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Abstract
With the emergence of powerful large-scale foun-
dation models, the training paradigm is increas-
ingly shifting from from-scratch training to trans-
fer learning. This enables high utility training
with small, domain-specific datasets typical in
sensitive applications. Membership inference at-
tacks (MIAs) provide an empirical estimate of the
privacy leakage by machine learning models. Yet,
prior assessments of MIAs against models fine-
tuned with transfer learning rely on a small subset
of possible attacks. We address this by comparing
performance of diverse MIAs in transfer learning
settings to help practitioners identify the most ef-
ficient attacks for privacy risk evaluation. We find
that attack efficacy decreases with the increase
in training data for score-based MIAs. We find
that there is no one MIA which captures all pri-
vacy risks in models trained with transfer learn-
ing. While the Likelihood Ratio Attack (LiRA)
demonstrates superior performance across most
experimental scenarios, the Inverse Hessian At-
tack (IHA) proves to be more effective against
models fine-tuned on PatchCamelyon dataset in
high data regime.

1. Introduction
As foundation models increasingly power modern AI sys-
tems, their adaptation through transfer learning raises pri-
vacy concerns. Recent research has demonstrated that fine-
tuned models can inadvertently memorize their training data
rather than learning generalizable patterns (Chu et al., 2025),
creating potential privacy vulnerabilities.

Membership inference attacks (MIAs) (Shokri et al., 2017)
have emerged as a critical tool for quantifying such privacy
leakage by determining whether specific data points were
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Figure 1. MIA efficacy as measured using LiRA (Carlini et al.,
2022) against WideResNet-50-2 (Zagoruyko & Komodakis, 2016)
trained from scratch using CIFAR-10 versus the same model pre-
trained on ImageNet-1k (Deng et al., 2009) when only the last
linear layer of the model is fine-tuned on CIFAR-10. The results
are averaged over 3 repeats, with each repeat using M + 1 target
models (M = 64) that share the same optimized hyperparame-
ters obtained through hyperparameter optimization (HPO). The
errorbars represent the interquartile range (IQR) of corresponding
TPR at FPR. The plot demonstrates that the attack does not behave
similarly across the 2 training paradigms, highlighting the need to
investigate the performance of different MIA approaches against
foundation models fine-tuned using deep transfer learning to en-
sure that a strong attack is used to evaluate their privacy risks.

used during model training. These attacks not only provide
empirical lower bounds on privacy guarantees of a training
algorithm, but also expose privacy vulnerabilities in model
training strategies. Despite significant advances in MIA
methodologies, their evaluation has predominantly focused
on models trained from scratch. Figure 1 shows the varying
privacy vulnerabilities exploitable by MIAs between fine-
tuned and from-scratch trained models, even when both are
trained on identical datasets. This divergence suggests that
MIA efficacy in transfer learning fundamentally differs from
that in from-scratch training.

Earlier works such as Carlini et al. (2019; 2021); Lee et al.
(2022); Kandpal et al. (2022) mainly focused on examin-
ing memorization of pre-training data by large foundation
models. Meeus et al. (2025) recommend using fine-tuned
versions of large language models to evaluate memoriza-
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tion using MIAs but do not conduct any experiments in
this setting. Other studies using MIAs in transfer learning
(Tobaben et al., 2023; 2024; Pradhan et al., 2025) have typi-
cally used a limited selection of attacks. A related study on
the efficacy of MIAs against machine unlearning by Hayes
et al. (2025) shows that the use of weaker versions of MIA
overestimates the privacy protection provided by existing
unlearning techniques. Thus, it is crucial to establish the
relative efficacy of different MIAs to ensure that weaker
attacks, which underestimate privacy risks, are not used to
evaluate membership privacy in transfer learning scenarios.

