game.
Thus, Z7 is convex, then, Z* is also convex. Thus, we have

T2 T2
. t—Ti41 _t % t—Ti+1 7. t oo
dist ( E Qp, 17 ,Z ) < E aT2_T1+1dlst (z , Z )

t=T t=T
As Dg > 1 in our definition, we have

T2 T2
s [ o[Th:T2] * e t—T1+1 _t == t—T1+1  3:. t zx
dist (z 2 ) <dist ( g ar, 1252 ) < g ar, i dist (24, 2%)
t=T, t=T1
T>—T

< (JDT))TTTI dist (27, 2%) = (JDT)) ™ dist (2, 27).

This gives (12). O
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E PROOFS FOR GLOBAL LINEAR CONVERGENCE

Proof of Theorem |I|. Recall the constants cg,dy defined in the local linear convergence of
Local-Fast, Dy defined in the geometric boundedness of Global-Slow, C’ defined in the
global convergence of Global-Slow in Section[3.1}

Define
"1
My :min{tz 1: Coilf(t) < \/50774},
n
. 3
M5 = max g [logTo],0¢ +1,

6
My = logmax {Dp,1}]| +1).
8 7 o ([log max {Do, 1} )

Let M* = max {(Ml*)Q, M, (M§)2} Then, the order of M*

C"?1og(C"/(Somy’))  log*(Dy +1
M <O og”( /(207777))Jr Og(204+ )\ (80)
Son*n’ oM
For simplicity we denote
sk _ Ty
Note that 2" = 2% %] s the initial policy pair of the k-th call to Local-Fast.
Define k* as
k* =min{k € Z; : 2F > My, 4" > M3, 2% > M}
Then, 2" ~1 < My, 4¥ —1 < My, 28"~ < My, ie.,
4F" < dmax {(M7)?, M3, (M3)?} = AM™. (81)

Firstly, we provide bounds for Z" after k > k*.

For any k > k*, since fgs - Igs +1=2%>2¥ > My, by (@) and the definition of M, the policy

.~k .
pair z" satisfies

/ k* 2
dist? (%, z7) < (o827 )N s .
) = 77, R Zk* >~ 00

Since 2" is the initial policy pair of Local-Fast in time interval [z f{‘f?] by (), fort € [Zf :
I},

dist? (2, 2*) <Iy- (1 - c0772)t71§ dist? (Ek, Z*) )

Since 4F > 4% > M3,

Since 2¢ > 28" > M, we have

ak_1 ok+1.(gk—1_
con? con? ( ) 1
3 3 max {Dyp, 1}
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Then, by combining the above three equations,

= Fk_ 1k
dist? (zzlkf, Z*) <Ty- (1 — 00772)1” D Qist? (Ek,Z*>

k
=T 1 2 4k_1d- 2 [~k Z* <T 1 00772 3.(4 ! di 2 [~k Z*
70'(7007]) st (z, )_ 0" -3 ist (2:, ) (82)
k

1 con?\* !
< — (1— o ) dist? (2%, 2") .
max { Dy, 1} 3

By (@) and the fact that 27l is the initial policy pair of the (k + 1)-th call to Global-Slow,

Fh+1_ 7h+1 . ~.
dist? (24, 27) < Dy T dise? (277, 27) = D s (27, 27) . 83)
Then, by combining (82)) and (83)), we have
s 12 (kL s oktl_q 1 con’? o s 12 (ok x
dist (z , Z > <Dj : =l dist (z 2 )
max {Dg, 1} 3

c 2 4k —1
< (1 - 0;) dist? (zk,z*) :
Next, we give a rough bound of dist? (z*, Z*) for t € [Zf; : fgjl].
Fort € [Z}: : f{ﬂ by (@),
s 22 (.t x 2t71-1kf-2/\k* e 2 (k%
dist (z,Z)SFO-(l—con) dist (z ,Z)Sfodlst (z ,Z).

Fort € [ZfF : fgjl], since 221t s the initial policy pair of the (k + 1)-th call to Global-Slow,
it follows by (3) that

k+1

dist? (=1, 27) <D) 7 dist® (7077 ) < max (Do, 1)7 dist® (57, 2°)
con? 4k 1
(1) () e (2,

where the first inequality is from (3)); the second inequality is from the fact that ‘[Igj L. fgsﬂ]‘ =
2F+1: the third inequality is by (82).

Thus, for any t € [Zf; : Z5+!),

dist? (2", 2*) < Dodist? (2’22*) : (85)

Now, we are ready to bound dist(z*, Z*) foreach t € [0 : T'.

Firstly, we fixa &’ > k* + landat’ € [Zf : fgs/“]. Then, the time interval [0 : ¢'] can be divided
into:

0:¢]=[0:Z8uZf I U U IR U Zf - v
By (84), we have

, 2
dist? (2’“ 72*) < (1 - 700;7

By combining with (83), we have

S (ak-1)
) ;

. 2\ Dhoh (44-1)
dist? (2’“ ,Z*) <28 (1 _ CO”)

2y Trok (45-1)
) -

dist? (zt’,z*) < (25T) - (1 _ Q7
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By 1),

k*—1 E*

~ . 8 - 32M*
k k k k k k
Th <2V 4 ) (2F4ab) <24 <Gt <= (86)
k=1 k=0
Thus,
k' —1 1 k-1 1 k' —1 1 K
k L ks * k k+1 L k k+1
STEEEED SPCEES SYIECURET ST EaD
k=k* k=k* k=k* k=k*
k/ ~q./ gk gk %
_ 1 (karl _fk) _ it - I > t'—Ig S U =32M7/3
16 Pt &% &s 16 - 1 16 '

Then, for the time ¢’ we have fixed,

t—32M* /3

g(25F0)~<1—C°;72) 7))

, 2\ ThoA(45-1)
dist? (zt ,z*) <(28T) - <1 - 60;7 )

Since the above arguments can be applied to any k¥’ > k* + 1 and ¢t € [I{}, : fg;“], we have
that (87) holds for any ¢ > Z# 1.

By similar arguments to (86), we have fg“ < 128M*/3. Then, forany t € [0 : fg“],

t_ik:+1
) . ) . B 00772 16
dist(z", 2*) <25 < 2Smax{Ty,1}- (1 3

t—128M™* /3
16

2
<28 max {To, 1} - (1 - C‘?)

Then, by combining with (§7)), for any ¢ € [0 : T,

t—128M* /3

9 . . 00772 16
dist® (2%, 2*) <2Smax{I',1}- (1 - =~

s (88)

—128M* /3
con? t /
48

<28 max {Tg, 1} - (1 B

]

Proof of Theorem 2} By Theorem [3] and Theorem [ Averaging OGDA can serve as the base
algorithm Global-Slow in the meta algorithm Homot opy—-PO. By Theorem[5] OGDA can serve
as the base algorithm Local-Fast in the meta algorithm Homot opy-PO.

Then, by Theorem I} we have the global linear convergence of the instantiation of Homotopy-PO
with OGDA and Averaging OGDA.

More specifically, by Theorem [I]and (57), the constant ¢ in (9) satisfies ¢ > 0 and it is of order

o (1—7)*

By combining with Theorem 3] Theorem[d} (57)), (58), the constant M in (9) is of order

SlO(A + B)B 10g2(SAB/(C+(1 - 7))))
(1—7)%c

w=of
This completes the proof for global linear convergence of our instantiation for Homot opy—-PO. [l
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Remark 2 Theorem |2| requires 1 < O(\ﬁ(A7 B))for OGDA and ' < O( L) for Averaging

OGDA. If we setn = O( \ﬂ(_ﬁ_;) ), then the linear convergence rate is

1—cn2=1—0<w).

5
Ifwe set = Oy s) for OGDA and if = O(57%

Hidden Phase I is of order
Mlog®(SAB/(cxm)) _ ) (S™(A+ B)’log*(SAB/(c+(1 ~ 7))
ntn’? (1—7)37c} '

) for Averaging OGDA, then the length of

F AUXILIARY LEMMAS

The following lemma gives a characterization of Nash equilibrium. Its proof can be found in Sec-
tion 3.9 of [Filar & Vrieze| (2012).

