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Abstract

Data-driven approaches for material discovery
have been accelerated by emerging efforts in ma-
chine learning. We introduce a material discov-
ery framework that uses natural language embed-
dings derived from pretrained language models as
generalized representations of inorganic materi-
als. The discovery framework consists of a joint
scheme that first recalls relevant candidates, and
next ranks the candidates based on multiple target
properties. Leveraging the contextual knowledge
encoded in language representations, the discov-
ery framework enables both representational simi-
larity analysis for candidate generation, and multi-
task learning to share information across related
properties for ranking. Our language-based frame-
work provides a generalized means of embedding
structure for effective material recommendation,
which is task-agnostic and can be applied to vari-
ous material systems.

1. Introduction

Rapid growth of data in materials science has opened a data-
centric paradigm (Hey et al., 2009) for discovery of novel
materials. In this paradigm, machine learning (ML) mod-
els trained on large material data sets can computationally
screen candidates for field-specific applications. The key
objective of the model-driven approach is to identify can-
didates that exhibit targeted, desirable material properties.
Extracting representative features of materials to capture
attributes is therefore a key to success of accurate model per-
formance and property prediction. Conventionally, material
feature extraction has consisted of hand-crafted descriptors
that contain essential information related to composition
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and crystal structure, relying on physical and mathematical
intuition (Schmidt et al., 2019; Behler & Parrinello, 2007,
Isayev et al., 2017). Until recently, materials’ atomic struc-
tures have been treated as graphs, where convolution oper-
ations extract features from local chemical environments
for accurate property predictions (Xie & Grossman, 2018;
Chen et al., 2019). An outstanding challenge, however, is to
identify a universal and task-agnostic representation that can
enables generalized efficient search of the vast and largely
unlabeled material space to recommend desirable material
candidates.

Previously, recommender-like systems for materials search
were developed to filter by identifying materials for which
predicted confidence levels of target properties fall within a
desirable range for thermoelectrics(Gaultois et al., 2016), to
predict chemically relevant compositions for pseudo-ternary
systems(Seko et al., 2018b;a), and to propose experimen-
tal synthesis conditions(Hayashi et al., 2019). However,
a systematic and generalizable recommendation approach,
which incorporates general material representation, recall,
and ranking, could accelerate discovery of desirable material
candidates across diverse applications.

Here we present a material recommendation framework that
leverages language representations to explore a large space
and identify similar candidate materials, given a query mate-
rial with targeted desired properties. The framework invokes
a funnel-based architecture comprising a candidate gener-
ation (“recall”) step and a subsequent property evaluation
(“ranking”) step (Figure 1a). We first constructed represen-
tations for ~116,000 materials using text description as the
input to the transformer based language models. By evalu-
ating different embedding methods on various downstream
tasks, we found that material language representations are
both highly potent in recalling relevant material candidates,
and capable of predicting properties with comparable per-
formance to state-of-the-art specialized ML models. For
improved ranking, we introduced a multi-gate mixture-of-
experts (MMoE) model, a multi-task learning strategy, to
exploit correlations between material property prediction
tasks (Figure 1b). As a demonstration example of material
discovery, we applied our framework to search and recom-
mend high-performance thermoelectrics (TEs) — materials
that convert waste heat into electricity.
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Figure 1. a, The proposed funnel-based recommender framework in which candidate materials are recalled, and ranked based on similarity
to the query material. b, The schematic workflow to screen candidate materials including constructing language representations, recalling

candidates, and multi-task prediction for ranking.

2. Related work

Advances in natural language processing have allowed in-
formation mining from the large corpus of material science
related literature in an unsupervised fashion. A pioneer-
ing work utilizes word embeddings trained on a large ma-
terial text corpus to encode material science knowledge
into information-dense vector representations (Tshitoyan
et al., 2019). Given a context word for technological ap-
plication, e.g. “thermoelectrics”, candidate materials are
ranked by similarity to the word embedding of the context
word. Word embeddings obtained on material compositions
have also shown competitive performance on material prop-
erty prediction tasks (Wang et al., 2021). However, word
embedding, such as in Word2Vec (Tshitoyan et al., 2019),
does not capture the contextual meaning of the word that
is present in a sentence. Progress on contextual embedding
models has been enabled by masked language modeling to
train Transformer-based language models (MatBERT) (Tre-
wartha et al., 2022), (MatSciBERT) (Gupta et al., 2022) for
material discovery and knowledge extraction from millions
of unstructured material science literatures. By employing
pretrained BERT models, latent knowledge learnt from the
material science text corpus can be encoded into the rep-
resentation and then subjected to a number of subsequent
prediction tasks.