Our Contributions In this work, we conducted a system-
atic evaluation of existing score-based MIAs (Yeom et al.,
2018; Salem et al., 2019; Ye et al., 2022; Liu et al., 2022;
Bertran et al., 2023; Li et al., 2024; Suri et al., 2024) in
transfer learning contexts. Motivated by the work by Tob-
aben et al. (2024), we investigate the relationship between
MIA efficacy and fine-tuning dataset size using consistent
experimental setups. Our results confirm that MIA efficacy
generally decreases as the number of examples per class
increases for most score-based attacks in transfer learning,
consistent with the power-law relationship previously ob-
served. However, we identify a notable exception: the
white-box Inverse Hessian Attack (IHA) (Suri et al., 2024)
exhibits markedly different behavior, demonstrating supe-
rior performance in high-shot regimes on PatchCamelyon
compared to black-box methods. Additionally, we analyze
the effects of changing the training paradigm and properties
of the attacks on MIA efficacy.

2. Related Work
Deep Transfer Learning Deep transfer learning has been
widely adopted in machine learning, leveraging knowledge
from source tasks to enhance performance on target tasks
with limited data (Yosinski et al., 2014). The process in-
volves pre-training on large-scale datasets to learn general-
purpose feature representations, followed by fine-tuning on
smaller, task-specific datasets, reducing data requirements
and computational costs. However, this approach introduces
privacy vulnerabilities. Models may memorize patterns
from source datasets (Tramèr et al., 2024). Additionally,
fine-tuning on small target datasets often leads to overfitting,
increasing vulnerability to privacy attacks that can extract
information about individual training samples. Researchers
commonly use pre-trained models like ResNet (He et al.,
2016; Kolesnikov et al., 2020) and Vision Transformer (ViT)
(Dosovitskiy et al., 2021) due to computational constraints.
Therefore, evaluating and mitigating privacy leakage during
fine-tuning on sensitive downstream tasks forms a practical
motivation for privacy research.

Membership Inference Attacks Membership inference
attacks (MIAs) aim to determine whether a specific data
sample was used in training dataset of a target model. These
attacks exploit differences in model behavior when respond-
ing to samples used for training the model (member sam-
ples) versus non-member samples, thereby compromising
the privacy of sensitive data. MIAs are typically catego-
rized based on the adversary’s knowledge and access to the
target model (Hu et al., 2022b). In the white-box setting,
attackers have full access to the model’s learned parameters,
gradients, and architecture details. In contrast, black-box
attacks operate with limited information, typically requiring
knowledge of the data distribution and potentially access to
model architecture and hyperparameters. Black-box MIAs
further diverge into 2 primary variants: score-based MIAs
that exploit the model’s confidence scores, and label-only
MIAs that function only with the predicted class labels (Li
& Zhang, 2021; Choquette-Choo et al., 2021; Peng et al.,
2024). Our work mainly focuses on score-based MIAs,
as they represent the most potent yet practically feasible
attacks.

Shadow-model-based vs. Shadow-model-free MIAs
Score-based MIAs can be further divided into shadow-
model-based and shadow-model-free approaches. Shadow-
model-based MIAs depend on shadow training (Shokri et al.,
2017), a technique where the attacker trains surrogate mod-
els that mimic the behaviour of the target model. These
include methods such as ML-Leaks (Adversary 1) (Salem
et al., 2019), Trajectory-MIA (Liu et al., 2022), Sequential-
Metric based MIA (SeqMIA) (Li et al., 2024), Likelihood
Ratio Attack (LiRA) (Carlini et al., 2022), and Robust MIA
(RMIA) (Zarifzadeh et al., 2024). Despite their effective-
ness, shadow-model-based MIAs require substantial com-
putational resources, especially since their attack efficiency
relies on training additional models. This limitation has
motivated the development of more computationally effi-
cient shadow-model-free alternatives, including LOSS at-
tack (Yeom et al., 2018), Attack-P (Ye et al., 2022), and
quantile-MIA (QMIA) (Bertran et al., 2023).

Black-box vs. White-box MIAs While most MIA re-
search has focused on black-box settings following the
theoretical assertion by Sablayrolles et al. (2019) stating
that white-box access provides no additional advantage for
evaluating membership privacy, Suri et al. (2024) recently
challenged this consensus by deriving a new optimality con-
dition and introducing the white-box Inverse Hessian Attack
(IHA). For completeness, our evaluation includes this white-
box approach alongside predominant black-box methods.

Table 1 summarizes the threat models for all MIAs used in
this paper.
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Table 1. Summarizing MIAs in terms of the auxiliary information about the target model available to the attacker.