Lemma 19 Consider Markov game G = (S, A, B, r, P, ). Given the minimax game value v*(s) =
mingex maxyey V*Y(s). A policy pair (x*,y*) € X x Y is a Nash equilibrium if and only if it
holds for any s € S that (%, y*) is a Nash equilibrium of the matrix game

mln max :L'
O max T Qly,, (89)

where Q is an A-by-B matrix with Q¢(a,b) = R(a,b)+v> . csv*(s")P(s']s, a,b). In addition,
the minimax game value and the Nash equilibrium set of the matrix game (89) are v*(s) and Z* =

X x Y%, respectively. Then, the Nash equilibrum set of Markov game G is Z* = [[ . Z3.

The following lemma is known as “performance difference lemma” (Kakade & Langford, |[2002). It
is used extensively throughout this paper.

Lemma 20 (Performance Difference Lemma) For any policies x,x' € X, y € ) and state sg € S,
we have

’
Ve ’y(SQ) ve y 80 P E 50’y iL’, — s, Qf’yys> .
SES

The following lemma is standard. We provide its proof for completeness.

Lemma 21 For any policies x,x’ € X, y,y’ € Y and state s € S, state distribution p € Ag,
action pair (a,b) € A x B. Let z = (z,y) and z' = (2',y’), then

V() = vV (s) < @5); 2l (90)
@z (0. - Q7 (0. < AL ELEZ on
dg¥(s) - a5 (s)] < @_”j —=1 92)
vei(s) - vei(s)| < “ﬁ”’”‘)m” 93)
Viv(s) - VT’y/(s)‘ < ‘F(l”y )y il (94)

Proof of Lemma By performance difference lemma (Lemma |20},

’
Ve (s) - Vet \ < Z a2 V() llzo =2l Q% .l
968
T 2 dZ V(s ey — |,
s'eS
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Similarly,

m yTa:/
s

:17/ z/ ’ ]_ :l)/
Ve (s) Ve <s>|§ﬁzds ) g — ol | @

s'eS

S de’”’y )ye =yl -

s'eS

o0

Then, by triangle inequality and the fact that ) . & d””/’y(s’ ) = 1, we have

Vo) VI )] < 3 A = 2Ll
s'eS

<\/A+Bmax5/€3 |zt — 20| \/A—l—BHz—z ||
- (1—=7)? (1—=7)?

Then, (91) follows by combining (@0) with the definition Q%Y = Q,[V*Y].

To bound the difference of state visitation distribution, we fix s,s' € S. Let P € RS5%5 be the
transition matrix of policy pair (z, y), i.e

P(s,s1) Zzws P(s1]s,a,b).

acAbeB

Similarly, define P’ as the transition matrix of (z’,y’). Then, d¥¥(s;) is the (s, s1)-th entry
of (1 —~)(I—-P)" " d;”,’yl(sl) is the (s, s1)-th entry of (I — P/)fl. By definition, for any
s,81 €S8,

Z |P(s,51) — P'(s, s1)|

s1ES
<3N N lzla) — @L(a)] Y, (0)P (515, a,0)
s1€S acAbeB
+3° 53 2 (a) [9,(b) - yL(0)| P (s1]s. a,b)
s1€S ac AbeB

< ||zs - le”l '
Thus, we have ||P - P’||oo < maxges [|z5 — 25,

By combining with the fact that || (I — P)~"||__ <3272+ || P7|| , we have
‘dfvy(sl) - df'*/(sl)‘ —(1—~) ’<1 (I-P) ' (P-P) (I - P')’1 1>‘
<=y fa-p7 jp-ri -7
<\/mmaxs/€g |z — 20| < VA+ Bllz - 2|

- 1—7v - 1—7v

-1

Then,

VA+ Bz -2 H
L=y

AV (s) — 2V '<Z 50)

SoES

) |azv(s) — a2 (s)] <

To show (©O3), we choose y € argmax, V*¥(s), then, by performance difference lemma
(Lemma 20),

Vz,@( ) — Ve ,y Z NMaes — ||, HQ ’yAS
e o
<H1aX§e$ ||33§—935||1 \FHfﬂ_w H
(1—7)2 T (1=9)?
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Analogously, V=" (s) — V&T(s) < %. Thus, |V®T(s) — V=i(s)| < %. The
inequality (94) follows similarly. O
As a direct corollary of (O3)), (94), we can bound the Nash gap max,cs V®(s) — V¥(s) by
dist(z, 2*).

Corollary 1 Forany z = (z,y) € Z,

i V2(s) - Vio(s) < 2024, V2B)

ses (1=1)

Proof of Corollary[l] Denote Px+ (z) = x*, Py~ (y) = y*, then z* = (z*,y*) = Pz- (z). By
the definition of Nash equilibria,

VI (s) = V() = VI (o)
Then, by combining with (93), (94), for any s € S,
max V() — VI (s) = max Vo () — V' (5) 4 VI (9) - VI (s)
s€ se€
<max \/Z”m — || n \/EHy —y* < maX{\/ﬂ, \/@}dlst(z,z )

€S (1-9)° (t-* ~ (1-9)°
This completes the proof. U

-dist(z, Z%).

The following lemma is paraphrased from Lemma 4 of |Gilpin et al.| (2012)) and is also known as
saddle-point metric subregularity of matrix games as in Theorem 5 of |[Wei et al.|(2020). It essentially
shows that in matrix game min, max, x| Gy, the suboptimality of any policy pair can be lower
bounded by a certain condition measure ¢(G) of the matrix G multiplied by the policy pair’s
distance to the Nash equilibrium set of the matrix game.

Lemma 22 (Lemma 4 of |Gilpin et al| (2012), Theorem 5 of Wei et al.| (2020)) For any
matrix G € RA>B let X*(G) = argmingca,(maxyea, ' Gy') and Y*(G) =
argmax, e, (Mingrea , z' " GYy'). Then, it holds that for any * € Ay and y € Ap,

max =’ Qy’ — min @'’ Qy > ¢(Q)- \/distz(wﬂ*(G)) +dist*(y, V*(G)),

y' €Ap T/ EA 4

where p(Q) > 0 is a certain condition measure of the matrix Q.
As a direct corollary of Lemma[22] we can instantiate the value of ¢ in (T).
Corollary 2 Let ¢, = minges o(Q?%), then, for any policy pair z = (z,y) € Z and s € S,

. T .
max . Q'y, — min z/ Qry, > c, -dist(z,, Z7).
ylels 8 VRIS gren, T :

G DECENTRALIZED IMPLEMENTATION OF THE ALGORITHMS

Recall that in our interaction protocol, the min-player only has access to its marginal reward function
r! and marginal transition kernel Pt while the max-player only has access to its marginal reward
function ! and marginal transition kernel P! .

Equivalently, in each iteration, the min-player receives full information of the Markov Decision
Process (MDP) M’ = (S, A, PL, rt, ~), the max-player receives M/, = (S, B, P!, 7}, 7).

The marginal rewards and transition kernels are defined as

T;(S’a) = Z yg(b)RS(avb)7 PZ(S%S,(L) = Z yé(b>P(S/|Saa7b)7

beB beB

ri(s,b) = > _ al(a)Rs(ab), Pi(s'|s,a) = Y ! (a)P(s'|s,a,b).

acA acA

95)
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The value function of the policy  in the MDP M, is defined as an S-dimensional vector containing
the expected cumulative rewards of each state, i.e.,

V:”M Eg ot nyr (s7,a)|s" = s

t
The g-function q“”Mtr = {qg’M” }ses is defined as a collection of A-dimensional vector with
t
g7 (@) = 7l (s,0) £ Y P (5], ) VEME(S).
s'eS
The counterparts VM;’y( ), qb Y for the max- player are defined similarly.
In the pseudocodes below, for any set C, I denotes its indicator.

The decentralized implementation of OGDA (8) is in Algorithm [2] (min-player’s perspective) and
Algorithm [3|(max-player’s perspective).