3. Methodology
3.1. Datasets

The training dataset was collected from the Materials Project
(Jain et al., 2013) to include 116,216 materials that are ther-
modynamically stable. We considered five different datasets
for material TE properties as training labels, including
UCSB (Gaultois et al., 2013), ESTM (Na & Chang, 2022),
ChemExtracter (Sierepeklis & Cole, 2022), TEDesignLab
(Gorai et al., 2016), and Citrine (Ward et al., 2018) datasets.

In all five datasets, 826 materials that have records for five
TE properties are used for evaluation of recall performance .
We calculated the numeric mean for materials with repeated
entry for certain properties and properties at different tem-
peratures. For MMoE model training and testing, UCSB and
ESTM dataset, which are experimental values, are utilized
as ground-truth labels.

3.2. Material representations

We first established a ”baseline” method to represent ma-
terials using structure fingerprints to quantify the crystal
structural similarity. For the fingerprint generation, it was
generated using CrystalNN (Zimmermann & Jain, 2020)
algorithm as implemented in Matminer (Ward et al., 2018)
package. The fingerprint contains statistical information
about local motifs with a size dimension of 122. To ac-
quire the representations for each individual material, we
applied robocrystallographer (Ganose & Jain, 2019), an
open-source toolkit that converts the material structure into
a human-readable text passage describing local, semi-local
and global structural features of the given material. We
embedded all material formulae (e.g., "PbTe”) and sentence
descriptors automatically generated from the structures (e.g.,
”PbTe is Halite, Rock Salt structured and crystallizes in the
cubic F'm3m space group...”) as the input to pretrained
language models. Similar to material descriptions found
in literature, such material passage encodes naturally in-
terpretable structural information. The whole passage is
processed by tokenizers and fed into the pretrained BERT
models (MatsciBERT and MatBERT) for output embed-
dings from hidden layers. The output embeddings are L
by 768 dimensional matrix, where L €(0,512] is the total
number of tokens within the passage. We partitioned pas-
sages with more than 512 tokens to fit the maximum input
token size. The final embeddings for each material are con-
structed by averaging output embeddings across all tokens,
resulting in a fixed length of vector representations with 768
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dimensions.

3.3. MMOoE and TE property prediction

A shared-bottom multi-task network was first introduced by
(Caruana, 1997) and widely applied for multi-task learning.
The basic network formulation is:

yr = h*(f(2)) 0))

where £ = 1,2,3...K for K number of tasks, f is the
shared-bottom network, h* is the tower network for task k,
and yy, is the output for task k. The key difference in MMoE
network is to substitute the shared-bottom f with MoE layer
f*(z) for a specific task k, which is defined as:

fH@) =20 6" (@) fil@) )

g*(x) = softmax(W,x) 3)

where i = 1, 2, 3... n for n number of experts, g*(z) is
the gating network for each task k, and Wy, is the train-
able matrix. In our implementation, all expert network is a
three-layered MLP with 128, 64, and 32 dimensions. The
gating network is a two-layered MLP with 32 and 16 di-
mensions. In all of our experiments, networks are trained
for 500 epochs with learning rate = 103, weight decay =
1075, and batch size=64. We used k-fold cross-validation
method to train and evaluate the model performance. For all
datasets, we employed 5-fold cross validation by splitting
the dataset into 5 nonoverlapping portions. The number of
experts is set to 8 for both AFLOW benchmark dataset and
TE dataset.