Attack
Target Model Access

Data Distribution Architecture Hyperparameters Model Parameters

LOSS (Yeom et al., 2018) ✓ - - -
Attack-P (Ye et al., 2022) ✓ - - -

QMIA (Bertran et al., 2023) ✓ - - -
LiRA (Carlini et al., 2022) ✓ ✓ ✓ -

RMIA (Zarifzadeh et al., 2024) ✓ ✓ ✓ -
ML-Leaks (Salem et al., 2019) ✓ ✓ ✓ -

Trajectory-MIA (Liu et al., 2022) ✓ ✓ ✓ -
IHA (Suri et al., 2024) ✓ ✓ ✓ ✓

3. Score-based MIAs
In this section, we describe the different MIAs employed in
this paper and highlight how they differ in their approach to
estimate membership privacy.

Preliminaries Let D be a dataset sampled from data dis-
tribution π. This dataset is used to train a machine learning
model M with parameters θ. Next, we establish the prob-
ability notations used in the paper. Pr(θ|x) denotes the
probability of observing parameters θ when x in included
in the training set, while Pr(θ|x) denotes the probability
of observing θ if x is not in the training set. Conversely,
Pr(x|θ) represents the probability that x was part of the
training set that produced θ.

3.1. Shadow-model-based MIAs

ML-Leaks ML-Leaks (Adversary 1) (Salem et al., 2019)
refines the shadow training approach (Shokri et al., 2017).
It begins by training a shadow model using the dataset
Dshadow sampled from π. However, instead of using the
full prediction vector, ML-Leaks extracts only the top 3
posterior probabilities (or top 2 for binary-class datasets),
ordered from highest to lowest for each sample in Dshadow.
Following this, it uses the trimmed probability vectors as
inputs to train the attack model. This attack model can then
be deployed to compute the membership scores for samples
in D.

LiRA LiRA is a hypothesis testing framework for mem-
bership inference proposed by Carlini et al. (2022). For a
given target model, it trains M shadow models, such that the
target sample, x, is included in the training dataset for 1/2
of them (IN models) whereas it is excluded from the train-
ing dataset of the remaining M/2 models (OUT models).
Using the predicted and logit-scaled confidence scores from
these IN and OUT shadow models, the attacker can build
the IN and OUT Gaussian distributions. Following this, the
attacker can employ a likelihood ratio (LR) test (Neyman &

Pearson, 1933) to compare Pr(θ|x) against Pr(θ|x):

LRθ(x) =
Pr(θ|x)
Pr(θ|x)

. (1)

The attacker can use LRθ(x) as the membership score to
train a binary classifier to differentiate between member and
non-member samples.

Trajectory-MIA Liu et al. (2022) proposed Trajectory-
MIA as an efficient alternative to LiRA. This is because
Trajectory-MIA uses a single shadow model compared to
LiRA’s multiple shadow models’ based approach. The
method leverages knowledge distillation (Hinton et al.,
2015) to simulate the target model’s training trajectory.
Specifically, it performs distillation on both the target and
shadow models, minimizing Kullback-Leibler (KL) diver-
gence between the student and teacher models’ outputs. By
recording the per-example training loss trajectory across
distillation epochs, Trajectory-MIA captures temporal pat-
terns that differ between member and non-member samples.
These loss trajectories serve as feature vectors for a MLP
classifier to predict memberships.

RMIA RMIA (Zarifzadeh et al., 2024) further refines
LiRA by incorporating knowledge about the population
data z ∼ π in the likelihood ratio. It introduces a pairwise
LR test that explicitly incorporates population samples z,
computing the probability that the pairwise LR exceeds a
preset threshold γ:

Pr
z∼π

(LRθ(x, z) ≥ γ) = Pr
z∼π

(
Pr(θ|x)
Pr(θ|z)

≥ γ). (2)

This pairwise LR formulation captures the relative rela-
tionship between a potential member sample x and known
non-member samples z drawn from the population. By
composing these pairwise comparisons, Zarifzadeh et al.
(2024) contend that RMIA achieves greater robustness to
distribution shifts between members and non-members.
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3.2. Shadow-model-free MIAs