The decentralized implementation of Averaging OGDA (@) is in Algorithm [](min-player’s perspec-
tive) and Algorithm [5|(max-player’s perspective).

Then, our instantiation of the meta algorithm Homotopy—PO which uses Averaging OGDA as
Global-Slow and OGDA as Local-Fast is naturally a decentralized algorithm. The pseu-
docodes are presented in Algorithm [6] (min-player’s perspective) and Algorithm [7] (max-player’s
perspective).

¢ Equivalence between OGDA (8) and Algorithm

t

To prove the equivalence between OGDA ({8 and Algorithm it suffices to show that qft’Mw

Q'y'. Actually, both g5 M and QZyZ equals the marginal g-function of the local MDP ML =
{8, A, PL, rt ~} observed by the min-player at iteration .

By definition, we have for any s € S, V="¥' (5) = V="Mi(5) = VMi¥' (). Then, we have

= Ru(a,b)yi(d) + D Y Pu(sls,a, )V M (s) gl (b)

beB beB s'eS
=3 Ru(ab)yl(6) + Y 3 BLS s a, VY ()l ()
beB beB s'eS

— <1a, Qi”t’yty§> = (14, QLyl).

t T t T
Thus, ¢° M= = Q'y'. Analogously, ¢} My (Q’;)T x!. This gives the equivalence between
OGDA (8) and Algorithm 2} [3]

Algorithm 2: x—OGDA

Input: time interval: [T} : T3], initial policy: Z € X, stepsize: 1
Initialize z7* = 2

fOI‘tZTl,"' ,TQ do

play policy x*

receive rt and P!

compute the g-function {q?t’M; } in the MDP M. = (S, A, PL, 7t )

seS

optimistic gradient descent

~t—1 x! /\/[‘
s —N4qs

:l: —]I{f Tl} :L' +]I{t>T1} PAA<

Mt
it = PAA( —ngs” )

end
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Algorithm 3: y-OGDA

Input: time interval: [T} : T3], initial policy: y € Y, stepsize: 7,
Initialize y™* =y

fort="1Ty,---,15 do

play policy y?

receive r! and ]P’Z

Yy
t

. Myt )
compute the g-function {qs vy } in the MDP /\/lf/ = (8, B, 1%7 7‘2, ’y)
s€S
optimistic gradient ascent

- t— Myt
Vo =Ipmryy -yl + Ipsryy - Pag <yi Y ngs )

_ Myt
Yo =Pay (yi +ngs " )

end

Algorithm 4: x-Averaging—-0GDA

Input: time interval: [T} : T3], initial policy & € X, stepsize: 7
Initialize 27 = &
fort=1Ty,---,15 do
play policy =*
receive 7%, and P,
if t == T then
solve the MDP M11 = (S JA P Ty fy) to compute
V7Ti(s) = ming cx ye M (s) forany s € S
end
compute for (s,a) € S x A, ¢"(a) = rl(s,a) + 7Y, csPL (s']s,a) V' (s')
optimistic gradient descent

5; = ]I{t:Tl} . wsTl + ]I{t>T1} . PAA (i];_l — ngi)
et =Pa, (ii - ngi)

i—Ty+1
O‘LT;HQ‘;(G)

update value function V! (s) = mingec 4 Z;:Tl
end

Ty t—T1+1

Compute the average policy glTel = Yotq, O 1 ®
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Algorithm 5: y-Averaging-0OGDA

Input: time interval: [T} : T3], initial policy § € ), stepsize: n
Initialize y* = g
fort="1T1,---,T5 do
play policy y*
receive r}, and P,
if t == T3 then
solve the MDP MZI = (S , B, Py 7’51 , 'y) to compute

Yy )
v (s) = maxyecy Vle’y/(s) forany s € S

end
compute for (s,b) € S x B, ge(b) = vl (s,b) + 7>, cs Pl (5], b) V' (s)
optimistic gradient ascent

v, = Lgt—ryy - yt+ Litstiy - Pag (?ifl + 77?2)

Yyt =Pa, (ﬂi + 77?2)

Lot ¢ J—Ti+1—j
update value function V' " (s) = maxpes > ;_g, @7, 11 @5(b)

end

Compute the average policy 7772 = ZtTiTl atT;TITTL y'

¢ Equivalence between Averaging OGDA (6) and Algorithm {4} [5]
Firstly, it follows by definition that

VTvyt _ . V-'E”vM; V1t7T _ VMt’y” )
(s) = min (s), (5) = max V"t (s) (96)

Thus, the initiation steps in Averaging OGDA (6) and Algorithm @ are equivalent. Thus, VT in
Averaging OGDA () equals that in Algorithm 4]

Consider the variable g (a) defined in Algorithm

ﬂi(a) =7r.(s,a) + v Zsptz (s']s,a) V' (s"). 97)
s'e

By substituting (93)) into and combining the definition of the Bellman target operator in the
introduction, we have

' (@) = 3 Rula byl (0) + Y V(B s, 0,0yl (0) = (Lo, QVI0L) . (o)
beB beB
The RHS of (O8) is exactly our definition for g’ in Averaging OGDA (6) in Section Analo-
gously, the definition for g’ equals in (6) and Algorithm
Then, by induction, { g; qt, Kt(s),vt(s)} has the same value in Averaging OGDA

te[Ty:Ts],s€S
(@) and Algorithm[4] [5] This gives the equivalence of Averaging OGDA (6) and Algorithm 4] [5

eDecentralized implementation of Homotopy-PO

Recall that we have shown in Section ] and Section [5] that Averaging OGDA (@) and OGDA (8)
can serve as the base algorithm Global-Slow and Local-Fast in the meta algorithm
Homotopy—PO, respectively. Thus, we can interpolate Averaging OGDA as Global-Slow and
OGDA as Local-Fast in the meta algorithm Homot opy—PO to obtain a globally linearly con-
vergence algorithm.

We have shown that Averaging OGDA can be implemented in a decentralized manner (Algo-
rithm 4] [5), and OGDA is also a decentralized algorithm (Algorithm 2] [3). In addition, the inputs of
Algorithm and Algorithm only need local information (the min-player only needs = '*, the
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max-player only needs y”*) with no requirement for knowledge of its opponent’s policies. Thus,
the algorithm constructed by interpolating Averaging OGDA and OGDA into Homotopy—PO is
naturally a decentralized algorithm. The pseudocodes in the min-player’s and the max-player’s per-
spectives are illustrated in Algorithm [6]and Algorithm [7} respectively.

We make final remarks that our instantiation for Homot opy—PO is symmetric and rational. Since
the min-player and the max-player use equal stepsize 1) for OGDA and equal stepsize 1’ for Averag-
ing OGDA, the players have symmetric roles in our algorithms.

Rationality means one player can converge to the best response set when its opponent chooses a
stationary policy. This property is naturally possessed by decentralized and symmetric algorithms.
Similar arguments for rationality can also be found in some existing decentralized algorithms, see
for instance |Sayin et al| (2021); Wei1 et al.| (2021). We attach the proof for rationality here for
completeness. In addition, since our instantiation of Homot opy—PO has linear convergence, it is
not only rational but also able to guarantee the linear convergence to the best response set.

Theorem 6 (Rationality) If the max-player chooses a stationary policy y = {y,},.s € Y and
the min-player runs the instantiation of Homotopy—PO (Algorithm @ then x* will converge to
the best response set {x € X : V®¥(s) =V1¥(s), Vs € S} at a linear rate. Analogously, if
the min-player chooses a stationary policy € = {ZT,}, s € X and the max-player runs the

instantiation_of Homotopy—PO (Algorithm [2]), then y® will converge to the best response set
{y €Y :V®¥(s) =V®I(s), Vs € S} at a linear rate.

Proof of Theorem|[6] Since the min-player and the max-player are symmetric, without loss of gener-
ality, we let the max-player chooses a stationary policy ¥ = {y .}, € V.