3.4. Ranking score

Once candidates are recalled for the query, their predicted
properties are used to compute total absolute percent differ-
ence (TAPD) defined as:

c q

TAPD = 5K, ('yk qyk|> “)

Yx
where K is the total number of material properties, y© and
y? are the candidate and query properties respectively. This
measures the composite deviation of candidate properties
from the query properties. All properties need to be close to
those of the query to have a low TAPD. We define relevancy
score as the reciprocal of TAPD:

1
TAPD

relevancy = )
In our experiments, 100 candidates were recalled per query
material. The scores presented in the figure were normalized
by the maximum score within the recalled list.
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Figure 2. a, UMAP projections of 116K materials using different
embedding models. Materials are colored by anionic groups. b,
Distributions of predicted 271" of the top-100 recalled candidates for
PbTe as the query material and randomly sampled 100 materials.
Predicted 21" are obtained from the MMOoOE models. ¢, Recall
results of seven high-performing TE materials are highlighted on
the UMAP projection of 116K material representations obtained
through MatBERT. Each color corresponds to first 100 materials
recalled via cosine similarity.

4. Results

4.1. A language-based framework enables material
recommendations and discovery.

Inspired by the standard design of recommender systems,
we designed a framework for material science to effectively
search a large space and recommend relevant materials with
similar functional performance to a query material. Specif-
ically, we designed a funnel-based architecture that can
be decoupled into a recall step and a ranking step (Figure
la). To enable candidate recall for a query material, we
embedded each material into a dense vector output from the
pretrained language models, which contains latent material-
specific knowledge learnt during unsupervised pretraining.
In Figure 2, we demonstrate that recalled candidates in
the representation space are not only compositionally and
structurally related to the query material, but also can ex-
hibit similar functional performance to a query material.
Starting with known materials with favorable properties for
TEs such as PbTe, we analyzed the top recalled candidates
and found significantly different predicted figure-of-merit
2T distributions from random sampling as indicated by p-
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values (Figure 2a). We repeated this experiment for 100
materials with the known highest z7'; 94 of these show sta-
tistical significance with p <0.05, showing that recalled
materials show distributions that are distinct from random.
Moreover, low-dimensional Uniform Manifold Approxima-
tion and Projection (UMAP) (Mclnnes et al., 2018) of the
material representations display latent signatures of seven
high-performing TE materials along with top-100 recalled
materials, each indicated by a different color (Figure 2b).

4.2. Language models offer effective representations of
material composition, structure, and properties.

Effective representations require rendering information
about material design principles and intrinsic properties. We
utilized local environment based structure fingerprints (Zim-
mermann & Jain, 2020) as the baseline, and compare it with
sentence embeddings of text-based material descriptions
from MatSciBERT and MatBERT by quantitatively evalu-
ated material embedding performance on downstream prop-
erty prediction tasks. The task models were multi-layer per-
ceptrons (MLPs) with mean-absolute-error (MAE) training
loss. The tasks consisted of band gap, energy per atom, bulk
modulus, shear modulus, Debye temperature, and coeffi-
cient of thermal expansion from AFLOW dataset (Curtarolo
et al., 2012). Performance metrics of models trained using
structure embeddings extracted from MatBERT, achieved
most accurate performance (Table 1). These results suggest
that pretrained language models, in combination with text-
based structure descriptions, provide a competitive avenue
to generate features for material representations.

4.3. Multi-task learning exploits cross-task correlations
for improved property predictions.

For a more accurate candidate material ranking, in the sec-
ond stage of the funnel approach of Figure 1 we improved
multi-property predictions through multi-task learning. To
this aim, we introduce multi-task learning with the MMoE
model, which contains a set of expert networks and gating
networks. Through task-specific tower networks, the gat-
ing network for each property prediction allows the model
to learn mixture contributions from different experts, thus
exploiting the interconnections between tasks. The input
representations for MMoE models are natural language em-
beddings for structural and compositional features. We first
benchmarked MMoE with single-task prediction to predict
the properties, as shown in Figure 3a. The MMOE results
are within error of the single-task results, but show modest
improvement by around 5-10%. MMOoE does show notably
better model stability, indicated by lower variance in cross-
validation performance.

For five TE properties as learning tasks, we found moder-
ate Pearson correlation ranging from 0.15 to 0.5 between

Table 1. Benchmarking six different embedding models on six
regression property prediction tasks with MAEs. (E/atom — energy
per atom (eV), E, — band gap (eV), K — bulk modulus (GPa), G —
shear modulus (GPa), § — Debye temperature (K), o — coefficient
of thermal expansion (K™1y).