LOSS Attack/ Attack-P LOSS attack (Yeom et al., 2018)
uses loss on the target sample ℓ(M(x), y) as a membership
signal. Since the objective of training a machine learning
model is usually to minimize their loss on the training sam-
ples, it compares the loss on the target sample against a
fixed threshold τ to infer membership. Attack-P (Ye et al.,
2022) is an improvised version of the LOSS attack, which
constructs an empirical cumulative distribution function
(CDF) from the population samples. Unlike the LOSS at-
tack which uses a fixed threshold τ , Attack-P compares
the loss of the target sample to the distribution of losses
from known non-members, calculating what percentage of
non-member losses fall below the target’s loss. Specifically,
these attacks compare Pr(x|θ) with Pr(z|θ) as the threshold
to determine the membership of x.

QMIA QMIA (Bertran et al., 2023) determines per-
sample thresholds by performing quantile regression on
the distribution of confidence scores obtained from known
non-member data. By training a regression model with
pinball loss to predict these thresholds at a desired false pos-
itive rate, QMIA creates a nuanced decision boundary that
adapts to individual sample. This model-agnostic approach
was proposed as an effective alternative to shadow-model-
based MIAs in black-box settings where only API access is
available.

IHA Suri et al. (2024) proposed a white-box variant of
MIA, namely the Inverse Hessian Attack (IHA). Building on
recent advancements in discrete-time SGD dynamics (Liu
et al., 2021; Ziyin et al., 2022), Suri et al. (2024) demon-
strate that an optimal membership inference requires white-
box access to the model’s parameters post-training, and
not merely its output predictions. IHA relies on a local
similarity assumption, which posits that models trained
with or without a specific data point converge to simi-
lar local minima. Under this assumption, the Hessian
matrices at the respective optima share similar structure:
H∗ = H0(w

∗
0) = H1(w

∗
1), where w∗

0 and w∗
1 repre-

sent the optimal parameters for models trained without
and with the target sample, respectively. In addition, the
loss functions achieve similar values at these local minima:
L∗ = L0(w

∗
0) = L1(w

∗
1). This assumption allows IHA to

approximate the optimal membership inference by formu-
lating the MIA scoring function using terms dependent on
gradients and model parameters.

4. Experimental Setup
Datasets We use CIFAR-10, CIFAR-100 (Krizhevsky,
2009), and PatchCamelyon (Veeling et al., 2018) in our ex-
periments. CIFAR-10 and CIFAR-100 are common bench-

mark datasets for MIA evaluation. PatchCamelyon, includ-
ing only 2 classes, enables experiments with substantially
larger number of shots S (examples per class), providing
greater insight into how training set size affects MIA effi-
cacy.

Models We use ViT-B/16 (Dosovitskiy et al., 2021) and
BiT-M-R50x1 (R-50) (Kolesnikov et al., 2020) as the back-
bone models for fine-tuning, both pretrained on ImageNet-
21k (Deng et al., 2009).

Parameterization We employ 2 schemes for parameteri-
zation: (i) Head-only, where only the classification layer is
replaced by a trainable linear layer, with initial weights set
to 0, while the feature extraction backbone remains frozen,
and (ii) FiLM, where FiLM adapters (Perez et al., 2018)
are introduced throughout the network alongside a train-
able classification head. This parameter-efficient technique,
applicable to both convolutional and transformer architec-
tures, enables more expressive adaptation while minimizing
trainable parameters compared to full fine-tuning. Although
alternatives such as LoRA (Hu et al., 2022a), and CaSE
(Patacchiola et al., 2022) exist, FiLM is selected due to its
demonstrated effectiveness in parameter-efficient few-shot
transfer learning (Shysheya et al., 2023; Tobaben et al.,
2023).

Hyperparameter Optimization Before model training,
we perform hyperparameter optimization (HPO) to identify
the optimal set of hyperparameters to train the target model.
We use the same set of hyperparameters to train both the
target and the shadow model(s). We begin by sampling
1/2 of the training dataset (D) for HPO. In each HPO trial,
we use 70% of the data for training the model while the
remaining 30% is used as validation dataset. We run the
HPO for 20 trials to explore the hyperparameter space. We
implement HPO using Optuna (Akiba et al., 2019) with
Tree-structured Parzen Estimator (TPE) algorithm (Bergstra
et al., 2011). Table 2 summarizes the hyperparameters and
their corresponding search ranges used in our experiments.