Then, we define a new Markov game MG’ = (S, A, E,IF), R,~), where S, A, v have the same
meaning as in the original Markov game. Now, the action set of the max-player only has one action
B = {1}. P(s'|s,a,1) = >,z P(s'|s,a,b)y,(b) represents the transition probability to state s’
when the min-player takes action a and the max-player plays the stationary policy y. Similarly,
define Rs(a,1) = >, 3 Rs(a,b)y (D) as the marginal reward function that the min-player will
receive when its opponent chooses the stationary policy y.

Denote the one-sided NE set of the min-player in the new Markov game MG’ by X*(MG'). By def-
inition, the minimax game values 7* of MG’ are v*(s) = V1¥(s). Then, for any z* € X*(MG'),
Ve ¥ (s) = VH¥(s) for any s € S. Equivalently, X*(MG') is the best response set of 3.

By applying Theoremto the new Makov game MG’, we have that the policy x? played by the min-

player will converge at a global linear rate to X*(MG') that is the best response set of 3. Similar
arguments also hold for the max-player. This gives the rationality. (|

Algorithm 6: Instantiation of Homot opy—-PO with Averaging OGDA and OGDA (min-player’s
perspective)

Input: iterations: [0 : T, initial policy: =° € X, stepsizes: 1,1’ > 0
sethk=1,70=—-1,z71 = z°
while Z\"! < T do
Ik =T+ 1,5 = min{ZF, + 2% — 1, T}, IF = 7%, + 1, I = min{Zf + 4* — 1, T}
~ ~ Fk—1
during time interval [Zf, : ZX], r)?rlf—Averaging—OGDA([Igs :Zk), % ) and
compute an average policy Lo ZLes] (Algorithm@)
~ ~ k .5k
during time interval [Zf; : Z[], run x—OGDA([Zf: : Zf], gl e Tl ) (Algorithm
k< k+1
end

48



Published as a conference paper at ICLR 2023

Algorithm 7: Instantiation of Homot opy—PO with Averaging OGDA and OGDA (max-player’s
perspective)

Input: iterations: [0 : T, initial policy: y° € ), stepsizes: 7,7’ > 0
sethk=1,Z0 =—-1,y 1 =¢°
while Z/; ™! < T do
Ik =T '+ 1, I = min{Zk + 2% — 1, T}, I = %, + 1, I = min{Zf + 4* — 1, T}
~ - o
during time interval [Z}, : Z) ], run y-Averaging-OGDA([Zf, : I ], y™r "n') and
compute an average policy /y\[I;:I;;] (Algorithm
~ = k .5k
during time interval [Z% : Z%], run y—0GDA([Z! : Z£], 5=l ) (Algorithm
k—k+1
end

H NATURAL GENERALIZATION OF GLOBAL-SLOW WITH MORE EXAMPLE

In this section, we mainly (1) show the convergence results of Homotopy—PO when Global-Slow
base algorithm has different rates on the RHS of (2)); (2) provide another example of Global-Slow
base algorithm with generalized global convergence rates by proving the geometric boundedness of
Algorithm 1 in|Wei et al.|(2021) with a slightly modified initialization.

H.1 CONVERGENCE RESULT OF HOMOTOPY-PO WHEN GLOBAL-SLOW HAS DIFFERENT
CONVERGENCE RATES

To avoid abuse of notations, we call the Global-Slow algorithm with more general global con-
vergence rates by Generalized Global-Slow base algorithm.

Generalized Global-Slow base algorithm: by calling Gen—-Global-Slow([T} : T»], Z,7") dur-
ing time interval [T} : T5] where 2 = (&, ) is the initial policy pair, the players play pol-

icy pair 2t = (a!,y!) for each iteration t € [T} : T], and compute a policy pair 2772 =
(55[ 1Te] @[T“T2]) at the end of iteration T% such that zt, 27772} satisfy the following two proper-
ties:

e global convergence: there is a problem-dependent constant C" > 0 and real numbers p1 > 0and
p2,p3 > 0 such that

C'log" (Ty — Ty + 1)

dist(z7v72) z+) <
18 (z ) ) = n/m (T2 -T + 1)}71 ’

99)

e geometric boundedness: there exists a problem-dependent constant ﬁo > 0 (possibly lA)O > 1)
such that if ' < 1, then for any ¢ € [T} : T5],
dist?(z*, 2*) < DT - dist?(2, 2%),
dist?(zI7 ) 24 < D11 dist? (2, 27).

The main difference between Gen-Global-Slow and Global-Slow is that (1) the RHS of (99)
in the definition of Gen-Global-S1low add more flexibility in the power numbers then the con-

dition (@) in the definition of Global-Slow; (2) 2T T2] heed not to be an average policy. In the
example (T04) below, we can simply set 21772 = 272

By similar arguments with Theorem|[I} we have the following convergence rates for Homot opy—PO
with generalized Global-Slow.

Theorem 7 Let {z! = (z?, yt)}te[&T] be the policy pairs played when running Homot opy—PO
(Algorithm where Global-Slow is replaced by Gen-Global-Slow. Then, foranyt € [0 :
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T, we have

Con

48

(100)

)

o\ t—128M*/3
dist?(2*, 2*) < 28 max {Ig, 1} - (1 - >

where the value of 6',00,50,F0 can be found in the definitions of Gen—-Global-Slow and
Local-Fast and

_\2 . o
R (C’) log®”*(C" /(8omn’)) +10g2(ﬁ70+1)

M*=0 (101)

Jor'n' 2 cgn’

Proof of Theorem [Z Let cg, 6o be defined in the local linear convergence of Local-Fast, Dg de-
fined in the geometric boundedness of Gen—-Global-Slow, C defined in the global convergence
of Gen—-Global-Slow.

Define

77/102 tp1

— C" logP* (t
Mf:min{t>1:00g()< 507;4}7 (102)

M and M are defined the same as in the proof of Theorem [I]in Appendix [E]

Analogous to the proof of Theorem we also let M* = max {(Ml*)Q, M, (M§)2} This gives
the order of M* in (TOT).

Notice that the global linear rate only depends on the local linear rate of Local-Fast and the
geometric boundedness of Global-Slow. The global convergence rate of Gen-Global-Slow
is only relevant to the length of Hidden Phase I, i.e., M will only affect the length of Hidden
Phase L. Then the rest of this proof follows from Theorem [I]directly. Analogously to (88), we also
have

—128M*/3
ct 2t * 00772 ! /
dist (Z ,Z ) S 2S5 max {FO, 1} 1= K

This gives the convergence result of Homotopy—PO when equipped with Gen-Global-Slow
and Local-Fast. 0

H.2 ANOTHER EXAMPLE OF GLOBAL-SLOW BASE ALGORITHM

Next, we show that the algorithm in |Wei et al.| (2021) with a slightly modified initialization can
serve as an example of Gen—-Global-Slow. It is shown in Theorem 2 of |Wei et al.| (2021)) that
Algorithm 1 therein has a sub-linear last-iterate global convergence rate which satisfies the RHS
of Q9) with p; = %, p2 = 2, ps = 0. To instantiate that Algorithm 1 in|Wei et al.[(2021) can be
an example of Gen-Global-Slow, it suffices to prove its geometric boundedness. We remark
that geometric boundedness may not hold for the original Algorithm 1 in|Wei et al.|(2021)) since its
initialization V(s) = 0 may cause the policy gradients in the first step to deviate largely. However,

this problem can be fixed simply by changing the initialization to V(s) = vy (s).

When running Algorithm 1 of [Wei et al.| (2021) in the full-information setting (with the different
initialization discussed above) during the time interval [T} : T5], the min-player and the max-player
initialize ' = 27 = &,y = yT' = g and

VIl(g) = Vet () (103)
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and update fort > 77 and any s € S

=P (3L - nQuyt) (1042)

2t =Py (817 -0 QL) (104b)

- ~ ~a

o =Py (yi +1(Q.) wi) , (104c)

~t+1 ~
v, =Py (ys* +1(Q.) mz) ! (104d)
~1

Vt(S) =(1-Bi-n)V _1(8) + Bt—1i+1 <fl3§> sti> ) (104e)

where @Z = Q,[V'" and g, = HetL with Hy = [%W Recall that @[] is the Bellman target

operator defined in the introduction.