PROPERTY FINGERPRINT MATSCIBERT MATBERT
E/ATOM 1.134+0.02 0.3240.02 0.29+0.03
E, 0.5440.03 0.2540.01 0.23+£0.01
LOG_K 0.4540.01 0.1640.01 0.154+0.01
LOG_G 0.48+0.01 0.24+0.01 0.23+0.01
LOG10-6 0.1340.01 0.0740.01 0.06+0.01
LOG10-« 0.15+0.01 0.07£0.01 0.06+0.01

a @ Single-task MMoE

Thermal expansion (a) Energy/atom (E/atom)
0.375 +
0.070 0.350
E 0.065 0.325
= 0.060 0.300
0.055 0.275
0.050 0.250
Composition  Structure Composition  Structure
Seebeck coefficient zT
b MAE: 42.3+13.1_R? 0.833+0.094 MAE: 0.092+0.009 RZ: 0.7410.057
400 Tl 021 )
g 1 <
4004 " 0l

-500 0 500 0

1 2
Experimental value Experimental value

Figure 3. a, Comparison of model performance for material prop-
erties prediction between single-task models and MMoE. b, Multi-
task prediction results of TE properties from the best performing
MMOoE model with 5-fold cross validation.

the five TE properties, which is considered ideal for multi-
task learning. Interestingly, we found that multi-task learn-
ing significantly enhances the predictive performance of
one learning task (Seebeck coefficient) by 71% compared
with single-task prediction, with close performance for the
other four tasks within variance from cross-validation. The
multi-task learning results from our best-performing mate-
rial representation and MMOoE is shown in Figure 3b. In
all five prediction tasks, MMOoE accurately predicts the TE
properties for the input material with R? > 0.7. Despite
being trained directly on general representations of crystals,
this model achieves comparable accuracy to recent domain-
specific models in the TE field (Na et al., 2021; Na & Chang,
2022).
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Figure 4. Ranking results of top 15 materials that exhibit most
similar TE potential to CuGaTe,. The color of each data point
denotes the structure prototype as shown on the right panel for
each query material. The recommended structure prototypes share
similar structural features with the query material.

4.4. Search ranking of materials with similar potential

To interpret and evaluate the ranking performance, we
demonstrated the ranking outcomes from our recommenda-
tion framework on a state-of-the-art TE material — CuGaTey
(Figure 4). Candidates were ranked by relevancy score (de-
fined in section 3.4) and the top 15 ranked materials that
exhibit the most similar TE potential are shown. In Figure
4, each candidate is colored by its structure prototype to
visualize the structural diversity. The distribution of pro-
totype structures is shown by the pie chart. Insterestingly,
the recommendations based on querying of CuGaTe, render
diversified outcomes with 5 different structure prototypes.
Is it shown that our framework is able to suggest candi-
dates with diversified structures that are different from, but
still related to, the prototype. Such capability can offer in-
sights and understanding of structural similarity between
different prototypes and structure-to-property mappings for
ML tasks. Moreover, the recommended materials from the
framework are further corroborated by our first-principles
simulations and experiments, proving the effectiveness of
our framework.

Broader impact

While representation learning has facilitated extraction of
more meaningful features from large unlabeled data, meth-
ods for learning material representations have also gained
substantial momentum (Xu et al., 2021; Gupta et al., 2021;
Na & Kim, 2022). On the other hand, language-based mod-
els have achieved remarkable outcomes in prediction and
generation tasks across an extensive array of domain ar-

eas. Through language representations in the inorganic
crystalline materials domain, we demonstrated a recommen-
dation framework encompassing (i) effective representations
of both chemical and structural complexity in the large ma-
terial space, (ii) successful recall of relevant candidates to
the query material or property of interest, and (iii) accu-
rate candidate ranking based on multiple desired functional
properties. The framework is designed to be task-agnostic.
We anticipate that it can be expanded upon and utilized to
search and explore vast chemical spaces, towards functional
materials and drug design.
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