Table 2. Hyperparameter search ranges used for Bayesian opti-
mization with Optuna.

Hyperparameter Parameterization Range

Epoch Head-only [1, 200]

FiLM [1, 40]

Train Batch Size Head-only/FiLM [10, 1000]

Learning Rate Head-only/FiLM [10−7, 10−2]

Metrics The metrics used for evaluating efficacy of MIAs
include: (i) log-scaled ROC curves to visualize the trade-off
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Figure 2. MIA efficacy against ViT-B/16 (Head-only) models as a function of S (shots). Upper: Shadow-model-based attacks using M
shadow models. Lower: Shadow-model-free attacks. The errorbars represent the interquartile range (IQR) of the estimated TPR at fixed
FPR and the dotted lines represent the maximum of the median MIA efficacy of shadow-model-based and shadow-model-free attacks.
Shadow-model-based attacks generally demonstrate more stable and stronger MIA efficacy compared to shadow-model-free attacks. In
the high-shot regime of PatchCamelyon, however, the white-box IHA has a considerable advantage over other MIAs in terms of MIA
efficacy. Results are averaged over 10 repeats and we use 1 target model per repeat.

between true positive rate (TPR) and false positive rate
(FPR), with emphasis on the low FPR region, (ii) TPR at
low FPR: to measure MIA efficacy when the false positives
must be minimized, better representing realistic attack sce-
narios (Carlini et al., 2022), and (iii) Interquartile Range
(IQR) is used as a statistical measure to quantify uncertainty.
It is the difference between the 25th and 75th percentile of a
set of values and provides a trimmed estimation that is less
sensitive to outliers compared to standard deviation. This
helps mitigate the impact of extreme values that may occur
due to particularly favorable or unfavorable random initial-
izations, providing a more reliable assessment of variation
in MIA efficacy across different experimental repeats.

Experimental Protocol Unless otherwise specified, all
our results presented are averaged over 10 experimental re-
peats. Within each repeat, we sample a new subset of the
population dataset (e.g. CIFAR-10). We sample the datasets
to train the target and shadow models from the selected sub-
set such that for each sample x in the target model’s training
dataset, we have 1/2 of the shadow models trained with x
whereas the remaining are not training with x. Additionally,
we run the HPO algorithm for each experimental repeat to
find optimal hyperparameters to train the target and shadow
models. In order to ensure fair comparisons between differ-
ent MIAs, we restrict our experiments to 1 target model per
repeat as more target models are computationally expensive.

With LiRA it is possible to use the so-called efficient LiRA
implementation proposed by Carlini et al. (2022) that uses
every shadow model also as a target model (see Section 5.3).
While it is computationally cheap to implement the same
also for RMIA, it is computationally expensive to do the
same for the other attacks.

5. Results
We comprehensively analyze the factors that influence MIA
efficacy of various attacks in transfer learning. In Sec-
tion 5.1, we explore the effect of the number of shots on
the performance of different attacks. In Section 5.2, we
study how the performance of attacks varies for different
parameterization schemes. In Section 5.3 and Section 5.4,
we study the impact of number of shadow models and data
augmentation on the most powerful MIAs, namely, LiRA
and RMIA.

In addition, we investigate the impact of attack-specific
parameters on MIA efficacy by evaluating how choice of
attack threshold, γ, for RMIA (Appendix A.1) and distilla-
tion set size for Trajectory-MIA (Appendix A.2) affect their
respective performance. These attacks have been proposed
as more efficient alternatives to LiRA but we find their per-
formance to be sensitive to the choice of hyperparameters,
such as γ in RMIA, introduced by the attack design.