When using the algorithm (T04) with initialization (I03), the output policy can be set as

/w\[Tl:Tg] _ EBT27 /g[T1:T2] — yTz

We also denote 2! = (z?, yt) ZMTe] (A[T1 Te) A[TIITZ]), ™ = Py- ('), y™* = Py~ (y"),
2 =Pz (2) = (', y**) in the analysis below.
Next, we proceed to show the geometric boundedness of the algorithm of |[Wei et al.| (2021) with the

slightly modified initialization in a similar way with Appendix |D.2| We first provide mutual bounds
among {dist(z*, Z*)} and {||V*(s) — v*(s)|| .} in Lemma[23[and Lemmabelow.

Lemma 23 Let {z',V'} be generated from (I04) with initialization (I03). For any t > T,
VA + Bdist(z7, Z*)

< max +  max HVj —v*
T jeTt) 1—7 GE[T1 —1:t—1]

v o

oo’

ProofofLemma Firstly, define 3/ = Bill}_; 1 (1 — Bg) for0 < j <t —1land 8} = f3;. Since
B2 = 0, by (T04€)), for any t > T}

¢ .
=3 B (=2, Qlyl).
j=T
By the definition of @Z we have
mag‘@i(mb) - Qi(a,b)| = maX’Q a,b) Qs[v*](a,b)‘ < vt =

s,a,b

(105)

oo "

By Lemma v*(s) = (xd*, Q,[v*]y’*). Thus, forany t > T} and s € S, by combining the
above equations, we have

t .
j=T

t
<> B el

J=T1

t
F—Ti+1 1| 4
+ Z Biini =l

max [Q,[v*](a,b)| - ||yl — yI*|,

L (ab)eAxB

e, | Q) — QU@ b)| - il

a,b)eEAXB
£ Y R ad - o @]
j=T
j*
< Z ﬁg ;{111-11 (HZ 7}: ||1 +ij—1 ot OO>.
j=T
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Then, the proof is completed by the fact that max,es || 2] — 29*||, < VA + Bdist(z?, Z*) and
t Ty41
D=1 Blipii =1 .
Lemma 24 Let {z',V'} be generated from (104) with initialization (T03). Then, for any t > T},
dist?(z'", 2*) <18dist>(z', 2%) + 82 S(A + B) |V — o7

A, B
+8n QMdISt (zt,Z*) ,
(1-7)°
dist? (21, 2%) <324dist?(Z', Z) + 152S(A+ B) |[VI~! —v* |2,
A, B
+ 1527 2Mdm 2(24,2%).
(1-v)?
Proof of Lemma 24} By applying Lemma[2]to (I04) and substituting (I03)), we have
2
|77 || <sais® (3, 2%) + 4n?S(A+ B) [V — 0|2,
A, B
A BY o 0 2,
(1-7)?

2

oo

Hzt'H - EtHH <8dist? ( i Z*) +4n°S(A+ B) ||Vt —o*

+an? max {A, B}?
(1-7)"
The bound of dist?(2'™", Z*) follows by the fact that dist*>(Z't", 2*) < 2dist*(Z', 2*) +
2
2 HEHI -z The bound of dist®(z**!, 2*) follows by the fact that dist® (2*!, 2*) <

dist? (zt,Z*).

z

2dist? ( t+1 Z*) —|—2‘

bl tHH and substituting the bound for dist?(Z'™", 2*). O

Next, we show the geometric boundedness of Algorithm 1 in|Wei et al.|(2021) with the initializa-

tion (T03).

Theorem 8 (Geometric Boundedness of Algorithm 1 in|Wei et al.|(2021))) Let {zt}te[T1:T2} be the

policy pairs played by running the algorithm @ with initialization (T03). If n < 1, then there is a

problem-dependent constant ﬁo = O(S(({4 ':?4 ) (possibly Do > 1) such that for any t € [T} : Ts),

dist?(z*, 2*) < DL - dist?(2, 2%). (106)

Proof of Theorem|[8] We will show (T06) by proving (IT2)) inductively.

Firstly, we define some constants which are used in the definition of BO. By Lemma fort > T,

t % |2 * j |2
V- <jér[17z}xt O} - dist® (27, 2*) +2 e & 0o (107)
where
2(A+ B
C/ — ( + 2).
(1=7)
By Lemma@and the conditionn < 1, for ¢t > T3,
dist?(2'", 2%) <D} dist* (3", 2*) + C4 |V —v*|°. (108)
+ Chdist? (2%, 27),
distz(ztﬂ, Z*) §D'2dist2(2t, ZH+ ) Hthl — U*Hio (109)

+ Ctdist? (2%, 27),
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where
8 A, BY?
D, =18, C, =8S(A+ B), C} = %2}
(1=1)
152 A, BY?
Dl =324, O, = 1525(A + B), Cl, = 5L{2}
(1=)
For the initialization (T03), by (1),
Vr | < Gt 2), a1o)
where
A+ B
= 2T7
(1=7)
Define
Do = max {C} +2,C4, D}, + C} + C4, Dy + C}, + CL} . (111)

By definition, lA)o <0 (S((fjff ) Now, we proceed to prove (I12) by induction.

max {dist2(zj, Z*)7dist2(2j, Z"), HVj_1 —v*

io} < DITT L dist?(, 2Y). (112)
The case of j = T} follows by (TT0) and the initialization 27t = 2™ = Z.

Suppose we have shown (TT2) for j € [T} : ¢]. Then, by (T07), the fact Dy > 1 and induction

hypothesis,
[Vt =" |2 < (C) +2)Dy™ - dist®(2, 2) < D5 - dist? (2, 27).
By (108) and induction hypothesis
dist? (2", Z2*) < (D} + Cy + C4) - DT - dist?(2, 2*) < DET - dist? (2, 2%).
Analogously, by and induction hypothesis
dist?(2*1, Z*) < (D + C, + CL) - D11 - dist?(2, 2*) < DEHT1 - dist?(z, 2%).

Thus, we have shown (T12) for j = ¢ + 1. By induction, (TT2)) holds for any j € [T} : T3], which
implies (106) directly.

This completes the proof for the geometric boundedness of the algorithm (T04) with the initializa-

tion (T03). O

Remark 3 When the meta algorithm Homot opy—PO switches between Algorithm 1 of \Wei et al.
(2021)) (with the slightly modified initialization) and OGDA (®), then by Theorem[/|and (57),

w_,(0='d
18 CER

5
Then, ifn = O(w) for OGDA, the linear rate is

VS(A+B)
2 1 - 9 2
1_6(177:1_0((’7)@).

S4(A+ B)?
5
As in Algorithm 1 of\Wei et al.|(2021)), the stepsize 1 therein has to satisfy n < (110_47) ; . By combining

Theorem 1 of \Wei et al.| (2021) with (T00), (TOT), 57), B8), if n = O(%)for OGDA and
= 0(

%)for Algorithm 1 in\Wei et al.|(2021), then the length of Hidden Phase I is of order
1280*/3 = O (S”(Ai“illf) :

cf(lf'y
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I NUMERICAL EXPERIMENTS

In this section, we evaluate the numerical performance of Homotopy—PO where Local-Fast
and Global-Slow are instantiated with OGDA and Averaging OGDA respectively.

Markov game model. We generate a sequence of zero-sum Markov games randomly and in-
dependently in the way described below and test the performance of Homotopy—-PO on each
of the games. In each Markov game generated below, the number of states is S = 10, the
min-player and max-player have A = B = 10 actions respectively, and the discount factor
v = 0.99. The reward functions {R(a,b)},cs ocapeps are generated from uniform distribu-
tion on [0,1] independently. To generate the transition kernel, for each (s,a,b), we first choose
an integer ¢s 4 uniformly at random from [S]. Then, we choose a random subset Mo € S
with | M 5| = @s,4,. Then for each s’ € M, , 5, we set @(s’|5,a, b) from uniform distribution
on [0,1] independently, and for s’ € S\M; 4, We set ]@(s’\s,a,b) = 0. Finally, we normalize
P(s'|s, a,b) = P(s'|s,a,b)/ Yosres P(s"|s, a,b) for each (s, a,b) to get the transition kernel. For
the initial policies, we first generate {u, } g With u,(a) chosen from uniform distribution on [0, 1]
foreach s € S, a € A. Then, we normalize 0 = u,/ ||u||, for each s € S. The initial policy
{y?}s cs of the max-player is generated independently in the same way.