5



Empirical Comparison of Membership Inference Attacks in Deep Transfer Learning

5.1. Effect of Training Dataset Properties

Figure 2 demonstrates the relationships between the MIA
efficacy and the number of examples per class, or shots (S),
across all datasets, confirming the power law relationship
proposed by Tobaben et al. (2024). Among all examined
attacks, LiRA consistently outperforms other approaches
across most experimental settings, exhibiting remarkable
stability as evidenced by the narrower confidence intervals
for it. The performance advantage of LiRA is particularly
pronounced at lower S, though this advantage diminishes
as S increases.

While most attacks show monotonic degradation in MIA
efficacy with increase in S, IHA displays non-monotonic
patterns with multiple fluctuations. This anomalous devia-
tion from the general trend suggests that white-box attacks
can exploit different aspects of model vulnerability. The
second-order information captured by the Hessian matrix
appears to reveal membership signals that might go unde-
tected by the black-box approaches in large training datasets.
This demonstrates that while simply increasing training data
volume can effectively reduce average vulnerability to exist-
ing black-box MIAs, it cannot completely eliminate privacy
risks to white-box attacks.

5.2. Effect of Training Paradigm

Figure 3 illustrates the difference in MIA efficacy between
FiLM and Head-only fine-tuned R-50 models across multi-
ple MIAs. Overall, parameterization strategies have mini-
mal impact on MIA efficacy across most MIAs. The only
notable exception is Trajectory-MIA which shows decreased
MIA efficacy for FiLM as compared to Head-only. How-
ever, Trajectory-MIA remains a weaker attack than LiRA
against FiLM. Given that LiRA maintains consistent perfor-
mance across both parameterization schemes, this suggests
that practitioners should choose parameterization scheme
based primarily on utility considerations rather than privacy
concerns, as the fine-tuning choice does not significantly
alter the efficacy of the most effective MIA approaches.

5.3. Number of Shadow Models

Figure 4 illustrates the relationship between the number of
shadow models M and MIA efficacy for LiRA and RMIA,
2 of the strongest shadow-model-based attacks discussed
in this paper. To ensure a statistically robust evaluation,
we employ an efficient implementation of LiRA and RMIA
proposed by Carlini et al. (2022). This approach involves
sampling M +1 datasets from the training dataset D, which
contains C × S samples (C classes with S examples per
class), such that each sample has a 0.5 probability of being
selected for any given dataset. We then train models on each
of these datasets and evaluate attacks against each model
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Figure 3. Comparison of MIA efficacy against R-50 fine-tuned on
CIFAR-10 with Head-only versus FiLM parameterization across 4
different S (shots). The errorbars represent the interquartile range
(IQR) of the estimated TPR at fixed FPR. Results are averaged over
5 repeats with 1 target model in each repeat. For the strongest
attacks, there is no considerable difference in MIA efficacy across
the 2 parameterization schemes.
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Figure 4. Relationship between MIA efficacy and the number of
shadow models (M ) for LiRA and RMIA against ViT-B/16 model
with Head-only fine-tuned on CIFAR-10. Results demonstrates
MIA efficacy in low data availability (shots S = 16) and high
data availability (S = 1024) scenarios. For each configuration,
we train M + 1 models per repeat, using each model as the target
while the remaining M serve as shadow models. We compute the
average MIA efficacy (TPR at fixed FPR) across all M + 1 target
models per repeat, then construct boxplots using these average TPR

from 5 independent repeats. LiRA dominates in terms of efficacy
over RMIA despite the latter’s performance being more robust to
the variations in M .

while using the remaining M models as shadow models.

LiRA exhibits significant sensitivity to variations in M
across both low-data (S = 16) and data-rich (S = 1024)
scenarios but is robust to increase in M beyond M ≥ 64.
While RMIA demonstrates robustness to changes in M ,
its efficacy does not exceed LiRA in either of the scenar-
ios. The performance for both the attacks stabilize beyond
M ≥ 64 suggesting it to be a cost-efficient choice for the
number of shadow models in deep transfer learning setting.
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5.4. Effect of Using Data Augmentation During
Fine-Tuning

Prior research has demonstrated that both LiRA and RMIA
benefit from querying each sample multiple times when
attacking models trained from scratch using data augmen-
tation (Carlini et al., 2022; Zarifzadeh et al., 2024). These
attacks achieve improved performance by using not only the
original sample but also augmented versions of it during the
inference process. To determine whether similar improve-
ments occur in deep transfer learning scenarios, we fine-tune
target models using training datasets augmented with simple
transformations, including mirror flipping and pixel shifting.
This approach is employed in both from-scratch training
(Perez & Wang, 2017) and transfer learning (Mehta et al.,
2023) to improve model generalization, particularly when
working with limited data.

Following the same efficient implementation as described in
Section 5.3, we evaluated MIA efficacy using multiple aug-
mented queries generated using a subset of transformations
applied during training. For LiRA, the membership signal
is averaged over multiple queries directly, while for RMIA,
we follow the majority voting scheme as recommended by
Zarifzadeh et al. (2024). Figure 5 shows that data augmen-
tation produces negligible performance improvements for
both attacks when targeting Head-only fine-tuned models.
This finding represents a significant departure from the from-
scratch training findings, suggesting different vulnerability
patterns in transfer learning. Based on these results, we
employ the non-augmented version of both attacks in all
experiments for computational efficiency.
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Figure 5. Impact of data augmentation on MIA efficacy across S
(shots) for ViT-B/16 models Head-only fine-tuned on CIFAR-10
with data augmentations. We compare 2 augmentation strategies:
+ Mirror (where original image plus a horizontally flipped copy of
it are used to train the target model) and + Shift (where horizontally
flipping and/or ±1-pixel shifts are applied to the original image),
with No augmentation as the baseline. The errorbars represent
the interquartile range (IQR) of the estimated TPR at fixed FPR.
Results are averaged over 5 repeats and we use M + 1 target
models (M = 64) per repeat.

6. Discussion
Our findings largely corroborate the claim made by Tobaben
et al. (2024) which states that increasing the number of ex-
amples per class generally reduces MIA efficacy. However,
we do not find this behavior to be consistent across all the
attacks. For example, MIA efficacy of IHA increases sub-
stantially at larger shots as observed in Figure 2, indicating
that white-box attacks can detect vulnerabilities that remain
hidden from black-box methods.

For the most powerful attacks (e.g. LiRA) we find that
different parameterization schemes, such as Head-only and
FiLM, show minimal differences in terms of MIA efficacy.
One notable exceptions is Trajectory-MIA, which shows
increased vulnerability against Head-only fine-tuning. How-
ever, Trajectory-MIA is weaker and less stable compared to
LiRA, which maintains consistent performance across both
parameterization schemes. This implies that the parameteri-
zation choices for fine-tuning could be guided primarily by
the utility as they do not significantly affect the performance
of the strongest attacks.

Carlini et al. (2022); Zarifzadeh et al. (2024) suggest that
data augmentation can be utilized to improve MIA effi-
cacy against models trained from scratch. However, in
Section 5.4 we observe no significant improvement in MIA
efficacy due to augmentation against models with the last
linear layer subject to fine-tuning. This suggests that prac-
titioners can leverage augmentation techniques to improve
model utility without substantially compromising its pri-
vacy.

No single MIA is able to capture all vulnerabilities in fine-
tuned models. LiRA provides robust auditing capabilities
but shows decreased efficacy as dataset sizes grow. IHA
shows potential to detect vulnerabilities missed by black-
box attacks, particularly with datasets that have different
characteristics from the pre-training data, such as Patch-
Camelyon (Goyal et al., 2023; Choi et al., 2024; Thaker
et al., 2024). Comprehensive privacy auditing requires a
multi-faceted approach that combines both black-box and
white-box methods.

Limitations

• We focus on balanced datasets in our experiments to
evaluate the relationship between examples per class
(S) and MIA efficacy for different attacks because this
design choice enables clear comparison across different
data availability scenarios. Future work could extend
this analysis to imbalanced datasets commonly found
in real-world deployments.

• To ensure a fair comparison across different attacks
in Sections 5.1 and 5.2, we restrict our experiments
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to having 1 target model per repeat. This differs from
Carlini et al. (2022)’s efficient implementation of LiRA
where they reuse all the M + 1 trained models as the
target model and average the MIA efficacy over all
of them. This is because attacks such as Trajectory-
MIA require training 2 additional distilled models for
each target model- shadow model pair, which makes
the attack computationally infeasible if the number
of target models per repeat is set to be the same as
LiRA (M + 1). Similar computational constraints are
associated with IHA where approximating iHVPs per
target sample per model will be prohibitively expensive
for large numbers of target models.