Algorithm implementation. In all the experiments below, we set the stepsizes n = 0.1 in OGDA
and also 7’ = 0.1 in Averaging OGDA. We find our algorithm has linear convergence in all the
experiments with these stepsizes.

Performance metric. We measure the closeness of z! to the Nash equilibria set by the Nash

gap Maxges V“”t*T(s) — VT’yt(s). By combining Lemma [7| and Corollary |1| with the fact that

dist(z, 2*) < VSmax,es dist(z,, Z¥), we have the following relation between the Nash gap
max,es V¥ (s) — V1¥(s) and the distance to the NE set dist(z, Z*): forany z = (z,y) € Z,

max{v/24, ;/E} dist(z,2%). (113)

el ~dist(z, 2*) < max V®T(s) — VI¥(s) <

& s€s T (-9

Thus, the linear convergence of dist(z%, Z*) is equivalent to the linear convergence of the Nash
gap MaXses Vf”t’T(s) — vty (8) up to problem-dependent constants. In the figures below, y-axis

represents the logarithmic of the Nash gap log (maxses V*"f(s) — V%' (5)), z-axis represents the
iteration number.

Remark 4 As we can see, there are discontinuities when switching from Averaging OGDA to OGDA
in the figures below. This is because Averaging OGDA is an averaging style method. Recall that

the y-axis represents log (maxseg Vzt’f(s) — VT*yt(s)). However, the initial policy pair of the

= Tk k
Ik :Ik] — Igs t_IgsJ’_l

k-th call of OGDA is the average policy 2 e T oz Qo z%. Since it is quite possible
s

k .5k =
that 7 FesLes] =+ ZIQS, there can be some discontinuities in the figures below when switching from
Averaging OGDA to OGDA. On the other hand, our theoretical bound in Figure [I] is continuous
because by setting t = Ty in @), theoretically dist®(2"2, 2*) < DI2~™" . dist*(2, Z*) whose
bound equals the bound for di~st2 (E[T“TQ] , Z*) on the RHS of @). We remark that in practice, it is

Fk 7k Tk
predictable that z%e 2 e Ll

in most cases.

Numerical performance. We validate the linear convergence of our instantiation of
Homotopy—-PO, where Global-Slow and Local-Fast are instantiated by Averaging OGDA
and OGDA respectively.

Figure 2] shows the performance when the min-player and max-player run Algorithm [6]and Algo-
rithm [/] respectively. We do 10 random and independent trials and the algorithm exhibits linear
convergence in every trial. The plot shows the average trajectory and standard deviation of the 10
random and independent trials. The vertical dotted line is at the end of 7-th call to OGDA (iteration
t = 22098). As we can see, on the RHS of the dotted line (after t > 22098), the algorithm converges
linearly and the Nash gap is less than 10~° after 2 x 10° iterations. The standard deviation of the 10
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random trials is illustrated by the shadow area. Since the switching pattern is 2 iterations of Aver-
aging OGDA followed by 4* iterations of OGDA, Averaging OGDA is only run for 1022 iterations
in the total 2 x 10° iterations. Thus, Averaging OGDA is hardly seen in Figure 2l We magnify the
trajectory of the 9-th call to Averaging OGDA as a subfigure in Figure 2] We can find that Averag-
ing OGDA increases in its 9-th call. This has been predicted in our theoretical bounds (see segment
BC in Figure . The 8-th call to OGDA has 4% iterations, while the 9-th call to Averaging OGDA
only has 2 iterations. We have 4% /2% = 128, i.e., the iterations of OGDA are hundreds of times
more than those in the successive call to Averaging OGDA. Then the increase caused by Averaging
OGDA can be naturally “omitted” compared with the decrease from OGDA. This aligns with our
theoretical bounds in Figure [1|(see the relation between the segments AB and BC in Figure .

2
10 xl T T T T T T T T ]
I — Averaging OGDA | |
o 1 .
S . | OGDA
O 10 | 5
e |
2! I
2
_2 L ]
S 10 : :
= |
o . 4 '
- | « -4
= 10 L s 10
< I
'E 1 8
© 6L I
5’10 : 75
I 8.8 8.82 8.84
10—8 u 1 1 1 X1104 1 1 L L
02 04 06 0.8 1 12 14 16 1.8 2
iteration number x10°

Figure 2: The numerical performance of Homot opy-PO when Global-Slowand Local-Fast
are instantiated by Averaging OGDA and OGDA. The trajectory is the average of 10 random and
independent trials. The x-axis represents the iteration number, while the y-axis represents the loga-
rithm of the Nash gap. The shadow area shows the standard deviations of these trials. The vertical
dotted line is drawn at the end of the 7-th call to OGDA (iteration ¢ = 22098). On the RHS of the
dotted line (equivalently, after ¢ > 22098), the algorithm exhibits fast linear convergence. In our
switching pattern, 2 < 4¥ when k is large. Thus, Averaging OGDA is almost “invisible”. We
magnify the 9-th call to Averaging OGDA as a subfigure. Though Averaging OGDA can increase,
its increase is negligible by the decrease from hundreds of times more steps of OGDA. This aligns
with our theoretical guarantees (see the relation between segments AB and BC' in Figure .

To avoid the problem that the iterations of Averaging OGDA is too few to be “visible”, we do an-
other group of trials by generalizing the switching pattern slightly. Recall that in Algorithm|I{ the
k-th call to Global-S1low has 2¥ iterations while the k-th call to Local-Fast has 4* iterations.
It is worth noting that the choices of 2¥ and 4% in Algorithm [1|is only for simplicity. The proofs
for linear convergence of Homot opy—PO can be directly generalized to the case when the k-th call
to Global-Slow and Local-Fast has {u’ﬂ and [v’ﬂ iterations respectively whenever u, v are
real numbers satisfying v > « > 1. Then to see how Homot opy—-PO switches between Averag-
ing OGDA and OGDA and see the performance difference between Averaging OGDA and OGDA
separately, we test the performance of Homot opy—-PO where the k-th call to Global-Slow and
Local-Fast has 2¥ and [2.1%] iterations respectively. We do another 10 random and indepen-
dent trials in this switching pattern. The average trajectory and standard deviation are illustrated in
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Figure 3: The numerical performance of Homotopy—-PO with a slightly generalized switching
scheme. In the new switching scheme, the k-th call to Averaging OGDA has 2* steps and the k-th
call to OGDA has [2.1’“} steps. In this way, there are more iterations of Averaging OGDA so that
the switches between them can be seen more clearly. The trajectory is the average of 10 random
and independent trials with this switching pattern. The shadow area shows the standard deviation
of these trials. The z-axis represents the iteration number, while the y-axis represents the logarithm
of the Nash gap. We show the trajectories of the first 15 calls of Averaging OGDA and OGDA
(iterations 1 < t < 195592) in this figure. The discontinuity in the trajectory is because Averaging
OGDA is an averaging style method where E[Igszzgs] may not equal P (see Remark . A vertical
dotted line is drawn at the end of the 12-th call to OGDA (iteration ¢t = 22237). It can be observed
that on the RHS of the dotted line (iteration ¢ > 22237), the algorithm exhibits linear convergence.
This aligns with our theoretical bounds illustrated in Figure[T} where Averaging OGDA can increase
but its increase can be “omitted” compared with the decrease from the more steps of OGDA so that
the algorithm still has linear convergence.