7. Conclusion
In this work, we evaluated and compared the performance
over a large set of MIAs in transfer learning settings. We
found that the attack strength deteriorates as the dataset
size increases for black-box MIAs. This agrees with the
power law postulated by Tobaben et al. (2024). However,
this relationship is not guaranteed to hold for all the attacks
discussed in this paper, such as the white-box IHA. This
shows that there is no single existing attack that can fully
quantify the privacy leakage in deep transfer learning. In
addition, we found no significant difference in MIA efficacy
between Head-only and FiLM parameterization strategies
for most attacks, implying that choice of parameterization
can be made with a utility-first perspective. However, MIAs
are sensitive to the choice of attack properties, such as the
number of shadow models used for the attack. These em-
pirical findings provide guidance for practitioners seeking
to assess privacy risks using MIAs in deep transfer learning
applications.
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A.1. Influence of γ in RMIA Scoring Function
As shown in Equation (2), RMIA uses γ (≥ 1) as the threshold for the likelihood ratio test. It determines how much higher
should the likelihood of observing model parameters θ be if a target sample x was in the training dataset relative to a random
population sample z to pass the membership test. As such, γ is a critical parameter in the RMIA. Following the same
efficient implementation as described in Section 5.3, we conduct a sensitivity analysis varying γ from 1 to 64 and report the
MIA efficacy to evaluate attack performance. While RMIA efficacy against models trained from scratch is robust to the
choice of γ as shown by Zarifzadeh et al. (2024), this robustness does not extend to few-shot transfer learning setting. For
ViT-B/16 models fine-tuned on CIFAR-10 with the Head-only setting, only RMIA with γ = 2 performs consistently across
varying the number of shots. Despite wide error bars, its median performance remains stable.
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Figure A1. RMIA efficacy as a function of the threshold parameter γ. Results show MIA efficacy against ViT-B/16 models Head-only
fine-tuned on CIFAR-10. We train M + 1 models (M = 64) per repeat, using each model as the target while the remaining M serve as
shadow models. We compute the average MIA efficacy (TPR at fixed FPR) across all M + 1 target models per repeat, then construct
boxplots using the average TPR from 10 independent repeats. RMIA is shown to be sensitive to the value of γ in deep transfer learning
setting. The blue dashed line represents the median MIA efficacy achieved by LiRA under identical conditions.

A.2. Effect of Distillation Set Size in Trajectory-MIA
Trajectory-MIA requires an auxiliary dataset for knowledge distillation to simulate the target model’s training process.
Following Liu et al. (2022) we split the given dataset into target, shadow, and distillation datasets, and we construct our
distillation datasets using all data that is not a part of the target and shadow datasets.

Figure A2 illustrates that the distillation set size has to be sufficiently large for Trajectory-MIA to work effectively.
Smaller distillation sets prevent the student model from learning sufficiently diverse examples to generalize to unseen data.
However, |DK | ≥ 20000 does not lead to any significant improvement in Trajectory-MIA efficacy. For CIFAR-10, using
|DK | = 20000 for knowledge distillation proves to be more effective than using all available data (∼50000 samples) in very
low-shot regimes like S = 16. As the number of shots increases, the performance difference between |DK | = 20000 and
|DK | = All decreases, because the available data for distillation become increasingly similar in both scenarios.
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Figure A2. Sensitivity of Trajectory-MIA efficacy to distillation set size. MIA efficacy is evaluated against ViT-B/16 models Head-only
fine-tuned on CIFAR-10. |DK | represents the distillation set size, with All representing using all available data not part of the fine-tuning
datasets. The errorbars represent the interquartile range (IQR) associated with the estimated TPR at fixed FPR. The blue dashed line
represents the median MIA efficacy achieved by LiRA under identical conditions. We use LiRA with 64 shadow models as the upper
bound on MIA efficacy. Results are averaged over 10 repeats and we use 1 target model per repeat.
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