Figure[3] where the iterations of Averaging OGDA are drawn in red while those of OGDA are drawn
in blue. We show the trajectories of the first 15 calls of Averaging OGDA and OGDA (iterations
1 <t <195592) in Figure 3] The discontinuity of the trajectory is because Averaging OGDA is an
averaging style method and OGDA uses the average policy E[Igszzés} rather than zZ& as the initial
policy (see Remark[). We draw a vertical dotted line at the end of the 12-th call to OGDA (iteration
t = 22237). It can be observed that on the RHS of the dotted line (after ¢ > 22237), the algorithm
exhibits linear convergence. On the RHS of the dotted line, the performance of Averaging OGDA is
generally inferior to OGDA. Averaging OGDA can even increase in some iterations. This coincides
with our theoretical bounds (see the segment BC' in Figure . Thanks to the fast and efficient linear
convergence of OGDA together with the fact that the iterations of Averaging OGDA take up less
and less proportion in the total iterations, the algorithm can exhibit linear convergence on the RHS

of the vertical dotted line. This also aligns with our theoretical bounds illustrated in Figure|T]

To see the switches between Averaging OGDA and OGDA clearly in each trial, in Figure 4| and
Figure |5| below, we present the 10 random trials of the changed switching pattern (2* iterations of
Averaging OGDA followed by [2.1%] iterations of OGDA). We illustrate the trajectories of the first
15 calls of Averaging OGDA and OGDA (iterations 1 < ¢ < 195592) in Figure [] and Figure [3}
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In each subplots, we draw a vertical dotted line at the end of the 12-th call to OGDA (iteration
t = 22237). It can be observed that on the RHS of the dotted line (after ¢ > 22237), the algorithm
has linear convergence in each trial. In some of the trials, Averaging OGDA can increase in some
iterations. This is predicted (see segment BC in Figure . Since OGDA converges linearly and
Averaging OGDA takes less and less proportion in the total iterations, the algorithm can still exhibit
linear convergence on the RHS of the dotted line (f > 22237). This aligns with our theoretical
bounds (see the relation between segments AB and BC in Figure . Even in the worst case (the
8-th trial), the Nash gap is less than 10~ after 2 x 10° iterations. And in some fast cases such as the
3-rd, 4-th, 5-th, 9-th, 10-th trials, the Nash gap can be less than 1075 or even 108 in about 2 x 10°
iterations.

102 T - - - - - - 102 T - - - - - -
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iteration number x10% iteration number x10*
(a) Random trial 1 (b) Random trial 2
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Figure 4: The first 4 trajectories of 10 random and independent trials with the switching pattern
described for Figure[3] The rest 6 trajectories are illustrated in Figure [5| below. In these trials, the
k-th call to Averaging OGDA and OGDA have 2* and {2.1’“1 iterations respectively so that the
switches between them can be seen more clearly. The z-axis represents the iteration number, while
the y-axis represents the logarithm of the Nash gap. We show the trajectories of the first 15 calls of
Averaging OGDA and OGDA (iterations 1 < ¢ < 195592) in these subfigures. The vertical dotted
line is drawn at the end of the 12-th call to OGDA (iteration t = 22237). As we can see, on the RHS
of the vertical dotted line (¢t > 22237), all trajectories have linear convergence. The discontinuity is
because Averaging OGDA is an averaging style method (see Remark ). The trajectories coincides
with our theoretical bounds in Figure |I| where although Averaging OGDA can cause increase, its
increase can be “omitted” by the more steps of decrease from OGDA.

We also compare our algorithm with Alg. 1 in/Wei et al.[(2021). We choose the stepsizes of both our
Homotopy—PO and Alg. 1 in/Wei et al.|(2021) to be 0.1. We choose the discount factor v = 0.5, and
the rest settings are the same with those in the experiments above. The switching scheme is chosen
to be the same with that in Figure [3] above. The comparison between Homot opy—PO and Alg. 1
in[Wei et al.|(2021) is illustrated in Figure [} where the curves are drawn by taking the average over
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Figure 5: As complement to Figure ] this figure shows the rest 6 trajectories of the 10 random and
independent trials with the switching pattern described for Figure [3] The caption of this figure has
been integrated into that of Figure ]

5 random trajectories and connecting the points at the time points when Homot opy—PO switches
between Averaging OGDA and OGDA. As we can see in Figure[6] Homot opy-PO can converge to
the NE set faster than Alg. 1 in|Wei et al.|(2021)).
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Figure 6: Comparison between Homot opy—PO with a slightly generalized switching scheme with
Alg. 1in/Wei et al.| (2021). In the new switching scheme, the k-th call to Averaging OGDA has 2*
steps and the k-th call to OGDA has [2.1’“] steps. The curves are computed from the average of 5
random and independent trials. The curves are the segments connecting the points at the time points
when Homot opy—PO switches between Averaging OGDA and OGDA.

J DISCUSSIONS

J.1 POSSIBLE TRANSLATION TO SAMPLE-BASED ALGORITHMS

We remark that it is possible to translate our algorithm into sample-based algorithms. Here, we
tentatively discuss the analogues of local linear convergence of OGDA under the following two cases
and give an intuitive analysis for each case. The analogues of global convergence and geometric
boundedness of Averaging OGDA can be discussed similarly.

e Case 1: Assuming access to a simulator (generative model). If there is a simulator (generative
model) and the players can draw lots of samples in one iteration, then it is possible to get linear
convergence against the iteration number. More specifically, at iteration ¢, for each s, N; samples
are drawn from the distributions P(-|s, a®7, b*7), where 1 < j < Ny and a*? ~ zt, %9 ~ yi. We
define a very small variable §, = O(con?(1 — con?)?). Define the truncated simplex Al, = {z €
R4 : z(a) > &, x(a) = 1}. Al is defined analogously. At iteration ¢, we replace the projection
operator Pa ,(-) and Pa () with Pae, (-) and Par (). This guarantees that each action is taken
with probability at least ;. Then by Hoeffding’s inequality, each action a is taken by the min-player
for at least O(N;d;) times with high probability (w.h.p). Then, the empirical marginal reward 7,

and marginal transition kernel @fv observed by the min-player satisfy the following relation w.h.p.,

~ 1 . ~ 1
ot < i, — Pt(. < .
I rMO( Ntdt), 1B (fs, 0) PI<|s,a>|10(\/Nt5t)

In this remark, O(-) suppresses logarithmic terms and problem parameters such as S, A, B, 1/(1—~)
for simplicity. Thus, we have ||V —V="4' || < O(y/ ) vyt vy, < O(/ N5 )

H"}xt,]‘ — Ve < O /ﬁ% @?t,yf(a,b) — Q%" (a,b)] < O(4 /ﬁ) for any (s, a,b). Here,

we use - overhead to indicate the empirical quantities. And the replacement of Pa , (+) by Par, ()
will add an error term whose /..-norm is at most d;. Thus in each iteration ¢, new error terms of

order O / ﬁ +4;) are added. Atiteration ¢, let ! be the ideal variable computed from {z7},<;
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with exact value of the marginal information 7%, and P!. Let 2'*! be the real variable computed in
the learning process. §'*' and y'*' are defined similarly. Then, by Cauchy-Schwartz inequality,
dist? (241, Z*) < (14 con?/2)dist?* (21, Z) + (1 4+ 1/(2¢o0n*))O( 575, + 67). After adding
these error terms to the proof of Theorem 5] the bounds for the potential functions A? defined in
will be

~ 1 1
t+1 2 2 t 2
A (I =con”)(1 + con/2)A" + O (007]2 <Nt5t +5t>)'

Then by setting N; = O(cgn®(1 —con?)?!), we can show by induction that A* < O((1 —con?/3)").
This gives the local linear convergence of OGDA when the players can draw lots of samples in one
iteration.

e Case 2: Using an ergodic assumption. When no simulator is available, we consider translating
our algorithm into a sample-based algorithm under an ergodic assumption. The assumption is that
there exists a constant Ly > 0 such that for any policy pair z = (z,y), if the min-player and the
max-player play policy = and y respectively in L, successive iterations ¢t € [Ty : Ty + Lo — 1],
then, for any initial state s7;, and state s € S, there exists a t’ € [Ty : Ty + Lo — 1] such that
sy = s. Briefly, this assumption requires that when the players choose a stationary policy pair for
successive L iterations, then every state must be visited at least once in these Dy iterations. Under
this assumption, our strategy is to regard successive Ly x Ny iterations as a virtual iteration k. In
this way, we divide [1 : 7] into
[1T] = [Tl ITQ]U[T32T4]U"'U[T2]§_1 :TQk}U"'

where Ty, — Tor—1 = Lo X Ni. Then, in the time interval [Toi_1 : Tay], each state s has been
visited for at least Ny, times. This is similar to the case when we have a simulator and N}, samples
are drawn for each state s in iteration k. In this way, by applying our algorithm and analysis for the
simulator case (Case 1 above), we can show the local linear convergence with respect to the virtual
iteration number k.

J.2 DISCUSSIONS ABOUT THE INTUITIONS BEHIND AVERAGING OGDA AND OGDA

e In Markov games, the main challenge of finding an NE is to estimate the minimax game
values {v*(s)}. If {v*(s)} are already known, the players can use Q, [v*]y% and Q,[v*]T z! as
policy gradients to do optimistic gradient descent/ascent. Then finding an NE is reduced to solving
S matrix games ming, ca , maxy ca, T, Q,[v*]y, separately. Approximating {v*(s)}scs is dif-
ficult because (1) zero-sum Markov games are nonconvex-nonconcave problems, and then, solving
{v*(s)} is almost as hard as our goal which is finding a NE; (2) the players only know marginal
reward and marginal transition kernel, so in each player’s perspective, the marginal MDP observed
is dynamic. More specifically, the errors in approximations for {v*(s)} will cause inaccuracy in
approximate Q-functions and policy gradients. The inaccuracy in policy gradients will make z* far
from the NE set and then induce errors in approximations for {v*(s)}. This will easily generate a
vicious circle and make the errors blow up.

e Averaging OGDA and OGDA employ different ways to approximate {v*(s)}scs in each
iteration. OGDA directly uses V¥ (s) to approximate v*(s). Thus, the min-player uses
Qlyt = Q,[V='¥'|yt as approximate Q-functions to do optimistic gradient descent, while the
max-player uses (Q!)Tz! = Q,[V="¥'|Ta! as approximate Q-functions to do optimistic gradi-
ent ascent. On the other hand, in Averaging OGDA, the min-player and max-player use Kt(s)
and Vt(s) respectively to approximate {v*(s)}. Thus, the min-player uses qi = Q:[V'(s)]y!
as approximate Q-functions to do optimistic gradient descent, while the max-player uses g =
QS[Vt(s)]Txg as approximate Q-functions to do optimistic gradient ascent. V() and Vt(s) are
computed through the averaging technique. Take the min-player as an example, where V'(s) =
minge 4 Z;:Tl a{Z%H gi (a) is a step of value iteration on the average of past Q-function approx-

imations. We will elaborate on the intuition of Zt(s) below, but before that, we first show why
the averaging step is needed to achieve global convergence (equivalently, the disadvantage of using

V*'¥' () to approximate v*(s)).

e Technical challenge in the analysis of OGDA. The main difficulty in the analysis of OGDA
is the nonconvex-nonconcave essence of zero-sum Markov games. As discussed in Section 5.1
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of Daskalakis et al.| (2020), the failure of the Minty Variational Inequality (MVI) property in
zero-sum Markov games poses challenges for the last-iterate convergence of extragradient meth-
ods/optimistic gradient methods. More specifically, given the objective function f(z) with z =
(z,y) and F(z) = (V.f(2),—Vyf(z)), the MVI property means that there exists a point
z* = (z*,y*) such that (F(z),z — 2*) > 0 for any z. Proposition 2 of Daskalakis et al. (2020)
proves that when setting f(z,y) = V*Y(s) for some state s € S, the MVI property can fail in
arbitrarily small neighborhoods of the NE set.

More specifically, for the OGDA method (B)), it may happen that there exists some s € S such that
(ot =&, @yt ) + (B — it (@) "l <, (114)

where 2 = Px-(2'), §"° = Py-(y') are projections. We also denote 2" = Pz (Z").
The troublesome case (114)) implies that going in the directions of policy gradients may de-
viate from rather than get close to the NE set. A naive bound to evaluate how worse

the policy gradients can be is: <w§+1 -z, Q§+1y§+1> + <§i* yit (Qt—H) §+1> >
—2max(epeaxs | QL (a,0) = Qi(a,0)]

The troublesome error term in the naive bound is of order 2max(qpcaxB | Qi“(a, b) —
Q:(a,b)| = O(dist(z", £*)). On the other hand, as we show in Appendix|C.2| projected optimistic
gradient descent/ascent can only provide progress of order O(dist?(z*, Z*)). When z? is close to
the NE set, the error term can be much larger than the progress, i.e., 2 max(, y)c Ax5 ’ Q’.;Jrl(a7 b) —
Qi(a,b)| << O(dist®(z?, Z*)). This prevents us from even showing the local convergence of
OGDA.

o Intuition of Averaging OGDA. Averaging OGDA tackles the problem (T14) by using V", v
instead of V*"+¥" to approximate v*. The corresponding policy gradients Q ViYL, Qs[V! ]Ta:t are
good directions in the sense that we can provide a good lower bound for (z% — /)T Q4 [V']y! +
(yt* — ) TQ,[V'] T xt. More specifically, by Lemma|19|and Fact we have

(2t — ) TQV . + (i — ) TQV'Tal > — |V = VY.

Asin Appendlxmthe term |[V' — V*|| is relatively easy to control. Thus, Q,[V]yt, Q,[V]T»
are “good” directions.

S

o More discussions on OGDA. Although Averaging OGDA use the averaging technique to achieve
global convergence, the averaging technique will make the errors from past iterations fail to decrease
exponentially fast. This prevents Averaging OGDA from achieving linear convergence. To get

local linear convergence, OGDA is a natural candidate because yety' depends only on the most
recent policies, thus, it avoids errors from the past steps. The problem (T14) mentioned above
necessitates novel analysis for OGDA. Our strategy for the local linear convergence of OGDA starts

from considering a weighted sum of <:c§+1 -zl Qi+t y§+1> and <§i,* yitl (Qt+1) §+1>.
Let po denote the uniform distribution on S. As (2", §"*) attains a Nash equilibrium,
sz,-;-l’fy»m (po) B Vfit*’yt-f—l (po) > 0.

Thus’ 0 é Vzt+17gt* (po) . Vit*5yt+1(p0) _ V$t+1;:l:lt* (po) . V$t+17yt+l (po) + th+l)yt+1(p0) B

yETy (po). Then, by applying performance difference lemma (Lemma , we have a variant
of the MVI property with time-varying coefficients which is as in (T6), which can be regarded as a
variant of the MVI property with time-varying coefficients.

In order to utilize (T6) to get local linear convergence, we still need to tackle the following two
problems:

» whether we can find a neighborhood of the NE set such that the time-varying coefficients
d’(s), dt (s) in (16) are “stable”?

* if the time-varying coefficients d} (s), dj(s) in can be “stable” in a small neigh-

borhood of the NE set, will the difference between QS and Q7 prevent the local linear
convergence?
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To address the above questions, we mainly use the two geometric observations in Section [5] Ob-
servation I guarantees the progress of projected gradient descent/ascent is substantial. This means
that the difference between Q’, and Q” will not be troublesome in deriving the local linear conver-
gence. Observation II implies the stability of state visitation distribution. Thus, the time-varying
coefficients d’,(s), dg(s) will be “stable” when z*, Z" are approaching the NE set. In other words,

we can find a problem-dependent neighborhood where the time-varying coefficients d’(s), dty(s)

will possess some “stability”. We remark that since d’,(s), d;(s) can vary rapidly when 2! is far
from the NE set, our analysis for OGDA only hold in a small neighborhood of the NE set. Whether
OGDA has global convergence is still an open problem.
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